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Acoustic Modeling Using the Aeroacoustic Wave Equation Based on Pierce's Operator

The capabilities of an aeroacoustic wave equation based on Pierce's operator (AWE-PO) for modeling subsonic flow-induced sound and for sound prediction are investigated. The wave equation is applied to an isothermal twodimensional mixing layer computed by direct numerical simulation. In contrast to a direct numerical simulation, providing the acoustic fluctuations directly, the simulations based on Lighthill's wave equation and the AWE-PO rely on a hybrid workflow to predict the generated sound field. Special attention is put on the interpretation of the righthand side of both wave equations. Comparing the terms on the right-hand side in Lighthill's theory and AWE-PO suggests a source amplitude for AWE-PO that is 90% smaller. This reduction is attributed to the filtering property of the material derivative. Finally, the results of the acoustic far-field pressure are compared. It is shown that the radiated sound field's directivity, propagation, and convection effects are well captured for both wave equations. The computations using Lighthill's equation and AWE-PO are found to provide acoustic intensities within 1.8 dB from the reference direct numerical simulation. This error is comparable with the errors reported for Lighthill's equation in previous studies.

I. Introduction

I N MANY industrial applications, an accurate prediction of the sound produced by flow is needed. This requires a deeper understanding of the noise generation mechanisms using proper wave models. The conservation equations of fluid dynamics describe the conversion of flow energy to acoustic energy. This inherent coupling of the flow and acoustics makes a precise investigation of the energy transformation cumbersome. Starting in 1952, Lighthill [START_REF] Lighthill | On Sound Generated Aerodynamically I: General Theory[END_REF] has looked at the detailed process of converting flow's energy of motion into acoustic energy. This author rearranged the conservation equations into a single wave equation with a right-hand side (RHS), including the sound sources. The RHS of Lighthill's equation is responsible for sound generation, attenuation, convection, refraction, and nonlinear effects. Regarding Lighthill's theory, the sound field is obtained in a sequential procedure [START_REF] Schoder | Hybrid Aeroacoustic Computations: State of Art and New Achievements[END_REF]. First, a prior direct numerical simulation must be computed to determine the RHS. With this RHS, the sound field can be computed using, for instance, the finite element method (FEM) to solve the wave equation. For specific flows, other wave equations with a different balancing RHS turned out to be useful [START_REF] Schoder | Hybrid Aeroacoustic Approach for the Efficient Numerical Simulation of Human Phonation[END_REF]. For example, Phillips [START_REF] Phillips | On the Generation of Sound by Supersonic Turbulent Shear Layers[END_REF] and Lilley [START_REF] Lilley | On the Noise from Jets[END_REF] noticed that convection effects are part of Lighthill's RHS and moved these convection effects to the wave operator. More recently, Ewert and Schröder [START_REF] Ewert | Acoustic Perturbation Equations Based on Flow Decomposition via Source Filtering[END_REF] derived a set of acoustic perturbation equations based on a method called "source filtering." In their work, several variants are presented. For instance, one variant focuses on low-Mach-number flows and another has a source term that can be easily computed. For low-Mach-number flows, Seo and Moon [START_REF] Seo | Perturbed Compressible Equations for Aeroacoustic Noise Prediction at Low Mach Numbers[END_REF][START_REF] Seo | Linearized Perturbed Compressible Equations for Low Mach Number Aeroacoustics[END_REF] reformulated the conservation equations, which led to linearized acoustic perturbation equations for low-Mach-number flow with variable density and temperature.

From the linearized Euler equations, Spieser [START_REF] Spieser | Adjoint-Based Jet Noise Propagation Model for the Acoustic Potential[END_REF] and Spieser and Bailly [START_REF] Spieser | L'équation de Pierce et ses lois de Conservation[END_REF] have derived a scalar wave equation based on the acoustic potential in generalizing the work of Pierce [START_REF] Pierce | Wave Equation for Sound in Fluids with Unsteady Inhomogeneous Flow[END_REF]. An aeroacoustic workflow based on this wave equation can be proposed. It is referred to as the aeroacoustic wave equation based on Pierce's operator (AWE-PO) in what follows. Like Lighthill's equation, the noise produced by a flow can be obtained with AWE-PO, using direct numerical simulation (DNS) to calculate the RHS and integrate the wave equation afterward. The first investigations of Pierce's wave operator have shown that it accounts reasonably well for the acoustic propagation over a strongly sheared and heated base flow [START_REF] Spieser | Sound Propagation Using an Adjoint-Based Method[END_REF]. The operator has been used to derive an adjoint-based jet noise propagation model [START_REF] Spieser | Adjoint-Based Jet Noise Propagation Model for the Acoustic Potential[END_REF], and it has been successfully applied to model the installation effects of a subsonic jet beneath a flat plate [START_REF] Spieser | Acoustic Modelling of the Installation Effects of a Subsonic Jet Beneath a Flat Plate[END_REF] and noise of a Mach 0.9 jet [START_REF] Spieser | Noise Predictions of a Mach 0.9 Round Jet Using Tailored Adjoint Green's Functions[END_REF]. In [START_REF] Schoder | Aeroacoustic Wave Equation Based on Pierce's Operator Applied to the Sound Generated by a Mixing Layer[END_REF], the implementation of the hybrid aeroacoustic workflow using AWE-PO within openCFS [START_REF] Schoder | openCFS: Open Source Finite Element Software for Coupled Field Simulation-Part Acoustics[END_REF] was verified and successfully compared with the DNS results of a two-dimensional (2D) mixing layer. The work in hand extends the results of the previous findings. The implementation of AWE-PO uses the developed openCFS algorithms of the perturbed convective wave equation (PCWE) [START_REF] Kaltenbacher | Computational Aeroacoustics for Rotating Systems with Application to an Axial Fan[END_REF], which were successfully applied for human phonation [START_REF] Schoder | Aeroacoustic Sound Source Characterization of the Human Voice Production-Perturbed Convective Wave Equation[END_REF][START_REF] Falk | 3D-FV-FE Aeroacoustic Larynx Model for Investigation of Functional Based Voice Disorders[END_REF][START_REF] Lasota | Impact of the Sub-Grid Scale Turbulence Model in Aeroacoustic Simulation of Human Voice[END_REF][START_REF] Valášek | On the Application of Acoustic Analogies in the Numerical Simulation of Human Phonation Process[END_REF], fan noise applications [START_REF] Schoder | Computational Aeroacoustics of the EAA Benchmark Case of an Axial Fan[END_REF][START_REF] Schoder | Application Limits of Conservative Source Interpolation Methods Using a Low Mach Number Hybrid Aeroacoustic Workflow[END_REF][START_REF] Schoder | Conservative Source Term Interpolation for Hybrid Aeroacoustic Computations[END_REF], and heating, ventilation and air conditioning (HVAC) systems [START_REF] Tautz | Aeroacoustic Noise Prediction of Automotive HVAC Systems[END_REF]. The benefits of the AWE-PO over Lighthill's equation are that it includes the convective effects inside the wave operator instead of having it in the RHS. Referring back to the PCWE and the first investigations on AWE-PO [START_REF] Schoder | Aeroacoustic Wave Equation Based on Pierce's Operator Applied to the Sound Generated by a Mixing Layer[END_REF], the mesh of the acoustic computation can be coarser than for Lighthill's equation, which allows a faster computation of the acoustic field. On the downside, when using the AWE-PO, an additional step during the RHS computation has to be carried out. Nevertheless, this additional step can be executed for each time step independent of the other time step, allowing parallel and distributed calculations.

The present work aims to investigate the prediction capabilities of the AWE-PO model for noise produced by a high-speed sheared flow. The reliability of the sound prediction is assessed by comparison with the results of Lighthill's equation and the results of a DNS. As in previous studies [START_REF] Bogey | Illustration of the Inclusion of Sound-Flow Interactions in Lighthill's Equation[END_REF][START_REF] Samanta | Robustness of Acoustic Analogies for Predicting Mixing-Layer Noise[END_REF][START_REF] Cheung | Linear and Nonlinear Processes in Two-Dimensional Mixing Layer Dynamics and Sound Radiation[END_REF][START_REF] Hiraishi | Numerical Simulation of Sound Generation in a Mixing Layer by the Finite Difference Lattice Boltzmann Method[END_REF][START_REF] Fortuné | Noise Radiated by a Non-Isothermal, Temporal Mixing Layer. Part I: Direct Computation and Prediction Using Compressible DNS[END_REF], the considered flow is a subsonic mixing layer controlled with a two-frequency excitation so that subsequent vortex pairings produce acoustic waves at a single frequency. The aerodynamic and acoustic fields of the mixing layer are determined using a DNS. The so-obtained flow results are the basis for calculating the respective RHS of both wave equations. Qualitative and quantitative comparisons are made between Lighthill's equation RHS and the AWE-PO RHS. Additionally, the vorticity and the dilatation of the flowfield are visualized. Furthermore, the root-mean-square (RMS) values of the RHS are evaluated along the centerline for additional comparison. Lighthill's wave equation and AWE-PO are used to postprocess the DNS results to obtain the acoustic field using the FEM implemented in openCFS [START_REF] Kaltenbacher | Stable Finite Element Formulation for the Perturbed Convective Wave Equation[END_REF]. The acoustic field is subsequently verified and investigated by comparing pressure fluctuation snapshots with the acoustic propagation of DNS. The results and the radiation characteristics of the acoustic intensity are analyzed.

The paper is organized as follows. Section II describes Lighthill's equation and the AWE-PO. In Sec. III, the 2D mixing layer is presented. Section IV reports the numerical methods and the hybrid workflow. The application results are presented in Sec. V. Conclusions are drawn in Sec. VI.

II. Wave Equations

A. Lighthill's Wave Equation

Lighthill reformulated the equations of conservation of mass and momentum into a single wave equation. In doing so, a balancing RHS with three terms, namely, the flow velocity contribution, the entropic contribution, and the viscous contribution, was found. The viscous part of the RHS can be omitted in a broad range of applications [START_REF] Freund | Numerical Simulation of a Mach 1.92 Turbulent Jet and its Sound Field[END_REF][START_REF] Crighton | Basic Principles of Aerodynamic Noise Generation[END_REF]. Also, the entropic contribution was found to be small for an isothermal subsonic Mach 0.9 jet [START_REF] Freund | Noise-Source Turbulence Statistics and the Noise from a Mach 0.9 Jet[END_REF] and an isothermal mixing layers [START_REF] Fortuné | Noise Radiated by a Non-Isothermal, Temporal Mixing Layer. Part I: Direct Computation and Prediction Using Compressible DNS[END_REF][START_REF] Margnat | On Compressibility Assumptions in Aeroacoustic Integrals: A Numerical Study with Subsonic Mixing Layers[END_REF]. Regarding these simplifications of the RHS, Lighthill's wave equation can be written as 1

c 2 0 ∂ 2 ∂t 2 -∇ ⋅ ∇ c 2 0 ρ 0 ∇ ⋅ ∇ ⋅ ρu ⊗ u |{z} S LH (1) 
where ρ 0 ρ -hρi is the fluctuating density (with the mean density defined by hρi and the instantaneous density ρ), c 0 is the ambient speed of sound, u is the velocity vector, ⊗ is the dyadic product, and S LH is the Lighthill RHS. Applying Reynolds decomposition to the velocity u hui u 0 , with, respectively, hui and u 0 the mean velocity and the fluctuating velocity, and by inserting it into the definition of Lighthill's RHS leads to the shear-noise component S shear and the self-noise component S self [START_REF] Freund | Noise-Source Turbulence Statistics and the Noise from a Mach 0.9 Jet[END_REF]:

1 c 2 0 ∂ 2 ∂t 2 -∇ ⋅ ∇ c 2 0 ρ 0 ∇ ⋅ ∇ ⋅ ρhui ⊗ u 0 u 0 ⊗ hui |{z} S shear ∇ ⋅ ∇ ⋅ ρu 0 ⊗ u 0 |{z} S self (2) 

B. Aeroacoustic Wave Equation Based on Pierce's Operator

Starting from the conservation equations, a convective wave equation can be derived based on the acoustic potential as the dependent variable [START_REF] Spieser | Adjoint-Based Jet Noise Propagation Model for the Acoustic Potential[END_REF]. The linearized Euler equations can be rewritten as

D hui ρ 0 ∇⋅h ρiu 0 ρ 0 ∇⋅hui S ρ D hui hρiu 0 ∇hui ⋅ h ρiu 0 hρiu 0 ∇⋅hui∇p 0 - ∇hpi h ρi ρ 0 S ρu D hui p 0 ∇hpi ⋅ u 0 γhpi∇⋅u 0 γp 0 ∇⋅hui S p (3) 
with quadratic terms in the fluctuation quantities being the sources derived in [START_REF] Chu | Non-Linear Interactions in a Viscous Heat-Conducting Compressible Gas[END_REF]:

S ρ -∇ ⋅ ρ 0 u 0 S ρu -∇ ⋅ hρiu 0 ⊗ u 0 u 0 ∇ ⋅ hρiu 0 ∇p 0 hρi ρ 0 S p -u 0 ⋅ ∇p 0 -γp 0 ∇ ⋅ u 0 (4)
where D hui ∂∕∂t hui ⋅ ∇ is the material derivative based on the mean flow velocity, p the instantaneous pressure, γ c p ∕c V , c p is the specific isobaric heat capacity, and c V is the specific isochoric heat capacity. The momentum term S ρu is manipulated using the vector identities: ∇ ⋅ u 0 ⊗ u 0 ∇u 0 ⋅ u 0 u 0 ∇ ⋅ u 0 , u 0 ⊗ u 0 ⋅ ∇hρi u 0 u 0 ⋅ ∇hρi, and ∇ ⋅ hρiT hρi∇ ⋅ T T ⋅ ∇hρi, with T being an arbitrary tensor. One step further, the fluctuating momentum potential ϕ is defined by the Helmholtz decomposition of the fluctuating momentum:

hρiu 0 ∇ × A ∇ϕ ( 5 
)
where A is the vortical momentum vector potential. Inserting Helmholtz's decomposition into the momentum equation of the linearized Euler equations and using ∇D hui ϕ D hui ∇ϕ ∇hui T ⋅ ∇ϕ and ∇ × hui × ∇ϕ ∇hui ⋅ ∇ϕ -∇hui T ⋅ ∇ϕ lead to

∇D hui ϕ p 0 ∇ × hui × ∇ϕ ∇ ⋅ hui∇ϕ -ρ 0 ∇hpi∕hρi |{z} 0 for isobaric flows f∇ × A S ρu (6) 
with f∇ × A D hui ∇ × A ∇ ⋅ hui∇ × A ∇hui ⋅ ∇× A.
For parallel (isobaric) base flows ∇hpi 0, the energy equation hui ⋅ ∇hpi γhpi∇ ⋅ hui 0 leads to ∇ ⋅ hui 0 and one obtains a second-order vectorial partial differential equation for the fluctuating momentum potential [START_REF] Spieser | Adjoint-Based Jet Noise Propagation Model for the Acoustic Potential[END_REF]. In this linearized framework, governing equations may give rise to instability waves with spatially unbounded growing amplitudes. To guarantee the stability of the propagation model, the vortical mode is discarded in setting ∇ × A 0. This is acceptable to compute sound propagation [START_REF] Nana | Hybrid Aeroacoustic Computation of a Low Mach Number Non-Isothermal Shear Layer[END_REF], but may lead to errors in the acoustic near-field. The term ∇ × hui × ∇ϕ has consistently been discarded in the derivation of AWE-PO. As shown by Yates [START_REF] Yates | Application of the Bernoulli Enthalpy Concept to the Study of Vortex Noise and Jet Impingement Noise[END_REF] and Perez Bergliaffa et al. [START_REF] Perez Bergliaffa | Wave Equation for Sound in Fluids with Vorticity[END_REF], this term is responsible for the coupling between the aerodynamic and the acoustic modes and must be neglected if the vorticity mode is discarded. Assuming that the fluctuating momentum describes potential acoustics leads to h ρiu 0 ∇ϕ and yields a second-order convective wave operator [START_REF] Pierce | Wave Equation for Sound in Fluids with Unsteady Inhomogeneous Flow[END_REF]:

D 2 hui ϕ -∇ ⋅ c 2 0 ∇ϕ D hui S m S AWE-PO (7) 
with S m being the RHS potential that is based on Eq. [START_REF] Spieser | L'équation de Pierce et ses lois de Conservation[END_REF]. A detailed discussion on the derivation of the equation can be found in [START_REF] Spieser | Adjoint-Based Jet Noise Propagation Model for the Acoustic Potential[END_REF]. In the current framework, the fluctuating pressure p 0 is defined by the sum of the convective derivative of the potential ϕ and the RHS potential S m :

p 0 -D hui ϕ S m (8) 
This RHS potential S m is again based on the Helmholtz decomposition of the self-noise component vector of Eq. ( 2):

∇ ⋅ h ρiu 0 ⊗ u 0 ∇S m ∇ × B ( 9 
)
with B being the nonradiating vortical potential. The RHS potential of AWE-PO S m is computed by Poisson's equation:

∇ ⋅ ∇S m ΔS m ∇ ⋅ ∇ ⋅ h ρiu 0 ⊗ u 0 (10) 
In this sense, the self-noise source term is filtered to obtain the radiating RHS potential S m . This filtering process isolates the radiating RHS terms from nonradiating structures inside the RHS vector. Maxwell's interpretation of the Laplacian [START_REF] Leubner | Coordinate-Free Interpretation of the Laplacian[END_REF] suggests that only the compressible effects inside the source couple effectively into the acoustic field. To sum up, the AWE-PO assumes that the linear effects account for the acoustic propagation and that the quadratic interactions form the RHS terms. These quadratic interactions correspond to the self-noise component S self of Lighthill's RHS in Eq. ( 2).

III. Mixing Layer

As in previous studies [START_REF] Bogey | Illustration of the Inclusion of Sound-Flow Interactions in Lighthill's Equation[END_REF][START_REF] Samanta | Robustness of Acoustic Analogies for Predicting Mixing-Layer Noise[END_REF][START_REF] Cheung | Linear and Nonlinear Processes in Two-Dimensional Mixing Layer Dynamics and Sound Radiation[END_REF][START_REF] Hiraishi | Numerical Simulation of Sound Generation in a Mixing Layer by the Finite Difference Lattice Boltzmann Method[END_REF][START_REF] Fortuné | Noise Radiated by a Non-Isothermal, Temporal Mixing Layer. Part I: Direct Computation and Prediction Using Compressible DNS[END_REF][START_REF] Nana | Hybrid Aeroacoustic Computation of a Low Mach Number Non-Isothermal Shear Layer[END_REF][START_REF] Bogey | Computation of Flow Noise Using Source Terms in Linearized Euler's Equations[END_REF][START_REF] Zhou | Sound Generation by Different Vortex Interactions in Mixing Layers[END_REF][START_REF] Golanski | Numerical Methodology for the Computation of the Sound Generated by a Non-Isothermal Mixing Layer at Low Mach Number[END_REF][START_REF] Moser | Direct Computation of the Sound Generated by Isothermal and Non-Isothermal Mixing Layers[END_REF][START_REF] Cabana | Identifying the Radiating Core of Lighthill's Source Term[END_REF][START_REF] Wei | A Noise-Controlled Free Shear Flow[END_REF][START_REF] Golanski | Noise Radiated by a Non-Isothermal, Temporal Mixing Layer[END_REF], a 2D isothermal mixing layer is considered with the aim of assessing the validity of acoustic wave equations. The flow configuration is similar to those simulated by Colonius et al. [START_REF] Colonius | Sound Generation in a Mixing Layer[END_REF] and Bogey et al. [START_REF] Bogey | Numerical Simulation of Sound Generated by Vortex Pairing in a Mixing Layer[END_REF], for instance. The mixing layer is excited at two frequencies f and f∕2. For illustration, a schematic view of the configuration is shown in Fig. 1. In this figure, vortices and their pairings at a period T p 2π∕ω p 2∕f can be observed at the center of the shear zone. The vortex pairings generate acoustic waves at a frequency f∕2 in the acoustic field, as seen in the Fig. 1. They constitute the main sound sources inside the mixing layer. The mixing layer is centered at y 0. The velocity u u x ; 0 T at the inflow boundary condition is given by the hyperbolic-tangent profile

u x y U 1 U 2 2 - U 2 -U 1 2 tanh 2y δ ω (11) 
where U 1 0.3c 0 and U 2 0.6c 0 are the velocities of the slow and rapid flows, respectively, and δ ω U 2 -U 1 ∕ maxjdu x ∕dyj is the vorticity thickness at the upstream boundary, which provides a Reynolds number of Re ω δ ω U 2 -U 1 ∕ν 2000, where ν is the kinematic viscosity.

IV. Methods

Figure 2 illustrates how the acoustic field is computed using a hybrid aeroacoustic workflow [START_REF] Schoder | Hybrid Aeroacoustic Computations: State of Art and New Achievements[END_REF]. Firstly, the flowfield is obtained using a DNS. For Lighthill's formulation, the FEM RHS is computed based on the DNS results. For the AWE-PO, Poisson's equation is solved to obtain the RHS potential S m , which is used to compute the FEM RHS. Finally, the sound propagation is simulated.

A. Step I: Flow Simulation

The DNS of the mixing layer is carried out using an in-house solver to compute the 2D compressible Navier-Stokes equations in Cartesian coordinate x; y, based on low-dissipation and low-dispersion explicit schemes. Fourth-order 11-point centered finite differences are used for spatial discretization, allowing accuracy down to four points per wavelength. A second-order six-stage Runge-Kutta algorithm is implemented for time integration [START_REF] Bogey | A Family of Low Dispersive and Low Dissipative Explicit Schemes for Flow and Noise Computations[END_REF]. A sixth-order 11-point centered filter [START_REF] Bogey | A Shock-Capturing Methodology Based on Adaptative Spatial Filtering for High-Order Non-Linear Computations[END_REF] is applied explicitly to the flow variables every time step to remove grid-to-grid oscillations without affecting the waves computed. Noncentered finite differences and filters are also used near the grid boundaries [START_REF] Berland | High-Order, Low Dispersive and Low Dissipative Explicit Schemes for Multiple-Scale and Boundary Problems[END_REF]. At the boundaries, the radiation conditions of Tam and Dong [START_REF] Tam | Radiation and Outflow Boundary Conditions for Direct Computation of Acoustic and Flow Disturbances in a Nonuniform Mean Flow[END_REF] are applied, with the addition at the outflow of a sponge zone combining grid stretching and Laplacian filtering [START_REF] Bogey | Three-Dimensional Non-Reflective Boundary Conditions for Acoustic Simulations: Far Field Formulation and Validation Test Cases[END_REF], to avoid significant acoustic reflections. The DNS is the workflow diagram's first step (flow simulation), as described in Fig. 2.

For the DNS, a domain of dimensions L x ∕δ ω 600 and L y ∕δ ω 400 is used. A nonuniform structured grid discretizes this domain. In the transverse direction, the mesh spacing equals Δy 0 ∕δ ω 0.1 at y 0. On both sides of the mixing layer, this mesh spacing is stretched with a rate of 4% until it reaches Δy∕δ ω ≈ 2.3 at y∕δ ω ≈ 55. In the axial direction, the mesh spacing equals Δx 0 ∕δ ω 0.2 from x∕δ ω 0 to x∕δ ω 250. A sponge zone is implemented further downstream, and the mesh spacing is stretched at a rate of 4%. In this sponge zone, the variables are filtered using a Laplacian filter with an intensity growing linearly from zero at x∕δ ω 250 up to 0.2 at x∕δ ω 350. For x∕δ ω > 350, the intensity is constant and equal to 0.2. The time step size, based on the minimum mesh spacing in the transverse direction and the speed of sound in the ambient medium, is given by Δt DNS Δy 0 ∕c 0 . The mixing layer is excited at its fundamental frequency f, given by the Strouhal number St ω 2fδ ω ∕U 2 U 1 0.141 [START_REF] Monkewitz | Influence of the Velocity Ratio on the Spatial Instability of Mixing Layers[END_REF], and at the first subharmonic f∕2. This excitation allows the formation of vortices at a fixed position x∕δ ω ≈ 70 and the occurrence of vortex pairings at x∕δ ω ≈ 110. Each vortex pairing period is discretized by T p ∕Δt DNS 315, and after 500T p the data at every third time step are stored for the computation of Lighthill's RHS term (1) and the AWE-PO RHS term [START_REF] Spieser | L'équation de Pierce et ses lois de Conservation[END_REF]. A duration of 50T p is computed and exported for this investigation.

B. Step II: RHS Computation

Regarding best practice for hybrid aeroacoustics RHS computations using FEM [START_REF] Schoder | Aeroacoustic Source Term Computation Based on Radial Basis Functions[END_REF][START_REF] Schoder | Radial Basis Function Interpolation for Computational Aeroacoustics[END_REF], the RHS of Lighthill (1) and AWE-PO [START_REF] Seo | Perturbed Compressible Equations for Aeroacoustic Noise Prediction at Low Mach Numbers[END_REF] were computed on the DNS grid and conservatively integrated to the acoustic mesh [START_REF] Schoder | Conservative Source Term Interpolation for Hybrid Aeroacoustic Computations[END_REF]. The conservative integration was carried out by the cell-centered method [START_REF] Schoder | Application Limits of Conservative Source Interpolation Methods Using a Low Mach Number Hybrid Aeroacoustic Workflow[END_REF].

Lighthill's Wave Equation

The RHS S LH of Lighthill's wave equation ( 1) is computed using the DNS solution. The mean part of the Lighthill RHS hS LH i is eliminated according to [START_REF] Bogey | Numerical Simulation of Sound Generated by Vortex Pairing in a Mixing Layer[END_REF]. The RHS computation is the second step of the workflow diagram of Lighthill's equation, described in Fig. 2.

Aeroacoustic Wave Equation Based on Pierce's Operator

Poisson's equation [START_REF] Spieser | L'équation de Pierce et ses lois de Conservation[END_REF] was solved using the open-source FEM simulation software openCFS [START_REF] Schoder | openCFS: Open Source Finite Element Software for Coupled Field Simulation-Part Acoustics[END_REF] method acousticSplitPDE with the option scalar to compute the scalar part of the Helmholtz decomposition [START_REF] Schoder | Aeroacoustic Analogies Based on Compressible Flow Data[END_REF][START_REF] Schoder | Helmholtz's Decomposition for Compressible Flows and Its Application to Computational Aeroacoustics[END_REF][START_REF] Schoder | Postprocessing of Direct Aeroacoustic Simulations Using Helmholtz Decomposition[END_REF]. The computational domain coincides with the 2D flow domain and uses finite element nodes located at the finite difference point coordinates. Linear quadrilateral Lagrangian finite elements are used. An infinite mapping layer surrounds this domain and uses the 2D free-field characteristics to account for the elliptic free-field [START_REF] Schoder | Revisiting Infinite Mapping Layer for Open Domain Problems[END_REF] with a homogeneous Dirichlet boundary at infinity. Each time step can be calculated individually, decreasing the duration of this workflow step significantly with parallel processes. Based on Poisson's equation [START_REF] Spieser | L'équation de Pierce et ses lois de Conservation[END_REF], the RHS potential S m is calculated. Subsequently, the AWE-PO RHS S AWE-PO is computed by the material derivative [START_REF] Schoder | Aeroacoustic Sound Source Characterization of the Human Voice Production-Perturbed Convective Wave Equation[END_REF]. Together, the calculation of Poisson's equation ( 10) (substep II.1) and the subsequent AWE-PO RHS computation 
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C. Step III: Acoustic Simulation

Lighthill's equation ( 1) and AWE-PO (7) are solved using the openCFS [START_REF] Schoder | openCFS: Open Source Finite Element Software for Coupled Field Simulation-Part Acoustics[END_REF] method acousticPDE with linear quadrilateral Lagrangian finite elements. The computational domain has the dimensions of the flow domain. The mesh uses a uniform discretization of Δx∕δ ω ≈ 0.17 and Δy∕δ ω ≈ 0.35. A perfectly matched layer (PML) with an inverse damping function region surrounds the mesh to reduce boundary reflections [START_REF] Kaltenbacher | A Modified and Stable Version of a Perfectly Matched Layer Technique for the 3-D Second Order Wave Equation in Time Domain with an Application to Aeroacoustics[END_REF]. The PML uses the same discretization, with four layers of elements toward the free-field direction. The grid resolution and the number of elements toward the free-field direction were studied to ensure an accurate resolution of the wave equations. The used PML implementation does not account for a background flowfield.

The material derivatives appearing in the AWE-PO have been computed considering the mean flow velocity hui. The AWE-PO is solved with a stable convective wave formulation [START_REF] Kaltenbacher | Stable Finite Element Formulation for the Perturbed Convective Wave Equation[END_REF]. A systematic mesh study was performed to guarantee a sufficient accurate resolution, relying on the rules of Ainsworth [START_REF] Ainsworth | Discrete Dispersion Relation for hp-Version Finite Element Approximation at High Wave Number[END_REF]. The time step size was chosen according to the DNS result data time steps Δt CA 3Δt DNS , and the acoustic field was initialized with zeros homogeneously. For Lighthill's equation and the AWE-PO, the amplitude of the RHS term was gradually introduced temporally. Spatially, the RHS term was truncated smoothly over two wavelengths to minimize the truncation effects [START_REF] Martínez-Lera | Correction Techniques for the Truncation of the Source Field in Acoustic Analogies[END_REF]. The dispersion-controlled Hilber-Hughes-Taylor scheme performs time stepping [START_REF] Hilber | Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics[END_REF]. The acoustic simulation is the third and final step of the workflow diagrams, described in Fig. 2. In [START_REF] Cabana | Identifying the Radiating Core of Lighthill's Source Term[END_REF], correlations between this Lighthill RHS and the vortical structures in terms of the vorticity were drawn.

V. Results

A. Snapshots of the Source Terms

Snapshots of Lighthill's shear-noise term S shear and self-noise term S self are provided in Figs. 4a and4b, respectively. Focusing on Fig. 4a and the region x∕δ ω < 50, the RHS values are small and are similar to Lighthill's RHS values. During the shear layer roll-up, the shearnoise terms have a color pattern like Lighthill's RHS. At the pairing, their appearance changes from circular red structures at the vortex positions to two elongated red regions as a result of the merging. Right before the pairing location, the values of shear-noise terms are smaller than Lighthill's RHS values, since the self-noise interaction becomes significant in this region. In Fig. 4b, no self-noise part is visible in regions upstream of x∕δ ω ≈ 50. As the x coordinate approaches the pairing location, the self-noise term grows significantly and changes its shape during vortex pairing. Each vortical red structure is encircled by a blue ring. Between two consecutive vortices, the RHS magnitude is low. This self-noise part of Lighthill's RHS term S self is the RHS of Poisson's equation of the AWE-PO [START_REF] Spieser | L'équation de Pierce et ses lois de Conservation[END_REF]. Compared to Lighthill's RHS values, the magnitude is concentrated at the location of the pairings. In the next step, the RHS values of Fig. 4 are discussed at the pairing location. The shear-noise part consists of two red structures indicating the two vortices that are subject to merging. In the snapshot of the shear-noise part, the RHS values representing the two vortices are separated by a thin inclined blue line at x∕δ ω ≈ 105. In contrast to that, the self-noise part structure turns first from blue to red and then again from red to a blue region. The two red regions in the center of the self-noise part at the pairing location are again separated by an inclined blue line.

Figure 5 shows the AWE-PO RHS potential S m , the material derivative of the RHS potential S m , defining the RHS of AWE-PO (7), and the fluid dilatation ∇ ⋅ u. Regarding the filtered RHS S m in Fig. 5a, source levels are highest at the vortex location. At the pairings, the high values of the RHS potential result in a large red structure. Focusing on the RHS of AWE-PO in Fig. 5b, the overall shape differs from the previously discussed Lighthill's RHS. The most important difference is discussed based on looking at a single vortex at x∕δ ω ≈ 75. At this location, the Lighthill's source term values are represented by a red region, whereas the AWE-PO RHS values are represented by a cluster of red and blue regions. From the AWE-PO RHS, it is not obvious where the vortices are located, making AWE-PO RHS difficult to interpret. Similar to the self-noise part, the RHS of AWE-PO is not visible for x∕δ ω < 50. During the roll-up, the AWE-PO RHS values increase until the pairing. At the paring x∕δ ω ≈ 110, a pair of two red regions, surrounded by alternating red and blue structures, is found. After the pairing location, the RHS term looks like convected structures with a quadrupolar shape. If the filtered source S m was simply convected downstream of the vortex paring, it would have completely been filtered out by the material derivative that applies to it. The presence of this quadrupole-like pattern is interpreted as an effect of the flow shearing. This distribution of AWE-PO's RHS (see Fig. 5b) is substantially different from the shape of the self-noise RHS (see Fig. 4b), but is closely similar to the dilatation field ∇ ⋅ u presented in Fig. 5c. Close to x∕δ ω ≈ 150, the self-noise part features elongated red elliptical shapes surrounded by a blue ring, while the AWE-PO RHS is a cluster of four alternating red and blue regions. In Fig. 5c, the dilatation structures grow in magnitude and size during the roll-up. Smooth blue and red dilatation structures are located in the regions where the AWE-PO RHS has circular blue or red regions. These structures extend into the y direction. They have the same quadrupolar shape as the AWE-PO source. This suggests that the sound source of the AWE-PO built from Lighthill's stress tensor is consistent with the sound sources originating from the dilatation of the fluid [START_REF] Ribner | Aerodynamic Sound from Fluid Dilatations-A Theory of the Sound from Jets and Other Flows[END_REF].

The source terms in Figs. 3 and5 differ in shape and magnitude. The amplitude of Lighthill's source is significant all along the shear layer, as observed by Colonius et al. [START_REF] Colonius | Sound Generation in a Mixing Layer[END_REF] in their study of Lilley's acoustic analogy. This high magnitude can be explained by the definition of the Lamb vector (∇ × u 0 × u 0 being one major part of the Lighthill's source and having a high value in sheared fluid zones. The amplitude of the source terms in the AWE-PO is smaller than those in the Lighthill's equation RHS in Fig. 3, and than those of the shear-noise term and the self-noise term in Fig. 4. This results in an overall source amplitude of about one order of magnitude smaller in the AWE-PO case.

B. Discussion of AWE-PO Source Term

The section discusses the source term of Fig. 5 in more detail. The individual source term parts of the material derivative are split as follows:

S AWE-PO ∂S m ∂t |{z} S m;t hui ⋅ ∇S m |{z} S m;conv (12)
Figure 6 shows the RMS values of the Lighthill RHS S LH;rms , of the AWE-PO RHS S AWE-PO;rms , of the partial time derivative part of AWE-PO RHS S AWE-PO;t;rms , and of the convective derivative part of the AWE-PO RHS S AWE-PO;rms along the mixing layer centerline. The RMS values of the Lighthill RHS term are higher than those of the other RHS terms. In contrast, the RMS values of the partial time derivative part S AWE-PO;t;rms and the RMS of the convective derivative part of the AWE-PO RHS S AWE-PO;conv;rms are of similar magnitude. The RMS values of the AWE-PO RHS term S AWE-PO;rms are about one order of magnitude smaller than those of the other ones. The partial time derivative is compensated for a large part by the convective derivative part of the RHS of AWE-PO as indicated by [START_REF] Crighton | Basic Principles of Aerodynamic Noise Generation[END_REF]. This substantial reduction of the source magnitude is referred to as the filtering property of the material derivative, which filters frozen flow structures S f m . The RHS of the AWE-PO can be split into a frozen part S f m ζ with ζt x -Ut and a remaining part S m x; t:

S m x; t S f m S m x; t (13) 
The frozen part satisfies Taylor's hypothesis [START_REF] Taylor | The Spectrum of Turbulence[END_REF] and hence vanishes when calculating the material derivative

DS f m ζ Dt 0 (14) 
Therefore in the case of vortical structures, which are convected in a nearly frozen manner, the source term S m is subject to a strong filtering and consequently the source magnitude is reduced. As a result, the RHS of AWE-PO contains only nonfrozen source structures. A similar RHS term reduction has been found in threedimensional (3D) for the PCWE but has not been explained yet [START_REF] Schoder | Aeroacoustic Sound Source Characterization of the Human Voice Production-Perturbed Convective Wave Equation[END_REF][START_REF] Schoder | Computational Aeroacoustics of the EAA Benchmark Case of an Axial Fan[END_REF]. All source contributions removed by the material derivative in the AWE-PO's source term are not efficiently converted into sound emission considering a subsonic flow and do not radiate.

C. Acoustic Solution

The acoustic radiations obtained by the DNS, Lighthill's equation, and the AWE-PO are compared against each other. The fluctuating pressure of Lighthill's equation is defined by p 0 c 2 0 ρ 0 [START_REF] Fortuné | Noise Radiated by a Non-Isothermal, Temporal Mixing Layer. Part I: Direct Computation and Prediction Using Compressible DNS[END_REF] and the one for AWE-PO is calculated by Eq. ( 8).

Figure 7 shows the pressure fluctuations p 0 obtained by the DNS, Lighthill's wave equation, and the AWE-PO. The DNS result exhibits acoustic waves convected by the base flow. This convective effect is substantial in the lower rapid flow section. Wave amplitudes are larger in the flow direction than in the upstream direction. The pressure fluctuations inside the mixing layer are of several orders of magnitude higher than the ones in the periphery and similar to the ones obtained in [START_REF] Margnat | On Compressibility Assumptions in Aeroacoustic Integrals: A Numerical Study with Subsonic Mixing Layers[END_REF]. The DNS result serves as a reference in what follows. Focusing on the results from Lighthill's equation, the radiation pattern is similar to that from the DNS results. Low-amplitude oscillations are found in the fluctuating pressure field in the upstream direction, both above and below the mixing layer. A mesh convergence study has been conducted to verify that these oscillations are not due to insufficient mesh refinement. Above the mixing layer and downstream of the pairing, the results of Lighthill's equation slightly deviate from the DNS in a polar region of θ 15°, with the polar angle θ counted in the counterclockwise direction from the downstream flow region and the origin of the polar coordinate system at the pairing location. The deviations increase close to the mixing layer for x∕δ ω > 150. The pressure fluctuations inside the sheared flow have a similar pattern as the results from the DNS. This agreement is expected since Lighthill's equation is an exact reformulation of the conservation equations and recovers the fluctuating pressure.

Regarding the results from the AWE-PO, the radiation pattern is in good accordance with the DNS results and the results of Lighthill's equation. As for the results computed from Lighthill's equation, minor deviations occur in the upstream region for x∕δ ω < 100. Downstream of the pairing location, the fluctuating pressure field in the slow flow region has an extinction line at θ 15°. A similar extinction line was found in [START_REF] Margnat | On Compressibility Assumptions in Aeroacoustic Integrals: A Numerical Study with Subsonic Mixing Layers[END_REF] and has been associated with insufficient integration over the source region regarding the x direction. The integration over the source region was examined in the present study and was not found to be responsible for this line. When deriving the wave equation, the vortical mode is neglected, which is a possible reason for the reduction of the fluctuating pressure at θ 15°. The oscillations in the upstream results of the AWE-PO are attributed to the PML used, which does not account for a background flow. The amplitudes of the reflections arising at the boundary conditions are stronger in the rapid flow region (y < 0) than in the slow flow region, which supports this explanation of the oscillations based on the PML. On the lower side, the radiation characteristics and the convective effects for this M 0.6 region are predicted well for the AWE-PO, with a slight overprediction of the upstream radiation.

Figure 8 shows the acoustic intensity

L I 10 log I I 0 ( 15 
)
where I hp 02 i∕ρ 0 c 0 and I 0 10 -12 W ⋅ m -2 is used. The directivities are evaluated over circles of radius r∕δ ω 120 centered on the vortex pairing location, from θ 10°to θ 90°in the upper flow, and from θ -90°to θ -10°in the lower flow. The acoustic intensities obtained from the three methods agree fairly well below the mixing layer. The DNS results predict the main lobe at an angle of θ -45°, while the main lobe is predicted closer to the mixing layer at θ -55°for the AWE-PO and the results of Lighthill's equation reach a plateau between θ -45°and θ -15°. The acoustic intensity from Lighthill's equation matches the DNS result very well, with a maximum deviation of less than 0.2 dB. Minor deviations occur for the AWE-PO results compared to the DNS in this region, with a maximum deviation at an angle of θ -90°of about 0.5 dB. Above θ -45°, the acoustic intensity results of the AWE-PO deviate by less than 0.2 dB from the DNS results. These slight deviations are comparable to those obtained previously in [START_REF] Margnat | On Compressibility Assumptions in Aeroacoustic Integrals: A Numerical Study with Subsonic Mixing Layers[END_REF], where the maximum deviation using the full Lighthill RHS [START_REF] Lighthill | On Sound Generated Aerodynamically I: General Theory[END_REF] was less than 1 dB. Again, the acoustic intensities agree fairly well above the mixing layer for θ > 30°. There is no main lobe visible for the DNS results, nor for the results obtained with Lighthill's formulation.

There is a slight reduction of the acoustic intensity obtained with Lighthill's equation compared to the DNS at θ 15°. The AWE-PO predicts the main lobe at θ 40°. Above θ 45°, the acoustic intensities of the wave equations match the DNS results very well, with a maximum deviation of less than 0.3 dB. Lighthill's equation deviates from the DNS results by less than 0.3 dB. For the AWE-PO, an intensity reduction is visible at θ 15°. However, the maximum deviation of 1.8 dB is comparable to those obtained previously in [START_REF] Margnat | On Compressibility Assumptions in Aeroacoustic Integrals: A Numerical Study with Subsonic Mixing Layers[END_REF]. As a next step, the self-noise and shear-noise contributions of Lighthill's equation (1) are investigated in detail. Figure 9 shows the self-noise and shear-noise contributions to the fluctuating pressure and the result of the full Lighthill equation (1). Turning to the fluctuating pressure of the self-noise component S self , between θ 70°, Fig. 9a shows higher wave amplitudes than those of Figure 9b shows the fluctuating pressure of the shear-noise component S shear . The wavefronts above and below the mixing layer are not circular. Starting at a location inside the mixing layer at x∕δ ω ≈ 200, the shape of the wavefronts depends on the angle θ. At around θ 90°, the wavefront has an angular discontinuity. Below the mixing layer, there are several angles (namely, at about θ -80°, θ -85°, and θ -90°) of angular discontinuities. Figure 9c shows the fluctuating pressure as a result of using the full Lighthill's RHS term. Interestingly, both the fluctuating pressure of self-noise and shear-noise term have higher wave amplitudes than the ones of the full Lighthill equation. The self-noise and shear-noise RHS terms compensate for each other to accurately predict emissions and convection effects. This effect was found previously in [START_REF] Freund | Noise Sources in a Low-Reynolds-Number Turbulent Jet at Mach 0.9[END_REF].

The radiated fields obtained from the partial time derivative part S AWE-PO;t , from the convective derivative part S AWE-PO;conv only, and from the full AWE-PO equation [START_REF] Seo | Perturbed Compressible Equations for Aeroacoustic Noise Prediction at Low Mach Numbers[END_REF] are shown in Figs. 10a-10c, respectively. In Fig. 10a, the radiation pattern is very similar to the radiation pattern from the full AWE-PO RHS term S AWE-PO . Minor oscillations and a reduction at θ 15°compared with the main lobe are visible. The fluctuating pressure at the main lobe is higher than for the full AWE-PO results in Fig. 10c. In Fig. 10b, the pressure field based on the convective derivative part S AWE-PO;conv is unexpectedly small and only significant in a range of θ 30°. Interestingly, the waves shape above the mixing layer is inclined like the waves of the DNS at this location. Furthermore, the pressure fluctuations in Fig. 10b are in the opposite phase to the one in Fig. 10a. A substantial reduction in the magnitude of the AWE-PO RHS values was observed in Sec. V.B and attributed to the filtering property of the material derivative. In contrast to that, the fluctuating pressure field results indicate that only the time derivative part of the AWE-PO equation S AWE-PO;t contributes effectively to the radiated pressure field. Inside the sheared flow, the pressure fluctuations of the AWE-PO is low compared to the ones of the DNS and Lighthill's equation.

VI. Conclusions

A convective wave equation based on Pierce's operator is applied to a 2D mixing layer using a three-step workflow to predict the sound field. Firstly, the flowfield of the mixing layer is obtained by a DNS. Based on this DNS result, the aeroacoustic sources are computed. Finally, the wave equations are solved numerically to predict the mixing layer sound.

Snapshots of the AWE-PO RHS term are compared with Lighthill's RHS, the shear-noise part of Lighthill's RHS, and the self-noise part of Lighthill's RHS. The shape and amplitude of the AWE-PO RHS significantly differ from the RHS values obtained by Lighthill's equation. Lighthill's RHS contains the acoustic source and the necessary convection effects for correct sound propagation. During the derivation of the AWE-PO, the convection effect is shifted to the wave operator. In doing so, the RHS term of the AWE-PO is computed by the material derivative of a source potential obtained by solving a Poisson equation with Lighthill's self-noise term as RHS. The magnitude of AWE-PO RHS is 90% lower than Lighthill's one. The material derivative that applies to the source potential S m is responsible for this magnitude reduction. In contrast to Lighthill's RHS term, the AWE-PO RHS values show clusters of four alternating positive and negative source values at the locations of a vortex. These clusters look like a quadrupole in the region of steady vortex convection after the pairing.

The pressure fluctuations obtained from the AWE-PO are compared with those of Lighthill's equation and the reference DNS. Lighthill's equation and the AWE-PO reasonably account for the acoustic propagation. A quantitative comparison of the acoustic intensity of the DNS with Lighthill's equation and the AWE-PO show errors of less than 0.3 and 1.8 dB, respectively. This error range is comparable to the ones reported for Lighthill's equation in other studies [START_REF] Margnat | On Compressibility Assumptions in Aeroacoustic Integrals: A Numerical Study with Subsonic Mixing Layers[END_REF]. The convection effects of the wavefronts are predicted well for the wave equations. At an angle of θ 15°, the AWE-PO pressure fluctuations are reduced by nearly 1.8 dB. The origin of this line at θ 15°is not clear yet. Furthermore, the effects of the individual terms of the material derivative (the partial time derivative and the convective derivative) are investigated. In contrast to the magnitude reduction inside the source term, the pressure fluctuations when only using the partial time derivative term of the AWE-PO source are in fair agreement with the one obtained using the full AWE-PO RHS term. To conclude, the findings support the ability of the presented AWE-PO to predict mixing layer sound, with far-field acoustic results agreeing with DNS results.

Fig. 1

 1 Fig. 1 Schematic view of the mixing layer. Instantaneous vorticity and fluctuating pressure fields are represented at the shear zone's center and periphery.

)Fig. 2

 2 Fig. 2 Schematic of the Lighthill (top) and AWE-PO (bottom) hybrid aeroacoustic workflows to illustrate the computational steps of the methods.

Figure 3

 3 Figure 3 shows the vorticity of the flowfield and Lighthill's RHS values S LH . Regarding the vorticity in Fig. 3a, a laminar shear layer can be observed in the region x∕δ ω < 50. It starts to roll-up until the vortex merges at x∕δ ω ≈ 110. During the pairing, the appearance of the vorticity structures changes compared to the roll-up. Further downstream, larger vortices, having about twice the diameter of the vortices in the roll-up at x∕δ ω ≈ 75, are found. The locations of the vortices during the roll-up of the mixing layer and the merging are referred to in the discussion of the RHS terms of the wave equations. Turning to Fig. 3b and the region x∕δ ω < 50, the Lighthill's RHS values are small relative to the RHS values for x∕δ ω > 50. Between x∕δ ω ≈ 50 and x∕δ ω ≈ 90, the consecutive vortices, marked by red regions in the RHS, start to influence each other. At the pairing location around x∕δ ω ≈ 110, the colored pattern of the Lighthill RHS term looks different from the one during the roll-up of the mixing layer. Between the vortices, the RHS values are visible in blue, indicating an opposite sign.In[START_REF] Cabana | Identifying the Radiating Core of Lighthill's Source Term[END_REF], correlations between this Lighthill RHS and the vortical structures in terms of the vorticity were drawn.Snapshots of Lighthill's shear-noise term S shear and self-noise term S self are provided in Figs.4a and 4b, respectively. Focusing on Fig.4a

Fig. 3

 3 Fig. 3 Snapshots of a) the vorticity ω z ∕ΔU∕δ ω and b) Lighthill's RHS term SLH∕ρ 0 ΔU 2 ∕δ 2 ω , where ρ 0 1.19kg∕m 3 is the density of the surrounding fluid and ΔU U 2 -U 1 . The color scales range between 0.2 for the RHS and between 1 for vorticity, from blue to red.

Fig. 4 Fig. 5

 45 Fig. 4 Snapshots of a) the shear-noise part of Lighthill's RHS S shear ∕ρ 0 ΔU 2 ∕δ 2 ω and b) self-noise part of Lighthill's RHS S self ∕ ρ 0 ΔU 2 ∕δ 2 ω . The color scales range between 0.2 from blue to red.

Fig. 6

 6 Fig. 6 Normalized root-mean-square RHS values at y 0 inside the mixing layer. Lighthill's RHS is normalized by 0.02ρ 0 c 2 0 ∕δ 2 ω and the AWE-PO RHS by 0.02ρ 0 c 2 0 ω p :-, AWE-PO RHS S AWE-PO;rms ; , AWE-PO S AWE-PO;t;rms ; , AWE-PO S AWE-PO;conv;rms ; , Lighthill's RHS S LH;rms .

Fig. 7 Fig. 8

 78 Fig. 7 Fluctuating pressure fields p 0 ∕ρ 0 c 2 0 from a) DNS, b) Lighthill's equation (1), and c) AWE-PO (5). The plots use a color scale minimum and maximum values of 1.5 ⋅ 10 -4 , from blue to red.

Fig. 9c .

 9c Fig.9c. The radiation lobe points toward θ 60°above the mixing layer and is slightly lower for the lobe below the mixing layer in the rapid flow region. Overall, no wave convection effects are observable for the fluctuating pressure field p 0 using the self-noise component. Figure9bshows the fluctuating pressure of the shear-noise component S shear . The wavefronts above and below the mixing layer are not circular. Starting at a location inside the mixing layer at x∕δ ω ≈ 200, the shape of the wavefronts depends on the angle θ. At around θ 90°, the wavefront has an angular discontinuity. Below the mixing layer, there are several angles (namely, at about θ -80°, θ -85°, and θ -90°) of angular discontinuities. Figure9cshows the fluctuating pressure as a result of using the full Lighthill's RHS term. Interestingly, both the fluctuating pressure of self-noise and shear-noise term have higher wave amplitudes than the ones of the full Lighthill equation. The self-noise and shear-noise RHS terms compensate for each other to accurately predict emissions and convection effects. This effect was found previously in[START_REF] Freund | Noise Sources in a Low-Reynolds-Number Turbulent Jet at Mach 0.9[END_REF].The radiated fields obtained from the partial time derivative part S AWE-PO;t , from the convective derivative part S AWE-PO;conv only, and from the full AWE-PO equation[START_REF] Seo | Perturbed Compressible Equations for Aeroacoustic Noise Prediction at Low Mach Numbers[END_REF] are shown in Figs.10a-10c, respectively. In Fig.10a, the radiation pattern is very similar to the radiation pattern from the full AWE-PO RHS term S AWE-PO . Minor oscillations and a reduction at θ 15°compared with the main lobe are visible. The fluctuating pressure at the main lobe is higher than for the full AWE-PO results in Fig.10c. In Fig.10b, the pressure field

Fig. 9

 9 Fig. 9 Fluctuating pressure fields p 0 ∕ρ 0 c 2 0 from a) the self-noise contribution, b) the shear-noise contribution, and c) the full Lighthill RHS term. The plots use a color scale minimum and maximum values of 1.5 ⋅ 10 -4 , from blue to red.
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