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The Mach number dependence of tone generation by jets impinging on a plate is investigated using large-eddy

simulations, for seven jets atMachnumbersMbetween0.6 and1.3 andanozzle-to-plate distance of 8 nozzle radii. For

M � 0.6, the upstreamsound radiation is broadband, whereas forM ≥ 0.75, tones emerge in the near-nozzle spectra,

highlighting the establishment of feedback loops. The tone frequencies are consistent with those for aeroacoustic

feedback loops between the nozzle and the plate, and exhibit a staging behaviorwith theMach number, staying inside

or close to the ranges of the upstream-traveling free-stream guided jet waves predicted by a vortex-sheet model.

The azimuthal and radial structures of the pressure fields at the tone frequencies agree with those of these waves

closing the loops. The selection of the dominant tone and the staging behavior are discussed by evaluating the power

gains of the shear-layer instability waves between the nozzle and the plate using linear stability. In most cases, the

dominant tones emerge at the possible tone frequencies with the highest gain. ForM � 0.6, the gain of the instability

waves at the frequency of the guided jet waves most likely to close feedback mechanisms is lower than the gain peak

values, possibly contributing to the absence of resonance.

I. Introduction

S TRONG acoustic tones can be generated by jets impinging on a
flat plate. Such tones have been observed for high subsonic jets in

many experiments, such as those of Wagner [1], Neuwerth [2],
Preisser [3], Ho and Nosseir [4], Nosseir and Ho [5] and Powell
[6]. Later, they have been also found for supersonic jets in the
experiments of Norum [7], Tam and Norum [8] and Henderson et
al. [9] and in the simulations ofGojon et al. [10] andBogey andGojon
[11], for instance. Similar tones are emitted by subsonic and super-
sonic jets impinging on a perforated plate [12–14] or on an inclined
plate [15]. They are produced by feedback loops establishing
between the nozzle and the plate. The downstream part of the loop
consists of the flow disturbances convected in the jet shear layers,
related to the well-known Kelvin–Helmholtz instability waves. In
most cases, the upstream part is formed by upstream-propagating
guided jet waves [16], defined by specific dispersion relations and
classified into modes depending on their radial and azimuthal struc-
tures. Such waves play a role in other resonance phenomena, for
example, in screech noise generation mechanisms [17–20] and jet–
flap interactions [21,22]. They are also involved in the generation of
tones in the near-nozzle pressure field of free jets [23–26]. The
properties of the guided jet waves and of the feedback loops depend
on the jet Mach number. In particular, for impinging jets, many
experimental works [1,2,4,5,16] reported that no feedback loop
establishes for Mach numbers M lower than 0.7. Moreover, the
azimuthal structure of the jets varies with the Mach number. Indeed,
for instance, Panickar and Raman [27] observed that only an axisym-
metric feedback mode occurs forM < 0.89 and that helical feedback
modes exist for higherMach numbers. Furthermore, the effects of the
Mach number on the feedback frequencies were studied experimen-

tally by Jaunet et al. [28] for impinging jets atMach numbers between
0.7 and 1.5. These frequencies are organized into stages as the Mach
number increases, which is typical of resonance phenomena. They lie
in the allowable frequency ranges of the upstream-traveling guided
jet waves due to the closure of the feedback loops by these waves.
More precisely, the frequencies of the dominant tones are close to the
cutoff frequencies of the guided jet modes, as can be seen in Varé and
Bogey [29], for instance.A similar observationwas alsomade for free
jets by Bogey [23], suggesting that the waves near the cutoff play a
key role in tone generation. The cutoff frequencies are related to
guided jet waves with different characteristics depending on the
Mach number [23,30]. For M ≥ 0.8, they are linked to stationary
waves with zero group velocity, whereas for M < 0.8, they are
associated with the least-dispersed waves with zero group-velocity
dispersion. The latter waves are themost coherent and they propagate
without frequency change, leading Tam and Ahuja [16] to propose
them as the waves the most likely to sustain feedback mechanisms.
Several questions remain about the influence of the Mach number

on the feedback mechanisms in impinging jets. Among them, the
effects of the jet velocity on the intensity of the tones have not been
studied thoroughly. The link between the staging of the tone frequen-
cies with the Mach number and the properties of the upstream-
propagating guided jet waves closing the loop also needs to be
clarified. Moreover, it is still unclear why no feedback loop estab-
lishes forMach numbers lower than 0.7. For higher jet velocities, it is
unknown how the dominant feedbackmode is selected, especially for
Mach numbers higher than 0.89 for which both axisymmetric and
helical modes are possible. As tones result from a coupling between
the upstream-propagating guided jet waves and shear-layer instabil-
ity waves, the dominant tone can be expected to be linked to themost-
amplified instability waves among those excited by the guided jet
waves, as shown in a recent study for initially laminar free jets [31].
However, to the best of the authors’ knowledge, this hypothesis has
not yet been verified for impinging jets. Finally, the role of the waves
close to the cutoff frequencies of the guided jet modes in the reso-
nance mechanisms has not been investigated in depth.
In the present work, in order to investigate the effects of the Mach

number on the feedbackmechanisms establishing between the nozzle
and the plate, large-eddy simulations (LES) of seven impinging
round jets at Mach numbers varying from 0.6 to 1.3 are performed.
The jets are at a Reynolds number of 105 and have initially highly
disturbed boundary layers at the nozzle exit. The supersonic ones are
nearly ideally expanded. The jets impinge on a flat plate located at a
distanceL of 8 nozzle radii from the nozzle exit. The first objective of
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this study is to observe the establishment of feedback loops between
the nozzle and the plate. For that purpose, the flow and acoustic fields
are detailed. In particular, the near-nozzle pressure spectra are exam-
ined to determine tonal frequencies. The second aim of this work is to
explore the Mach number variations of the properties of the tones,
namely their frequencies, amplitudes and associated azimuthal
modes. Notably, the staging of the frequencies with theMach number
will be discussed by studying the characteristics of the free-stream
upstream-propagating guided jet waves closing the feedback loops.
Another objective in the present paper is to investigate the coupling
between the guided jet waves and the shear-layer instability waves by
searching for tones in the shear-layer velocity spectra and for
standing-wave patterns in the pressure fields at the tone frequencies.
The last objective of this work is to discuss the selection of the
dominant tone. To this end, the power gains of the Kelvin–Helmholtz
waves between the nozzle exit and the plate will be evaluated in the
frequency bands of the waves closing the feedback mechanisms.
This paper is organized as follows. The jet parameters and numeri-

cal methods in the LES are presented in Sec. II. The results of the
simulations are detailed in Sec. III. In particular, vorticity and pres-
sure snapshots, mean and turbulent flow fields and pressure spectra
are shown. The Mach number variations of the frequencies and
amplitudes of the tones are detailed. The velocity spectra in the shear
layer and the pressure fields at the tone frequencies are described. The
downstream and upstream components of the feedback loops are
extracted using a frequency–wavenumber filtering. The growth of the
shear-layer instability waves between the nozzle exit and the plate is
estimated employing linear stability analysis. Finally, concluding
remarks are given in Sec. IV.

II. Parameters

A. Jet Parameters

The seven jets computed in this work have Mach numbers of
M � 0.6, 0.75, 0.8, 0.9, 1, 1.1 and 1.3 and a Reynolds number
ReD � ujD∕ν of 105, where uj is the jet velocity, D is the nozzle
diameter and ν is the air kinematic viscosity. The supersonic jets are
nearly perfectly expanded. The jets all originate at z � 0 from a
cylindrical nozzle of radius r0 and length 2r0, and are at ambient
pressure and temperature p0 � 105 Pa and T0 � 293 K. They
impinge on a plate located L � 8r0 downstream of the nozzle exit,
as in the experiments of Jaunet et al. [28]. At the nozzle inlet, a
Blasius laminar boundary-layer profile with a thickness of 0.15r0 is
imposed for the velocity. Vortical disturbances uncorrelated in the
azimuthal direction are added in the boundary layer at z � −r0 to
obtain significant velocity fluctuations at the nozzle exit, using a
procedure described in Bogey et al. [32]. The profiles of mean and
root-mean-square (rms) axial velocities obtained at the nozzle exit for
the jets are represented in Fig. 1. In the seven cases, they are very
similar to each other. In Fig. 1a, the mean velocity profiles resemble
the Blasius laminar boundary-layer profile at the inlet, while the
turbulent intensities reach a peak value of 9% in Fig. 1b as expected,
yielding initially highly disturbed jets.

B. Numerical Methods

The numerical setup is identical to that in very recent LES of
subsonic [14] and supersonic [33,34] impinging jets. The unsteady
compressible Navier–Stokes equations are solved in cylindrical
coordinates (r, θ, z) using an OpenMP based in-house solver. A
second-order, six-stage Runge–Kutta algorithm [35] is employed
for time integration and the spatial derivatives are computed with
11-point low-dispersion finite-difference schemes [36]. At the end of
each time step, a selective filtering is applied to remove grid-to-grid
oscillations [35]. This filter also acts as a subgrid-scale model ensur-
ing the relaxation of turbulent kinetic energy near the grid cutoff
frequency [37]. No-slip and adiabatic wall conditions are imposed to
the plate and nozzle walls. To handle possible shocks created by the
jet impingement in the jet potential core, a damping procedure using a
dilatation-based shock detector and a second-order filter is used to
remove Gibbs oscillations in the vicinity of shocks for z ≥ 3r0 [38].
The radiation boundary conditions of Tam and Dong [39] are imple-
mented at the radial and lateral boundaries of the computational
domain. They are associated with sponge zones combining grid
stretching and Laplacian filtering to prevent significant spurious
reflections [40]. Themethod ofMohseni andColonius [41] is applied
to treat the singularity on the jet axis. The closest point to the axis is
located at r � Δr∕2, where Δr is the radial mesh size near the jet
axis. The azimuthal derivatives near the jet axis are evaluated with
fewer points than permitted by the grid to increase the time step of the
simulations [42]. More precisely, the effective azimuthal resolution
near the origin of the polar coordinates is reduced down to 2π∕16.

C. Computational Parameters

The samemesh grid is used in the seven simulations. It is similar to
that employed in a very recent simulation of a jet at aMach number of
0.9 impinging on a flat plate at L � 6r0 [14]. More precisely, the
numbers of points in the radial, azimuthal and axial directions are
equal to 559, 1024 and 1124, respectively, which yields a total
number of 640 million points. The grid extends out to r � 15r0 in
the radial direction and down to z � 8r0 in the axial direction. The
radial mesh spacing, shown in Fig. 2a, is equal to Δr � 0.014r0 on
the jet centerline and decreases down to Δr � 0.0036r0 at r � r0 in
the shear layers. It then increases to reach a maximum value of
Δr � 0.075r0 for r > 6.2r0, which leads to a Strouhal number St �
fD∕uj varying from 4.1 at M � 1.3 up to 8.9 at M � 0.6 for an
acoustic wave with five points per wavelength. The axial mesh
spacing Δz, in Fig. 2b, is minimum and equal to Δz � 0.0072r0 at
the nozzle exit, and maximum and equal to Δz � 0.012r0 between
z � 2r0 and z � 6r0. Farther downstream, the axial mesh spacing is
reduced down to Δz � 0.0072r0 near the plate at z � 8r0, as at the
nozzle exit. The extremum values of the mesh spacings and the
stretching rates in the axial and radial directions are the same as in
the study of Bogey [43], where a grid convergency study was
performed for a free jet with the same ejection conditions as the
impinging jet atM � 0.9 of the present work. The results presented
in this paper are obtained after simulation times of 500r0∕uj for the
jet at M � 1.3 and 1000r0∕uj for the other jets. During the simu-
lations, density, velocity components and pressure along the jet axis
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a) b)
Fig. 1 Nozzle-exit radial profiles of a) mean axial velocity huzi∕uj and b) axial turbulence intensity hu 0

zu
0
zi1∕2∕uj: M � 0.6; M � 0.75;

M � 0.8; M � 0.9; M � 1; M � 1.1; M � 1.3.
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at r � 0, along the lip line at r � r0, on the surfaces at r � 15r0,
z � −2r0 and z � 0, and on the plate at z � L are recorded at a
sampling frequency enabling spectra to be computed up to St � 12.
Density, velocities and pressure are also saved at the azimuthal angles
θ � 0, 90, 180 and 270 deg at a halved frequency. The azimuthal
Fourier coefficients of the density, pressure and velocity fields are
also estimated up to the mode nθ � 4 for 0 ≤ r ≤ 15r0 and
0 ≤ z ≤ 8r0. The spectra are computed from these recordings and
they are averaged in the azimuthal direction when possible.

III. Results

A. Snapshots of the Flow and Acoustic Fields

Snapshots of the vorticity norm and of the pressure fluctuations
obtained for the jets atM � 0.6, 0.75, 0.9, 1, 1.1 and 1.3 are presented
in Fig. 3. The results for the jet atM � 0.8 look like those for the jet
at M � 0.9. Therefore, for brevity, they are not shown here.
Supplementary movies are provided for the jets at M � 0.6, 1 and
1.3. In all cases, in the vorticity fields, the shear layers develop with
the axial distance due to the formation of large-scale vortical struc-
tures. The structures are convected down to the plate, where their
impingement creates wall jets. Farther from the stagnation point,
the wall jets spread with the radial distance. Outside the jet flow,
high-frequency pressurewaves are found to be generated near the flat
plate, notably in the wall jets, and to propagate in the upstream
direction. ForM ≥ 0.75 in Figs. 3b–3f, intense low-frequencywaves
are also visible. They are produced by the impingement of the jet

turbulent structures on the plate. Their wavefronts are periodically
spaced, revealing tonal properties. For M � 0.9, 1 and 1.3 in
Figs. 3c,3d and 3f, no phase shift is observed on both sides of the
jet axis, indicating an axisymmetric pressure field. This is not the case
for the jet at M � 1.1 in Fig. 3f, which may be due to helical jet
oscillations. Inside the jet flow, the pressure is highest in the impinge-
ment area for all jets, as expected. For M � 0.6 in Fig. 3a, spots of
high pressure are seen to be attached to the vortical structures of the
mixing layer. They are associated with Kelvin–Helmholtz instability
waves. For higher Mach numbers in Figs. 3b–3f, strong pressure
waves are also found to travel in the upstream direction in the jet
column. Between the nozzle exit and the plate, their wavelength is
similar to that of the free-stream sound waves, which suggests that
their propagation velocity is close to the ambient sound velocity. For
M � 1.3 in Fig. 3f, the fluctuations of pressure exhibit a node around
r ≈ 0.5r0, which is not the case for the other Mach numbers, indicat-
ing that the radial structure of the pressurewaves in the jet atM � 1.3
is different from that of the other jets. As for the amplitudes of the
pressure fluctuations, they are about 500 Pa forM � 0.6 and increase
with the Mach number. In particular, they are of the order of 1000 Pa
for the jets atM ≥ 0.9.

B. Mean Flow Fields

The variations of the centerline mean axial velocity, of the shear-
layer momentum thickness and of the axial turbulence intensity at
r � r0 are presented in Fig. 4. In Fig. 4a, the centerline mean axial
velocity is approximately equal to the exit velocity down to z � 6.5r0

Fig. 3 Snapshots of vorticity norm in the flow and of pressure fluctuations outside in the (z, r) plane for a)M � 0.6, b)M � 0.75, c)M � 0.9, d)M � 1,
e)M � 1.1 and f)M � 1.3. The color scales range from0 to 15uj∕r0 for vorticity, fromblack to yellow, and between�0.005p0 (a–c) and�0.01p0 (d–f) for

pressure, from black to white.
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Fig. 2 Variations of a) radial and b) axial mesh spacings.
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for the seven jets. It decreases down to zero on the plate at z � 8r0. For
M ≥ 0.9, velocity oscillations are found, due to the presence of
compression cells in the jet potential cores. In Fig. 4b, the shear-
layer momentum thicknesses are similar for all jets. They increase
slowly, nearly linearly down to z � 7r0, and then more rapidly
between z � 7r0 and z � 7.8r0 because of the wall jet. As for the
rmsvalues of the axial velocity fluctuations along the nozzle-lip line, in
Fig. 4c, they increase very quickly between z � 0 and z � 2r0 in all
cases. Farther downstream, the turbulent levels are highest for
M � 0.6, with values around 17% of uj, and lowest for M � 0.9,
with values around 13% of uj. These discrepancies may be due to the
effects of the compression cells in the jet on the turbulent levels. The
levels then do not vary much down to z � 7r0. Finally, they are
reduced down to zero on the plate.

C. Pressure Spectra

The pressure spectra computed at z � 0 and r � 1.5r0 near the
nozzle are presented in Fig. 5a forM � 0.6, 0.75, 0.8 and 0.9 and in
Fig. 5b forM � 1, 1.1 and 1.3. ForM � 0.6 in Fig. 5a, a broadband
hump is observed around St � 0.33. Weak peaks emerging by less
than 2 dB from the broadband noise are located in this hump for
Strouhal numbers between 0.2 and 1, but no tone is visible, which
indicates that there is nomarked resonance for this jet. This result is in
agreement with experiments on impinging jets [1,3,4], in which no
feedback loops were found to establish forM < 0.7. For higherMach
numbers, tones emerge strongly. For the jet atM � 0.75, three tones
10–15 dB higher than the broadband noise are visible at Strouhal
numbers of 0.46, 0.54 and 0.61. For M � 0.8, a dominant tone
emerges by 20 dB at a Strouhal number of 0.51 and non-harmonic
weaker peaks are observed at St � 0.85, 1.2 and 1.6. For M � 0.9,
the pressure spectrum exhibits a strong tone 25 dB higher than the
broadband noise at St � 0.40 and less intense tones emerging by
about 10 dB at harmonic frequencies of the strongest tone and at
St � 0.7 and 1. In Fig. 5b, the spectrum for the jet atM � 1 displays
a shape similar to that for the jet atM � 0.9, with a dominant tone at
St � 0.31 andweaker peaks at harmonic frequencies of the dominant
tone and at St � 0.5, 0.58, 0.82 and 1.25. ForM � 1.1, three peaks
15–20 dB higher than the broadband levels are found at St � 0.29,

0.46 and 0.66. Finally, for M � 1.3, a dominant tone emerges by
30 dB at St � 0.51 and two other tones 10 and 20 dB higher than the
broadband noise are seen at St � 0.34 and 1.01, respectively.
The tones are produced by feedback loops establishing between the

nozzle and the plate. The loops consist of two steps. During the first
step, the coherent structures of the jet shear layers are convected down-
stream down to the plate, where their impingement generates acoustic
waves. During the second step, these waves propagate upstream to the
nozzle, exciting themixing layer at the nozzle exit,which produces new
coherent structures and closes the feedback loop.Amodel of prediction
of the feedback frequencieswas proposed byHoandNosseir [4]. In this
model, the feedback period is considered as the sum of two character-
istic times, namely the timeof convection of the flow structures down to
the plate and the time of propagation of acoustic waves to the nozzle.
The feedback frequency can thus be estimated by

f � Nhuci
L�1�Mc�

(1)

where huci is the mean convection velocity between the nozzle and the
plate, Mc � huci∕c0 is the convection Mach number and N is an
integer representing the order of the feedback mode. This integer N
corresponds to the number of coherent structures between the nozzle
and the plate. For all jets at M ≥ 0.75, the values of N giving the
frequencies given in Table 1 closest to those of the dominant peaks in
the pressure spectra using Eq. (1) with the classical approximation
huci � �2∕3�uj are estimated. They decrease from 6 at M � 0.75

down to 3 atM � 1, then increase up to 6 forM � 1.3.
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Fig. 5 Sound pressure levels (SPL) at r � 1.5r0 and z � 0 for a) M � 0.6, M � 0.75, M � 0.8, and M � 0.9 and b) M � 1,

M � 1.1 and M � 1.3.
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Fig. 4 Variations of a) the centerline mean axial velocity huzi∕c0, b) the shear-layer momentum thickness δθ∕r0 and c) the axial turbulent intensity

hu 0
zu

0
zi1∕2∕uj at r � r0 for M � 0.6, M � 0.75, M � 0.8, M � 0.9, M � 1, M � 1.1 and M � 1.3.

Table 1 Strouhal numbersStLES of thedominant tone frequencies in
the LES and Strouhal numbersStmodel predicted by themodel of Ho and

Nosseir [4] for a feedback mode N

M 0.75 0.8 0.9 1 1.1 1.3

StLES 0.61 0.51 0.40 0.31 0.46 0.51
N 6 5 4 3 5 6
Stmodel 0.67 0.54 0.42 0.3 0.48 0.54
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To determine the azimuthal structure of the pressure field near the
nozzle, the pressure spectra of Fig. 5 are represented along with the
contributions of the first two azimuthal modes in Fig. 6. The spectra
obtained forM � 0.8, similar to those forM � 0.9, are not presented
here. ForM � 0.6 in Fig. 6a, the low-frequency hump and the peaks
between St � 0.2 and 1 are linked to the axisymmetric mode. The
peaks are more marked for nθ � 0 than for the full signal. For
St > 0.95, the levels for nθ � 0 decrease by 10 dB, more sharply
than those for the full signal. The spectrum for nθ � 1 is broadband.
A series of very small peaks is noticed between St � 0.3 and 2. The
two highest levels for this mode are seen in two peaks at St � 1.15
and 1.4. For M � 0.75, 0.9, 1 and 1.3, in Figs. 6b,6c,6d and 6f, the
dominant tones are associated with the axisymmetric mode, whereas
forM � 1.1 in Fig. 6e, the strongest tone atSt � 0.46 is related to the
first helical mode, indicating that the azimuthal structure of the jets is
affected by the Mach number. For the latter jet, the two tones at
St � 0.29 and St � 0.66, with levels close to that of the dominant
tone, are found for the axisymmetric mode, highlighting that two
oscillationmodes with comparable amplitude exist for this jet. More-
over, for M � 0.75, 0.9, 1 and 1.3, tones are found at the first
harmonic frequencies of the dominant tones for nθ � 0. Additional
small peaks appear for nθ � 1 at St � 0.91 forM � 0.75, St � 0.7
forM � 0.9, St � 0.57 for M � 1 and St � 0.34 for M � 1.3.

D. Mach Number Variations of the Near-Nozzle Tone Properties

The Strouhal numbers of the dominant tones in the near-nozzle
pressure spectra are represented in Fig. 7 as a function of the
Mach number. They are comparedwith the experimental data of Jaunet
et al. [28] for jets atMach numbers between 0.7 and 1.5 impinging on a
plate at the same nozzle-to-plate distance as in the present study and
with the Strouhal numbers predicted by Eq. (1) using huci � �2∕3�uj.
The frequencies of the dominant tones in the simulations do not fall
perfectly on the curves predicted by the latter equation. This mismatch
is most probably due to the rough approximation used for the con-
vection velocity. However, the frequencies of the dominant tones can
be paired with the curves they are closest to. More precisely, they are
nearest the curves associated with the modes N � 6 for M � 0.75,
N � 5 for M � 0.8, N � 4 for M � 0.9, N � 3 forM � 1, N � 5
for M � 1.1 and N � 6 for M � 1.3. Therefore, as the jet Mach
number increases, the tone frequencies switch from one mode to
another, following a staging behavior. The tonal frequencies in the
experiments can also be linked to the curves given by Eq. (1) and jump
from one mode to another, as those in the simulations. Five feedback

modes are observed depending on the jet Mach number. A mode
N � 3 is visible between M � 0.7 and M � 1.18, a mode N � 6
exists between M � 0.9 and M � 1.03, a mode N � 5 is present
between M � 0.97 and M � 1.25, a mode N � 2 is found for
M ≥ 1.13 and a mode N � 4 is seen for M ≥ 1.25. For M � 1 and
1.1, the frequencies of the dominant tones in the LES are in agreement
with those of the experiments, whereas for the other Mach numbers,
they are related to higher feedback modes than those in the experi-
ments. These discrepancies may be due to differences in nozzle-exit
conditions, unknown in the experiments, such as the velocity profiles
and the state of the boundary layer. For instance, the nozzle-exit
velocity profiles in the simulations resemble a laminar Blasius
boundary-layer profile, whereas those in the experiments are probably
close to a turbulent boundary-layer profile. In addition, the nozzle-exit
boundary layer may be thicker in the LES, which can affect the noise
generation mechanisms. The nozzle-exit turbulence levels in the sim-
ulationsmay alsobe different from those in the experiments,which can
have an influence on the noise radiated by the jets. Another source of
discrepancies is the nozzle geometry. A cylindrical nozzle is consid-
ered in the LES, whereas a convergent nozzle is used in the experi-
ments. This difference in the external surface of the nozzlemay change
the frequency of the dominant tone, as shown byWeightman et al. [44]
for impinging underexpanded jets.
The Mach number variations of the tone frequencies are repre-

sented in Fig. 8 for the first two azimuthal modes separately. The
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Fig. 6 Sound pressure levels (SPL) at r � 1.5r0 and z � 0 for a) M � 0.6, b) M � 0.75, c) M � 0.9, d) M � 1, e) M � 1.1 and f) M � 1.3: full
signal; nθ � 0; nθ � 1.
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Fig. 7 Mach number variations of the near-nozzle peak frequencies:
dominant tones in the LES; measurements of Jaunet et al. [28] for

L � 8r0; Eq. (1).
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dominant tones, their harmonics and the non-harmonic peaks are
highlighted using different symbols. The frequencies predicted by
Eq. (1) using huci � �2∕3�uj are plotted using blue dashed lines. For
both azimuthal modes, the peak frequencies can be associated with
curves predicted by this equation, even for the jet atM � 0.6with no
marked resonance phenomenon, for the feedback mode values N
gathered in Table 2. For the mode nθ � 0, the mode order N of the
dominant tone decreases from 6 to 3 betweenM � 0.75 and 1.1, then
increases up to 6 for M � 1.3, whereas for the mode nθ � 1, it
decreases monotonically with the jet velocity from N � 8 to 4 for
M ≥ 0.75. In Fig. 8, the frequency bands of the free-streamupstream-
traveling guided jet waves determined using a vortex-sheet model are
also indicated to compare them with the frequencies predicted by the
Eq. (1), as in previous works [10,11]. Each band is linked to a radial
mode of the guided jet waves, with the radial mode order nr increas-
ing with the frequency.
For M � 0.6, the weak near-nozzle peaks for nθ � 0 fall in the

band of the first radial mode. In particular, a peak is found close to the
upper frequency of the band. A sharp decrease of the sound levels for
nθ � 0 is observed for higher frequencies in the pressure spectrum in
Fig. 6a, suggesting a filtering of the upstream sound waves by the
guided jet waves as for free jets [23]. For M ≥ 0.75, the dominant
tones lie in the frequency ranges of the first and second radial modes
for nθ � 0 and of the first radial mode for nθ � 1. ForM ≤ 1.1 and
for nθ � 0, they are located near the cutoff frequencies of the first
radial guided jet mode. ForM ≤ 1.1 and for both azimuthal modes,
the frequencies of the dominant tones decrease with the Mach num-
ber, jumping from one curve for a feedback modeN down to a lower
one forN − 1. This mode jump can be explained by the closure of the
feedback loops by the guided jet waves. Indeed, the upper frequen-
cies of the bands of a given radial mode decrease more rapidly with
the Mach number than the frequencies predicted by the model of Ho
and Nosseir for a given feedback mode N. Hence, as the Mach
number increases, the frequency obtained for the mode N becomes
higher than the frequencies of the guided jet waves, which does not
allow the closing of the loop.As a result, the loop cannot be closed for
the mode N and a loop establishes for a lower one. Furthermore, for
nθ � 0, the dominant tone frequency jumps from the modeN � 3 at
M � 1.1 to themodeN � 6 atM � 1.3, but it also switches from the
radial mode of the guided jet waves nr � 1 atM � 1.1 to the mode
nr � 2 atM � 1.3. Contrary to the cases at lower Mach numbers, it
does not jump down to a lower feedback mode. This result will be
explained by the different amplifications of the Kelvin–Helmholtz

waves in the frequency bands of the first two radial modes of the
guided jet waves, as will be seen in Sec. III.H.
As for the non-dominant tones, most of the harmonics of the

strongest tones are not in the bands of the guided jet waves predicted
by the vortex-sheet model, questioning their link with these waves.
On the contrary, most of the non-harmonic peaks are in the frequency
bands of the first three radial modes for nθ � 0 and below the
bands of the second and third radial modes for nθ � 1. For nθ � 1,
the peak position generally below the band can be explained by the
fact that the vortex-sheet model overestimates the frequencies of the
guided jet waves due to the assumption of an infinitely thin shear
layer [11,16,45]. The non-harmonic peaks thus appear to be linked to
the guided jet waves for both modes.
The Mach number variations of the tone amplitudes are plotted in

Fig. 9. They are compared with the typical M8 scaling law of
aerodynamic noise for subsonic jets [46]. For nθ � 0 in Fig. 9a,
the tone amplitude increases by 45 dB betweenM � 0.6 andM � 1.
This increase is much greater than that predicted by the M8 law,
indicating the generation of additional noise components by a strong
resonance phenomenon. The tone intensity falls by about 15 dB for
M � 1.1 and it finally increases by 18 dB forM � 1.3. The reduction
of the tone amplitude for the jet at M � 1.1 may be because two
modes with comparable amplitude are observed for this jet, whereas
one mode prevails in the other cases. For nθ � 1 in Fig. 9b, the
intensity of the dominant tone increases by 10 dB betweenM � 0.75
andM � 1. The variations of the tone amplitudes are much closer to
the M8 law than those for nθ � 0. For M � 1.1, the tone level is
enhanced by 13 dB compared with that for M � 1. For this jet, a
marked resonance is observed for nθ � 1, causing this strong
increase of the tonal intensity. This is not the case for the jet at
M � 1.3, which yields a reduction of the tone amplitude of 10 dB
in comparison with the tone level for M � 1.1.

E. Velocity Spectra

To study the development of the jet flow structures, the power
spectral densities of the radial velocity fluctuations u 0

r obtained in the
mixing layer at r � r0 between the nozzle and the plate are provided
in Fig. 10. The results for the jet atM � 0.8, similar to those for the jet
atM � 0.9, are not detailed. ForM ≤ 0.9 in Figs. 10a–10c, spots of
significant levels are observed between z � 4r0 and z � 7.5r0 for
Strouhal numbers between 0.1 and 0.9. They result from the presence
of a broadband hump in the velocity spectra, associated with large
coherent structures formed a few radii downstream of the nozzle exit.
For M ≥ 1 in Figs. 10d–10f, such spots are not visible because
of lower broadband levels in the velocity spectra. Moreover, for
M ≥ 0.75 in Figs. 10b–10f, the strongest levels are found along thin
lines beginning approximately at z � 2r0 for M � 0.75 and 0.9,
z � r0 for M � 1 and 1.3 and z � 3r0 for M � 1.1 and extending
down to the plate. They are located at Strouhal numbers similar to those
of the tones in the pressure spectra in Sec. III.C, revealing a coupling
between the upstream-traveling waves and the flow structures.
To examine the forcing of the jet shear layers by the upstream-

propagating waves, the spectra of the radial velocity fluctuations in
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b)
Fig. 8 Mach number variations of the Strouhal numbers of the peaks in the near-nozzle pressure spectra for a) nθ � 0 and b) nθ � 1: • and ○ dominant

tones and their harmonics; � other peaks; (gray shading) allowable frequency bands of the free-stream upstream-propagating guided jet waves for a
vortex-sheet model; Eq. (1) with N varying from 1 to 12.

Table 2 Feedback mode N related to the
dominant peak frequency for nθ � 0

and nθ � 1

M 0.6 0.75 0.8 0.9 1 1.1 1.3

N�nθ � 0� 3 6 5 4 3 3 6
N�nθ � 1� 10 8 8 7 6 5 4
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the mixing layer and the contributions of the first two azimuthal
modes to these spectra are computed near the nozzle and near the
plate. The spectra obtained near the nozzle lip, at r � r0 and
z � 0.4r0, are represented in Fig. 11 as a function of the Strouhal
number. For all jets, a broadband hump is present for both modes
around a Strouhal number of St � 1.7, which is close to the fre-
quency Stθ � fδθ�z � 0�∕uj � 0.016 of the most-amplified Kel-
vin–Helmholtz instability waves obtained using linear stability
analysis [47]. For M � 0.6 in Fig. 11a, no tones are observed in
the spectra, which is not the case for the jets at higherMach numbers.
For the latter jets, the dominant tones are found for the same frequen-
cies and azimuthal modes as those in the near-nozzle pressure spec-
tra. For both modes, their frequencies are three to five times lower
than the most unstable frequencies obtained using linear stability
analysis, as observed experimentally in the near-nozzle pressure
spectrum of an impinging jet at M � 0.9 by Ho and Nosseir [4].
This result indicates that the shear layers are forced by low-frequency
pressure waves.
The spectra of the radial velocity fluctuations computed near

the plate, at r � r0 and z � 7r0, are shown in Fig. 12. For all jets,
a wide hump is visible around St � 0.5 for nθ � 0 and 1. This
low-frequency hump is linked to large vortical structures resulting
from the growth of the shear-layer turbulent structures in the axial
direction. For M ≥ 0.75 in Figs. 12b–12f, tones are found in the
spectra for the same azimuthalmodes and frequencies as for the tones
in the spectra at z � 0.4r0, highlighting the persistence of coherent
structures at the feedback frequencies down to the plate. For

M � 0.9, 1 and 1.3 in Figs. 12c,12d and 12f, tones are also visible
at the harmonic frequencies of the dominant peak for the full signal
and for nθ � 0.

F. Structure of the Pressure Field at the Tone Frequencies

The structures of the jet pressure fields in the plane (z, r) at the near-
nozzle peak frequencies for the first two azimuthal modes are inves-
tigated [10]. The amplitude fields obtained forM � 0.6, 0.9, 1.1 and
1.3 are represented in Fig. 13 for nθ � 0 and in Fig. 14 fornθ � 1. For
M � 0.6 and nθ � 0, the frequency of the peak close to that of the
least-dispersed guided jet waves is considered to investigate the latter
waves. For the other cases, the frequency of the strongest peak is
considered. The results forM � 0.75, 0.8 and 1, not shown, resemble
those forM � 0.9. ForM � 0.6 andnθ � 0 inFig. 13a, the amplitude
levels are highest in the shear layers. Eight spots of low pressure are
visible in the jet column. The number of spots is equal to the feedback
mode order N � 8 associated with the peak frequency in Fig. 8a,
which suggests the occurrence of interactions between the least-
dispersed guided jet waves and the shear-layer coherent structures.
However, the pressure levels in the jet are much lower than those
in the shear layers. The amplitude levels are especially low near the
nozzle, indicating that the guided jet waves do not excite significantly
the shear layers at these locations. For M ≥ 0.9 in Figs. 13b–13d,
multiple spots of high amplitude appear in the jet column. They
correspond to the nodes of standing waves establishing between the
nozzle and the plate, as observed for screeching [17,48,49] and
supersonic impinging [10,50] jets. The standing waves are created
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a) b)
Fig. 9 Mach number variations of the amplitudes of the near-nozzle peaks for a) nθ � 0 and b) nθ � 1, M8.

Fig. 10 Power spectral densities of the fluctuations of radial velocity u 0
r normalized by the jet velocity uj at r � r0 between the nozzle and the plate for

a)M � 0.6, b)M � 0.75, c)M � 0.9, d)M � 1, e)M � 1.1 and f)M � 1.3. The color scale is the same in all cases and spreads over 3 dB, from white to
black.
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by the superposition of downstream-propagating jet instability waves
and upstream-propagating guided jet waves. As the instability waves
are linked to the vortical structures convected in the jet flow, the
number of nodes of the standing wave is the same as the number of
structures between the nozzle and the plate. There are 4, 3 and 6 lobes
forM � 0.9, 1.1 and 1.3, respectively, which is in agreement with the
feedback mode numbers N collected in Table 2.
The results obtained for nθ � 1 are shown in Fig. 14. In all cases,

the amplitudes near the jet axis are negligible, as expected for a helical
oscillation mode. For M � 0.6 in Fig. 14a, the pressure levels are
highest in the shear layers. No structures are found in the layers,
suggesting no feedback phenomenon at the peak frequency. For
M ≥ 0.9 in Figs. 14b and 14c, lobes of high amplitude are visible
inside the jet, indicating resonant interactions between upstream- and

downstream-propagating waves. The number of lobes is equal to 5, 7
and 4 forM � 0.9, 1.1 and 1.3, respectively, which is consistent with
the values of N found in Sec. III.D.
ForM � 1 and nθ � 0, tones are found at the first two harmonic

frequencies of the strongest tone and at two non-harmonic frequen-
cies, as shown in Fig. 8a. The non-harmonic peaks lie in the fre-
quency band of the second radial guided jet mode predicted by the
vortex-sheet model, whereas the first and second harmonics are
slightly below and above this band, respectively. The two harmonics
may thus be unrelated to guided jet waves. In that case, the structures
of their associated pressure fields could be different from that of the
peaks in the bands of the guided jet modes. To investigate these
structures, the pressure levels for the jet at M � 1 for nθ � 0 at
the frequencies of the dominant tone, of its first two harmonics, and
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Fig. 12 Power spectral densities of the fluctuations of radial velocity u 0
r at r � r0 and z � 7r0 for a) M � 0.6, b) M � 0.75, c) M � 0.9, d) M � 1,

e) M � 1.1 and f) M � 1.3: full signal; nθ � 0; nθ � 1.
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Fig. 11 Power spectral densities of the fluctuations of radial velocity u 0
r at r � r0 and z � 0.4r0 for a) M � 0.6, b) M � 0.75, c) M � 0.9, d) M � 1,

e) M � 1.1 and f) M � 1.3: full signal; nθ � 0; nθ � 1; , Stθ � fδθ∕uj � 0.016.
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of the first two non-harmonic peaks are represented in Fig. 15. For
all frequencies, strong levels are found in the jets, suggesting
the presence of guided jet waves of high amplitude due to the
interactions between the flow vortical structures and the latter
waves [10,31,48,50]. They are maximum on the jet axis, as expected

for the axisymmetric mode, and are organized in lobes, whose
number increases from N � 3 at the frequency of the strongest tone
to N � 9 at the second harmonic frequency. For the non-dominant
peaks in Figs. 15b–15e, low pressure levels are found around
r � 0.5r0, indicating a pressure minimum in the radial direction.

Fig. 13 Pressure levels for the axisymmetric mode at the peak frequencies a) St � 0.94 forM � 0.6, b) St � 0.40 forM � 0.9, c) St � 0.29 forM � 1.1
andd)St � 0.51 forM � 1.3. The color scales range froma) 125 to150dB/St, b)150 to 200dB/St, c) 140 to190dB/St andd) 150 to 200dB/St, fromblue tored.

Fig. 14 Pressure levels for the first helical mode at the peak frequencies a) St � 1.16 forM � 0.6, b) St � 0.7 forM � 0.9, c) St � 0.46 forM � 1.1 and
d) St � 0.34 forM � 1.3. The color scales range from a) 130 to 160 dB/St, b) 130 to 170 dB/St, c) 150 to 180 dB/St and d) 150 to 200 dB/St, from blue to red.

Fig. 15 Pressure levels for the axisymmetricmode forM � 1at the frequencies of a) thedominant tone atSt � 0.31, of its b) first and c) secondharmonics
and of d) the first and e) second non-harmonic peaks. The color scales range from a) 160 to 190 dB/St, b) 140 to 170 dB/St and (c–e) 130 to 160 dB/St, from
blue to red.

Article in Advance / VARÉ AND BOGEY 9

D
ow

nl
oa

de
d 

by
 C

hr
is

to
ph

e 
B

og
ey

 o
n 

Ju
ne

 7
, 2

02
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
06

27
46

 



This result agrees with the structure of the second radial guided jet
mode. Therefore, both harmonic and non-harmonic peaks appear to
be related to this mode.

G. Extraction of the Upstream- and Downstream-Propagating Waves

at the Tone Frequencies

To characterize the waves involved in the feedback loops, fre-
quency–wavenumber spectra have been computed for the pressure
fluctuations in the jet shear layer at r � r0 between z � 0 and 6r0.
The spectrum obtained for the jet atM � 0.9 for nθ � 0 is presented
in Fig. 16. Lines of high intensity extending over the whole range of
wavenumbers −20 ≤ kD ≤ 20 considered appear at the dominant
tone frequency and its harmonics. For negative wavenumbers, two
spots of strong levels are also seen close to the line k � −ω∕c0
around St � 0.4 and St � 1. They are linked to the first and second
radial modes of the free-stream upstream-propagating guided jet
waves, as shown in previous works [14,23,31]. For positive wave-
numbers, a large band of high levels is found near the line k � ω∕uc.
It can be attributed to Kelvin–Helmholtz instability waves. The
upstream and downstream components of the feedback loop are thus
visible in the frequency–wavenumber spectra.
To extract these two components, the frequency–wavenumber spec-

tra of the pressure fluctuations computed at each radial position r for
nθ � 0 and nθ � 1 are filtered. This enabled, for example, Tinney and
Jordan [51] to separate hydrodynamic and acoustic pressure fluctua-
tions for a subsonic coaxial jet and Kerhervé et al. [52] to filter sound
waves produced by a jet at M � 0.9 according to their direction of
propagation. In the present study, a band-pass frequency filter centered
on the peak frequency is first applied to the spectra to isolate waves at
the dominant feedback frequency. Low-pass and high-pass wavenum-
ber filterswith a cutoffwavenumberk � 0 are thenused to separate the
negative and positive wavenumber parts of the spectra. The corre-
sponding pressure waves are finally reconstructed by calculating the
two-dimensional inverse Fourier transform of the filtered spectra. The
pressure fields thus obtained for nθ � 0 forM � 0.9 are presented in
Fig. 17 alongwith the full pressure field from the LES. In the LES field
in Fig. 17a, strong periodic pressure waves are created near the plate
and propagate outside the flow in the upstream direction. Spots of
intense pressure are also found in the jet flow. For the components of
the pressure field with negative wavenumbers in Fig. 17b, waves with
shapes and amplitudes similar to those in the full pressure field are
seen. The strongest waves are located near the jet axis. Between
z � 2r0 and z � 6r0, the wavelengths of the waves are the same in
the flow and in the acoustic field, indicating that the upstream waves
propagate inside the jet at a velocity close to that of the ambient sound.
Such a propagation velocity in the opposite direction of a high-speed
flow is a feature of the free-stream upstream-traveling guided jet
waves. Moreover, the phases of the pressurewaves are identical inside
and outside the flow, indicating that the waves in the jet extend in the
sound field. For the components with positive wavenumbers in
Fig. 17c, the amplitude of the waves in the sound field is about

100 Pa, which is 10 times smaller than that of the waves in Fig. 17b.
The pressure levels are strong in a wavepacket structure in the shear
layer, which is typical of Kelvin–Helmholtz instability waves. In this
structure, the wavelength of the pressure waves is shorter than that of
the sound waves outside the jet, given that the propagation velocity of
the waves in the mixing layer is lower than the speed of sound.
For the first two azimuthal modes, the rms values at the dominant

tone frequency of the pressure components with k > 0 and k < 0 are
calculated from the filtered fields shown in Fig. 17, as in previous
works for screeching jets [18,53]. They can also be estimated directly
from the power levels in the frequency–wavenumber spectra, as done
by Ferreira et al. [54] for supersonic impinging jets and by Gojon et
al. [17] for screeching jets. The radial profiles of rms pressure at
z � 4r0 obtained forM � 0.6, 0.9 and 1.3 are presented in Figs. 18
and 19 for the components with k < 0 and k > 0, respectively. The
results for the other Mach numbers, not detailed, resemble those for
M � 0.9. In Fig. 18, the profiles for the components with k < 0 are
compared with the eigenfunctions of the free-stream upstream-
propagating guided jet waves predicted by a vortex-sheet model [16]
at the dominant tone frequency. For M � 0.9 and M � 1.3 in
Figs. 18b–18f, for r ≤ r0, the profiles from the LES are very close
to the eigenfunctions, showing that at the tone frequencies the waves
in the jet are essentially guided jet waves. These waves are mainly
confined in the jet. Their amplitudes reach their maximumon the axis
for nθ � 0 in Figs. 18b and 18c and at r � 0.5r0 for nθ � 1 in
Figs. 18e and 18f. For M � 1.3 and nθ � 0 in Fig. 18c, a second
local maximum is seen around r � 0.8r0, which is consistent with
the radial mode order nr � 2 of the guided jet waves closing the
feedback loop. Outside the jets, the pressure amplitude decays as the
radial distance increases. Discrepancies are found between the LES
and the vortex-sheet model, most likely due to the presence of free-
stream sound waves in the filtered pressure fields of the LES. For
M � 0.6 in Figs. 18a and 18d, the profiles from the LES are in poorer
agreement with the eigenfunctions of the free-stream upstream-
traveling guided jet waves than the profiles for the other Mach
numbers. As there is nomarked resonance for this lowMach number,
the guided jet waves do not prevail in the pressure field.
The profiles of rms pressure at the dominant tone frequency for

the components with k > 0 are presented in Fig. 19 for nθ � 0. The
profiles for nθ � 1, not shown, are similar to those for nθ � 0.
The eigenfunctions of the Kelvin–Helmholtz instability waves pre-
dicted by a vortex-sheet model at the frequency considered [55] are
also plotted. For all jets, the LES pressure profiles look like these
eigenfunctions, both reaching amaximum in the shear layer at r � r0.
However, small discrepancies are noticed. The peak at r � r0 is wider
for the LES results than for the eigenfunctions, due to the hypothesis
of infinitely thin shear layers in the vortex-sheet model. As the support
of the Kelvin–Helmholtz waves is centered on the shear layer, this
wider peak leads to higher levels on the axis for the LES than for the
vortex-sheet model. The LES profiles and the eigenfunctions also do
not agree very well for r ≥ r0, which can be explained by the presence
of free-stream sound waves in the LES fields.

H. Power Gains of the Kelvin–Helmholtz Instability Waves Between
the Nozzle and the Plate

In this section, the total amplification of the instability waves
between the nozzle and the plate is computed to discuss the selection
of the dominant tone. This approach does not take into account the
other features of the feedback mechanisms, such as the receptivity of
the flow at the nozzle exit to disturbances, which may vary with the
frequency and the azimuthal order, as suggested by the recent study
of Karami et al. [56]. To study the development of the instability
waves, an inviscid spatial stability analysis is performed from the
hyperbolic-tangent velocity profile [47]:

uz�r�
uj

� 1

2

�
1 − tanh

�
1

2

�r − r0�
δθ�z�

��
(2)

where δθ�z� is themomentum thickness obtained in the LES. The LES
mean velocity profiles are not directly used because near the plate, the

Fig. 16 Frequency–wavenumber spectrum of the pressure fluctuations
at r � r0 for the jet at M � 0.9 for nθ � 0: k � ω∕uc with
uc � �2∕3�uj; k � −ω∕c0. The grayscale levels spread over 12 dB.
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Fig. 17 Snapshots of a) the pressure fluctuations obtained by LES and the components with b) negative and c) positive wavenumbers for the jet at
M � 0.9 for nθ � 0. The color scale ranges from −1000 to 1000 Pa, from blue to red.
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Fig. 18 Radialprofiles of rmspressure for the componentswithk < 0 fromtheLESand pressure eigenfunctionsof theupstream-propagating free-
stream guided jet waves given by a vortex-sheet model [16] for (top) nθ � 0 and (bottom) nθ � 1 and (a, d)M � 0.6, (b, e)M � 0.9 and (c, f)M � 1.3.
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Fig. 19 Radial profiles of rms pressure for the components with k > 0 from theLES and pressure eigenfunctions of theKelvin–Helmholtz waves
given by a vortex-sheet model [55] at the dominant tone frequency for nθ � 0 and for a) M � 0.6, b)M � 0.9 and c) M � 1.3.
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flow display strong oscillations, leading to difficulties in performing
the linear stability analysis. In practice, as in previous studies [57,58],
the compressible Rayleigh equation is solved using a shooting tech-
nique [59], based on the Euler method for the integration step and on
the secant method for the search of the complex wavenumber. For a
given Strouhal number St, the growth rate−ki of the instability waves,
where ki is the imaginary part of the wavenumber, is computed for the
nozzle-exit thickness δθ�z � 0�. The growth rates and unstable
frequencies for the other axial locations are obtained from those at
the nozzle exit, as they scale with the shear-layer thickness δθ�z� [47].
The wavenumbers of damped waves with ki ≥ 0 are not accurately
estimated by the solving of Rayleigh equation [59]. Thus, in what
follows, their imaginary parts are set to zero.
The growth rates normalized by the jet radius r0 obtained for

nθ � 0 between z � 0 and 8r0 are presented in Fig. 20 for the jets
at M � 0.6, 0.9, 1.1 and 1.3. The results for nθ � 1, not displayed,
look like those for nθ � 0. The growth rates are lower as the Mach
number increases, showing that the jet flow is more stable for higher
Mach numbers, as expected [47,59]. Their spatial variations, how-
ever, are similar for all jets. Close to the nozzle, they are strongest for
Strouhal numbers higher than 1. As the axial distances increase, the
most unstable frequencies are reduced down to St � 0.5 at z � 2r0,
due to the shear-layer thickening [58,60]. Farther downstream, they
reach Strouhal numbers lower than 0.2 near the plate. Hence, the
high-frequency instability waves are amplified only over a few radii
downstream of the nozzle exit, whereas the low-frequency instability
waves grow all over the nozzle-to-plate distance.
To quantify the total amplification of the instability waves between

the nozzle and the plate, the growth rates of the Kelvin–Helmholtz
waves are integrated between z � 0 andL, as done in previous works
for free jets [31,61,62] and for edgetone generation [63,64], yielding
the power gain A:

A�St� � exp

�Z
L

0

−ki�St; z� dz
�

(3)

The power gains have been computed for the first two azimuthal
modes of the four jets at M � 0.6, 0.9, 1.1 and 1.3. They are
represented as a function of the Strouhal number in Fig. 21 for the
jets at M � 0.9, 1.1 and 1.3, radiating intense tones. In all cases, a

peak value is reached, at a Strouhal number decreasing from
St � 0.42 at M � 0.9 to St � 0.32 at M � 1.3. To examine the
connections between the shear-layer instability waves and the
upstream-propagating guided jet waves, the allowable frequency
bands of the latter waves for nθ � 0 and 1 are indicated, as done in
a recent work for initially laminar free jets [31]. The frequency of the
strongest tone is also plotted to discuss the selection mechanism of
this tone. For a given nθ, the dominant tone is located in the band of
the radial guided jet mode in which the power gain of the Kelvin–
Helmholtz waves between the nozzle and the plate is highest. More
precisely, for nθ � 0 andM � 0.9 and 1.1 in Figs. 21a and 21b, it is
found at the upper limit of the frequency range of the first radialmode,
where themaximum gain is reached. The dominant tone appears thus
to be linked to the most-amplified Kelvin–Helmholtz waves among
those excited by the guided jet waves. For nθ � 0 and M � 1.3 in
Fig. 21c, theKelvin–Helmholtzwaves aremore amplified in the band
of the second radial mode than in that of the first radial mode, causing
the jump of the dominant axisymmetric tone from nr � 1 for
M ≤ 1.1 to nr � 2 at M � 1.3. For nθ � 1 in Figs. 21d–21f, the
dominant tones lie in the band of the first radial mode for which
the power gain of the Kelvin–Helmholtz waves is highest among the
different radial modes. Moreover, to determine the azimuthal struc-
ture of the strongest feedback mode at a given Mach number, the
power gain of the shear-layer instability waves at the dominant tone
frequency for nθ � 0 is compared with that for nθ � 1. ForM � 0.9
in Figs. 21a and 21d, it is stronger for nθ � 0 than for nθ � 1, which
is consistent with the dominant axisymmetric feedback mode of this
jet. For M � 1.1 in Figs. 21b and 21e, the power gains at the
frequencies of the dominant tones are similar for the two azimuthal
modes, leading to tones with comparable amplitude in the near-
nozzle pressure spectrum. For M � 1.3 in Figs. 21c and 21f, the
Kelvin–Helmholtz waves are more amplified at the dominant tone
frequency for nθ � 1 than for nθ � 0. However, the amplitude of the
tone fornθ � 1 ismuch lower than that fornθ � 0, whichmay be due
to a higher receptivity of the jet flow to axisymmetric disturbances
than to helical ones. This difference in receptivity is suggested by the
investigation of Karami et al. [56], who observed for an underex-
panded jet atMj � 1.45 that, for Strouhal numbers lower than 1, the
jet flow is more receptive to axisymmetric pressure pulses than to
helical ones. Moreover, as mentioned above, the receptivity of the jet

Fig. 20 Instability growth rates−kir0 fornθ � 0 as a function of the axial positionz andof the Strouhal numberSt at a)M � 0.6, b)M � 0.9, c)M � 1.1
andd)M � 1.3, most unstable frequencies. Contour lines for the levels 0, 0.5 and 1 are drawn in black. The color scale ranges from0 to 3, fromwhite to
red.
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flow to disturbances may depend on the frequency. Therefore, the jet
flow may be more sensitive to disturbances at the frequency of the
axisymmetric tone than at that of the helical tone.
The power gains of the Kelvin–Helmholtz waves between z � 0

and 8r0 for the jet at M � 0.6 with no marked resonance are dis-
played in Fig. 22. For both nθ � 0 and nθ � 1, the power gains show
a wide hump centered around St � 0.5. As for the other cases, the
frequency bands of the free-stream upstream-traveling guided jet
waves and the frequencies of the weak near-nozzle peaks are indi-
cated. For nθ � 0 in Fig. 22a, the first radial guided jet mode can
excite the Kelvin–Helmholtz waves over a wide frequency range, up
to St � 1. This range is the same as that of the broadband hump for
nθ � 0 in the near-nozzle pressure spectrum, suggesting a broadband
amplification of the Kelvin–Helmholtz waves by the guided jet
waves. Such a broadband amplification is consistent with the weak-
ness of the near-nozzle peaks lying in the band of the first radial
guided jet mode. To consider the waves the most likely to close
feedback loops [16], the frequency of the least-dispersed waves is
also plotted in Fig. 22a. The power gain at this frequency is twice as
low as the maximum gain. This may be one reason for the non-
establishment of a strong feedback loop at this frequency. For nθ � 1
in Fig. 22b, the frequencies of the peaks are found close to or in
the band of the first radial guided jet mode. The power gain of the
Kelvin–Helmholtz waves in this band is more than three times
smaller than the maximum gain, explaining the very low emergence
of the peaks.

IV. Conclusions

In this paper, the Mach number dependence of the tone generation
by impinging round jets has been investigated using LES. The jets are
initially highly disturbed and their Mach number varies from 0.6 to
1.3. Intense tones are produced by feedback loops establishing
between the nozzle and the plate, involving downstream-propagating
vortical structures and free-stream upstream-traveling guided jet
waves, except for the jet at M � 0.6, for which the noise emitted in
the upstream direction is broadband and weak. The links between the
selection of the dominant tone and the shear-layer instability waves
have been highlighted by computing the power gain of these waves
between the nozzle and the plate using linear stability analysis. In
most cases, the dominant tone appears to be linked to the shear-layer
instability waves, among those excited by the upstream-propagating
guided jet waves, with the highest growth between the nozzle and the
plate. ForM � 0.6, the shear-layer instability waves at the frequency
of the guided jet waves themost likely to close feedbackmechanisms
are not the most amplified ones between the nozzle and the plate,
which may explain the absence of resonance. The selection of the
dominant tone is thus related to the growth of the shear-layer insta-
bility waves between the nozzle and the plate. However, this growth
can be affected by the nozzle-exit conditions, such as the shear-layer
thickness, the turbulent intensity and the presence of shock cells for
non-ideally expanded jets. For example, the frequency of the most
amplified instability waves between the nozzle and the plate is
expected to be higher for thin shear layers than for thick shear layers,
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Fig. 21 Power gain of theKelvin–Helmholtz waves between z � 0 and 8r0 as a function of the Strouhal number for (top)nθ � 0 and (bottom)nθ � 1 for
(a, d)M � 0.9, (b, e)M � 1.1, and (c, f)M � 1.3: dominant near-nozzle tone frequency; (light-gray shading) allowable frequency bands of the free-
stream upstream-propagating guided jet waves.
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Fig. 22 Power gain of theKelvin–Helmholtzwaves betweenz � 0 and 8r0 as a function of the Strouhal number forM � 0.6 and a)nθ � 0 andb)nθ � 1,

frequencies of the weak peaks in the near-nozzle pressure spectrum; frequency of the least-dispersed waves; (light-gray shading) allowable
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which may cause a higher feedback frequency in the first case. In
further work, it would be interesting to investigate these possible
changes of the feedback frequencies with the nozzle-exit conditions.
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