
HAL Id: hal-04121611
https://hal.science/hal-04121611

Submitted on 8 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deriving metrics for software architectures from the
”protected entry points” security patterns

Monica Buitrago, Isabelle Borne, Jeremy Buisson

To cite this version:
Monica Buitrago, Isabelle Borne, Jeremy Buisson. Deriving metrics for software architectures from the
”protected entry points” security patterns. 38th ACM/SIGAPP Symposium on Applied Computing,
Mar 2023, Tallinn, France. pp.1473-1475, �10.1145/3555776.3577816�. �hal-04121611�

https://hal.science/hal-04121611
https://hal.archives-ouvertes.fr


Deriving metrics for software architectures from the “protected
entry points” security patterns

Monica Buitrago
IRISA, Université de Bretagne Sud

Vannes, France

Isabelle Borne
IRISA, Université de Bretagne Sud

Vannes, France

Jérémy Buisson
IRISA, Académie Militaire de

Saint-Cyr Coëtquidan
Guer, France

ABSTRACT
Deciding, as early as the software architecture is designed, whether
the resulting system will be secure is challenging. We propose
three metrics inspired by a security-related design pattern in the
structural architecture model, the “protected entry points” pattern.
We evaluate these metrics on the real-life Bitwarden web client and
server, as well as a synthetic system.

CCS CONCEPTS
• Software and its engineering→ Software architectures; Soft-
ware design engineering; • Security and privacy → Software se-
curity engineering;

KEYWORDS
Software architecture, Security by design, Security metrics, Security
patterns, Case study

ACM Reference Format:
Monica Buitrago, Isabelle Borne, and Jérémy Buisson. 2023. Deriving met-
rics for software architectures from the “protected entry points” security
patterns. In The 38th ACM/SIGAPP Symposium on Applied Computing (SAC
’23), March 27-April 2, 2023, Tallinn, Estonia. ACM, New York, NY, USA,
3 pages. https://doi.org/10.1145/3555776.3577816

1 INTRODUCTION AND RELATEDWORKS
Security by design [6] is a set of practices, methodologies, tools over
the whole life cycle that make a software system intrinsically secure.
In this perspective, a catalog of security-related design patterns [3]
helps architects make design decisions that prevent the subsequent
introduction of vulnerabilities once the systems are developed and
deployed. The “protected entry points” pattern enacts the general
principles of isolation of subsystems and of privilege separation,
with well-identified entry points dedicated to securing communi-
cations between subsystems, validating incoming data, enforcing
access control policies, and so on. However, it is not clear whether a
catalog of patterns is the right tool to effectively help designers [7].

The likelihood that software code contains vulnerabilities can be
measured, using noticeably the number of parameters, of pointer
arithmetic, of nested control structures, and so on [2]. The object-
oriented design can be assessed by metrics such as the ratio of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SAC ’23, March 27-April 2, 2023, Tallinn, Estonia
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9517-5/23/03.
https://doi.org/10.1145/3555776.3577816

public attributes, the ratio of public static attributes, and metrics
about mutator methods, among others [1]. The attack surface can
be evaluated from the damage-effort ratio and the interactions
between a system and its environment [5].

In our paper, we propose new metrics at the level of the compo-
nents-and-connectors architecture, to quantify how much the ar-
chitecture adopts the “protected entry points” pattern. Section 2
describes the metrics. Section 3 summarizes our experimental re-
sults. Section 4 concludes the paper with our future directions to
continue our work on this topic.

2 PROPOSED METRICS
The idea underpinning the “protected entry points” pattern is that
each subsystem (in the broad sense) has well-identified entry points
that cannot be skirted by clients. We consider that the subsystems
appear as composites in the architecture.

Let the architecture be a directed graph A = V, E, whereV is
the set of components, and E ⊆ V2 is the set of dependencies. Let
C be a partition ofV that denotes the set of composites within the
architecture: we solely consider flat composites, to keep our model
simple. Let𝐶 (𝑥), where𝐶 : V ↦→ C, be the composite that contains
the component 𝑥 . Let 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ (𝑎, 𝑏) be the shortest path from
𝑎 to 𝑏, being ⊥ if no such path exists. We note 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ𝑐 (𝑎, 𝑏)
when the path is searched for in the subgraph 𝑐 .

2.1 Number of entry points per composite
Let 𝑐 ∈ C be a composite, the metric counts how many components
𝑏 in composite 𝑐 are such that there is at least one component 𝑎
that depends on 𝑏 and that does not belong to composite 𝑐 .

#𝑒𝑝/𝑐 (𝑐) = 𝑐𝑎𝑟𝑑 {𝑏 |𝐶 (𝑏) = 𝑐 ∧ ∃𝑎, 𝑎, 𝑏 ∈ V ∧𝐶 (𝑎) ≠ 𝑐}
In the example of figure 1 (a), there are two such components

that are the ones painted in red.
The higher this metric is, the more entry points let clients from

the outside of 𝑐 connect to the subsystem 𝑐 . Each entry point must
implement access control check. The more there are entry points,
the more likely some of them shall lack the check, hence the system

c

(a) #𝑒𝑝/𝑐 (c) = 2

b

(b) #𝑒𝑝𝑝 (b) = 2

b

(c) 𝑒𝑝𝑑 (b) = 1

Figure 1: Illustration of the metrics.

https://doi.org/10.1145/3555776.3577816
https://doi.org/10.1145/3555776.3577816


SAC ’23, March 27-April 2, 2023, Tallinn, Estonia Monica Buitrago, Isabelle Borne, and Jérémy Buisson

shall be insecure. On the contrary, when the number of entry points
is low, it pinpoints that there are possibly some entry points that
mix services of different privilege levels, e.g., application services
mixed with administration services, a practice that is generally
considered to be source of vulnerabilities, e.g., CWE-6531.

2.2 Number of entry point predecessors
Let 𝑐 ∈ C be a composite, let 𝑏 ∈ V be an entry point component
of 𝑐 , i.e., 𝐶 (𝑏) = 𝑐 and ∃𝑎, 𝑎, 𝑏 ∈ V ∧𝐶 (𝑎) ≠ 𝑐 , the metric counts
how many components 𝑝 , in the same composite 𝑐 as 𝑏, are such
that there is a path from 𝑝 to 𝑏 in the dependency graph, passing
only via components that are in 𝑐 .

#𝑒𝑝𝑝 (𝑏) = 𝑐𝑎𝑟𝑑
{
𝑝 |𝐶 (𝑝) = 𝐶 (𝑏) ∧ 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ𝐶 (𝑏) (𝑝,𝑏) ≠ ⊥

}
In the example of figure 1 (b), let 𝑏 be the red-painted component.

There are two such predecessors of 𝑏 painted in black.
This metric characterizes how much the entry points are also

internally used within the subsystem. The developer might misiden-
tify such components as not being entry points hence not imple-
menting access control check, resulting in deficient security.

2.3 Entry point depth in composite
This metric refines #𝑒𝑝𝑝 , using the depth of an entry point in its
composite rather than the number of its predecessors. Let 𝑐 ∈ C,
let 𝑏 ∈ V be an entry point of 𝑐 . The metric looks for the shortest
path from any predecessor of 𝑏 in 𝑐 to 𝑏, then the metric returns
the maximum length of these shortest paths.

𝑒𝑝𝑑 (𝑏) =𝑚𝑎𝑥
{
𝑙𝑒𝑛𝑔𝑡ℎ

(
𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ𝐶 (𝑏) (𝑝, 𝑏)

)
|𝐶 (𝑝) = 𝐶 (𝑏)

}
In figure 1 (c), let 𝑏 be the red-painted component. This compo-

nent𝑏 has two predecessors (in black). For each of them, the shortest
path to 𝑏 contains 1 edge. So, the metric returns𝑚𝑎𝑥 {1, 1} = 1.

The deeper an entry point component is in its subsystem, the
more likely the developer may fail to identify it as an entry point,
regardless of how many components use it directly or indirectly
in the subsystem. This metric therefore ignores the breadth of the
using components. In comparison to our metric #𝑒𝑝𝑝 , we expect
𝑒𝑝𝑑 to be less dependent on the size of the composite.

3 EXPERIMENT
Our metrics are at the level of the composites and at the level of
their entry points. The goal of our experiments is to explore several
summarizing functions to provide architecture-level quantitative
measures, and to ensure that they remain stable in face of insignifi-
cant variations of the architecture.

Our experiment is based on applying the metrics to Bitwarden2,
a password vault. The figure 2 shows its coarse-grained architecture.
The server component acts as a back-end server, that implements
the services to manage the vault. The services store the vault data
in a remote database component. The web, cli, desktop, browser and
mobile components are the user interfaces, that provide front-ends
for various kinds of devices. While not detailed in figure 2, the server
component is decomposed into five ASP.Net Core servers, each of
them being containing services based on .Net Core’s dependency
1https://cwe.mitre.org/data/definitions/653.html (visited on 2022-10-15).
2https://bitwarden.com (visited on 2022-06-27).

web

cli

desktop

browser

mobile

server database

Figure 2: Bitwarden Architecture Overview.

injection framework. Likewise, the web component is decomposed
into services, using Angular’s dependency injection framework.
We do not consider the other components.

3.1 Recover components
To begin with, we extract the classes and interfaces into a UML
class diagram from the source code. From this model at the object-
oriented level, the structure is abstracted as a graph of services
(components) and dependencies. To do so, we detect the specific
pattern of a class implementing an interface, and associated to
interfaces of other class-interface pairs. Indeed, the class-interface
pair is the service artifacts in the service-oriented programming
models of .Net Core and Angular (used in Bitwarden).

In Bitwarden, web contains 775 elements (classes and interfaces)
and server contains 1058 elements. Among them, 108 elements in
web and 197 elements in server concern the components. The re-
sulting graph, combining web and server, contains 114 components.

3.2 Recover composite components
Next, composite components are recovered thanks to a graph clus-
tering algorithm. We pragmatically use the JGraphT3’s implemen-
tation of Girvan-Newman clustering algorithm [4]. This algorithm
requires a parameter named 𝐾 , which tells how many clusters are
expected in the graph. The smallest values of 𝐾 tend to result in
a single cluster containing most of the components with few sin-
gleton clusters. So, these smallest values of 𝐾 are irrelevant as the
algorithm fails to identify the composite components. Conversely,
the highest values of 𝐾 tend to result in many singleton or small
clusters. So, these highest values of 𝐾 are irrelevant too as the
resulting clusters are not composite components.

According to our experiment, the Bitwarden range of interest
is: 15 < 𝐾 < 50. We also confirm that the clustering algorithm
successfully recognizes web and server as composites.

3.3 Test of the metrics
Intuitively, the observed use of the “protected entry points” pat-
tern should not depend on how fined-grained the composites are,
especially in our case study since the granularity results from the
clustering parameter applied to a single implementation that is
reversed engineered.

When averaged, the #𝑒𝑝/𝑐 metric decreases when 𝐾 increases
(figure 3). It behaves as expected, since, at best, the number of
entry points of the back-end server (the cluster with the highest

3https://jgrapht.org/ (visited on 2022-07-07).

https://cwe.mitre.org/data/definitions/653.html
https://bitwarden.com
https://jgrapht.org/


Metrics for architectures from the “protected entry points” patterns SAC ’23, March 27-April 2, 2023, Tallinn, Estonia

10 20 30 40 50 60 70 80
k

0

10

20

30

minimum
average
maximum

Figure 3: Analysis of #𝑒𝑝/𝑐 performance depending on the
number of composites (Bitwarden)

10 20 30 40 50 60 70 80
k

0

10

20

30

minimum
average
maximum

Figure 4: Analysis of #𝑒𝑝𝑝 performance depending on the
number of composites (Bitwarden)

10 20 30 40 50 60 70 80
k

0

2

4

6

8 minimum
average
maximum

Figure 5: Analysis of 𝑒𝑝𝑑 performance depending on the
number of composites (Bitwarden)

number of entry points) remains constant while additional clusters
are added. This maximum is stable up to 𝐾 ≤ 55, then the value
drops. We interpret this result as the back-end server being split,
and therefore splitting the set of ASP.Net Core controllers over
several clusters starting at 𝐾 ≥ 55 approximately. Considering only
the maximum #𝑒𝑝/𝑐 , i.e., only for the cluster with the highest value
appears to be a relevant measure.

In figure 4, the #𝑒𝑝𝑝 metric expectedly tends to decrease both in
maximum and in average. Indeed, the more composites are looked
for (higher value of 𝐾), the smallest the composites are, hence
the fewer predecessors each entry point has. The anticipation of
this fact is actually the reason for introducing the 𝑒𝑝𝑑 metric. The
experiment confirms the intuition that #𝑒𝑝𝑝 is irrelevant as it is.

In contrast with #𝑒𝑝𝑝 , in figure 5, the averaged 𝑒𝑝𝑑 metric seems
independent of the value of 𝐾 , up to 𝐾 = 55, then the metric
decreases as 𝐾 increases. So, 𝑒𝑝𝑑 effectively improves over #𝑒𝑝𝑝
when averaged. On the other hand, the maximum value of 𝑒𝑝𝑑 is

not stable and decreases as 𝐾 ≥ 40 increases. This result appears
in accordance with the observation at figure 3, stating that the
clustering algorithm tends to keep all the controllers in a single
cluster up to high values of 𝐾 , when splitting the cluster in depth
rather than the set of controllers, so does the maximum depth
decreases.

4 CONCLUSION AND FUTURE DIRECTIONS
This paper reports our study towards metrics to measure the se-
curity level at an architecture model. We propose three metrics
targeted at the entry points of the composite components, rooted
in the “protected entry points” pattern [3]. The first metric #𝑒𝑝/𝑐
measures the number of entry points per composite: the higher
it is, the more components the security concerns are spread over;
but, a too low value for #𝑒𝑝/𝑐 is symptomatic of improper compart-
mentalization or of mixing privilege levels. The second metric #𝑒𝑝𝑝
measures the number of dependents per entry point: the higher
it is, the deeper the entry point is nested in its composite and the
higher the risk that the entry points are not identified as such. The
third metric 𝑒𝑝𝑑 refines #𝑒𝑝𝑝 by considering the depth rather than
the number of dependents.

In this preliminary study using a real-life application, we test
whether the metrics are stable regardless of the decomposition of
the architecture into composite components. Indeed, we expect
the security level not to depend on how much the architecture is
decomposed, especially in our case study where the composites are
recovered by clustering from a reverse-engineered implementation.
The max #𝑒𝑝/𝑐 and averaged 𝑒𝑝𝑑 metrics give promising results,
while the #𝑒𝑝𝑝 metric does not seem relevant as it is. Still, 𝑒𝑝𝑑
appears to fix the issue of #𝑒𝑝𝑝 .

In our future work, we intend to further study the normalization
of these metrics. Next, we plan an experiment to more specifically
relate the metrics with security. To do so, we intend to check the
correlation between the metrics value and the security level, as-
sessed by some security experts. This study will require additional
software architectures to enable the comparisons.

REFERENCES
[1] Bandar Alshammari, Colin Fidge, and Diane Corney. 2010. Security Metrics for

Object-Oriented Designs. In 2010 21st Australian Software Engineering Conference.
55–64. https://doi.org/10.1109/ASWEC.2010.34

[2] Xiaoning Du, Bihuan Chen, Yuekang Li, Jianmin Guo, Yaqin Zhou, Yang Liu, and
Yu Jiang. 2019. Leopard: identifying vulnerable code for vulnerability assessment
through program metrics. In Proceedings of the 41st International Conference on
Software Engineering (ICSE ’19). 60–71. https://doi.org/10.1109/ICSE.2019.00024

[3] Eduardo Fernandez-Buglioni. 2013. Security Patterns in Practice: Designing Secure
Architectures Using Software Patterns. Wiley.

[4] M. Girvan andM. E. J. Newman. 2002. Community structure in social and biological
networks. Proceedings of the National Academy of Sciences 99, 12 (June 2002), 7821–
7826. https://doi.org/10.1073/pnas.122653799

[5] Pratyusa K. Manadhata and Jeannette M. Wing. 2011. An Attack Surface Metric.
IEEE Transactions on Software Engineering 37, 3 (May 2011), 371–386. https:
//doi.org/10.1109/TSE.2010.60

[6] Michael Waidner, Michael Backes, and Jörn Müller-Quade. 2014. Development
of Secure Software with Security By Design. Technical Report SIT-TR-2014-03.
Fraunhofer Institute for Secure Information Technology.

[7] Koen Yskout, Riccardo Scandariato, and Wouter Joosen. 2015. Do security pat-
terns really help designers?. In Proceedings of the 37th International Conference on
Software Engineering - Volume 1 (ICSE ’15). 292–302. https://doi.org/10.1109/ICSE.
2015.49

https://doi.org/10.1109/ASWEC.2010.34
https://doi.org/10.1109/ICSE.2019.00024
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1109/TSE.2010.60
https://doi.org/10.1109/TSE.2010.60
https://doi.org/10.1109/ICSE.2015.49
https://doi.org/10.1109/ICSE.2015.49

	Abstract
	1 Introduction and related works
	2 Proposed metrics
	2.1 Number of entry points per composite
	2.2 Number of entry point predecessors
	2.3 Entry point depth in composite

	3 Experiment
	3.1 Recover components
	3.2 Recover composite components
	3.3 Test of the metrics

	4 Conclusion and future directions
	References

