Krishna Rajesh

Panta

Madalina Vintila
email: mvintila@purdue.edu

Saurabh Bagchi
email: sbagchi@purdue.edu

Fixed Cost Steady State Maintenance in Wireless Multi-hop Networks

Information dissemination protocols used in wireless ad-hoc networks incur energy expenditure not only during the dissemination phase but also during the "steady state" when no dissemination is being done. The steady state expenditure is necessary to keep nodes up-to-date due to the requirement that nodes get the latest update despite the dynamic changes in network topology caused by transient wireless link failures, incremental node deployment, and node mobility. Due to transient disconnections, a node may miss the data-item dissemination that may have occurred during the disconnection period. Traditionally, this problem is tackled by having each node periodically broadcast "advertisement" containing the version of its current data-item. This causes a continuous energy expenditure during the steady state. Considering that the steady state is the most dominant part of a network's lifetime, this poses a problem in any wireless network that needs to operate for extended periods of time between energy recharges. In this paper, we present a protocol called Varuna which incurs a constant energy cost for keeping the network up-to-date during the steady state, independent of the duration of the steady state. In Varuna, nodes monitor the traffic pattern of the neighboring nodes to decide when an advertisement is necessary. Using testbed experiments and simula-

Introduction

Wireless ad-hoc and sensor networks use various dissemination protocols [START_REF] Byers | Informed content delivery across adaptive overlay networks[END_REF][START_REF] Hui | The dynamic behavior of a data dissemination protocol for network programming at scale[END_REF][START_REF] Panta | Stream: Low Overhead Wireless Reprogramming for Sensor Networks[END_REF][START_REF] Lin | Data discovery and dissemination with dip[END_REF][START_REF] Whitehouse | Marionette:using RPC for interactive development and debugging of wireless embedded networks[END_REF] for one-to-many communication to disseminate information from the fixed infrastructure to all or a subset of nodes in the network. Examples of such communication are base station sending code updates for wireless reprogramming of the network, and sending network commands or queries to nodes in the network. These dissemination protocols incur energy expenditure not only during the information dissemination phase but also somewhat counterintuitively during the steady state when no dissemination is actually being done.

The need for energy expenditure in the steady state arises from the possibility of dynamic changes to the network topology. Such changes are caused because of transient failures in radio communications, node mobility, and incremental node deployment. It becomes essential to perform some state updates to the network in the steady state, if only to verify that no such change has occurred.

If such a change has occurred, then the updated state needs to be sent to the "new" nodes. For the rest of the paper, we will use the term steady state to denote the state when no one-to-many information dissemination is taking place in the network, though the network will be performing other functionality, such as data collection from the sensor nodes toward the base station.

Because of transient failures, nodes may remain disconnected from other nodes in the network for some time and may miss the information dissemination that had occurred during that period. After they come out of disconnection, they must be able to detect the data item inconsistency and then initiate the process to become up-to-date. Inconsistency of information may also happen due to incremental node deployment or node mobility which causes a node to move into a region where its neighbors have received an update. For ease of exposition, we are going to refer to all these events that can cause a node to get out-of-date as topology changes. Importantly, since these topology changes can happen at arbitrary time points and are not scheduled, any protocol to keep the network up-to-date needs to execute on a continuing basis.

Inconsistent data items can have serious consequences. For example, in wireless reprogramming, running an old version of the code could lead to wrong computation leading to erroneous aggregation and finally incorrect data being received at the base station. Even worse, different versions of the code in the network can cause the the network to be partitioned. This can happen for example, if the update causes a new message format to be used and therefore out-of-date nodes are not able to interpret messages received from up-to-date nodes leading to a logical partitioning.

The traditional way of enhancing the dependability of the dissemination protocols in the presence of the unpredictable topology changes is periodic advertisements of some metadata by each node. For example, this is the approach used in the Trickle algorithm [START_REF] Levis | Trickle:A Self Regulating Algorithm for Code Propagation and Maintenance in Wireless Sensor Networks[END_REF] which is used as the basic building block by most of the current dissemination protocols [START_REF] Hui | The dynamic behavior of a data dissemination protocol for network programming at scale[END_REF][START_REF] Panta | Stream: Low Overhead Wireless Reprogramming for Sensor Networks[END_REF][START_REF] Krasniewski | Energyefficient on-demand reprogramming of large-scale sensor networks[END_REF]. The metadata is a compact representation of the data item that a node currently has. The representation has to be such that, by inspecting the metadata, a node can determine if it needs the corresponding data item for it to become updated. A common case of metadata is a monotonically increasing version number for the data item that the node currently has. When a node hears an advertisement from a neighbor with a newer version of the data item than it currently has, both enter the dissemination phase through which the data item is actually exchanged. The actual dissemination can be accomplished through one of several well-known protocols such as Deluge [START_REF] Hui | The dynamic behavior of a data dissemination protocol for network programming at scale[END_REF], Stream [START_REF] Panta | Stream: Low Overhead Wireless Reprogramming for Sensor Networks[END_REF], etc.

Radio communication is often the most significant source of energy consumption in ad hoc or sensor networks. The problem with continuous periodic advertisements is that the steady state energy cost increases linearly with the steady state interval, which is the most dominant phase in a node's lifetime.

In fact, in practice, learning when to disseminate a data item can be much more costly than disseminating the data item itself and as a result, steady state energy cost is several orders of magnitude higher than the energy cost during actual data item dissemination phase. For example, Deluge, the default reprogramming protocol for TinyOS[8]-based sensor networks, performs periodic broadcast of the advertisement packets every 2 minutes in the steady state.

Periodic advertisements at this rate for one day requires the same amount of radio transmissions as disseminating a 25 KB program code. The steady state energy cost can be reduced by increasing the advertisement interval. However, the interval cannot be increased significantly because it increases the detection latency, the time taken by the nodes to determine whether they have inconsistent data items. This in turn increases the probability of the communication between nodes with different versions of the data item, which is a serious concern as we have seen above.

Our holy grail is to break this barrier of continuously increasing energy expenditure for state maintenance in the steady state of the network, and achieve a constant maintenance cost, independent of the duration of the steady state.

We achieve this goal in the common case through our protocol called Varuna.

Common case implies reasonable link reliabilities and reasonable memory allocation for state maintenance. To achieve this, we make a fundamental observation that if the neighborhood topology and the metadata of a node have not changed since its last advertisement transmission, then the node does not need to send any advertisement message. In periodic advertisement schemes like Trickle, most of the advertisements in the steady state are, therefore, unnecessary. A node can determine trivially whether its metadata has changed, through a local lookup. However, determining whether the neighborhood topology has changed is difficult and requires wireless communication among the neighboring nodes.

The periodic advertisement in Trickle is essentially a way for a node to check if the neighborhood topology has changed, and if so, inform the "new" neighbors about its metadata. In Varuna, on the contrary, a node transmits advertisement messages only when required-either its metadata or local neighborhood or both have changed. Let us group all communication arising from a node into two categories-one-to-many information dissemination kind, and all the others. We will call this latter category User Application (UA) traffic. In Varuna, each node observes the communication pattern of UA packets of its neighbors to determine if its neighborhood has changed. Advertisement message is transmitted only when a node hears radio transmission from "new" neighbors.

The problem with the above observation is that it is impossible to determine the change in neighborhood topology based solely on communication pattern of the neighbors. For example, application-specific decisions at a node may cause it not to use a link to its neighbor. Therefore, we complement the first observation with a second one. It is critically necessary for a node to be up-to-date only when it is communicating with other nodes. This is so that stale metadata is localized to the out-of-date node only and is not propagated to other nodes.

At worst, the out-of-date node may have to discard the results of some local computation that it might have performed while it was out-of-date. We use these two insights to design Varuna. Varuna achieves a constant steady state energy expenditure at the cost of a small amount of state maintenance (of the order of 100 Bytes) through which each node keeps track of which nodes it has heard UA packets from, since it last got updated.

Our contributions in the paper are:

1. We present the first protocol for maintenance of up-to-date information in a multi-hop wireless network that does not incur a monotonically increasing cost (in terms of energy) with the length of the steady state period.

2. We show how a reasonable amount of local state maintenance can avoid the energy cost of transmissions to determine when a node is (possibly) out-of-date.

Our experimental and simulation results

show that the actual gains realized over the current state-of-the-art is two orders of magnitude, for a steady state duration of just few days. This benefit grows linearly with increasing duration.

Related Work

Reliable data dissemination in wireless networks with unreliable communication characteristics has been the focus of several research efforts. For disseminat-ing data-items to the nodes in wireless networks, [START_REF] Ni | The broadcast storm problem in a mobile ad hoc network[END_REF] showed that indiscriminate flooding results in the highly resource-inefficient broadcast storm problem. Controlled flooding [START_REF] Floyd | A Reliable Multicast Framework for light-weight Sessions and Application Level Framing[END_REF], gossiping [START_REF] Byers | Informed content delivery across adaptive overlay networks[END_REF] and probabilistic flooding [START_REF] Luo | Route driven gossip: probabilistic reliable multicast in ad hoc networks[END_REF] algorithms have been proposed for one-to-many communications in wireless ad-hoc networks to address this inefficiency.

Dissemination is more challenging in sensor networks where transient failures occur more frequently and unpredictably than in other types of wireless networks. Also energy consumption is a major concern as the sensor nodes have limited energy supply. Various protocols have been proposed for disseminating different types of data-items in sensor networks. Drip [START_REF] Tolle | Design of an application-cooperative management system for wireless sensor networks[END_REF] disseminates various network parameters to the network nodes; Marionette [START_REF] Whitehouse | Marionette:using RPC for interactive development and debugging of wireless embedded networks[END_REF] distributes network queries for debugging; [START_REF] Hui | The dynamic behavior of a data dissemination protocol for network programming at scale[END_REF][START_REF] Panta | Stream: Low Overhead Wireless Reprogramming for Sensor Networks[END_REF][START_REF] Krasniewski | Energyefficient on-demand reprogramming of large-scale sensor networks[END_REF] disseminate code binaries; Tenet [START_REF] Gnawali | The tenet architecture for tiered sensor networks[END_REF] disseminates tasks. All these protocols use Trickle [START_REF] Levis | Trickle:A Self Regulating Algorithm for Code Propagation and Maintenance in Wireless Sensor Networks[END_REF] or some modified form of Trickle algorithm. Trickle's design achieves fast and energy efficient distribution of the data-items in the dissemination phase under varying node densities. Dip [START_REF] Lin | Data discovery and dissemination with dip[END_REF] reduces the size of the metadata that has to be transmitted in an advertisement message if the information to be disseminated consist of several sub data-items.

However the steady state energy expenditure of all of these protocols increases linearly with time. The steady state interval is the most dominant phase in the lifetime of a network and hence this monotonically increasing cost is of concern.

To the best of our knowledge, Varuna is the first protocol to address the issue of steady state resource expenditure.

Trickle Overview and Problems

Trickle is the standard steady state algorithm for one-to-many information dissemination in sensor networks [START_REF] Hui | The dynamic behavior of a data dissemination protocol for network programming at scale[END_REF][START_REF] Panta | Stream: Low Overhead Wireless Reprogramming for Sensor Networks[END_REF][START_REF] Krasniewski | Energyefficient on-demand reprogramming of large-scale sensor networks[END_REF][START_REF] Lin | Data discovery and dissemination with dip[END_REF] and forms our reference comparison point. In Trickle, each node broadcasts its advertisement message once every time interval randomly chosen from [τ /2, τ] if it has not heard more than k identical advertisements in that interval. An advertisement contains the metadata about the data item the node has. The metadata in this context is the version number of the data item. When a node hears an advertisement with different metadata than its own, it sets τ = τ l . When it hears advertisement with same metadata as its own, it keeps on doubling τ in the successive intervals. A protocol like Deluge [START_REF] Hui | The dynamic behavior of a data dissemination protocol for network programming at scale[END_REF] which uses Trickle for code dissemination stops this increment after reaching some threshold, τ = τ h . The suppression of advertisement broadcast (if a node has heard more than k identical advertisements in an interval) is necessary to ensure that redundant advertisements are not broadcast and the scheme is scalable with high node density. Clearly, without loss, collision, and with perfect time synchronization of the interval τ among the sensor nodes [START_REF] Koo | A tale of two synchronizing clocks[END_REF], the number of advertisement broadcasts in any time interval within a single hop is bounded by k. The authors of Trickle show that with these practical conditions, the number of advertisement broadcasts in a single period τ is O(logN) where N is the number of nodes within a single hop.

However the number of advertisements in a given period T (>> τ) is O(T). This linear increase in maintenance cost with time results in continuous energy drain in the steady state.

The steady state energy cost can be reduced by increasing the advertisement period. However, this has several problems. First, the increase in the advertisement period also increases the detection latency, the time taken by a node to realize that it is out-of-date. Detection latency and steady state energy cost have an inverse relationship-a smaller advertisement period decreases the detection latency but increases the maintenance cost and vice-versa. Trickle handles this tradeoff by decreasing the advertisement period when data item inconsistency is detected and increasing it when nodes are up-to-date. Thus, Trickle decreases the propagation time during the dissemination phase and reduces the maintenance cost during the steady state. To ensure acceptable detection latency, advertisement interval cannot be increased arbitrarily. In Deluge, the maximum interval is 2 minutes by default.

Second, although increasing the advertisement period reduces the energy cost, this is only a constant order improvement. The steady state cost still increases linearly with the steady state duration.

Third, if advertisement interval is greater than the time required by a node to download the code, this makes it possible to have communication between the nodes with different versions of the code. As shown in Figure 1, let us suppose that a node n 1 goes into a transient disconnection state during the time interval [t 1 , t 2] during which it misses a code update. We define a node to be in disconnection state if it has no functioning incoming and outgoing link. Let its neighbor n 0 download the new code during this interval. Since the advertisement interval is large, n 0 and n 1 may exchange UA packets before the next advertisement, i.e. before they detect the code inconsistency. As mentioned earlier, this may result in undesired network behavior. To avoid this problem, the advertisement interval must be less than the code download time of a node. Code download time of a node is generally in the order of few minutes. Thus the advertisement interval cannot be made arbitrarily large, which increases the steady state energy cost. In this discussion, we have used Trickle as an example. However, all one-to-many information dissemination protocols in wireless networks today suffer from the problem mentioned abovemonotonically increasing energy cost with the duration of the steady state.

Strawman Solution Proposals

Without loss of generality, we present Varuna with respect to wireless code dissemination in sensor networks. Varuna, however, is applicable to any one-tomany dissemination protocol in any multi-hop wireless network. We first explore several intuitively appealing approaches that can reduce the maintenance cost for the steady state interval and point out the flaw that besets each approach.

Piggybacking metadata in UA packets

Instead of periodically advertising the metadata, a node can piggyback the metadata in each UA packet transmission because the energy cost of piggybacking is significantly lower than transmitting a separate advertisement packet.

However, since metadata can be quite large, piggybacking reduces the number of bytes available in a packet for the application. For example, in Deluge, for each user application, the metadata is 12 bytes and, for disseminating multiple applications, the metadata is even larger. Instead of piggybacking the entire metadata, only a hash value of the metadata can be piggybacked. However, this is again a constant order improvement and the overhead energy cost due to piggybacking in each UA packet transmission increases linearly with the steadystate time like in Trickle.

Checking neighborhood periodically

As mentioned above, if a node's metadata and neighborhood have not changed since its last advertisement transmission, it does not need to advertise its metadata. A node can check if its metadata has changed using local information, without communicating with its neighbors. For verifying if its neighborhood has changed, instead of energy-intensive proactive verification by broadcasting advertisement messages periodically as in Trickle, a node can simply listen for UA packet transmissions from its neighbors. However, it is generally impossible for a node to derive the information about the change in neighborhood solely using the traffic pattern from its neighbors. Various application-specific decisions may cause a node not to use a link to the new neighbor, making it impossible for its neighbor to know if its neighborhood has changed. However, it is practically sufficient for a node to verify the freshness of its metadata, not with all nodes in its neighborhood, but only with the node with which it has communication (i.e., a node from which it receives a UA packet or to which it sends a UA packet). When the nodes are not communicating, the consequence of not being up-to-date is localized to the out-of-data node only and is thus not as serious.

Staying up-to-date only with communicating nodes

As suggested by the argument at the end of the last strawman proposal, an intuitive scheme would be for each node to maintain a neighbor The problem with this scheme is the difficulty in choosing T REF properly.

It should be sufficiently large so that with a high likelihood, a node hears UA packets from all its neighbors within each T REF . Otherwise, the node will needlessly perform the advertisement exchange, only to realize that both were up-to-date. In the extreme case when the neighbor

Informing neighbors of code downloads

The but n 0 has. Thus the code inconsistency is detected.

However, even with this revised scheme, T REF cannot be made larger than T REP , the minimum time interval between two consecutive reprogramming procedures. Figure 3

Varuna Design

Based on the above observation that a node cannot determine if its neighborhood topology has changed by monitoring the communication pattern for a finite time duration, we arrive at a very simple maintenance algorithm, called Varuna, that does not use the notion of refresh interval. The above approaches (Sections 4.2 and 4.4) try to make sure that the code inconsistency is detected when nodes with different versions of the code communicate. We relax this requirement and, instead, require that the following invariant is satisfied-When a node receives a packet from another node with a lower version of the metadata than its own, the metadata inconsistency is detected by the receiving node. This invariant also implies that Varuna achieves eventual consistency-even though a node n 1 may not detect inconsistency while it is receiving packets from a node n 2 which has a higher version of the metadata than n 1 , eventually when n 2 receives the packet from n 1 , the inconsistency is detected. We believe this relaxed form of consistency is satisfactory in most application contexts and is necessary in practice to achieve a constant cost of state maintenance. With

Varuna's invariant, information does not flow from out-of-date nodes to up-todate nodes, and thus, the erroneous result is not propagated in the network.

Note that base stations (or nodes close to them) can be assumed to be always up-to-date. Thus, erroneous results from out-of-date nodes will not be collected by the base station. Before presenting a formal description, we first present an overview of Varuna. Figure 4 shows the state transition diagram of Varuna. advertisements with same metadata as its own since it heard the advertisement from n 1 . Because of this advertisement suppression, which is borrowed from Trickle, Varuna scales well with varying node density. When n 2 receives advertisement from n 1 with dest set to n 2 , it replies by broadcasting its Advertisement message with dest set to NULL, irrespective of whether it is up-to-date with n 1 . This is because n 1 wants confirmation about the freshness of its metadata with respect to n 2 that caused n 1 to become MOODy. Similarly, when n 2 replies with its metadata broadcast with dest set to NULL, neighbors of n 2 will not broadcast advertisement if their metadata is same as n 2 's. If they do not match, the neighbor node behaves similarly to the behavior when it heard the advertisement from n 1 with dest =n 2 . In this scheme, even if n 1 and n 2 have the same but outdated versions of the data item, their neighbors help them detect the inconsistency and make them transition to the Disseminate state where they can be updated.

Retries to deal with link failures: In the MOODy state, n 1 may not receive any response to its Advertisement message from n 2 even though n 1 had received a UA packet from n 2 that triggered n 1 to be MOODy. The link between n 1 and n 2 may be functional in only one direction (n 2 to n 1), n 2 or n 1 may have moved Dealing with a full neighbor table: A node inserts a new neighbor in its neighbor table in the next available slot as long as the neighbor table is not full.

When the table is full, it replaces the least recently used (LRU) neighbor with the new neighbor. The LRU node is the one from which it has not received any packet for the longest duration. Thus, in addition to the neighbor id, a neighbor table entry must contain the last time the node received a UA packet from this neighbor. An important design point of Varuna is that there is no notion of refresh time interval for clearing off the local state. Rather, Varuna uses a neighbor table which is cleared in its entirety when the node receives a code update or it is turned on.

Formal Protocol Description

Here we describe the local rules followed by each node in Quiescent and MOODy states. In the Disseminate state, nodes follow any of the current protocols used for dissemination [START_REF] Hui | The dynamic behavior of a data dissemination protocol for network programming at scale[END_REF][START_REF] Panta | Stream: Low Overhead Wireless Reprogramming for Sensor Networks[END_REF][START_REF] Krasniewski | Energyefficient on-demand reprogramming of large-scale sensor networks[END_REF]. Conceptually, the gain due to Varuna arises from the fact that a node spends most of its time in the Quiescent state, where it does not transmit any advertisement packet. It transitions to the MOODy state only when there is some likelihood that neighborhood topology has changed and therefore it is worthwhile for the node to check if it needs to be updated. Varuna intelligently controls when the transitions to the more expensive MOODy state need to happen. M.5 Same as Q.6.

Eventual consistency

Varuna ensures that if a node receives a packet from another node with a lower version of the metadata than its own, the metadata inconsistency is detected by the receiving node. So, in Varuna, communication from a node with a higher version of the metadata to another node with a lower version of the metadata can happen, without the nodes detecting the inconsistency.

For example, as shown in Figure 5, let n 1 go to disconnection state in the time interval [t 1 , t 2], during which its neighbor n 0 downloads a new version of the code. After n 1 comes out of disconnection, let it receive a UA packet, U A 1 , from n 0 . n 1 finds n 0 in its neighbor table since n 1 had earlier received U A 0 from n 0 . Since receiving U A 0 , n 1 has not cleared its neighbor table as its metadata has not changed. Thus the communication from a node with a higher version of the code (here n 0) to a node with lower version (here n 1) goes undetected. However, Varuna ensures eventual consistency-when n 0 receives U A 2 from n 1 after some time, n 0 does not find n 1 in its neighbor table as it has been cleared after downloading the code. Thus n 1 goes to the MOODy state and detects the code inconsistency.

Note that Varuna's eventual consistency property is different from that of Trickle. In Varuna, an out-of-date node eventually learns that it needs an update when it communicates with an up-to-date node. In Trickle, this realization happens when the out-of-date node receives an advertisement from the up-todate node. In other words, Trickle tries to ensure that an outdated node knows that it needs an update irrespective of whether it is communicating with other nodes or not. Varuna relaxes this consistency requirement-in the worst case1 , the outdated node knows that it needs an update when it sends a UA packet to the up-to-date node. The energy saving of Varuna is due to the relaxation of the consistency requirement. As mentioned earlier, one consequence of this relaxed consistency guarantee is that if an outdated node takes very long time to communicate with the up-to-date node, the results of the local computations may be lost in Varuna. This problem can also happen in Trickle if the advertisement interval is large. Our thesis in this paper is that in most practical sensor network contexts, Varuna's consistency guarantee is satisfactory to achieve the goal of huge energy savings, which is probably one of the most important aspects of sensor networks. Furthermore, unlike in Varuna, in Trickle a node with a lower version of the code can communicate with a node with a higher version of the code (and vice-versa), without them detecting the inconsistency, as illustrated in Figure 1.

Fixed steady state cost

In Varuna, after a node downloads a new version of the code, it verifies its changed metadata with each of its neighbor only once. After this verification, if the neighbor table does not overflow, no further advertisements are necessary. So, in the common case, Varuna incurs fixed cost in the steady state, independent of the steady state interval. However, in some cases, a node may need to advertise occasionally due to the poor neighbor problem, which we define as follows. In some large networks, a node may occasionally receive a UA packet from "far neighbors" with very poor link reliabilities. Let us call such neighbors poor neighbors. This triggers the node to be MOODy. Since the MOODy node tries to verify the freshness of its metadata with a poor neighbor for a finite time duration (T MOODy), the probability that it will succeed is low. As a result, the node goes back to the Quiescent state without success, and the poor neighbor is not added to the neighbor table. Every time a node receives a UA packet from the poor neighbor, though it happens rarely due to the low link reliability, it incurs the cost of transitioning to and back from the MOODy state.

The poor neighbor problem occurs very rarely because of various reasons.

First, for the MOODy node to be unsuccessful in verifying the freshness of its metadata with the poor neighbor, the link reliability between them should be very poor. This means that the node will hear from the poor neighbor very rarely in the first place. Second, according to rule Q.3, whenever a node overhears an Advertisement packet with the same metadata as its own, it adds that neighbor to its neighbor table if it does not already exist in the table. This means that a node n 1 gets multiple opportunities to add a poor neighbor n 2 to its neighbor table-not only when n 1 hears directly from n 2 , but also when n 2 broadcasts an advertisement in response to an advertisement message from a neighbor of n 2 . This in turn means a stray message from n 2 does not necessarily cause n 1 to transition to the MOODy state and expend energy.

Varuna's advantage over Trickle is even more pronounced in networks for rare event detection. Nodes generate packets rarely in response to the occurrence of certain events. Thus in Varuna, nodes need to verify their metadata very rarely. The effect of the poor neighbor problem is also significantly reduced.

Trickle, however, needs to advertise periodically. The period cannot be chosen to be as large as the average event occurrence period because if events occur faster than the estimated average, the likelihood of communication between the inconsistent nodes increases, as shown in Figure 1.

State maintenance cost

Trickle does not require any state maintenance, while in Varuna, each node maintains a neighbor table. The amount of memory available in low cost commercially available sensor nodes has been increasing (512 bytes RAM in Rene mote to 256KB RAM in IMote2), and this trend is likely to continue in future. Thus this tradeoff makes sense because reducing the energy consumption and increasing the network lifetime are, generally, more important than saving some memory. Neighbor table is a localized data structure and its size does not increase with the size of the network, but with the size of the neighborhood of the node. Also, as we will show from our experiments, for most practical deployments, the neighbor table consumes less than 200 bytes of memory. For "very large" and "very dense" networks, less than 600 bytes are enough. Consider the memory available in current sensor nodes: TelosB, micaz, IMote2, IRIS, BTNode, and SunSPOT have 10KB, 4KB, 256KB, 8KB, 180KB, 512KB RAM, respectively. Furthermore for many sensor networks, neighbor table is a fundamental already existing data structure. It is used by many protocols and services-MAC protocols [START_REF]Wireless systems for industrial automation, process control, and related applications[END_REF], AODV based routing protocols [START_REF] Perkins | Ad hoc on-demand distance vector (AODV)[END_REF], 6LoWPAN [START_REF] Montenegro | Transmission of IPv6 Packets over IEEE[END_REF] standard, ZigBee [17], and many other applications. Thus, Varuna can leverage the existing data structure.

In all but some very large and very dense networks, the size of the neighbor table is small, and can be fixed beforehand. In very large and very dense networks, the size of the neighbor table can be adjusted dynamically based on runtime observations of the table overflow. Each node starts with a small neighbor table. Each overflow triggers a multiplicative increase of the neighbor table and low occupancy causes an additive decrease.

Detection latency

Traditionally, detection latency is defined as the time duration from the instant when a node becomes out-of-date to the instant when it knows that it is out-of-date. Clearly, higher advertisement rate and UA packet rate decrease detection latency in Trickle and Varuna, respectively. However, one of the basic ideas of Varuna is that nodes need not be up-to-date with all neighbors all the time. Rather, information should not flow from a lower version node to a higher version node. Thus, in this context, a more suitable definition of detection latency is the time interval from when an out-of-date node communicates with an up-to-date node for the first time to the instant when it realizes that it is out-of-date. As is obvious from Varuna's design, this detection latency is zero, because whenever an out-of-date node communicates, its inconsistency is detected. Even with this new definition of detection latency, for Trickle this is still a function of advertisement period. x

Implementation and Evaluation

We implement Varuna on TinyOS-2.1 [8]. In order to evaluate the performance of Varuna and compare it with Trickle, we perform testbed experiments using TelosB sensor nodes [18]. For large scale evaluation, we use TOSSIM [START_REF] Levis | TOSSIM: accurate and scalable simulation of entire tinyOS applications[END_REF] simulations. We run the network in the steady state. This means in the experiments no information dissemination is taking place. This is a valid experimental method because the only job of Varuna is to let the node know when it needs to go to the disseminate state. Varuna does not have any impact on the actual dissemination. We use steady state energy cost as a metric to compare Varuna and Trickle. Since the energy cost is directly proportional to the number of advertisement transmissions in the steady state, we use the total number of advertisement packets transmitted by all nodes in the network as a measure of steady state energy cost. We also quantify the memory cost for state maintenance in Varuna for various node densities and network sizes. Each entry in the neighbor table takes 6 bytes (2 bytes for neighbor-id and 4 bytes for the time when this neighbor was last heard from).

Testbed Results

We compare Trickle and Varuna using a 30-node testbed of TelosB nodes arranged in a 5X6 grid. The output transmission power of each node is set to the minimum possible value. Each node broadcasts UA packets after every T UA Neighbor Table Size=10 Neighbor Table Size=20 Neighbor Table Size=30 (b) Neighbor Table Occupancy Steady state time(mins)

Neighbor Table Size=30 Neighbor Table Size=20 Neighbor Table Size=10 (c) interval uniformly distributed between 0 and 60 seconds. Table 1 shows the values of the parameters used in the experiments. When the distance d between successive nodes in the grid is increased, the energy consumption increases both in Trickle and Varuna. The increase in d (equivalently, decrease in node density) causes the link quality to be poor between the neighboring nodes. As a result, in Trickle, a node may not hear k or more identical advertisement broadcasts in its neighborhood, even though that many may have been broadcast in reality. Consequently, the node will not suppress its own advertisement. This leads to more redundant advertisements for d=10ft than d=5ft. Also, in Varuna, poor link qualities cause many retransmissions of advertisement packets in the MOODy state and thus the energy cost is higher for the sparser network.

Comparison of steady state energy cost

Effect of neighbor table size

In The neighbor table occupancy shown in this graph is an average over all nodes in the network. When 30 slots are allocated for the neighbor table, on average each node uses about 26 slots, but with 10 or 20 slots, the occupancy reaches the capacity and there is overflow. Thus, 10 or 20 slots are not sufficient, which causes the linear increase in steady state energy consumption shown in Figure 6-b.

Delay introduced by Varuna

Varuna intercepts the UA packet from MAC layer en route to the application, executes its algorithm to determine if the source of the packet is up-to-date with it, and if so, gives the UA packet to the application. Thus, Varuna delays the packet receipt by the higher layer. There are two types of Varuna delays-steady delay and MOODy delay. Steady delay is the delay when the source of the UA packet exists in the neighbor table. MOODy delay is the delay when the source does not exist in the neighbor table, causing the node to go to the MOODy state and verify its metadata with the source of the UA packet. Figure 7-a shows average steady delay for various neighbor table sizes. This delay is very small because the node just needs to scan its neighbor table in which it finds the source of the UA packet. This can be done in few microseconds as TelosB node has a 8MHz microcontroller. As the size of the neighbor table increases, the steady delay increases because the table look-up needs more time. ADV RAND is the dominant factor in the MOODy delay. The MOODy delay is less than 12 seconds in our experiments. Also, initially many packets face the larger MOODy delay, but as neighbors are added to the neighbor table, the packets increasingly face the much smaller steady delay. This is illustrated in Figure 6-c which shows that the ratio of the UA packets that face small steady delay to large MOODy delay increases linearly with the steady state time. Thus, overall Varuna introduces negligible delay while passing the received UA packet from the MAC layer to the application.

Simulation Results

In small and moderate size networks, the size of the neighbor table can be made sufficiently large. In order to find the appropriate size of the neighbor table to ensure fixed steady energy cost in large networks, we perform TOSSIM [START_REF] Levis | TOSSIM: accurate and scalable simulation of entire tinyOS applications[END_REF] simulations on a 20x20 grid network. Distance d between the grid points is taken as 5ft, 10ft, and 20ft. The values of various parameters used for the simulation experiments are same as those used for testbed experiments (Table 1). In our simulations, all UA packets are broadcast. In practice, not all UA traffic is of broadcast nature. If the amount of broadcast traffic is less, then as Neighbor Table Size=10 Neighbor Table Size=30 Neighbor Table Size=50,70 Steady state time (mins)

Neighbor Table Size=10 Neighbor Table Size=30 Neighbor Table Size=50 Neighbor Table Size=100 Neighbor Table Size=200 Neighbor Table Size=10 Neighbor Table Size=30

Effect of Link Failures

As mentioned above, it is common for sensor nodes to face transient link failures. Let us call the nodes which do not have any functioning incoming and outgoing link as disconnected nodes. In Varuna, when a node is disconnected, it cannot hear any UA packet from its neighbors and vice-versa. As a result, the disconnected node does not need to verify the freshness of its metadata with its neighbor. So, the disconnected node does not have to expend energy in fruitlessly trying to remain up-to-date with its neighbors. On the other hand, in Trickle, when the nodes are disconnected, they cannot hear advertisements from other nodes and their advertisements cannot be heard by their neighbors.

As a result, the disconnected nodes cannot participate in the suppression of the advertisement message and hence they keep on advertising periodically during the disconnection period. If the transient link failure lasts for a long time, the disconnected nodes end up consuming a lot of energy, thereby reducing their lifetime. Transient wireless link failures are quite common in practical wireless networks, especially in sensor networks where nodes may be deployed in harsh and unpredictable environments. In fact, transient link failure is one of the main reasons why maintenance protocols are needed in wireless networks.

In order to evaluate how the link failures affect the energy consumption in Trickle, we performed some simulation experiments. We choose N D nodes randomly from 400 nodes in the 20x20 grid. Each of these N D nodes randomly chooses the time instant at which it becomes disconnected and remains disconnected for T D time interval. This simulates transient link failures. We conduct experiments for maintenance interval of 5 days. We vary the disconnection period T D and count the total number of bytes transmitted by all nodes in the network for maintenance. Note that this includes the advertisement broadcasts from disconnected nodes as well as other nodes in the networks. The disconnected nodes periodically broadcast the advertisement without any suppression, whereas other nodes broadcast advertisement in a given advertisement period only if it has not heard more than k advertisements in that interval. The values of the parameters used for this experiment are same as shown in Table 1. Figure 10 compares the number of advertisement transmissions in Trickle for different disconnection times. As expected, the energy cost increases with the increase in number of disconnected nodes as well as disconnection time. In Varuna, the energy cost is fixed-independent of number of disconnected nodes (which do not expend any energy) as well as disconnection time. minutes, and maintenance interval of 5 days, we find that the maintenance cost for Trickle in correlated failure case is 2.1% smaller than that in uncorrelated failure case. The energy cost in correlated failure case is smaller than that for uncorrelated case because a single advertisement message is heard by multiple nodes when they come out of disconnection in correlated failure case.

Analysis

In addition to simulation and testbed results, we analyze Varuna and Trickle mathematically because 1) the analysis can be applied to a different environment with different link reliabilities and 2) an estimate of energy cost can be found for arbitrarily long maintenance interval which will take too long to do experiments with. To simplify the analysis, we consider a single hop network. Let N be the total number of nodes in the network. Let N D number of nodes remain disconnected from randomly chosen time instants for fixed interval T D over the maintenance period T M . We take the number of bytes transmitted for maintenance purpose in the steady state as a measure of steady state energy cost.

Maintenance cost for Trickle:

Let X T M and X T R be the random variables representing the number of message transmissions (for maintenance) in the network during time interval T M and a round, respectively. A round is the advertisement interval uniformly distributed between τ h /2 and τ h . So X T M = 4TM 3τ h X T R where 4T M /3τ h is the number of rounds in T M . Thus

E[X T M] = 4T M 3τ h E[X T R] (2)

Maintenance cost for Varuna

In order to simplify the analysis, we assume that the link reliability between any two nodes in the single-hop network is r. In this section, we find the upper to its neighbor table is r. The mean number of advertisements required to add a neighbor to the neighbor table is 1/r. Let X v be the random variable for the number of advertisements required for all the nodes in the network to add each other in their neighbor tables. Then we can provide the following upper bound for the mean value of X v .

E[X

V] = 2N r (5)
The factor 2 is to account for the worst case where each advertisement exchange may involve at most one redundant advertisement from a node that already exists in a node's neighbor table. Unlike in the previous section where we computed the expected number of advertisement transmissions in Trickle, here we compute the upper bound for Varuna to simplify the analysis. The exact number of advertisements for Varuna is thus smaller than that given by equation 5. As shown in Figure 11, even the upper bound of the number of advertisement transmissions in Varuna is significantly less than the expected value of number of advertisement transmissions in Trickle.

As mentioned in Section 6.3, the energy cost in Varuna is independent of the number of disconnected nodes as well as the disconnection time. Each node exchanges advertisement message with its neighbors to add them to its neighbor

Conclusions

To maintain data item consistency, existing systems cause nodes in the network to advertise their metadata periodically in the steady state when no dissemination is actually being done. As a result, the steady state energy cost increases linearly with the steady state time-the most dominant part of a node's lifetime. We presented the design and implementation of Varuna, whose

 above correctness problem can be solved by having each node piggyback a Code Downloaded (CD) bit in each UA packet transmission for T REF interval, each time after downloading the new version of the code. For example, in Figure 2, when n 1 comes out of disconnection, if it hears a UA packet from n 0 in the current T REF interval, it will have the CD bit turned on. Then n 1 realizes that it has not downloaded the new version of the code in the last T REF interval,

after n 2

 2 's UA packet is received by n 1 , or n 2 may have had a transient node failure. If n 1 does not receive any response, it re-broadcasts the Advertisement message after every τ interval for T MOODy duration. If no response is received during T MOODy , n 1 returns to the Quiescent state and discards the UA packet received from n 2 .

Figure 5 :

 5 Figure 5: Eventual consistency in Varuna

Figure 6 -

 6 Figure 6-a compares the number of advertisement transmissions by Trickle and Varuna as a function of steady state time. In this experiment, each node allocates a neighbor table of size 30, i.e. 180 bytes. As expected, the steady state energy cost increases linearly with time in Trickle. However, in Varuna, it does not increase after some time because once a node verifies the freshness of its metadata with each of its neighbors, it does not need to transition to the MOODy state and advertise anymore. In just 1 day, the steady state energy cost in Trickle is about 8 and 11 times more than that of Varuna for node spacing, d = 10 ft and d = 5 ft, respectively. A simple extrapolation of the

Figure 6 -

 6 Figure 6-b shows the average MOODy delay for various values of the MOODy state parameters-ADV RAND and τ . Recollect that when a node goes tothe MOODy state, it waits for a random duration uniformly distributed between 0 and ADV RAND before broadcasting the advertisement message. In the MOODy state, it advertises every τ time interval as long as it does not receive response from the node that caused it to be MOODy, or some threshold time interval T MOODy expires. As expected, the increase in (ADV RAND,τ) values increases the MOODy delay. Also, MOODy delay is higher for the sparse network than the dense network because poorer links in the sparse network cause more advertisement retransmissions in the MOODy state. For d =5ft,

Figure 7 :

 7 Figure 7: Testbed results: (a) Steady delay, (b) MOODy delay, and (c) Ratio of number of packets that face smaller steady delay to those that face larger MOODy delay.

Figure 10 :

 10 Figure 10: Maintenance cost of Trickle as a function of disconnection time.

 T R |N dr = n dr]P (N dr = n dr) (3) where N dr is a random variable representing the number of nodes that remain disconnected in one round. There is no advertisement suppression for disconnected nodes because they do not hear any packets from their neighbors. So all the disconnected nodes advertise in a round. The number of advertisements for functioning nodes in a round is O(log(N -N dr)), i.e. c log(N -N dr) where c is a constant. Thus E[X T R |N dr = n dr] = c log(Nn dr) + n dr P (N dr = n dr) = (T D /T M) n dr Substituting these values in equations (2) and (3), we get E[X T M] = 4T M 3τ h ND n dr =0(c log(Nn dr) + n dr)

Figure 11 :

 11 Figure 11: (a) Mathematically computed steady state cost for Trickle. (b) Steady state cost for Varuna as a function of link reliability for different node densities.

Figure 11 -

 11 Figure 11-a shows the maintenance cost for Trickle as a function of maintenance interval. We take N=50, N D =10, r=0.8 and c=1. As expected, maintenance cost for Trickle increases linearly with the maintenance interval. Figure 11b compares the maintenance cost of Varuna for different network sizes as a function of link reliability. As the link reliability increases, the number of advertisements required decreases since fewer advertisements are lost. These figures show that Varuna achieves significant saving in energy consumption in the steady state.

 table consisting of ids of the nodes from which it has heard UA packets in the last threshold time duration, call it the refresh interval, T REF . In the next T REF interval, if a node n 1 receives a UA packet from a node n 2 which does not exist in its neighbor table, n 1 figures n 2 may be a new neighbor. Then, n 1 and n 2 exchange advertisements through which they determine if they are up-to-date with respect

			New code	
			downloaded	
	node n 0	UA	T CD	UA	Time
	node n 1		t 1 *	t 2 *	Time
		Previous T REF	Current T REF	

to each other. If they are, then n 1 accepts the UA packet from n 2 . Otherwise, n 1 and n 2 enter the dissemination state through which their information is made consistent. If n 1 cannot exchange the metadata with n 2 after a set number of attempts (due to link failures), it discards the UA packet from n 2 and goes back to the steady state.

In this scheme each node essentially checks if its neighborhood has changed since the last T REF interval using the already existing UA packet transmissions of the neighboring nodes. This scheme significantly reduces the steady state energy cost because a node needs to advertise its metadata only when its neighbor table-a measure of neighborhood topology-changes. As long as the neighbor table does not change and the node has itself not received an update, advertisements are not transmitted. Figure 2: Correctness issue if T REF > T CD .

 table changes every T REF interval, this scheme is equivalent to Trickle with advertisement period equal to T REF . Furthermore, T REF cannot be increased arbitrarily-if T REF is larger than the time to download the code T CD by a node, this scheme fails. Figure 2 illustrates this. Here a node n 1 goes into the disconnection state for time interval [t 1 , t 2] during which its neighbor n 0 downloads the new version of the code, which n 1 misses. n 1 receives a UA packet from n 0 in the previous T REF interval and since T REF > T CD , let us suppose n 1 receives a UA packet from n 0

in the current T REF interval also. As a result, n 1 thinks that it is up-to-date with respect to n 0 since its neighbor table has not changed. The code inconsistency, thus, goes undetected for a potentially unbounded period of time.

 Instead of piggybacking the CD bit, if n 0 had piggybacked "the number of times the code was downloaded in the current T REF " or "the latest version of the code downloaded in T REF ", n 1 would have detected the inconsistency. But this is generally not possible since a sensor node may be running multiple applications and thus it would need to explicitly say which versions of which applications were downloaded in the last T REF interval. This information is too large to be piggybacked in every UA packet for a "large" T REF interval.

				code version
				v n+1 downloaded
	node n 0		T CD	T	T CD	Time
	UA	code version v n downloaded			UA with CD bit
	node n 1		T CD	t 1 *	t 2 *	Time
		Previous T REF	Current T REF

illustrates this. Here n 0 and n 1 download version v n of the code in the current T REF interval. But after that, n 1 goes into the disconnection state for interval [t 1 , t 2]. During this time, n 0 downloads v n+1 version of the code, which n 1 misses. When n 1 comes out of disconnection, it receives a UA packet from n 0 with CD bit turned on and believes that it is up-to-date with n 0 because n 1 also downloaded code in the current T REF interval. Hence the code inconsistency goes undetected again for a potentially unbounded time. REP

Figure 3: T REF , the refresh interval cannot made larger than T REP , the minimum time between two successive code downloads, for correctness reasons. Any scheme that uses threshold (refresh) time intervals to check if the neighborhood has changed between such intervals has a fundamental performance problem-since UA can be arbitrary, no matter how large a T REF is chosen, a neighbor can be such that it sends UA packet at every other T REF interval, causing the neighbor table to change in every T REF interval. As a result, the node needs to advertise in every T REF interval and thus, the energy expenditure of such scheme is equivalent to Trickle with advertisement period equal to T REF .

 metadata as that of n 1 . We will explain shortly how this is done. If n 1 finds that both have same version of the metadata, it inserts n 2 in its neighbor table, goes to the Quiescent state, and accepts the packet from n 2 . Otherwise, it goes to the Disseminate state. In the Disseminate state, the out-of-date node receives the new version of the code from the up-to-date node(s) using any one of the available dissemination protocols, Deluge[START_REF] Hui | The dynamic behavior of a data dissemination protocol for network programming at scale[END_REF], Stream[START_REF] Panta | Stream: Low Overhead Wireless Reprogramming for Sensor Networks[END_REF], Zephyr[START_REF] Panta | Efficient incremental code update for sensor networks[END_REF]. ReqToDisseminate packet and transitions to the Disseminate state. When n 1 and other neighbors of n 2 receive the ReqToDisseminate packet, they also go to the Disseminate state. If n 2 finds that it does not need an update (i.e. v n2 i ≥ v n1 The use of dest field in the broadcast Advertisement message avoids the transmission of redundant advertisements in the neighborhood of the MOODy node n 1 . A node which receives the advertisement message with dest set to NULL or dest not set to its own id will reply with its own advertisement mes-sage only if required (i.e. either the receiver or the sender needs an update) and suppression threshold has not been reached. For example, when neighbors of a MOODy node n 1 other than n 2 hear advertisement from n 1 with dest set to n 2 , they do not advertise if they don't have to-i.e. if v n i = v n1 i for all i, where n ∈ N (n 1) and N (n 1) is the set of neighbors of n 1 except n 2 . If any node in N (n 1) needs an update (i.e. v n i < v n1 i for any i), it broadcasts Req-ToDisseminate and goes to the Disseminate state. Otherwise, if a node n in N (n 1) finds that n 1 needs an update (i.e. v n i > v n1 i for any i) , n broadcasts its advertisement message if it has not heard more than k (suppression threshold)

	Varuna's design is orthogonal to that of the dissemination protocol and it can
	work with any of them.			
		No Adv Msg received for t<=TMOODy
				MOODy=May be Out Of Date
		(1)		(1)UA Msg
	Quiescent	(2)	MOODy	received from a new neighbor
				(2)Similar Adv Msg
				received from destn
	(3)			or no Adv Msg is
	(4)		(3)	received for TMOODy
				(3)ReqToDisseminate
				Msg received or
				broadcast
	Disseminate		
				(4)Code update
				complete

Figure 4: State transition diagram of Varuna

5.1. Design Overview

Each node maintains a neighbor table consisting of the ids of the nodes from which it has received any packet since the last time it updated its metadata (i.e. downloaded the new version of the code). When a node is booted up or its metadata is updated, the neighbor table is cleared and the node goes to the Quiescent state. When a node n 1 receives a UA packet from a node n 2 , it checks if n 2 exists in its neighbor table. The case of overflow of the neighbor table is discussed later. If n 2 exists in the table, n 1 accepts the packet. If it does not, n 1 suspects that it (or n 2) May be Out Of Date (MOODy) and goes to the MOODy state where it tries to verify if n 2 has the same version i of the Verifying if metadata is up-to-date: In the MOODy state, n 1 broadcasts Advertisement packet containing its metadata, source id, and a field called dest set to n 2 . Let v k (i = 1, 2, ..., n) represent the version numbers of n application codes (or data items) present in node k. When n 2 receives the Advertisement packet with dest set to its node id, it compares the received metadata with its own. If n 2 finds that it needs an update (i.e. v n2 i < v n1 i for any i), it broadcasts a i for all i), it broadcasts an Advertisement packet with dest set to NULL. When n 1 receives this advertisement packet, it verifies if it needs an update. If it does not (i.e. v n1 i = v n2 i for all i), it goes back to the Quiescent state, adds n 2 to its neighbor table, and accepts the packet received from n 2 . If n 1 needs an update (i.e. v n1 i < v n2 i for any i), it broadcasts a ReqToDisseminate packet. Neighbors of n 1 (including n 2) go to the Disseminate state after receiving this packet. Advertisement and ReqToDisseminate messages are transmitted using random backoff intervals-[0,ADV RAND] and [0,DISS RAND] respectively, to avoid collisions due to concurrent transmissions from nearby nodes.

 When a node goes to the Quiescent state upon booting up or updating its metadata, it clears its neighbor table. Q.2: When a node n 1 receives a UA packet from a node n 2 , n 1 checks if n 2 exists in its neighbor table. If it exists, n 1 accepts the packet. Otherwise, n 1 goes to the MOODy state to verify if n 2 is up-to-date with n 1 . Q.3: If a node hears an Advertisement packet from a neighbor and finds that it is up-to-date with the neighbor, the neighbor is added to the neighbor table if it does not already exist in the table. Q.4: If a node n 2 receives an Advertisement packet from a node n 1 with dest set to n 2 , it compares the received metadata with its own. If n 2 needs an update (i.e. v n2 i < v n1 i for any i), n 2 broadcasts ReqToDisseminate packet, after a time interval randomly chosen from [0, DISS RAND], and goes to the Disseminate state. Otherwise, it broadcasts an Advertisement packet with dest set to NULL. Q.5: If a node n 3 hears a broadcast Advertisement message from a node n 1 with dest set to NULL or dest other than n 3 , it compares the received metadata with its own. If it finds that it has the same version of the metadata as the received one, it ignores the Advertisement message. If they are different and n 3 needs an update (i.e. v n3 i < v n1 i for any i), n 3 broadcasts ReqToDisseminate, after a time interval randomly chosen from [0, DISS RAND], and goes to the Disseminate state. Otherwise, if the metadata are different but n 1 needs an update (i.e. for any i), n 3 broadcasts Advertisement packet with dest set to NULL, after a random time from the interval [0, ADV RAND], conditioned on advertisement suppression. Advertisement suppression implies that if the node has heard more than k advertisements with the same metadata as its own, then it will not broadcast its advertisement message. Q.6: If a node receives a ReqToDisseminate packet, it goes to the Disseminate state. Let n 1 be the node which transitions to the MOODy state after receiving a UA packet message from a node n 2 that does not exist in n 1 's neighbor table. M.1: As long as n 1 does not receive any Advertisement message from n 2 , it broadcasts Advertisement message with dest set to n 2 after every τ interval, conditioned on advertisement suppression. M.2: If n 1 does not receive any Advertisement message from n 2 for T MOODy , it goes back to the Quiescent state and discards the packet received from n 2 . M.3: If n 1 receives an Advertisement message from n 2 , it checks its metadata with that of n 2 . If they match (i.e. v n1 i = v n2 i for all i) and the neighbor table is not full, n 1 adds n 2 to its neighbor table, goes to the Quiescent state, and accepts the UA packet received from n 2 . If the neighbor table is full, n 1 replaces the LRU node in its neighbor table with n 2 , goes to the Quiescent state, and accepts the UA packet received from n 2 . If the metadata don't match and if n 1 finds that

	Quiescent State: Q.1: v n1 i < v n3 i packet, after a time interval randomly chosen from [0,DISS RAND], and goes i < v n2 i for any i), n 1 broadcasts ReqToDisseminate to the Disseminate state. MOODy state: it needs an update (i.e. v n1 M.4 Same as Q.5.

Table 1 :

 1 Parameters for the experiment.

	TUA	U[0,60sec]	(τ l , τ h)	(2sec,2min)
	τ	4,8,and 20sec	k	2
	ADV RAN D	1,2,and 5sec	TMOODy	1min

Figure 6: Testbed results: Steady state energy cost as a function of time for (a) neighbor

table size=30, and different grid spacings d, and (b) d=10ft and different neighbor table sizes; (c) Neighbor table occupancy vs time for d =10ft.

 the above experiment, Varuna incurs fixed cost in the steady state because the neighbor table does not overflow as it is sufficiently large. If the neighbor table is small, a node n 1 may need to evict an LRU node n 2 from the neighbor table to accommodate a "new" neighbor n 3 . Later, when n 1 receives a UA packet from n 2 , n 1 goes to the MOODy state (even though n 2 is up-to-date with n 1) as n 2 does not exist in its neighbor table. So, the steady state energy cost cannot be a fixed value if the neighbor table is small. Figure 6-b shows the steady state energy cost in Varuna for different neighbor table sizes for d =10 ft. When the size of the neighbor table is 30, the steady state energy cost is fixed. But when the neighbor table is 10 or 20, it increases linearly with time. Although not shown in the figure, obviously the slope of this linear relationship increases with the increase in the UA packet reception rate because UA packet reception causes the node to be MOODy if the source of the UA packet is not in the neighbor table. For small or moderate size networks, the neighbor table can be made sufficiently large to ensure fixed energy cost in the steady state. In the next section, our simulation results show that, even for very large and dense networks, the memory requirement for state maintenance is reasonable. It is fundamentally because the neighbor table size does not grow with the network size. Rather, it grows with increasing number of nodes in a neighborhood, or equivalently, the network density.

Figure 6-c shows how the actual neighbor table occupancy varies with time.

 explained in Section 5.4, the number of MOODy transitions of the node, steady state energy cost, and the necessary neighbor table size are all reduced.

	0 50000 100000 150000 200000 250000 Number of adv transmissions	0	200 Varuna,d=10ft 400 600 Varuna,d=20ft Trickle,d=10ft Trickle,d=20ft	800	1000 1200 1400
			Steady state time (minutes)
	As Figure 8-a shows, the steady state energy cost increases linearly with time
	in Trickle, whereas it is fixed in Varuna for d =10ft and 20ft, for a neighbor
	table size of 50 slots. Trickle consumes about 5 and 147 times more energy than
	Varuna in one day and one month, respectively, for d =20ft. For a dense network
	with d=5ft, Figure 8-b shows that a neighbor table of 100 slots is required
	to achieve fixed steady state energy cost in Varuna. For the dense network,
	Trickle's performance is better than for the sparse network because of its good
	advertisement suppression mechanism. But as the steady state time increases,
	Varuna outperforms Trickle. Figure 8-c shows the steady state energy cost for
	various values of neighbor table size and d =10 ft. Identical to the conclusion
	from the testbed experiments, if the neighbor table is kept sufficiently large, the
	steady state energy cost becomes independent of time in Varuna.
	Figure 8-d, e, and f show the actual neighbor table size occupancy for d =5ft,
	10ft, and 20ft. For sparse network with d =20ft, neighbor table with less than

 It is the ratio of actual network node density (nodes/ft 2) to connectivity density (nodes/ft 2).Connectivity density is the node density in a minimally connected network where every pair of neighboring nodes are at the farthest possible distance that allows direct one-hop communication between them. For example, in the grid network for our TOSSIM simulation, connectivity density is 4/2500 nodes/ft 2 since a square of 50ft side requires four nodes at four corners of the square to be minimally connected. Thus, density factor is also a measure of node redundancy in the network. For example, if density factor is k, then the network has k times more nodes than that minimally required for connectivity. For our experiments with d =20ft, 10ft, and 5ft, density factors are 6.25, 25, and 100,

	,50,100 100 120 Figure 8: Simulation results: Steady state energy cost as a function of time for (a) neighbor 0 20 40 60 80 (e) 0 2 4 6 8 10 12 14 0 Neighbor table occupancy Steady state time (mins) Neighbor Table Size=10,30,50,100 0 20 40 60 80 100 120 (f) table size=50 and (b) neighbor table size=100; (c) Steady state energy cost for different neighbor table sizes for d=10ft; Neighbor table occupancy vs time for (d) d=5ft, (e) d=10ft, and (f) d=20ft; 10 slots is sufficient. For a denser network with d =10ft, less than 30 slots are sufficient. For a very dense network with d =5ft (and the large 400 node network), less than 100 slots (i.e. less than 600 Bytes) are sufficient. In the TOSSIM simulation model, each node has a transmission radius of 50ft, and the bit error rates are modeled using the empirical results from TinyOS experiments. To evaluate the size of the neighbor table necessary to ensure fixed steady state energy cost for different node densities, we introduce the notion of Actual node density Connectivity density (1) 0 20 40 60 80 100 0 20 40 60 80 100 Neighbor table size Density factor density factor. Density f actor = Figure 9: Neighbor table size as a function of density factor
	29

respectively. Note that because of failures and the fact that sensing range is generally smaller than the transmission range, a minimally connected network is generally not suitable for practical deployments. Nevertheless, a redundancy of factor 100 (for d =5ft) will likely be more than sufficient for most deployments. For such a deployment, a neighbor table of 100 slots, i.e. 600 bytes, is sufficient. Figure

8

-g shows how the size of the neighbor table required for fixed steady state energy cost in Varuna increases with the density factor. This relationship looks linear and we plan to investigate this further in our future work.

 bound of the number of advertisement transmissions incurred by Varuna in the steady state. As mentioned above, in Varuna, the steady state energy cost is independent of the steady state duration if neighbor table is sufficiently large and the link reliabilities among the neighbors are sufficiently good. The second condition implies that if we allow sufficient time (i.e. if the steady state duration is large enough), then Varuna's energy expenditure does not increase after some time (the exact time depends on the UA rate and link reliabilities). Note that this condition is true for practical sensor networks because steady state is the most dominant phase of a node's lifetime.In Varuna, steady state energy expenditure is incurred (in the form of advertisement transmissions) until each node in the network adds all its neighbors to its neighbor table. A node n 1 can add a neighbor n 2 to its neighbor table in two ways: 1) When n 1 receives a UA packet from n 2 (or vice-versa), they go to the MOODy state to exchange the advertisement messages. 2) When n 2 receives a UA packet from another node n 3 (or vice-versa), they go to the MOODy state to exchange advertisement messages. If n 1 is a neighbor of both n 2 and n 3 , n 1 can overhear the advertisement exchange between n 2 and n 3 . During the advertisement exchange, the probability that the node n 1 adds the neighbor n 2

table .

 . If a node goes to the disconnection state, the advertisement exchange happens when it comes out of disconnection. Otherwise, it happens after it hears the first UA packet from a neighbor (or vice-versa) after downloading the new version of the data-item.

This is the worst case scenario because in Varuna, a node can learn that it needs an update before it sends the UA packet to the up-to-date node if it hears advertisement from an up-to-date node, say, in response to the advertisement request from some other node.

steady state cost is independent of the steady state interval for most practical cases. Varuna achieves energy savings of several orders of magnitude compared to the existing standard algorithm called Trickle, as demonstrated through our testbed and simulation results. However, Varuna requires memory for storing a neighbor table and it relaxes the guarantee of prior dissemination protocolsthat information cannot flow from a higher version node to a lower version node.

As is evident from our experiments, even for a very dense network with 100x redundancy, the memory requirement is reasonable for the currently available commercial sensor nodes. Also, in most sensor network deployments, the flow of information from up-to-date nodes to out-of-date nodes for some time (before it is eventually detected by Varuna) is acceptable. The possibly erroneous information does not affect the up-to-date nodes, and cannot force wrong decisions at the base station, which can be assumed to be always up-to-date. Furthermore, even in Trickle, the inconsistent nodes can communicate for some time.

Thus we believe that it is worthwhile to pay these relatively less important costs to ensure energy savings of several orders of magnitude, which proportionally increases the lifetime of the network.

We plan to extend Varuna to work under situations where the user application uses multiple channels for communication. Note that in Varuna, nodes overhear the advertisement message exchanges between their neighbors. When nodes use multiple channels for communication, overhearing is not always possible. Though multi-channel protocol has been proposed for dissemination phase [START_REF] Starobinski | Near-Optimal Data Dissemination Policies for Multi-Channel, Single Radio Wireless Sensor Networks[END_REF], it is an open research area for the steady state maintenance.