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Two recent works have shown the benefit of modeling both high-level factors and their related features to learn disentangled representations with variational autoencoders (VAE). We propose here a novel VAE-based approach that follows this principle. Inspired by conditional VAE, the features are no longer treated as random variables over which integration must be performed. Instead, they are deterministically computed from the input data using a neural network whose parameters can be estimated jointly with those of the decoder and of the encoder. Moreover, the quality of the generated images has been improved by using discrete latent variables and a two-step learning procedure, which makes it possible to increase the size of the latent space without altering the disentanglement properties of the model. Results obtained on two different datasets validate the proposed approach that achieves better performance than the two aforementioned works in terms of disentanglement, while providing higher quality images.

Introduction

There is a key challenge to learn disentangled representations where high-level factors would be independently and explicitly encoded [START_REF] Bengio | Representation learning: A review and new perspectives[END_REF]. Disentangled representations allow us to manipulate data by modifying high level factors, thus paving the way to easier interpretation of the influence of these factors [START_REF] Zou | Disentangled representations: towards interpretation of sex determination from hip bone[END_REF]. It has also been shown that these representations may be more sample-efficient, less sensitive to nuisance variables, and better in terms of generalization [START_REF] Van Steenkiste | Are disentangled representations helpful for abstract visual reasoning?[END_REF]. They are thus used in many applications such as face attribute manipulation [START_REF] He | Attgan: Facial attribute editing by only changing what you want[END_REF], action generation [START_REF] Petrovich | Action-conditioned 3D human motion synthesis with transformer VAE[END_REF] and image-to-image translation [START_REF] Lee | Diverse image-to-image translation via disentangled representations[END_REF].

There is a substantial literature on disentangled representation learning [START_REF] Liu | Learning disentangled representations in the imaging domain[END_REF]. Since better disentangled models can be obtained under supervision [START_REF] Locatello | Challenging common assumptions in the unsupervised learning of disentangled representations[END_REF], we are only interested in the (semi)-supervised case, and specifically in Variational Autoencoder methods (VAE). VAEs [START_REF] Kingma | Auto-Encoding Variational Bayes[END_REF] are versatile models of choice to learn such representations in the semi-supervised case [START_REF] Siddharth | Learning disentangled representations with semi-supervised deep generative models[END_REF][START_REF] Kingma | Semi-supervised learning with deep generative models[END_REF]. To achieve disentanglement with a VAE, the latent representation is generally divided into two parts [START_REF] Maaløe | Auxiliary deep generative models[END_REF][START_REF] Siddharth | Learning disentangled representations with semi-supervised deep generative models[END_REF][START_REF] Kingma | Semi-supervised learning with deep generative models[END_REF]: the non-interpretable part and the disentangled part corresponding to variables that explicitly model the factors of interest. But these variables only represent the labels associated with the factors of interest and not the features that can be related to these factors. Consequently, these features are either lost, or entangled in the other latent variables. The works of [START_REF] Joy | Capturing label characteristics in VAEs[END_REF][START_REF] Zou | Joint disentanglement of labels and their features with VAE[END_REF] clearly Email addresses: kaifeng.zou@unistra.fr (Kaifeng Zou), faisan@unistra.fr (Sylvain Faisan), fabrice.heitz@unistra.fr (Fabrice Heitz), sebastien.valette@creatis.insa-lyon.fr (Sébastien Valette) show that modeling both labels and their associated features improves the model's disentanglement properties. In [START_REF] Joy | Capturing label characteristics in VAEs[END_REF], a feature is associated with each high level factor. The latent space is composed of two different sets of random variables: the first one is composed of features associated with the labels, and the second one models information not directly associated with any of the labels. This implies that the latent space no longer contains the labels, but each label is used to condition its associated feature (in the latent space). Subsequently, this method will be denoted CCVAE (characteristic capturing VAE).

In [START_REF] Zou | Joint disentanglement of labels and their features with VAE[END_REF], we proposed a novel conditional dependency structure where both the labels and their features belong to the latent space. In this model, the conditional priors of the features given the label have to be set properly to ensure the desired disentanglement properties. Moreover, the loss function is then composed of two Kullback-Leibler divergences (KLD), that have to be weighted differently, so as to achieve satisfactory results. This makes the approach [START_REF] Zou | Joint disentanglement of labels and their features with VAE[END_REF] difficult to use. This second method will be denoted JDVAE (Joint disentanglement of labels and their features with VAE) in the following.

In this article, we propose, as in [START_REF] Joy | Capturing label characteristics in VAEs[END_REF][START_REF] Zou | Joint disentanglement of labels and their features with VAE[END_REF], a VAE-based approach that models explicitly both the high-level factors and their associated features. The proposed model will be denoted CVQVAE (Conditional Vector Quantized VAE), and can be considered as an extension of the work of [START_REF] Zou | Joint disentanglement of labels and their features with VAE[END_REF]. To overcome the limitations of [START_REF] Zou | Joint disentanglement of labels and their features with VAE[END_REF], the features are no longer considered as random variables over which integration has to be performed. Instead, each feature is here (deterministically) computed from the input data using a neural network whose parameters can be estimated jointly with those of the decoder and of the encoder. These features (as well as the labels and the latent variables) are then used by the decoder to reconstruct the data. This approach is inspired by conditional VAE (CVAE) [START_REF] Sohn | Learning structured output representation using deep conditional generative models[END_REF][START_REF] Yan | Attribute2image: Conditional image generation from visual attributes[END_REF][START_REF] Cheng | Controllable image synthesis via SegVAE[END_REF], except that the conditioning variable is known for CVAE, and computed in CVQVAE. We thus obtain a simplified model (free of conditional priors for the features, and a single KLD loss). Moreover, to improve the quality of the generated images and in particular to generate less blurry images, the Gaussian prior on the latent representation has been replaced by a categorical distribution [START_REF] Van Den | Neural discrete representation learning[END_REF]. The resulting model is more difficult to optimize, but we circumvent this problem with an efficient two-step learning procedure. The proposed model outperforms the two approaches mentioned above on two different datasets.

Conditional Vector Quantized Variational AutoEncoder

Architecture of the model

Without loss of generality, we consider for the presentation of the model that there is one binary high-level factor (label). Note that the extension to several high-level factors is straightforward. The architecture of CVQVAE is illustrated in Fig. 1. The underlying latent representation of the image x is composed of the label y, along with the (other) latent variables z. Finally, c denotes the (continuous) features related to y. As an example, for face images, the "glasses" label y is equal to 1 if the subject is wearing glasses, 0 otherwise. c represents the (continuous) features of the glasses (shape/size/color) and z models the intrinsic properties of the face.

As shown in Fig. 1, the proposed model is composed of an encoder (E ϕ and C ϕ ), a decoder (D θ ), an embedding space and tokens (ϕ and θ refer to the parameters of the encoder and of the decoder). It relies on the estimation of distributions q ϕ (y|x), q ϕ (z|x, y) and p θ (x|y, z, c). Sec. 2.2 explains the reasoning behind this choice and how the distributions are defined. Finally, all the parameters of the model are jointly estimated (Sec. 2.3).

The encoder: It is composed of two neural networks E ϕ and C ϕ : C ϕ takes as input x and outputs the features c and the label distribution q ϕ (y|x). Then, y is set to the most likely label for testing. When training (semi-supervised case), it is set to its true value (if y is known), or sampled from q ϕ (y|x). Finally, E ϕ takes as input x and y (as tokens) and outputs z e which is used in conjunction with the embedding space to compute q ϕ (z|x, y). z is either sampled from this distribution during training (See Sec. 2.3) or set to the most likely value during testing.

The embedding space: As in [START_REF] Van Den | Neural discrete representation learning[END_REF], an embedding space, composed of K vectors of R D , is used to model the categorical distribution q ϕ (z|x, y) (see Sec. 2.2). Moreover, the indices of z are replaced with the vectors of the embedding space (of the same indices) to obtain z q .

The decoder: The decoder D θ outputs the distribution p θ (x|y, z, c). Under the Gaussian assumption of Eq. 3, this is achieved by outputting the mean of this distribution. As shown in Fig. 1, D θ is not directly fed with z, y and c. A new variable z q is computed from z (previous paragraph), tokens are used for representing y (next paragraph) and c and y are combined deterministically to feed D θ (last paragraph).

The tokens: The label y is not directly fed into E ϕ and D θ . As in [START_REF] Zou | Joint disentanglement of labels and their features with VAE[END_REF][START_REF] Petrovich | Action-conditioned 3D human motion synthesis with transformer VAE[END_REF], the label information y is encoded through the use of learnable parameters. They are used here to transfer the y label information to each input of the convolution blocks of E ϕ and D θ . As in [START_REF] Zou | Joint disentanglement of labels and their features with VAE[END_REF][START_REF] Petrovich | Action-conditioned 3D human motion synthesis with transformer VAE[END_REF], these parameters are called tokens. We have two sets of learnable tokens for E ϕ that each consist of five images (each image is associated with a residual block of the encoder). The set is selected according to the value of y. For each convolutional residual block, we concatenate the token and the input of the block along the channel dimension. The same strategy is used for the tokens of D θ . Additionally to the five images, the two sets related to D θ have another token that is a scalar one: it is concatenated to z q (z q is flattened).

Finally, c is not directly fed into the decoder D θ . D θ takes as input a feature vector generated by combining y and c deterministically. To enhance model flexibility, the components of this vector only encode information related to one label (y = 0 or y = 1): components encoding a property for y = 0 are zero if y = 1 and vice versa. This procedure is also adapted to the meaning of the high-level factor. As an example, the two high-level factors, "smile" and "glasses", differ from the fact that the features associated with the "smile" label have a meaning whether the person smiles (y=1) or not (y=0), whereas the features associated with the "glasses" label encode the shape/size/color of the glasses, thus having only a meaning in the case y = 1 (for y = 0, there is nothing more to encode than the fact that y = 0). Considering the "glasses" label, c is multiplied by y. It enables us to constrain the obtained vector to be a null vector if y is 0, and to be equal to c otherwise (y = 1). For the "smile" label, each label (y = 0 and y = 1) has its own features. Consequently, the components of c are divided into two equal parts. The first and the second parts represent respectively features for y = 0 (neutral face) and for y = 1 (smiling face). The components of the first part and of the second part are multiplied by 1y and y, respectively, so that the first part's components are zero if y = 1 and the second part's components are zero if y = 0. In the following, N c denotes the number of components of c that are related to a label: c is of size N c for the "glasses" label and of size 2N c for the "smile" label.

Conditional dependency structure

The generative process of CVQVAE is inspired by the work of [START_REF] Kingma | Semi-supervised learning with deep generative models[END_REF], except that no feature c is defined in [START_REF] Kingma | Semi-supervised learning with deep generative models[END_REF], and by the CVAE approach [START_REF] Sohn | Learning structured output representation using deep conditional generative models[END_REF][START_REF] Yan | Attribute2image: Conditional image generation from visual attributes[END_REF][START_REF] Cheng | Controllable image synthesis via SegVAE[END_REF]. It writes:

p θ (x, y, z|c) = p θ (x|y, z, c)p(y)p(z), (1) 
where θ represents the parameters of the decoder. Following the idea of CVAE, our purpose should be to approximate the posterior p θ (z, y|x, c). However, contrary to [START_REF] Sohn | Learning structured output representation using deep conditional generative models[END_REF][START_REF] Yan | Attribute2image: Conditional image generation from visual attributes[END_REF][START_REF] Cheng | Controllable image synthesis via SegVAE[END_REF], the value of c is actually not given, but is computed from x with C ϕ . Since c is deterministically obtained from x, we have:

p θ (z, y|x, c) = p θ (z, y|x)
. Consequently, we approximate the posterior p θ (z, y|x) by q ϕ (z, y|x) where ϕ represents the parameters of the encoder. It writes:

q ϕ (z, y|x) = q ϕ (z|x, y)q ϕ (y|x). (2) 
The distributions in Eq. 1 and 2 are modeled as follows: y follows a uniform discrete distribution. In accordance with [START_REF] Kingma | Auto-Encoding Variational Bayes[END_REF],

Computation of the distance between z e and each vector of the embedding space. p θ (x|y, z, c) is modelled as a Gaussian distribution: its mean is computed by a neural network (the decoder D θ of parameter θ) that takes as input y, z and c. We have:

E 𝟇 D 𝜽 C 𝟇 q 𝟇 (z|x,y) c y q 𝟇 (y|x)
p θ (x|y, z, c) = N(x; D θ (y, z, c), vI), (3) 
where v is a hyperparameter. As in [START_REF] Kingma | Semi-supervised learning with deep generative models[END_REF], q ϕ (y|x) is a discrete distribution whose probabilities are provided by a softmax layer. Instead of using the traditional Gaussian assumption, we follow the idea of [START_REF] Van Den | Neural discrete representation learning[END_REF] to model the prior on z and the distribution q ϕ (z|x, y) so as to improve the quality of the generated images.

In [START_REF] Van Den | Neural discrete representation learning[END_REF], z is a map (of size N z × N z ) and each component of z is a categorical variable that represents the index of a vector of a shared embedding space (this space is composed of K vectors of R D ). Each component of z is independent and identically distributed and follows a uniform discrete distribution. Moreover, q ϕ (z i, j = k|x) (there is no variable y in [START_REF] Van Den | Neural discrete representation learning[END_REF]) is set to 1 for k = arg min k ||E ϕ i, j (x)e k ||, 0 otherwise, where E ϕ (x) is the continuous output of the encoder (and E ϕ i, j (x) its value at coordinate (i, j)), and where e k is the k-th vector of the shared embedding space. We propose to set the posterior q ϕ (z i, j = k|x, y) as a function of ||E ϕ i, j (x, y)e k ||. The smaller ||E ϕ i, j (x, y)e k ||, the larger the probability q ϕ (z i, j = k|x, y) should be. It is defined as:

q ϕ (z i, j = k|x, y) = e -||E ϕ i, j (x,y)-e k || K k=1 e -||E ϕ i, j (x,y)-e k || . (4) 
Sec. 2.3 explains the relevance of this modeling based on the loss function to be optimized.

Parameter optimization

If y is known, the optimization of log p θ (x, y|c) can be achieved by maximizing the Evidence Lower BOund (ELBO). Under the reasonable assumption that z and c are conditionally independent given x and y, it writes: log p θ (x, y|c) ≥ E z∼q ϕ (z|x,y) log(p θ (x, y, z|c)/q ϕ (z|x, y)).

(

Note that Eq.5 (and Eq. 1) are defined for arbitrary values of c. In the proposed approach, c is set as a function of x but Eq. 5 remains valid because x is a "constant" in Eq. 5. Optimizing Eq. 5 therefore allows to also estimate c. By using Eq. 1, the ELBO term writes (we neglect the constant term log p(y)):

E z∼q ϕ (z|x,y) log(p θ (x|y, z, c)) -KL(q ϕ (z|x, y)||p(z)), (6) 
where KL is the Kullback-Leibler divergence. The first term is approximated by a Monte Carlo estimate: we propose to use the Straight-Through Gumbel-Softmax estimator [START_REF] Jang | Categorical reparameterization with gumbelsoftmax[END_REF] to sample from q ϕ (z|x, y). Moreover, without loss of generality, the term log(p θ (x|y, z, c)) in Eq. 6 can be replaced by the mean squared error between x and D θ (y, z, c) provided that the second term of Eq. 6 is weighted by a factor β.

The second term can be computed analytically since both distributions q ϕ (z|x, y) and p(z) are discrete. This term acts as a regularization term that constrains the latent space to have good properties: close samples in the latent space should have similar reconstructions. In [START_REF] Van Den | Neural discrete representation learning[END_REF], this term cannot play its role because the choice of the distribution q ϕ (z i, j = k|x) leads to a constant KL divergence. Hence we propose a distribution q ϕ (z i, j = k|x) that allows to obtain such a regularization. Under our hypothesis, the term -KL(q ϕ (z|x, y)||p(z)) can be obtained by summing over (i, j) the entropy of q ϕ (z i, j |x, y) (up to a constant).

If y is unknown (semi-supervised case), y is sampled from q ϕ (y|x) as in [START_REF] Siddharth | Learning disentangled representations with semi-supervised deep generative models[END_REF] using a Gumbel-softmax relaxation and the same loss function is used.

Finally, in both cases, three additional terms are added to the loss function. As in [START_REF] Kingma | Semi-supervised learning with deep generative models[END_REF], we add a classification loss α log q ϕ (y|x) to the ELBO term (α is set to 1) because the term q ϕ (y|x) does not contribute to the loss function if y is known. Moreover, since a Gumbel-softmax relaxation is used to sample z, the gradients are simply copied from z q to z e , similarly to straight-through gradient estimation in [START_REF] Van Den | Neural discrete representation learning[END_REF]. Consequently, the parameters of the embedding space do not receive gradients from the loss and we use the additional term presented in [START_REF] Van Den | Neural discrete representation learning[END_REF] to learn the embedding space. Finally, a commitment loss presented in [START_REF] Van Den | Neural discrete representation learning[END_REF] is also used (its weight is set to 0.25 as in [START_REF] Van Den | Neural discrete representation learning[END_REF]).

Architecture and training variations

To obtain a more detailed evaluation of our contributions, we suggest a range of alternatives, labeled A through F, with our current CVQVAE method denoted as E. Approaches A through D employ standard initialization strategies and the relevant loss function to train the models' parameters, while for approaches E and F, a two-step learning procedure is implemented.

Approaches A and B are based on the proposed CVQVAE except that no feature is associated with y (i.e. c is removed from the model). The resulting models have also the same conditional dependency structure as the model M2 in [START_REF] Kingma | Semi-supervised learning with deep generative models[END_REF]. The distribution q ϕ (z|x, y) is modeled as proposed in [START_REF] Van Den | Neural discrete representation learning[END_REF] for approach A and as proposed in Sec. 2.2 (Eq. 4) for approach B.

Approach C corresponds to the proposed CVQVAE with standard training. Approach D is based on the CVQVAE with two differences: instead of using a discrete latent representation for z, z follows a zero-centered multivariate normal distribution with unit variance (p(z) = N(z; 0, I)) and the distribution q ϕ (z|x, y) is defined as a Gaussian distribution whose parameters are given by the encoder [START_REF] Kingma | Auto-Encoding Variational Bayes[END_REF]. Moreover, as in [START_REF] Zou | Joint disentanglement of labels and their features with VAE[END_REF], we use AdaIN [START_REF] Huang | Arbitrary style transfer in real-time with adaptive instance normalization[END_REF] as a normalization method. AdaIN injects the latent variable z to each layer of the decoder through a fully connected layer. Using AdaIN causes the decoder to attach greater importance to z. The model associated with approach D is denoted as CGVAE (conditional Gaussian VAE).

Approach E is similar to approach C, relying on the proposed CVQVAE method. Approach F employs a model named CGVAE2, which is similar to CGVAE but without the use of AdaIN. Both approaches use a two-step learning procedure. The rationale behind two-step learning is that the optimization problem would be easier to solve if c was known: to this end, we start to train a simplified model (approach D with a small latent space) that also has the C ϕ network (that enables us to compute y and c) as well as the tokens. Then, for the estimation of the parameters of CVQVAE (approach E) or of CGVAE2 (approach F), the parameters of the C ϕ network and the tokens are initialized with those obtained by approach D. Note that these parameters are frozen during the first iterations of the optimization procedure.

Experiments

Implementation details: We experiment on the CelebA [START_REF] Liu | Deep learning face attributes in the wild[END_REF] and CheXpert [START_REF] Irvin | Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison[END_REF] datasets each containing more than 200000 images (80% is used for training) of size 128 2 . The first dataset is composed of labeled face images, on which we conduct quantitative experiments (for the "glasses" and "smile" labels), as well as qualitative experiments (for the "beard" and "makeup" labels). The second dataset is composed of labeled X-ray chest images on which three experiments are conducted.

Hyperparameters (N z , N c , K, D, β) have been tuned using a cross-validation strategy in the experiment relative to the "glasses" label with CVQVAE. Other experiments use the same tuned hyperparameters: N c has been set to 16 and β to 1e-4 (see text under Eq. 6). When modeling z as a categorical variable, the size of the latent space z has been set to S z = N z × N z with N z = 8, and the embedding space is composed of K = 512 vectors of dimension D = 16. For CGVAE2 (approach F), S z has been set to 1024 which is equal to the number of components of z q for CVQVAE (1024=8×8×16). This allows for a fair comparison between CVQVAE and CGVAE2. For CGVAE (approach D), we set S z to a small value (100) to obtain a simplified model with better convergence properties. Note that approach D is mainly useful to initialize CVQVAE and CGVAE2.

The models have been trained independently for each experiment. We used the Adam optimizer with a learning rate equal to 10 -4 , a batch size of 32 and a supervision rate set to 0.2. The experiments were conducted using PyTorch 1.9 and CUDA 10.2, leveraging a Nvidia 1080Ti graphics card.

Evaluation metrics: We consider two different tasks: the classification task, and the exchange of high level factors and their related features between two images (so as to measure the disentangled properties of the model). The classification task is assessed using the Balanced Classification Accuracy (BCA).

The disentangled ability of the model is evaluated by computing the success rate of swapping the attributes. In order to distinguish between classification errors and disentanglement errors, the true labels are used to perform this task: we select random pairs of images composed of one image of both classes denoted x y=1 and x y=0 . Their values of c and y are then exchanged to create two fake images. They are generated by feeding the decoder with z 0 , c 1 , y = 1 (for the first one), and with z 1 , c 0 , y = 0 (for the second one), where z 0 , c 0 , and z 1 , c 1 denote the latent variables and the features computed from x y=0 , and x y=1 , respectively. As an example, for the "glasses" label, the first fake image should exhibit the face of x y=0 with the glasses of x y=1 and the second fake image should show the face of x y=1 without glasses. We consider that the swap ("from 0 to 1" or "from 1 to 0") is successful when the associated generated image is well-classified by an independent classifier based on ResNet 50 [START_REF] He | Deep residual learning for image recognition[END_REF]. We denote by SR(+) (resp. SR(-)) the success rates for going from "0 to 1" (resp. "1 to 0").

Note that SR(+) and SR(-) are not perfect evaluation criteria for measuring disentanglement properties of the models. As an example, for the "glasses" label, SR(+) does not check that the glasses added to x y=0 are those of x y=1 . Consequently, some swapping results will be presented to check whether the features are well-transferred or not. Moreover, in order to obtain a quantitative criterion, we propose to compute the Classification Feature Distance (CFD) as the L2 norm between two outputs of the last layer of the independent classifier. These two outputs are obtained by feeding the classifier once with the original image x y=1 (x y=0 , resp.) and once with the fake image that has the same values of c and y as the original image: the fake image Table 1: Results for the "glasses" label in terms of (i) success rates of swapping SR(-) and SR(+), (ii) CFD, and (ii) FID that compares the distribution of fake images with the one of real images. The models are described in the text. is generated by the decoder with z 0 , c 1 , y = 1 (z 1 , c 0 , y = 0, resp.). As a reminder, z 0 , c 0 , and z 1 , c 1 denote the latent variables and the features computed from x y=0 , and x y=1 . The CFD is based on the assumption that an ideal attribute swap should not change the features extracted by the classifier. We also compute one Fréchet Inception Distance [START_REF] Heusel | Gans trained by a two time-scale update rule converge to a local nash equilibrium[END_REF] (FID), that compares the distribution of fake images with the one of real images.

Model SR(-) SR(+) CFD

Comparison of approaches A to F

Results obtained with approaches A to F are provided in Tab 1 for the "glasses" label. A and B perform well, but they cannot transfer the features of the glasses to another image since glasses are not explicitly modeled. Moreover, the regularization over the latent space, induced by the proposed modeling of q ϕ (z|x, y) (Eq. 4), improves the disentanglement properties of the model: SR(+) and SR(-) obtained with B are larger than those obtained with A. Thanks to the modeling of c, approach C obtains better results in terms of SR(-) and CFD. However, visual inspection of the results show that c not only carries information about the glasses but also about the face, as illustrated in Fig. 2 (C): the glasses are well transferred from x y=1 to x y=0 but some features of the faces are also transferred. The use of AdaIN in approach D results in a slightly deterioration of the model's disentanglement properties (S R(+) decreases), and the modeling of z (the latent space is only 100) leads to a reduction of image quality. However, the modification of c does not change the face anymore (see Fig. 2 (D)), thus showing that c is free of any information about the face.

Results obtained with Approach E (CVQVAE) enable to obtain the best results in terms of quantitative criteria (Tab. 1). Moreover, visual inspection of the results (Fig. 2(E)) shows that the properties of the glasses are relatively well transferred, while preserving the main features of the face. Finally, as in [START_REF] Zou | Joint disentanglement of labels and their features with VAE[END_REF][START_REF] Joy | Capturing label characteristics in VAEs[END_REF], these results clearly illustrate the interest of modeling the features related to the high-level factors. Indeed, as shown by the values of SR(+) and SR(-), CVQVAE yields better disentanglement representations than methods A and B for which the properties of the glasses are not modelled. Note also that AdaIN is not used in the CVQVAE approach. AdaIN was shown in [START_REF] Zou | Joint disentanglement of labels and their features with VAE[END_REF] to improve the reconstruction of the images. However, it is no longer worth using AdaIN when the size of the latent space is increased. Furthermore, the use of AdaIN slightly weakens the disentanglement properties of the model.

Finally, while CGVAE2 yields very satisfactory results, CVQVAE provides better results than CGVAE2, both in terms of disentanglement and image quality. Moreover, increasing β for CGVAE2 produces disentanglement properties similar to CVQVAE, but at the expense of image quality (they are blurry, data not shown). These results illustrate the relevance of using a discrete latent representation.

Comparison with state-of-the-arts methods

The proposed approach is compared with two VAE-based approaches that also model the features related to the high-level factors: CCVAE [START_REF] Joy | Capturing label characteristics in VAEs[END_REF] and JDVAE [START_REF] Zou | Joint disentanglement of labels and their features with VAE[END_REF] and with the model M2 of [START_REF] Kingma | Semi-supervised learning with deep generative models[END_REF] with a Gaussian prior for z (the features are not modelled). Finally, for all methods, the architectures of the encoder and of the decoder are similar to those of JDVAE [START_REF] Zou | Joint disentanglement of labels and their features with VAE[END_REF]. For these approaches, the size of the latent space S z has been set to 100: larger latent space results in a model that is more difficult to optimize and leads to a reduction in the performance model.

Results obtained with the "glasses" and with the "smile" labels are provided in Tab. 2 and in Fig. 3. First, all methods obtain good classification accuracy (BCA) despite a supervision rate equal to 0.2. Note that the accuracy of Resnet 50 is 98.69% and 93.07% for the "glasses" and the "smile" labels, respectively. With respect to the quality of the fake images (FID), CVQVAE provides images of better quality, thus justifying the use of a larger latent space. Regarding the success rates of swapping (SR(-) and SR(+)), results obtained with M2 are less satisfactory than those obtained with the other methods, showing once again the interest of modeling both the high-level factors and their features. An analysis of the results obtained by CCVAE, JDVAE, and CVQVAE for SR(+) and SR(-) requires to consider the labels separately. For the "glasses" label, results obtained with CCVAE are relatively satisfactory but the features of glasses are not well-transferred (CFD values in Tab. 2 and results in Fig. 3). Results are more satisfactory with JDVAE [START_REF] Zou | Joint disentanglement of labels and their features with VAE[END_REF]. However, CVQVAE obtains the best success rates for adding and removing glasses. Additionally, our method correctly extracts most of the features of the glasses from the image x y=1 and reconstructs them reasonably well on x y=0 (Fig. 3), which shows that the label and features of the glasses have been properly disentangled from the attributes of the faces.

For the "smile" label, visual inspection of the reconstructed images (without attribute swapping, data not shown) shows that JDVAE and CCVAE have difficulties in extracting the features related to the smile. As an example, for a neutral face with open mouth, its reconstruction shows a closed mouth. Similarly, for a smiling face with wide open mouth, the mouths of the reconstructed images are less open. On the opposite, CVQVAE provides better reconstructions. Our hypothesis is that the problem is made easier with CVQVAE because the components of c that represent the neutral face are not the same than those representing the smiling face. Regarding the success rates of swapping (SR(-) and SR(+)), results obtained with CCVAE look satisfactory, especially for SR(-) but this number is biased. SR(-) is actually greater than the accuracy of ResNet 50 (when classifying neutral face). This shows that it is easier for the classifier to classify neutral fake images than real neutral images. This is due to the fact that the neutral images obtained with CCVAE are actually too neutral. Indeed, we can observe that the features related to the smile are not properly transferred to other images (see Fig. 3). As we saw previously, this is not only a feature transfer problem, but also a feature extraction problem. Results are actually slightly improved with JDVAE [START_REF] Zou | Joint disentanglement of labels and their features with VAE[END_REF], but the best results are undoubtedly obtained with CVQVAE.

Fig. 4 shows results obtained with other labels, which further illustrate the versatility of the model.

In addition, we show the effectiveness of our model on the CheXpert dataset (Tab. 3). Three different experiments have been conducted. In these experiments, y = 1 is associated to a pathology ("cardiomegaly", "atelectasis" or "consolidation") and y = 0 is related to the "non finding" label (no pathology). Quantitative results show once again that CVQVAE outperforms the other methods. Since no feature has been related to the label y = 0 (it was also the case for the "glasses" label), it is possible to reconstruct an image with a pathology as an image without pathologies. The difference between its reconstruction and its reconstruction as a "free of pathology" image reveals the influence of the pathology (in green on Fig. 5).

Exploration in the feature space c

We have carried out several experiments on the information encoded by the variable c. In Fig. 6, fake images are gener-ated by feeding the decoder with z 1 , y 1 and c = c1 + α(c2 -c1) (α ∈ [0, 1]), where z i , y i , and c i denote the variables related to image x i (i=1 or 2) with y 1 =y 2 . As an example, for the "glasses" label, if y 1 = 1, the generated glasses should be similar to those of x 1 (if α is close to 0), of x 2 (if α is close to 1), or in-between (for other values of α). Moreover, in all cases, the generated face should be the one of x 1 . Results shown in Fig. 6 are consistent with our expectations: interpolation in the feature space c results in a smooth transition between smiles (top), neutral faces (middle), or types of glasses (bottom).

In Fig. 7, the influence of the magnitude of c is shown: images are generated by feeding the decoder with z, y and λc (λ ∈ [0, 2]), where z, y, and c are computed from x. Results are shown for the "smile" label for y = 1 (Fig. 7, top) and for the "glasses" label for y = 1 (Fig. 7, bottom).

Increasing or decreasing the magnitude of c leads to amplifying or reducing the related features in the generated images. For example, with λ = 2, the frames of glasses become very dark and wide, and the way of smiling is also exaggerated (the mouth is notably more open). Moreover, even if y = 1, a null value for c (λ = 0) prevents glasses from being generated.

Multiple attribute disentanglement

Our approach can easily be extended to the multiple attribute case. Two high-level factors are considered hereafter: y 1 and y 2 denote the labels, and c 1 and c 2 denote the related features. Equations of Sec. 2 remain valid by setting y to (y 1 , y 2 ), and c to (c 1 , c 2 ). We use the following assumption: p(y) = p(y 1 )p(y 2 ) and q ϕ (y|x) = q ϕ (y 1 |x).q ϕ (y 2 |x). The architecture of the model can easily be extended to the two high-level factor cases. This has been achieved by modifying the last layer of the C ϕ network. Results obtained are shown in Fig. 8 where the purpose is to transfer the glasses and the smile of x y 1 =1,y 2 =1 to x y 1 =0,y 2 =0 . 

Conclusion

Our CVQVAE approach clearly outperforms the state-of-theart approaches, both in terms of disentanglement and in terms of generated image quality. Future works could adapt CVQVAE to the architecture of a hierarchical VQ-VAE (such as the one proposed in VQ-VAE2 [START_REF] Razavi | Generating diverse high-fidelity images with VQ-VAE-2[END_REF]) and GAN (such as VQGAN [START_REF] Esser | Taming transformers for highresolution image synthesis[END_REF]) so as to further improve the quality of generated images. for λ given at its top, with the exception of the left column that corresponds to x. The top row is related to the "smile" label (with y = 1) while the bottom row corresponds to the "glasses" label (with y = 1).

Figure 1 :

 1 Figure 1: Architecture of CVQVAE. E ϕ consists of 5 residual blocks. C ϕ consists of 5 residual blocks followed by one single fully connected layer. D θ is composed of one fully connected layer followed by 5 residual blocks.

Figure 2 :

 2 Figure 2: Attribute swapping ("glasses label") using C, D and E approaches. The second, third and fourth images should be x y=0 with the glasses of x y=1 .

Figure 3 :

 3 Figure 3: Attribute swapping ("glasses" label (a) and "smile" label (b)) with M2, CCVAE, JDVAE and CVQVAE. For each row, the second, third, fourth and fifth images should be x y=0 with the glasses (a) or smile (b) of x y=1 . The four rightmost images should be x y=1 , but without glasses (a) or with the neutral attitude of x y=0 (b).

Figure 4 :

 4 Figure 4: Attribute swapping for "beard" (left) and "makeup" labels (right). Presentation is similar to Fig. 3 except only results of CVQVAE are shown.

Figure 5 :

 5 Figure 5: Results obtained with three different pathologies on the CheXpert dataset. For each pathology, the original image (with the name of the pathology at its top) is on the left, and the regions in green (at the right of the original image) represent regions that differ the most between the reconstruction and the "pathology-free" reconstruction.

Figure 6 :

 6 Figure6: Interpolation in the feature space with different values of α using x 1 and x 2 (see text for details). Each column corresponds to the generated results for α given at its top, with the exception of the left and right columns that correspond to x 1 and x 2 . The bottom row is related to the "glasses" label (with y 1 = 1) while the two other rows correspond to the "smile" label (y 1 = 1 for the top row and y 1 = 0 for the middle one). 𝑥 𝜆 = 0 𝜆 = 1/3 𝜆 = 2/3 𝜆 = 1 𝜆 = 4/3 𝜆 = 5/3 𝜆 = 2

Figure 7 :

 7 Figure 7: Increasing or decreasing the magnitude of c from x with different values of λ (see text for details). Each column corresponds to the generated resultsfor λ given at its top, with the exception of the left column that corresponds to x. The top row is related to the "smile" label (with y = 1) while the bottom row corresponds to the "glasses" label (with y = 1).

Table 2 :

 2 Results for the "glasses" and the "smile" labels in terms of CFD, success rates of swapping SR(-) and SR(+), FID, and in terms of BCA.

			glasses			smile	
	Model	CFD SR(-)	SR(+)	FID BCA	CFD SR(-)	SR(+)	FID BCA
	CCVAE	0.145 95.52% 47.89% 21.10 96.26% 0.052 96.97% 74.75% 16.14 90.80%
	JDVAE	0.098 94.98% 64.25% 21.66 97.09% 0.059 81.80% 79.34% 16.36 90.52%
	M2	0.274 80.34% 33.02% 22.27 96.13% 0.069 44.07% 50.72% 16.75 90.48%
	CVQVAE 0.093 100% 79.13% 20.05 96.67% 0.049 89.25% 90.25% 14.54 90.09%

Table 3 :

 3 Results for three different pathologies in terms of CFD, success rates of swapping (SR = (SR(-)+SR(+))/2), FID, and in terms of BCA.

			cardiomegaly		atelectasis		consolidation	
	Model	CFD	SR FID	BCA CFD	SR FID	BCA CFD	SR FID	BCA
	CCVAE	0.298 57.51% 8.01 80.33% 0.137 49.38% 7.67 71.92% 0.215 62.16% 7.04 80.67%
	JDVAE	0.261 60.27% 7.82 79.44% 0.138 50.92% 7.62 71.11% 0.250 62.23% 7.07 80.07%
	M2	0.347 47.36% 8.99 79.58% 0.233 41.99% 7.99 70.99% 0.446 36.93% 8.43 80.58%
	CVQVAE 0.169 69.97% 7.13 79.92% 0.134 64.55% 6.87 72.86% 0.117 72.36% 6.91 80.46%
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