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An updated force balance approach to investigate bubble

sliding in vertical flow boiling at low and high pressures

L. Favre1,2,∗, C. Colin2,, S. Pujet1,, S. Mimouni1,

Abstract

An analysis of bubble sliding in vertical flow boiling is conducted using a reworked
force balance including a recent formulation of the drag coefficient along with a proper
derivation of added mass coefficients. The modeling strategy was further performed
to avoid the use of too many empirical parameters.

This offers the possibility to develop a non-dimensional approach that exhibits
physical ranges of dominance for the detaching forces. Applied to experimental
measurements, it shows that the main forces triggering departure by sliding at low
and high pressures are respectively Added Mass and Drag forces. Predictions of
bubble departure diameter using the force balance achieves good agreement over 122
measurements from several experimental data sets.

Bubble sliding measurements from the literature at low and high pressures per-
mitted to validate the model which was able to predict bubble velocity provided the
use of a correct bubble growth rate.

Keywords: Vertical Flow Boiling, Bubble Departure Diameter, Bubble Sliding,
Force Balance, Mechanistic Model, Non-Dimensional Approach

Nomenclature

Acronyms

BC Boiling Crisis

CHF Critical Heat Flux

DNS Direct Numerical Simulations

HFP Heat Flux Partitioning

PWR Pressurized Water Reactor
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RPE Rayleigh-Plesset Equation

SMR Small Modular Reactor

Greek symbols

η Thermal diffusivity[m2/s]

γ Shear rate [s−1]

λ Thermal conductivity [W/m/K]

µ Dynamic viscosity [J.s/m−3]

ν Kinematic viscosity [m2/s]

ϕ Heat flux [J/m2/s]

ρ Density [kg/m3]

σ Surface tension [J/m2]

θ, dθ Contact angle and half-
hysteresis [° or rad]

θi Bubble inclination angle [° or
rad]

Latin symbols

C Force coefficient [-]

D Bubble diameter [m]

Dh Hydraulic diameter [m]

E Kinetic energy [J]

F Force [N]

G Mass flux [kg/m2/s]

g Gravity acceleration [m2/s]

hLV Latent heat of vaporization
[J/kg]

K Bubble growth constant [-]

Lc =
√

σ
(ρL−ρV )g

Capillary length [m]

lsl Bubble sliding length [m]

R Bubble radius [m]

Rc Bubble curvature radius [m]

rw Bubble foot radius [m]

T Temperature [K]

U Velocity [m/s]

Uτ Wall friction velocity [m/s]

Urel = UL − Ub Relative velocity [m/s]

V Volume [m3]

Non-dimensional numbers

Ca = µLUL

σ
Capillary number [-]

Eo = (ρL−ρV )gR2

σ
Eotvos number [-]

Fr =
ρLU

2
L

(ρL−ρV )gR
Froude number [-]

Ja =
ρLcP,L|T−Tsat|

ρV hLV
Jakob number [-]

Pr = ν
η
Prandtl number [-]

Reb =
UrelDb

νL
Bubble Reynolds number

[-]

ReDh
= GLDh

µL
Liquid bulk Reynolds

number [-]

Sr = 2γR
|Urel|

Non-dimensional shear rate

[-]

y+ = yUτ

νL
Non-dimensional wall dis-

tance [-]

Subscripts

AM Added-Mass

b Bubble

D Drag

d Departure or Downstream

L Lift or Liquid

lo Lift-off
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sat Saturation

u upstream

V Vapor

w Wall

1. Introduction

Studying the local physics of boiling two-phase flows has been a primal field of
research for decades both due to its intrinsically complicated nature and its huge
importance for many industrial fields such as:

• Nuclear Pressurized Water Reactors (PWR) ;

• Small Modular Reactors (SMR) passive cooling systems ;

• Two-phase flow loops for electronic devices cooling systems including space
applications (e.g. satellites).

This has led to many approaches to investigate and model wall boiling in multi-
phase flows. Notably, Computational Multi-Fluid Dynamics codes mostly rely on a
so-called Heat Flux Partitioning (HFP) model [1] which goal is to split the applied
wall heat flux between different physical heat transfer phenomena (Eq. 1) such as
liquid convection (c, L), phase-change (vap), transient conduction (tc), etc.

ϕw = ϕc,L + ϕtc + ϕvap (1)

Many HFP models have been developed over the years, starting with Kurul &
Podowski [2] who validated their model against vertical flow boiling measurements.
Later, Basu et al. [3] developed a model including bubble sliding and renewed closure
laws based on their own experimental results of vertical flow boiling at low pressure
and mass fluxes. More recently, Gilman & Baglietto [4] also proposed new formu-
lations for the HFP compared with measurements in vertical flow boiling of water.
Those models constitute pivotal elements for bubble dynamics in multiphase flows
simulations and are often under scrutiny as performed by Bhati et al. [5] who studied
axial evolution of boiling parameters in a vertical channel.

Upgrades of HFP models always aim to consider new heat transfer mechanisms or
better closure laws for parameters like Nucleation Site Density or Bubble Departure
Frequency or Diameter. Among those models, bubble dynamics is of prior interest
for predicting bubble departure diameter, sliding length, and lift-off diameter. Those
parameters play a significant role in the estimation of the transient conduction heat
flux ϕtc and boiling heat flux ϕvap. Since transient conduction is associated to bubble
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movement disrupting the liquid boundary layer, it is directly depending on the value
of the bubble diameter and its sliding length.

Many experimental investigations have been conducted to further understand
the behavior of nucleated bubbles in boiling flows. In the case of vertical flow boil-
ing, a sliding phase during which the bubble remains attached to the wall is quasi-
systematically observed both at low pressure [6, 7, 8] and high pressure [9]. The
bubble sliding process has also been thermally studied by Estrada-Perez et al. [10]
who observed the significant impact of sliding bubbles footprints on the heat flux.
Richenderfer et al. [11] and Kossolapov [9] have also investigated the sliding of boil-
ing bubbles and measured the magnitude of the transient heat transfer induced by
the disruption of the liquid thermal boundary layer in the bubble’s wake.

Thus, it appears important to properly model boiling bubbles dynamics to dis-
tinguish the different phases of the bubble lifetime:

• Static growth on the wall before departure by sliding at radius Rd ;

• Sliding on the wall over a length lsl before lifting off towards the bulk flow at
radius Rlo.

First approaches consisted of experimental-based correlations. For instance, we
can refer to the work of Unal [12] or Situ et al. [6] for the lift-off / maximum bubble
diameter Dlo, to Maity [7] or Basu et al. [3] for the sliding length lsl and to Klausner
et al. [13], Maity [7] or more recently Zhou et al. [14] for the departure diameter Dd.
Those models mostly rely either on pure data regression or semi-analytic approaches.

However, explicit correlations include limited range of application depending on
the flow conditions over which they have been established. To overcome this draw-
back and to obtain more generalized models, researchers have developed Mechanistic
Models based on a force-balance approach to depict the external efforts experienced
by the growing bubble. The goal is to compute the sum of the forces applied to the
bubble over its growing time and to detect departure and lift-off events using criteria
such as a change in the force balance sign.

One of the firstly introduced model was proposed by Klausner et al. in 1993
[13] validated on horizontal flow boiling of refrigerant. It was followed by several
subsequent works among which Van Helden et al. [15] who assessed forces coefficients
using injected air bubbled in a vertical flow or Thorncroft [16] who compared his
predictions with vertical and horizontal flow boiling of R113. Later, Duhar & Colin
[17] validated a force balance on bubbles created by air injection in a shear flow.
Sugrue et al. [18] studied water flow boiling with varying surface orientation with
their results used by Mazzocco et al. [19] who validated his model against several
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low pressure measurements from literature. For more recent works, we can mention
Ren et al. [20] who used own measurements of vertical flow boiling of water up to 5
bar or Bhati & Paruya [21] who numerically investigated bubble growth, shape and
departure in pool boiling. Each of those models proposed different modifications to
the force balance depending on the aimed experimental conditions.

Unfortunately, all the aforementioned works were validated using low pressure
experiments due to the lack of pressurized measurements in the literature. In addi-
tion, the common use of several empirical parameters makes it difficult to reach a
general validation of those models. The present study, anchored in this framework,
aims to propose an update of the bubble force balance for vertical boiling flows
with a reduced empiricism and to study the sliding phenomenon by conducting a
non-dimensional analysis of the departure by sliding as well as predicting the sub-
sequent departure diameter and sliding velocity of the bubble. By focusing on the
force balance parallel to the wall, the approach is validated against measurements in
various flow conditions, including pressures up to 40 bar thanks to the recent work
of Kossolapov [9]. This ensures an encouraging generality of the proposed approach
compared to previous models.

2. Force Balance Modeling

2.1. General Considerations

When trying to derive the force balance over a bubble, the first step consists of
splitting the whole effort experienced by the bubble between different contributions
depending on their nature. In our case, we focus on a bubble growing on a vertical
wall and facing an upward flow as depicted in Figure 1.

The static forces are:

• The Buoyancy force FB, including Archimedes force and the weight of the
bubble ;

• The Capillary or Surface Tension force FC ;

• The Contact Pressure force FCP .

The hydrodynamic forces are:

• The Drag and Lift forces FD and FL ;

• The Inertia force, including Added-Mass and Tchen force FI .
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θ + dθ

θ − dθ

×
OR

dw

dθFCP FL

FD

Ub

FC

FC

FB
FAM

g

UL
ey

ex

Figure 1: Sketch of the forces applied to the bubble facing an upward flow UL and sliding at
velocity Ub. Green dashed lines show the control volume for the force balance, excluding the

microlayer or microregion.

Regarding the bubble shape, we consider a quasi-spherical bubble of radius R with
a circular base of radius rw. Depending on the experimental conditions (fluid wet-
tability, pressure, heat flux, liquid temperature), a liquid microlayer can be formed
between the wall and the vapor bubble. It occurs when the bubble growth velocity is
larger than the dewetting velocity of the liquid on the wall [22]. Recent experiments
of Kossolapov [9] have shown that this microlayer also exists in vertical flow boiling
of water at atmospheric pressure, but disappears at pressures larger than 3 bars. In
the present analysis microlayer may be present or not. In case of a microlayer, the
bubble base is taken above the microlayer. The control volume used for the evalu-
ation of the force balance is plotted in dashed line in Figure 1. The contact angles
on both sides of the bubble are macroscopic contact angles outside the microregion
or the microlayer. The resulting downstream (receding) and upstream (advancing)
contact angles are θd = θ− dθ and θu = θ + dθ. If the bubble has a shape close to a
truncated sphere, we can approximate the bubble foot radius as:
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rw ≈ R sin

(
θu + θd

2

)
= R sin (θ) (2)

The choice of using the average contact angle θ instead of the average of Rsin (θu)
and Rsin (θd) avoids to have rw → 0 when dθ → 90°. We suppose Vb ≈ 4

3
πR3 for the

bubble volume.

2.2. Buoyancy Force

The Buoyancy force results from the weight of the bubble and the integration of
the static liquid pressure over its surface which naturally yields:

FB = Vb (ρV − ρL) g =
4

3
πR3 (ρL − ρV ) g ex (3)

2.3. Capillary Force

The most generally accepted expression of the Capillary force has been derived
by Klausner et al. [13] by integrating the tangential effort at the triple contact line
over the bubble foot radius while assuming an evolution of the contact angle from
θd to θu as a polynomial expression of degree 3. This results in:

FC =− πRσ

[
2.5

rw
R

dθ(
π
2

)2 − dθ2
sin (θ) cos (dθ)

]
ex

− πRσ

[
2
rw
R
sin (θ)

sin (dθ)

dθ

]
ey (4)

2.4. Contact Pressure Force

The Contact Pressure force is linked to the overpressure inside the bubble. Com-
bined with the Archimedes force, it can be expressed versus the difference of liquid
and vapor pressure at the bubble foot using Laplace’s equation as:

FCP ≈ 2σ

Rc

πr2w ey ≈ πRσ 2 sin (θ)2 ey (5)

Here, Rc is the curvature radius of the bubble which is often assumed to be equal
to 5R [13, 23, 19] without other explanation than avoiding an overestimation of the
Contact Pressure force.
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2.5. Drag and Lift Forces

The external liquid flow over the bubble induces the well-known Drag and Lift
forces, acting respectively in the flow direction and perpendicular to the flow. They
are usually expressed using associated coefficients CD and CL defined by:

FD =
1

2
CDρLSp

∣∣∣∣UL − Ub

∣∣∣∣ (UL − Ub

)
(6)

FL =
1

2
CLρLSp

∣∣∣∣UL − Ub

∣∣∣∣2 ey (7)

with Sp = πR2 the projected area of the bubble in the direction of the flow.
Traditional approaches rely on expressions of the Drag force for a bubble in an

infinite medium based on numerical correlations as proposed by Mei & Klausner [24]:

CD,U =
16

Reb

[
1 +

(
8

Reb
+

1

2

(
1 +

3.315√
Reb

))−1
]

(8)

with Reb =
|Urel(R)| 2R

νL
the bubble Reynolds number and Urel (R) = UL (R)− Ub the

local relative velocity.
Results from DNS conducted by Legendre et al. [25] proposed expressions of the

Drag and Lift forces for a hemispherical bubble on a wall facing a viscous shear flow.
Earlier, Legendre & Magnaudet [25] analytically derived coefficients to transpose
Drag and Lift expressions for a particle to the case of a bubble. This was applied
by Mazzocco et al. [19] to the Drag for a solid particle near a wall in a shear flow
proposed by Zeng et al. [26].

In this work, we propose to rely on the recent work of Shi et al. [27] who conducted
DNS of a shear flow over a spherical bubble of constant radius close to a wall for
bubble Reynolds number between 10−1 and 103 and shear rates between -0.5 and 0.5.

They computed the resulting Drag and Lift coefficients for each simulations and
proposed correlations fitting their numerical results. The total Drag coefficient is
expressed as a correction of the Drag coefficient for a bubble in an unbounded uniform
flow CD,U . The total drag is given by:

CD = (1 + ∆CD)CD,U (9)

where ∆CD accounts for both the effect of the shear flow and the wall vicinity.
To cover the whole range of bubble Reynolds numbers, correlations at low and

high Reb are smoothly connected using an exponential term.

∆CD = ∆CD,Reb=O(1) +
(
1− e−0.07Reb

)
∆CD,Reb≫1 (10)
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Each of those corrections is computed depending on Reb, the non-dimensional
shear rate Sr, the non dimensional wall distance LR = y

R
(LR = 1 being a spheri-

cal bubble laying on a wall) and non-dimensional viscous (or Stokes) length Lu =
y

νL/|Urel|
.

∆CD,Reb=O(1) =
1 + tanh

(
0.012Re0.8b

)
+ tanh

(
0.07Re0.8b

)2
1 + 0.16Lu (Lu + 4)

×
[(

3

8
L−1
R +

3

64
L−4
R

)(
1− 3

8
L−1
R − 3

64
L−4
R

)−1

− 1

16

(
L−2
R +

3

8
L−3
R

)
Sr

]
(11)

∆CD,Reb≫1 = 0.47L−4
R + 0.0055L−6

R Re
3/4
b + 0.002 |Sr|1.9Reb

+ 0.05L
−7/2
R SrRe

1/3
b (12)

Figure 2 shows the evolution of the Drag correction ∆CD against the bubble
Reynolds number for different distances to the wall LR and two values of Sr. We
can see that as the distance between the wall and the bubble increases the Drag
correction logically approaches zero and that increasing the shear rate Sr increases
∆CD for higher values of Reb.

Shi et al. [27] conducted DNS for wall distances down to LR = 1.5. However,
Scheiff et al. [28] compared the values obtained for LR = 1 with measured Drag
coefficients of bubbles sliding on a wall and observed a good agreement, which legit-
imates the use of this new Drag correlation by extending its application to the case
of a bubble laying on a wall and using the uniform drag coefficient of Eq. 8.

Since this work focuses on the bubble sliding along the wall, the total force balance
will be studied along the x axis, parallel to the wall. Thus, we do not detail the whole
expression of Shi et al. for the lift coefficient CL and refer the reader to their original
work [27].

2.6. Inertia Force

The Inertia force originates from various effects (bubble growth, freestream and
bubble acceleration, etc.) that includes both Added Mass and Tchen forces and is
expressed as [29]:
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×

R

y = R× LR

νL
|Urel|

=
y

Lu

UL

(a) Sketch of the case simulated by Shi et al.

10−1 100 101 102 103

Reb

0.0

0.5

1.0

1.5

2.0

2.5

∆
C
D

LR = 1

LR = 1.5

LR = 2
LR = 5

Sr = 0.1

Sr = 0.5

(b) Drag correction from Shi et al. (Eq. 10)

Figure 2: Details on the work of Shi et al. [27] regarding the drag correction.

FI = ρLVb

(
∂UL

∂t
+∇

(
UL

)
· UL

)
︸ ︷︷ ︸

Liquid inertia or Tchen force

+
d

dt

(
ρLCAMVb

(
UL − Ub

))︸ ︷︷ ︸
Added Mass force FAM

(13)

Since we consider a steady and quasi-parallel liquid flow, the Tchen force is equal
to zero.
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2.6.1. Former Approaches

In previous Mechanistic Models, the derivation of the Added Mass force was
conducted with different approaches. In particular, some authors chose to rely on
the Rayleigh-Plesset Equation for a growing hemispherical bubble in a quiescent flow,
obtaining a reaction force from the liquid perpendicularly to the wall.

FAM,RPE = −ρLπR2

[
RR̈ +

3

2
Ṙ2

]
ey (14)

Then, assuming a bubble inclination angle θi, this force was projected along the x
axis to obtain an Added Mass force parallel to the wall that hinders departure. The
inclination angle value is often empiricial and used for data fitting [13, 23, 19, 20].

FAM,RPE = −ρLπR2

[
RR̈ +

3

2
Ṙ2

]
(sin (θi) ex + cos (θi) ey) (15)

This approach is questionable on different aspects. First, the RPE assumes a
spherical symmetry and moving boundary in a quiescent unbounded liquid, which
is physically far from the real situation of a bubble growing on a wall in a boiling
flow. Moreover, the subsequent projection along the different directions regarding
an unknown angle is hardly reasonable if θi is chosen arbitrarily.

On the other hand, some authors [13, 16, 30] considered two distinct contribu-
tions:

• RPE equation and inclination θi, leading to Eq. 15 ;

• Spherical bubble growth in an uniform unbounded and inviscid liquid flow,
which yields a detaching Added Mass term due to the interaction of bubble
growth with the external flow:

FAM,U =
3

2
ρLVb

Ṙ

R
ULex (16)

By including the effect of the liquid flow, this approach can be considered as
closer to the reality. However, it relies on two separate derivations associated to
different physical considerations.

2.6.2. Proposed Approach

To tackle the Added Mass force derivation, we propose to follow the approach
of Lamb [31] (also presented by Van Winjgaarden [32]). By solving the potential
flow around a bubble and its image, we can obtain the total liquid kinetic energy
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EL that corresponds to a situation where a bubble is at a given distance from a wall
(represented by the line normal to the line of centers of the bubbles).

Then, using Lagrange’s equations to compute the resulting forces along x and y:

FAM,x = − ∂

∂t

(
∂EL

∂ẋ

)
+
∂EL

∂x
(17)

FAM,y = − ∂

∂t

(
∂EL

∂ẏ

)
+
∂EL

∂y
(18)

To express the liquid kinetic energy, we can rely on the work of Van Der Geld [33]
who derived EL in the case of a full or truncated growing spherical bubble laying on
a wall and facing a uniform flow parallel to the wall of velocity UL (Eq. 19). If the
bubble slides at a velocity Ub = ẋ, it sees a liquid velocity Urel = UL − ẋ.

EL =
ρLVb
2

(
αẏ2 + tr (β) Ṙ2 + ψṘẏ + α2 (UL − ẋ)2

)
(19)

where (x, y) are the coordinates of the bubble’s center and α, tr (β), ψ, α2 are
polynomials of R/y = 1/LR derived by Van Der Geld for 1 < R/y < 2 i.e. 0.5 <
LR < 1.

Injecting EL in Eq. 17 and 18 and computing the values for the sphere case (y = R
and ẏ = Ṙ) yields:

FAM,x = ρLVb

[
3CAM,x

Ṙ

R
Urel − CAM,x

∂Ub

∂t

]
(20)

with CAM,x ≈ 0.636.

FAM,y = ρLVb

[
− (3CAM,y1 + CAM,y2)

Ṙ2

R
− CAM,y1R̈ + CAM,y3

U2
rel

R

]
(21)

with CAM,y1 ≈ 0.27, CAM,y2 ≈ 0.326 and CAM,y3 ≈ 8.77× 10−3.

Parallel to the wall, the coupled term Ṙ
R
Urel in Eq. 20 promotes detachment and

sliding of the bubble if Urel > 0 e.g. if the bubble is attached to its nucleation site.
This agrees with the detaching term of the ”two situations” derivations detailed in
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2.6.1 and clearly contradicts the aforementioned approach where solely projecting
the RPE on both axes lead to an Added-Mass term related to bubble growth that
only hinders the departure by sliding. Moreover, we see that accounting for wall
presence enhances the added mass coefficient parallel to the wall by approximately
27% compared to Eq. 16 where we have an equivalent CAM,x = 0.5. Finally, Eq. 21
exhibits a term induced by the relative velocity that acts as a lift force, which seems
to rarely appear in other approaches.

Here we want to insist on the importance on conducting an approach as rigorous
as possible when deriving those transient aspects of the force balance. The RPE is
only valid for a spherical bubble in an unbounded medium or for a hemispherical
bubble laying on a wall as shown by the numerical simulations of Legendre et al.
[34]. Otherwise, some terms may be missing and lead to contradictory physical
conclusions. Although the proposed method has already been used in different works,
we obtained reassessed values of the Added Mass coefficients based on the derivation
of the liquid kinetic energy by Van Der Geld. In the spirit of avoiding to introduce
extra empirical terms, we keep the Added Mass force as presented in Eq. 20 and 21.

2.7. Force Balance Summary

On Table 1, we sum up some of the mentioned force balances from the literature
along with the proposed approach of this paper.
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Klausner (1993) [13] Thorncroft (2001) [16] Sugrue (2016) [23]

F
o
rc
es

FB
4
3
πR3 (ρL − ρV ) g 4

3
πR3 (ρL − ρV ) g 4

3
πR3 (ρL − ρV ) g

FC Eq. 4, rw = 0.045 mm Eq. 4, rw = R sin (θd) Eq. 4, rw = 0.025R

FCP Eq. 5, Rc = 5R Neglected Eq. 5, Rc = 5R

FD

CD = 16
Reb

[
1 + 3

2

((
12
Reb

)n

+0.796n)1/n
]
, n = 0.65

CD = 16
Reb

[
1 +

(
8

Reb

+ 1
2

(
1 + 3.315√

Reb

))−1
] CD = 16

Reb

[
1 + 3

2

((
12
Reb

)n

+0.796n)1/n
]
, n = 0.65

FL

CL = 2.74
√
Sr

×
[
Re−2

b +
(
0.24

√
Sr

)4
] 1

4

CL = 0.71
√
Sr

×
[(

1.15J(ε)√
Reb

)2

+
(

3
√

2Sr
8

)2
] 1

2

CL = 2.74
√
Sr

×
[
Re−2

b +
(
0.24

√
Sr

)4
] 1

4

FAM

3
2
ρLVb

Ṙ
R
ULex −ρLπR

2
(

3
2
Ṙ2 +RR̈

)
× (cos (θi) ey + sin (θi) ex), θi = 10°

2πρLR
2ṘULex −ρLπR

2
(

3
2
Ṙ2 +RR̈

)
× (cos (θi) ey + sin (θi) ex), θi = 45°

−ρLπR
2
(

3
2
Ṙ2 +RR̈

)
× (cos (θi) ey + sin (θi) ex), θi = 10°

Mazzocco (2018) [19] Ren (2020) [20] Present model

F
o
rc
es

FB
4
3
πR3 (ρL − ρV ) g 4

3
πR3 (ρL − ρV ) g 4

3
πR3 (ρL − ρV ) g

FC Eq. 4, rw = R/15 Eq. 4, rw = 0.2R Eq. 4, rw = R sin (θ)

FCP Eq. 5, Rc = 5R Eq. 5, Rc = 5R Eq. 5, Rc = R

FD CD = 1.13 24
Reb

(
1 + 0.104Re0.753b

) CD = 16
Reb

[
1 + 3

2

((
12
Reb

)n

+0.796n)1/n
]
, n = 0.65

CD = CD,U (1 + ∆CD)
CD,U by Eq. 8, ∆CD by Eq. 10

FL CL = 2.61
CL = 2.74

√
Sr

×
[
Re−2

b +
(
0.24

√
Sr

)4
] 1

4
CL by Shi et al. [27]

FAM

− 1
4
πρLK

4 (cos (θi) ey + sin (θi) ex),
sin (θi) = 0.2, cos (θi) = 1

−ρLπR
2
(

3
2
Ṙ2 +RR̈

)
× (cos (θi) ey + sin (θi) ex), θi = 15°

FAM,x

ρLVb
= CAM,x

[
3 Ṙ
R
Urel − ∂Ub

∂t

]
,

CAM,x = 0.636, FAM,y by Eq. 21.

Table 1: Summary of different force-balance mechanistic approaches.

2.8. Bubble Growth

The question of the bubble growth law during its lifetime including sliding is still
an open question that aims to cover various types of heat transfer mechanisms:

• Evaporation due to superheated liquid near the bubble base ;

• Evaporation of a liquid microlayer trapped between the base of the bubble and
the wall ;

• Condensation on top of the bubble when it reaches subcooled liquid ;
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• Convective heat transfer due to relative velocity between the bubble and the
liquid.

To our knowledge, authors that have been tackling this issue had to consider
empirical parameters when trying to account for all the above heat transfers. For
instance, Zhou [14] and Yoo [35] proposed growth models that consider the previously
mentioned mechanisms, introducing many empirical values were used such as:

• The ratio between the bubble projected area and the microlayer area ;

• The fraction of bubble area facing subcooling liquid ;

• Value of coefficients in the condensation law [36].

Moreover, those models postulate the existence of a microlayer contributing to
the growth while recent numerical and experimental investigations showed that the
bubble may as well grow with a microlayer or in a pure contact line regime depending
on the operating conditions [37, 22, 9].

In order to assess the force modeling proposed before, we choose a simpler growth
law derived from heat conduction in the superheated liquid layer [38].

R (t) = KJaw
√
ηLt (22)

where K is an adjustable constant around the unity depending on the boiling con-
ditions, often expressed as K = 2b√

π
. For pool boiling in an uniformly superheated

liquid, Plesset & Zwick [38] found b =
√
3, Forster & Zuber [39] obtained b = π/2

while Zuber [40] stated that values of b should be lying between 1 and
√
3. Similarly,

Bhati & Paruya [21] found 1 ≤ b ≤
√
5. We can thus observe that K = 2 is likely

to be an upper bound value for the growth constant. This value can logically be
lower in the case of subcooled flow boiling. For instance, later comparisons with
experimental measurements suggest values of K slightly below 1 for subcooled flow
boiling (Figure 8). Yoo et al. [35] chose b = 0.24 for the diffusive heat flux while
accounting for other heat transfer mechanisms.

This type of bubble growth has been widely used, and showed good agreement
with many experimental observations and is particularly valid for early growth stages
or small bubbles at high pressure [9, 38, 13].
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2.9. Liquid Velocity

To compute the liquid velocity and shear rate at bubble center height, we use
the wall law of Reichardt [41], which describes the velocity profile from the viscous
sublayer to the logarithmic region in a single-phase flow.

U+
L =

1

κ
ln
(
1 + κy+

)
+ c

(
1− e−y+/χ +

y+

χ
e−y+/3

)
(23)

UL =U+
L Uτ

with κ = 0.41, χ = 11 and c = 7.8.

∂U+
L

∂y+
=

1

1 + κy+
+
c

χ

(
e−y+/χ +

(
1− y+

3

)
e−y+/3

)
(24)

∂UL

∂y
=γ =

U2
τ

νL

∂U+
L

∂y+

The friction velocity is computed using Mac Adams correlation [42].

Uτ =

√
τw
νL

(25)

τw =0.018 Re−0.182
Dh

ρL ⟨UL⟩2 (26)

3. Departure by Sliding

3.1. Non-Dimensional Analysis

Now that the force balance has been established, we can write it parallel to the
wall before bubble departure by sliding, considering that the bubble is immobile i.e.
Ub ≪ UL and ∂Ub

∂t
≈ 0.

−πRσfC,x +
4

3
πR3 (ρL − ρV ) g +

1

2
CDρLπR

2U2
L

+
4

3
πR3ρL 3CAM,x

Ṙ

R
UL = 0 (27)

fC,x = 2.5
dθ

(π/2)2 − dθ2
sin (θ) cos (dθ)
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with fC,x → 0 if dθ → 0.
We can note that the departure by sliding is promoted by the Buoyancy, the Drag

and the Added Mass forces. Only the Capillary force keeps the bubble attached to
its nucleation site, which will be discussed later.

Re-writing Eq. 27 in non-dimensional form by dividing the LHS by the Added
Mass force yields:

−1

2

fC,x

K2CAM,x

1

Ca

PrL

Ja2w
+

1

3

1

K2CAM,x

Reb
Fr

PrL

Ja2w
+

1

8

CD

K2CAM,x

Reb
PrL

Ja2w
+ 1 = 0 (28)

where we have the following non-dimensional numbers:

Reb =
2RUL

νL
; Fr =

ρLU
2
L

(ρL − ρV ) gR
; We =

ρLU
2
LR

σ
; Eo =

(ρL − ρV ) gR
2

σ
;

Jaw =
(Tw − Tsat) ρLcP,L

ρV hLV
; PrL =

νL
ηL

;
Ṙ

UL

=
K2Ja2w
PrLReb

; Ca =
µLUL

σ

Eq. 28 exhibits terms that can be used to compare the magnitude of each detach-
ing forces. We can obtain the following conditions:

Added Mass greater than Drag if:
Ja2w
PrL

>
1

8

CD

CAM,x

1

K2
Reb (29)

Added Mass greater than Buoyancy if:
Ja2w
PrL

>
1

3

1

CAM,xK2

Reb
Fr

(30)

Drag greater than Buoyancy if: Reb >
16

3

1

CD

Eo

Ca
= Rec (31)

Those boundaries can be plotted on a
(
Ja2w/Pr ; Reb

)
map for a given fluid and

bubble diameter D = 2R, an example of such a map is presented on Figure 3a. This
allows to visualize the operating conditions under which each of the detaching forces
will be dominant. Logically, Buoyancy dominates for low Reb regimes contrary to
Drag. Added Mass dominates when values of Ja2w/PrL are high i.e. when bubble
grows rapidly.

3.1.1. Influence of Pressure

On Figure 3b, we draw the dominance map for 3 different pressures and associated
orders of magnitude of bubble departure diameter [43].
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The impact of pressure is mostly seen through the decrease of bubble departure
diameter. As pressure increases, Buoyancy force decreases while Drag and Added
Mass forces display much larger dominance zones. The competition between those
two terms mainly relies on the competition between liquid flow velocity and wall
superheat or heat flux.

3.1.2. Comparison between Fluids

On Figure 3c, we compare the dominance zones for R12 at 26 bar and water
at 155 bar. Moderately pressurized R12 (10 to 30 bar) has often been used as a
simulating fluid to mimic water in PWR since it has the same density ratio and
Weber number for instance.

Assuming that the conservation of Weber and Boiling numbers may lead to similar
bubble departure diameters, we can observe that the boundaries between the two
fluids are very close. This qualitatively indicates that R12 shall present bubble
departure by sliding mechanisms similar to what happens in PWR, which could
comfort the confidence one may have in extrapolating the observations done using
the simulating fluid to industrial applications.
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(a) Dominance map regarding departure by sliding. Boundaries
plotted for water at 1 bar and Dd = 0.5mm.
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Figure 3: Examples of qualitative analysis using the non-dimensional regime map.
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3.2. Application to Experimental Data

Now we want to apply this non-dimensional approach to experimental measure-
ment in order to determine the actual bubble departure by sliding regimes. We rely
on 7 experiments in which bubble departure diameters in vertical flow boiling were
measured. The operating conditions are gathered in Table 2.

If the value of ∆Tw is not available in the considered data-set, we estimate ∆Tw
using Frost & Dzakowic correlation [44].

∆Tw = PrL,sat

√
8σϕwTsat
λLρV hLV

(32)

Author Fluid Dh [mm] P [bar] GL [kg/m2/s] ∆TL [K] ϕw [kW/m2] ∆Tw [K] Dd [mm] (Nmes)

Thorncroft [48]
(1998)

FC-87 12.7 N.A. 0 - 319 0.99 - 3.27 2.83 - 11.8 0.54 - 6.89 0.094 - 0.237 (10)

Maity [7]
(2000)

Water 20 1.01 0 - 239.6 0.3 - 0.7 N.A. 5 - 5.9 0.788 - 1.71 (9)

Chen [51]
(2012)

Water 3.8 1.2 - 3.35 214 - 702 14.5 - 30.3 83.6 - 334 N.A. 0.549 - 2.255 (22)

Sugrue [23]
(2014)

Water 16.6 1.01 250 - 400 10 - 20 50 - 100 2 - 6 0.229 - 0.391 (16)

Guan [30]
(2014)

Water 9 1.01 87.3 - 319.2 8.5 - 10.5 68.2 - 104 4.5 - 8.5 0.62 - 1.85 (12)

Ren [20]
(2020)

Water 3.8 2 - 5.5 488.4 - 1654 28.7 - 51 160.7 - 643.2 N.A. 0.045 - 0.111 (42)

Kossolapov [9]
(2021)

Water 11.8 19.9 - 39.8 500 - 1500 10 178 - 613 10.0 - 16.2* 0.01 - 0.047 (11)

Table 2: Bubble departure diameters data sets in vertical flow boiling.
*∆Tw values were recalculated based on fitted growth profiles proposed by Kossolapov [9].
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To place experimental measurements on the non-dimensional map, we need a
bubble detachment diameter value Dd to plot the dominance zones. Since measured
Dd vary significantly in each experiment, we draw the boundaries for the maximum
and minimum values of Dd as shown on Figure 4a. The range of bubble diameter
is given in Table 2. If the considered data covers different pressures, boundaries for
each pressure are plotted to exhibit its impact (Figures 4d, 4e and 4f). We chose a
value of K = 1 to draw the boundaries.

The Figure 4 shows that for most of the low pressure experiments, the detaching
forces are the Added Mass and the Buoyancy forces. Smaller bubbles are mainly
detached under the effect of the Added Mass force (Figures 4c, 4d and 4e). When
the bubbles detach at higher diameters, the impact of the Buoyancy force naturally
increases and is comparable to the Added Mass force (Figures 4a and 4b).

When the pressure increases, we observe that the experimental measurements
gradually move towards the Drag dominant zone as seen on Figures 4e and 4f. This
main difference in the dynamic regime when bubble departs by sliding arises from
multiple effects:

• The decrease of ρL/ρV with pressure, thus reducing Jaw and the impact of the
detaching Added Mass term ;

• The higher liquid mass fluxes in Kossolapov experiments, increasing the impact
of the Drag ;

• The decrease of Dd with pressure, reducing the magnitude of Buoyancy.

However, we see that some measurements lie close to the Added Mass / Drag
boundary (Figure 4f), indicating that the Added Mass force still plays a significant
role for bubble detachment. This means that regardless of the operating pressure, the
detaching term associated to the coupling between bubble growth and outer liquid
flow should not be neglected in the force balance (Eq. 20).
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Figure 4: Dominance maps for each water data sets from Table 2.
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3.3. Departure Diameter Prediction

3.3.1. About the Use of Empiricism

As previously mentioned, the case of bubble detachment in vertical flow boiling
is particular since only one force maintains the bubble attached to its nucleation
site: the Capillary force (Eq. 4). Its expression depends on the contact angle θ, the
angle half-hysteresis dθ and the bubble foot radius rw (or ratio to bubble diameter
rw/R) and is thus very sensitive to those values. Paradoxically, those terms are
among the least precisely known due to the difficulty of measurement and associated
uncertainties. For instance, conducting precise evaluations of the contact angle near
the bubble base through optical techniques can be challenging because of the strong
temperature gradients close to the heated surface.

Consequently, empirical choices have to be made in order to set a value to those
parameters, often by relying on data-fitting or approximate measurements in other
conditions. For instance, contact angles are often taken as arbitrary average values
[20] or measurements in room conditions [23] and applied over a whole set of experi-
ments. This is questionable since contact angle is unlikely to remain unchanged over
different operating conditions and surfaces with varying roughness and properties
[45].

However, no better information except those given by the authors can be used
to evaluate the Capillary force since no generic model exists to compute the contact
angle and hysteresis. In this work, admitting a significant uncertainty (typically 5°,
as in Guan et al. [30]), we will use the following values for the contact angles :

• θu = 25.3° and θd = 6.6° for Thorncroft data (measured values for FC-87 on
nichrome [16]) ;

• θu = 50° and θd = 40° for Maity data (measured average contact angles for
each bubble during its lifetime [7]) ;

• θu = 130° and θd = 65° for Chen data (chosen values in their study following
measurements for water on stainless steel at high temperature by Kandlikar et
al. [46]) ;

• θu = 91° and θd = 8° for Sugrue data (measured values at room temperature
[18]) ;

• θu = 75° and θd = 30° for Guan data (measured average value through experi-
mental visualizations [30]) ;

• θu = 45° and θd = 36° for Ren data (chosen values in their study [20]) ;
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• θ = 80° for Kossolapov data (typical contact angle for water on ITO [9]) and
dθ = 0.5° assuming that the very small bubbles at high pressure are nearly not
tilted.

Similarly, the bubble foot radius rw is often empirically assumed to be either con-
stant [13] proportional to the bubble radius [23, 19] or to follow a linear or logarithmic
law of R [14, 30]. That is why we chose to use the truncated sphere hypothesis (Eq.
2) to compute rw using R and θ.

Finally, we would like to acknowledge that the empiricism to evaluate those pa-
rameters represents one of the biggest flaws of the force-balance approach. Indeed,
such a model aims to detect small sign changes in a sum of a few µN of forces that
are decades larger as pointed out by Bucci et al. [47]. Mechanistic models are thus
strongly sensitive to any extra parameter included in the modeling of the forces.

3.3.2. Growth Constant Value

Since the value K ≈ 2 represents an upper bound for the growth constant in a
quiescent uniformly superheated liquid (Subsection 2.8) and that values below 1 can
be a better fit for bubble growth in subcooled flow boiling (Figure 8), we choose the
value proposed by Yoo et al. growth model [35] for the diffusive heat flux from the
superheated liquid layer, validated with different working fluids in subcooled boiling:

K =
2b√
π
, b = 0.24 (33)

3.3.3. Predictions

We consider the non-dimensional force balance before departure.

CAM,xK
2Ja

2
w

PrL
+

1

3

Reb
Fr

+
1

8
CDReb =

1

2

fC,x

Ca
(34)

Since we only have the capillary term hindering departure as a first approach, we
can suppose that departure is reached when:

CAM,xK
2Ja

2
w

PrL
+

1

3

Reb
Fr

+
1

8
CDReb >

1

2

fC,x

Ca
(35)

which is similar to considering that the other forces overcome the Capillary force.
On Figure 5, we show the predictions obtained with the proposed modeling and

those obtained with Mazzocco’s recent model [19].
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Figure 5: Predicted bubble departure diameters

The model have an acceptable trend on some experimental sets, but strong over-
estimations occur on the cases of Sugrue. Moreover, we observe significant underes-
timations on the data of Ren at 2 bar and Thorncroft.

Mazzocco’s model provides a good accuracy on the data of Sugrue, Guan, Maity
and Ren (2 bar). However, we observe very large overestimation over Thorncroft’s
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measurements and significant underestimation on Chen, Ren (3 and 5 bar) and Kos-
solapov measurements.

3.4. Discussion and accounting for parameters uncertainties

The aforementioned errors observed for the proposed model may originate from
various reasons:

• The contact angle proposed for Sugrue cases is high with a large hysteresis,
suggesting strongly deformed and flattened bubbles under the truncated sphere
hypothesis. Based on images from Sugrue’s work [18], a comparison between
a real bubble with the assumed shape is presented on Figure 6. This shows
a huge difference which indicates that the contact angle and hysteresis values
may be overestimated. Using the available images, the ratio of the bubble
diameter to the apparent bubble foot would lead to an average contact angle
θ ≈ 20° for a truncated sphere. Noting that a larger inclination is observed
for the bubbles under higher mass fluxes leads us to suppose a value dθ ≈ 15°.
This represent a similar inclination to contact angle ratio (dθ/θ) compared to
the initially proposed values. The resulting new shape is also presented on
Figure 6 and seems to better represent the actual bubble.

• For cases where limited under and overestimation is observed, we may allow
to account for an uncertainty as high as 5° for the average contact angle θ and
half-hysteresis dθ.

• As mentioned earlier, applying the same contact angle and hysteresis over a
wide range of measurements is a strong assumption, especially for cases where
different pressures and bubble diameter variations are observed. Thus, we may
slightly distinguish the applied values of θ and dθ for different pressures within
a given experiment, keeping a change no larger than 5°.

• Kossolapov cases at GL = 500 kg/m2/s are better predicted. Cases under
higher mass fluxes (1000 and 1500 kg/m2/s) present underestimation that could
come from the value of dθ. At such mass fluxes, the Weber number can be up
to a decade higher and bubbles may thus accept a larger inclination before
detachment.

• Cases of Ren and Chen rely on chosen values for θ and dθ and not on measured
ones. They are therefore subject to strong uncertainties. We can note that the
values for Chen cases are significantly high.
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• The proposed growth law is still rather simple and may miss significant in-
formation, especially regarding bubble size and fluid properties such as the
Prandtl number.

• Errors on Thorncroft cases may be linked to uncertainties regarding FC-87
properties. Indeed, we use the values given at Tsat = 29° at 1 bar in his work
[48]. However, the saturation temperature indicated in his test matrix is close
to 40° which means that measurements were conducted at a higher pressure,
for which we do not have FC-87 properties.

Figure 6: Initially assumed, real and reassessed bubble shape for Sugrue cases (picture adapted
from [18]).

Therefore, using modified values of θ and dθ among experimental data sets with
no more than a 5° change (except for Sugrue cases reassessed values) leads to pre-
dictions on Figure 7.

The predictive capacity of the model is significantly enhanced, especially on Sug-
rue’s cases which tends to indicate that the contact angle reassessment was justified
under the truncated sphere hypothesis. Table 7c summarizes the average errors
obtained with the present model and Mazzoco’s one.

The proposed model achieves an overall better predictive capability even when
excluding measurements from Thorncroft on which Mazzocco’s model strongly over-
estimates the departure diameter. Mazzocco’s model is still better on Sugrue and
Guan cases since it was built and validated using those measurements. It better
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Author θ [°] dθ [°]

Thorncroft 21 14

Maity 45 10

Chen 92.5 27.5

Sugrue 20 15

Guan 47.5 17.5

Ren (2 bar) 45.5 7.5

Ren (3 bar) 37.5 3.5

Ren (5 bar) 35.5 3.5

Koss. (500 kg/m2/s) 80 0.5

Koss. (1000 kg/m2/s) 80 1

Koss. (1500 kg/m2/s) 80 1.5

(a) Modified contact angle and
hysteresis values.
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(b) Predicted bubble departure diameters.

Author Mazzocco Present model

Thorncroft 4874% 46.2%

Maity 39.7% 13.3%

Chen 83.8% 73.6%

Sugrue 9.73% 21%

Guan 25.5% 44.5%

Ren 40.32% 47%

Kossolapov 73.95% 24.2%

Total
(without Thorncroft)

46.16% 43.3%

(c) Proposed model performance while
accounting for contact angle uncertainties and
error comparisons with Mazzocco et al. model.

Figure 7: Errors achieved by the model and Mazzoco et al. model.
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predicts results from Ren but only for the 2 bar cases while it underestimates the
departure diameter for higher pressures. Those results are a coupled effect of his
optimized growth law along with the imposed value of rw/R and the use of the
inclination angle to hinder departure as mentioned in 2.6.

The approach demonstrated the importance and the strong influence of the con-
tact angle and hysteresis. A small change of their value (staying in the uncertainty
range of 5°) allowed to reach reasonable predictions over a large range of bubble de-
parture diameters with the model of this paper, using a reduced number of empirical
parameters.

4. Sliding phase

4.1. Modeling

After departure, bubbles slide over a distance lsl which scales the impact of the
sliding phenomenon over the wall heat transfer. Achieving good prediction of bubble
sliding velocity is then important if one wishes to correctly quantify its impact.

Following the force balance framework presented in Section 2, we can write New-
ton’s second law parallel to the wall for the sliding bubble.

ρV
d(VbUb)

dt
=− πRσfC,x +

4

3
πR3 (ρL − ρV ) g +

1

2
CDρLπR

2U2
L

+
4

3
πR3ρL

[
3CAM,x

Ṙ

R
Urel − CAM,x

dUb

dt

]
(36)

This equation can be re-written to express the bubble acceleration.

(
1 +

ρL
ρV
CAM,x

)
dUb

dt
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ρL
ρV

− 1

)
g +

3

8

CD

R

ρL
ρV

(UL − Ub) |UL − Ub|

+ 3
Ṙ

R

[
CAM,x

ρL
ρV

(UL − Ub)− Ub

]
− 3

4

σ

ρV

fC,x

R2
(37)

Then, we numerically solve this equation from the moment when R ≥ Rd using
a first order Euler scheme for a duration close to the experimental sliding time. To
assess the accuracy of Eq. 37 and achieve separate-effect validation, we modify the
growth constant K in order to roughly match experimental radius measurements.
The goal is to verify if the force balance allows a good prediction of bubble velocity
provided a correct bubble growth. Next sections compare obtained results against
low and high pressure data.
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4.2. Low Pressure Sliding

Maity [7] provided simultaneous measurements of bubble radius and velocity over
time in vertical boiling for three liquid mass fluxes near saturation conditions. The
contact angles were kept the same as in 3.3 since Maity provided average values over
the bubble lifetime.

Results are displayed on Figure 8. The model seems to fairly good predict bubble
sliding velocity for the 3 cases. The moment of departure is a bit underestimated as
previously observed (Figure 5).

The biggest discrepancy is observed for the case at GL = 143.8 kg/m2/s. The
slope of the velocity profile is close to the experiments, but the bubble reaches a nearly
constant acceleration too rapidly which yields an approximately constant overesti-
mation of 0.1 m/s.

The case at GL = 239.6 kg/m2/s is well predicted regarding the velocity. How-
ever, the growth profile was difficult to match since measurements exhibit significant
changes in growth regime after departure, which is probably due to the bubble being
large enough to be impacted by the bulk flow and recondensation. A finer model for
bubble growth could be of interest here.

We can note that values of K between 0.5 and 1 were used to better fit the bubble
radius time profile.
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4.3. High Pressure Sliding

In his work, Kossolapov [9] conducted measurements of radius and sliding length
over thousands of individual bubbles and then provided the associated statistical
distributions. To compare our model with his measurements, we took the upper and
lower bounds of R and lsl over time and plotted the associated bands of measured
values as shown on Figure 9.

Comparisons were done for cases at 20 bar and 40 bar and 3 different values of
GL. The value of dθ for the simulations was kept really small (2° at 20 bar and 0.5°
at 40 bar) since bubble tilt is supposed to reduce during sliding because the relative
velocity regarding the liquid flow is diminishing. Moreover, higher pressure means
smaller bubbles that are even more unlikely to present a significant contact angle
hysteresis. We also want to mention that neglecting the capillary term in Eq. 37 had
a minor impact over the results except that the bubble accelerates a little bit faster.

The obtained results are in good agreement with the sliding length profile vs.
time, which means bubble sliding velocity is well predicted for those cases.

Once the estimation of ∆Tw using Eq. 32 is corrected as mentioned in 3.2, values
of K between 0.8 and 1.3 reasonably fits the bubble radius measurements.
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4.4. Comparison of Forces in Sliding Stage

In order to identify the main accelerating forces, we compare the amplitude of
the forces during the sliding phase for one low pressure case of Maity and one high
pressure case of Kossolapov (Figure 10). It appears that at high pressure and liquid
velocity, the Drag force is the main driving force and stays positive since the bubble
do not slide faster than the rapid surrounding liquid (reaching approximately 80%
of the local liquid velocity). On the other hand, larger bubbles observed at low
pressure and liquid velocity are accelerated by Buoyancy due to their larger volume,
with a nearly negligible Drag force. In both cases, the Added Mass force can not be
neglected especially when bubble velocity rises by limiting its acceleration induced by
the larger force (Buoyancy or Drag in the presented cases). This further emphasizes
the importance of a proper derivation of the Added Mass force regardless of the
boiling conditions. The Capillary force seems to be a limited but constant slowing
term in both cases. Finally, the amplitude of the forces involved can span from
roughly 10×10−4 N at low pressure (much greater than the rate of change of bubble
momentum laying around 10−9 N) down to a few nN at higher pressure (same order
of magnitude as the rate of change of bubble momentum), especially due to the
bubble size.

This comparison highlights the fact that the proposed model is able to represent
different forces hierarchy depending on the flow conditions and to acceptably predict
the associated bubble sliding velocity, which is an encouraging point regarding its
generality.
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5. Conclusion

In this work, we proposed a new expression of the force balance for a single
bubble in a vertical upward boiling flow, including updated expressions for the drag
and added mass forces. This force balance was then used to study bubble depar-
ture by sliding and compared with bubble departure diameter and sliding velocity
measurements. The main highlights of this study are:

• A global force balance that avoids including extra empirical parameters. We
notably get rid of empirical choices regarding bubble foot radius and bubble
radius of curvature at its foot.

• The use of a recent formulation to compute the Drag coefficient thanks to DNS
results of Shi et al. [27].

• Reassessed computation of the Added Mass force and associated coefficients
from the expression of the liquid kinetic energy proposed by Van Der Geld [33],
which lead to a unified calculation for a truncated spherical bubble growing on
a wall in a flow.

• A non dimensional approach leading to force regime maps to qualitatively de-
termine the dynamic regime in which bubbles are departing from the nucleation
site. It shows that the detaching Added Mass term due to external liquid flow
is rarely negligible and often dominates at low pressure. Increasing pressure
mostly leads to Drag dominant regimes.

• Bubble departure diameter predictions are achieved with a reasonable accuracy
over a large range of measured values from 7 data sets. This could be reached
by accepting an uncertainty of 5° for the values of the contact angle θ and
half-hysteresis dθ to which the model was sensitive. This indicates that using
fixed values for large data sets seems incorrect and that extra empiricism may
not be needed if a proper modeling of those parameters was achieved. For
the estimation of the Added Mass force, the model of Yoo et al. [35] for the
diffusive heat flux from the superheated liquid has been chosen to estimate the
bubble growth rate.

• Bubble sliding velocity simulations showed a good agreement with experimental
observations at low pressure provided a correct bubble growth profile. The
agreement is also reasonable at high pressure.
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• Comparison of forces at stake showed that Buoyancy and Drag forces are re-
spectively mainly responsible for bubble acceleration at low and high pressure.
As for the departure, Added Mass is not negligible regardless of the flow con-
ditions.

• The final formulation of the model requires the knowledge of three parame-
ters: the bubble growth rate K, the static contact angle θ and the contact
angle hysteresis dθ. To remain physically consistent, those should not be cho-
sen at random but rather rely on values following experimental or theoretical
approaches corresponding the aimed physical conditions.

The limitations of the developed approach lie mainly in its sensitivity to the value
taken for the growth constant K (Eq. 33). To avoid a fitting of the experimental
values, the modeling of the bubble growth could be enriched by a clean modeling
of the bubble growth including effects such as condensation, microlayer evaporation
and impact of the external liquid flow. Existing models rely on empirical values
which thus reduces their general applicability outside of their validation range. For
instance, studies conducted by Zhou et al. [14] and Yoo et al. [35] could be used
by enriching their modeling with finer results to get rid of data fitting. DNS results
such as those regarding bubble growth in a flowing superheated or subcooled liquid
by Legendre et al. [49] could be of interest in that prospect.

Finally, the precise estimation of the contact angle and hysteresis remains a criti-
cal parameter to predict departure by sliding as demonstrated throughout this study.
Local measurements of those values and their evolution with operating conditions
would be a very valuable information in that regard. The article of Song & Fan [45]
that sums up existing modeling and experimental measurements provides a good
overview of the problem and identifies the associated challenges that are still to be
tackled.
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