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An analysis of bubble sliding in vertical flow boiling is conducted using a reworked force balance including a recent formulation of the drag coefficient along with a proper derivation of added mass coefficients. The modeling strategy was further performed to avoid the use of too many empirical parameters.

This offers the possibility to develop a non-dimensional approach that exhibits physical ranges of dominance for the detaching forces. Applied to experimental measurements, it shows that the main forces triggering departure by sliding at low and high pressures are respectively Added Mass and Drag forces. Predictions of bubble departure diameter using the force balance achieves good agreement over 122 measurements from several experimental data sets.

Bubble sliding measurements from the literature at low and high pressures permitted to validate the model which was able to predict bubble velocity provided the use of a correct bubble growth rate.

Introduction

Studying the local physics of boiling two-phase flows has been a primal field of research for decades both due to its intrinsically complicated nature and its huge importance for many industrial fields such as:

• Nuclear Pressurized Water Reactors (PWR) ;

• Small Modular Reactors (SMR) passive cooling systems ;

• Two-phase flow loops for electronic devices cooling systems including space applications (e.g. satellites).

This has led to many approaches to investigate and model wall boiling in multiphase flows. Notably, Computational Multi-Fluid Dynamics codes mostly rely on a so-called Heat Flux Partitioning (HFP) model [START_REF] Guelfi | NEPTUNE: A New Software Platform for Advanced Nuclear Thermal Hydraulics[END_REF] which goal is to split the applied wall heat flux between different physical heat transfer phenomena (Eq. 1) such as liquid convection (c, L), phase-change (vap), transient conduction (tc), etc.

ϕ w = ϕ c,L + ϕ tc + ϕ vap (1) 
Many HFP models have been developed over the years, starting with Kurul & Podowski [START_REF] Kurul | Multidimensional Effects In Forced Convection Subcooled Boiling[END_REF] who validated their model against vertical flow boiling measurements. Later, Basu et al. [START_REF] Basu | Wall Heat Flux Partitioning During Subcooled Flow Boiling: Part 1-Model Development[END_REF] developed a model including bubble sliding and renewed closure laws based on their own experimental results of vertical flow boiling at low pressure and mass fluxes. More recently, Gilman & Baglietto [START_REF] Gilman | A self-consistent, physics-based boiling heat transfer modeling framework for use in computational fluid dynamics[END_REF] also proposed new formulations for the HFP compared with measurements in vertical flow boiling of water. Those models constitute pivotal elements for bubble dynamics in multiphase flows simulations and are often under scrutiny as performed by Bhati et al. [START_REF] Bhati | Numerical simulation of bubble dynamics in subcooled flow boiling in a channel[END_REF] who studied axial evolution of boiling parameters in a vertical channel.

Upgrades of HFP models always aim to consider new heat transfer mechanisms or better closure laws for parameters like Nucleation Site Density or Bubble Departure Frequency or Diameter. Among those models, bubble dynamics is of prior interest for predicting bubble departure diameter, sliding length, and lift-off diameter. Those parameters play a significant role in the estimation of the transient conduction heat flux ϕ tc and boiling heat flux ϕ vap . Since transient conduction is associated to bubble movement disrupting the liquid boundary layer, it is directly depending on the value of the bubble diameter and its sliding length.

Many experimental investigations have been conducted to further understand the behavior of nucleated bubbles in boiling flows. In the case of vertical flow boiling, a sliding phase during which the bubble remains attached to the wall is quasisystematically observed both at low pressure [START_REF] Situ | Bubble lift-off size in forced convective subcooled boiling flow[END_REF][START_REF] Maity | Effect of Velocity and Gravity on Bubble Dynamics[END_REF][START_REF] Rousselet | Experimental study of bubble dynamics during nucleate flow boiling on horizontal and vertical surfaces[END_REF] and high pressure [START_REF] Kossolapov | Experimental Investigation of Subcooled Flow Boiling and CHF at Prototypical Pressures of Light Water Reactors[END_REF]. The bubble sliding process has also been thermally studied by Estrada-Perez et al. [START_REF] Estrada-Pérez | Time-resolved measurements of liquid-vapor thermal interactions throughout the full life-cycle of sliding bubbles at subcooled flow boiling conditions[END_REF] who observed the significant impact of sliding bubbles footprints on the heat flux. Richenderfer et al. [START_REF] Richenderfer | Investigation of subcooled flow boiling and CHF using high-resolution diagnostics[END_REF] and Kossolapov [9] have also investigated the sliding of boiling bubbles and measured the magnitude of the transient heat transfer induced by the disruption of the liquid thermal boundary layer in the bubble's wake.

Thus, it appears important to properly model boiling bubbles dynamics to distinguish the different phases of the bubble lifetime:

• Static growth on the wall before departure by sliding at radius R d ;

• Sliding on the wall over a length l sl before lifting off towards the bulk flow at radius R lo .

First approaches consisted of experimental-based correlations. For instance, we can refer to the work of Unal [START_REF] Unal | Maximum bubble diameter, maximum bubble-growth time and bubble-growth rate during the subcooled nucleate flow boiling of water up to 17.7 MN/m2[END_REF] or Situ et al. [START_REF] Situ | Bubble lift-off size in forced convective subcooled boiling flow[END_REF] for the lift-off / maximum bubble diameter D lo , to Maity [START_REF] Maity | Effect of Velocity and Gravity on Bubble Dynamics[END_REF] or Basu et al. [START_REF] Basu | Wall Heat Flux Partitioning During Subcooled Flow Boiling: Part 1-Model Development[END_REF] for the sliding length l sl and to Klausner et al. [START_REF] Klausner | Vapor bubble departure in forced convection boiling[END_REF], Maity [START_REF] Maity | Effect of Velocity and Gravity on Bubble Dynamics[END_REF] or more recently Zhou et al. [START_REF] Zhou | Experimental investigation on bubble contact diameter and bubble departure diameter in horizontal subcooled flow boiling[END_REF] for the departure diameter D d . Those models mostly rely either on pure data regression or semi-analytic approaches.

However, explicit correlations include limited range of application depending on the flow conditions over which they have been established. To overcome this drawback and to obtain more generalized models, researchers have developed Mechanistic Models based on a force-balance approach to depict the external efforts experienced by the growing bubble. The goal is to compute the sum of the forces applied to the bubble over its growing time and to detect departure and lift-off events using criteria such as a change in the force balance sign.

One of the firstly introduced model was proposed by Klausner et al. in 1993 [START_REF] Klausner | Vapor bubble departure in forced convection boiling[END_REF] validated on horizontal flow boiling of refrigerant. It was followed by several subsequent works among which Van Helden et al. [START_REF] Van Helden | Forces on bubbles growing and detaching in flow along a vertical wall[END_REF] who assessed forces coefficients using injected air bubbled in a vertical flow or Thorncroft [START_REF] Thorncroft | Bubble forces and detachment models[END_REF] who compared his predictions with vertical and horizontal flow boiling of R113. Later, Duhar & Colin [START_REF] Duhar | Dynamics of bubble growth and detachment in a viscous shear flow[END_REF] validated a force balance on bubbles created by air injection in a shear flow. Sugrue et al. [START_REF] Sugrue | An experimental study of bubble departure diameter in subcooled flow boiling including the effects of orientation angle, subcooling, mass flux, heat flux, and pressure[END_REF] studied water flow boiling with varying surface orientation with their results used by Mazzocco et al. [START_REF] Mazzocco | A reassessed model for mechanistic prediction of bubble departure and lift off diameters[END_REF] who validated his model against several low pressure measurements from literature. For more recent works, we can mention Ren et al. [START_REF] Ren | Development of force balance model for prediction of bubble departure diameter and lift-off diameter in subcooled flow boiling[END_REF] who used own measurements of vertical flow boiling of water up to 5 bar or Bhati & Paruya [START_REF] Bhati | Numerical simulation of bubble dynamics in pool boiling at heated surface[END_REF] who numerically investigated bubble growth, shape and departure in pool boiling. Each of those models proposed different modifications to the force balance depending on the aimed experimental conditions.

Unfortunately, all the aforementioned works were validated using low pressure experiments due to the lack of pressurized measurements in the literature. In addition, the common use of several empirical parameters makes it difficult to reach a general validation of those models. The present study, anchored in this framework, aims to propose an update of the bubble force balance for vertical boiling flows with a reduced empiricism and to study the sliding phenomenon by conducting a non-dimensional analysis of the departure by sliding as well as predicting the subsequent departure diameter and sliding velocity of the bubble. By focusing on the force balance parallel to the wall, the approach is validated against measurements in various flow conditions, including pressures up to 40 bar thanks to the recent work of Kossolapov [9]. This ensures an encouraging generality of the proposed approach compared to previous models.

Force Balance Modeling

General Considerations

When trying to derive the force balance over a bubble, the first step consists of splitting the whole effort experienced by the bubble between different contributions depending on their nature. In our case, we focus on a bubble growing on a vertical wall and facing an upward flow as depicted in Figure 1.

The static forces are:

• The Buoyancy force F B , including Archimedes force and the weight of the bubble ;

• The Capillary or Surface Tension force F C ;

• The Contact Pressure force F CP .

The hydrodynamic forces are:

• The Drag and Lift forces F D and F L ;

• The Inertia force, including Added-Mass and Tchen force F I . Regarding the bubble shape, we consider a quasi-spherical bubble of radius R with a circular base of radius r w . Depending on the experimental conditions (fluid wettability, pressure, heat flux, liquid temperature), a liquid microlayer can be formed between the wall and the vapor bubble. It occurs when the bubble growth velocity is larger than the dewetting velocity of the liquid on the wall [START_REF] Bures | On the modelling of the transition between contact-line and microlayer evaporation regimes in nucleate boiling[END_REF]. Recent experiments of Kossolapov [START_REF] Kossolapov | Experimental Investigation of Subcooled Flow Boiling and CHF at Prototypical Pressures of Light Water Reactors[END_REF] have shown that this microlayer also exists in vertical flow boiling of water at atmospheric pressure, but disappears at pressures larger than 3 bars. In the present analysis microlayer may be present or not. In case of a microlayer, the bubble base is taken above the microlayer. The control volume used for the evaluation of the force balance is plotted in dashed line in Figure 1. The contact angles on both sides of the bubble are macroscopic contact angles outside the microregion or the microlayer. The resulting downstream (receding) and upstream (advancing) contact angles are θ d = θdθ and θ u = θ + dθ. If the bubble has a shape close to a truncated sphere, we can approximate the bubble foot radius as:

θ + dθ θ -dθ × O R d w dθ F CP F L F D U b F C F C F B F AM g U L e y e x
r w ≈ R sin θ u + θ d 2 = R sin (θ) (2) 
The choice of using the average contact angle θ instead of the average of Rsin (θ u ) and Rsin (θ d ) avoids to have r w → 0 when dθ → 90°. We suppose V b ≈ 4 3 πR 3 for the bubble volume.

Buoyancy Force

The Buoyancy force results from the weight of the bubble and the integration of the static liquid pressure over its surface which naturally yields:

F B = V b (ρ V -ρ L ) g = 4 3 πR 3 (ρ L -ρ V ) g e x (3) 

Capillary Force

The most generally accepted expression of the Capillary force has been derived by Klausner et al. [START_REF] Klausner | Vapor bubble departure in forced convection boiling[END_REF] by integrating the tangential effort at the triple contact line over the bubble foot radius while assuming an evolution of the contact angle from θ d to θ u as a polynomial expression of degree 3. This results in:

F C = -πRσ 2.5 r w R dθ π 2 
2dθ 2 sin (θ) cos (dθ) e x -πRσ 2 r w R sin (θ) sin (dθ) dθ e y (4)

Contact Pressure Force

The Contact Pressure force is linked to the overpressure inside the bubble. Combined with the Archimedes force, it can be expressed versus the difference of liquid and vapor pressure at the bubble foot using Laplace's equation as:

F CP ≈ 2σ R c πr 2 w e y ≈ πRσ 2 sin (θ) 2 e y (5) 
Here, R c is the curvature radius of the bubble which is often assumed to be equal to 5R [START_REF] Klausner | Vapor bubble departure in forced convection boiling[END_REF][START_REF] Sugrue | A modified force-balance model for prediction of bubble departure diameter in subcooled flow boiling[END_REF][START_REF] Mazzocco | A reassessed model for mechanistic prediction of bubble departure and lift off diameters[END_REF] without other explanation than avoiding an overestimation of the Contact Pressure force.

Drag and Lift Forces

The external liquid flow over the bubble induces the well-known Drag and Lift forces, acting respectively in the flow direction and perpendicular to the flow. They are usually expressed using associated coefficients C D and C L defined by:

F D = 1 2 C D ρ L S p U L -U b U L -U b (6) 
F L = 1 2 C L ρ L S p U L -U b 2 e y (7) 
with S p = πR 2 the projected area of the bubble in the direction of the flow.

Traditional approaches rely on expressions of the Drag force for a bubble in an infinite medium based on numerical correlations as proposed by Mei & Klausner [START_REF] Mei | Unsteady force on a spherical bubble at finite Reynolds number with small fluctuations in the free-stream velocity[END_REF]:

C D,U = 16 Re b 1 + 8 Re b + 1 2 1 + 3.315 √ Re b -1 (8) 
with

Re b = |U rel (R)| 2R ν L
the bubble Reynolds number and

U rel (R) = U L (R) -U b the local relative velocity.
Results from DNS conducted by Legendre et al. [START_REF] Legendre | The lift force on a spherical bubble in a viscous linear shear flow[END_REF] proposed expressions of the Drag and Lift forces for a hemispherical bubble on a wall facing a viscous shear flow. Earlier, Legendre & Magnaudet [START_REF] Legendre | The lift force on a spherical bubble in a viscous linear shear flow[END_REF] analytically derived coefficients to transpose Drag and Lift expressions for a particle to the case of a bubble. This was applied by Mazzocco et al. [START_REF] Mazzocco | A reassessed model for mechanistic prediction of bubble departure and lift off diameters[END_REF] to the Drag for a solid particle near a wall in a shear flow proposed by Zeng et al. [START_REF] Zeng | Forces on a finite-sized particle located close to a wall in a linear shear flow[END_REF].

In this work, we propose to rely on the recent work of Shi et al. [START_REF] Shi | Drag and lift forces on a rigid sphere immersed in a wall-bounded linear shear flow[END_REF] who conducted DNS of a shear flow over a spherical bubble of constant radius close to a wall for bubble Reynolds number between 10 -1 and 10 3 and shear rates between -0.5 and 0.5.

They computed the resulting Drag and Lift coefficients for each simulations and proposed correlations fitting their numerical results. The total Drag coefficient is expressed as a correction of the Drag coefficient for a bubble in an unbounded uniform flow C D,U . The total drag is given by:

C D = (1 + ∆C D ) C D,U (9) 
where ∆C D accounts for both the effect of the shear flow and the wall vicinity.

To cover the whole range of bubble Reynolds numbers, correlations at low and high Re b are smoothly connected using an exponential term.

∆C D = ∆C D,Re b =O(1) + 1 -e -0.07Re b ∆C D,Re b ≫1 (10) 
Each of those corrections is computed depending on Re b , the non-dimensional shear rate Sr, the non dimensional wall distance L R = y R (L R = 1 being a spherical bubble laying on a wall) and non-dimensional viscous (or Stokes) length

L u = y ν L /|U rel | . ∆C D,Re b =O(1) = 1 + tanh 0.012Re 0.8 b + tanh 0.07Re 0.8 b 2 1 + 0.16L u (L u + 4) × 3 8 L -1 R + 3 64 L -4 R 1 - 3 8 L -1 R - 3 64 L -4 R -1 - 1 16 L -2 R + 3 8 L -3 R Sr (11) ∆C D,Re b ≫1 = 0.47L -4 R + 0.0055L -6 R Re 3/4 b + 0.002 |Sr| 1.9 Re b + 0.05L -7/2 R SrRe 1/3 b (12) 
Figure 2 shows the evolution of the Drag correction ∆C D against the bubble Reynolds number for different distances to the wall L R and two values of Sr. We can see that as the distance between the wall and the bubble increases the Drag correction logically approaches zero and that increasing the shear rate Sr increases ∆C D for higher values of Re b .

Shi et al. [START_REF] Shi | Drag and lift forces on a rigid sphere immersed in a wall-bounded linear shear flow[END_REF] conducted DNS for wall distances down to L R = 1.5. However, Scheiff et al. [START_REF] Scheiff | Experimental study of steady and transient subcooled flow boiling[END_REF] compared the values obtained for L R = 1 with measured Drag coefficients of bubbles sliding on a wall and observed a good agreement, which legitimates the use of this new Drag correlation by extending its application to the case of a bubble laying on a wall and using the uniform drag coefficient of Eq. 8.

Since this work focuses on the bubble sliding along the wall, the total force balance will be studied along the x axis, parallel to the wall. Thus, we do not detail the whole expression of Shi et al. for the lift coefficient C L and refer the reader to their original work [START_REF] Shi | Drag and lift forces on a rigid sphere immersed in a wall-bounded linear shear flow[END_REF].

Inertia Force

The Inertia force originates from various effects (bubble growth, freestream and bubble acceleration, etc.) that includes both Added Mass and Tchen forces and is expressed as [START_REF] Magnaudet | The Motion of High-Reynolds-Number Bubbles in Inhomogeneous Flows[END_REF]: 

× R y = R × L R ν L |U rel | = y L u U L (a)
F I = ρ L V b ∂U L ∂t + ∇ U L • U L Liquid inertia or Tchen force + d dt ρ L C AM V b U L -U b Added Mass force F AM (13) 
Since we consider a steady and quasi-parallel liquid flow, the Tchen force is equal to zero.

Former Approaches

In previous Mechanistic Models, the derivation of the Added Mass force was conducted with different approaches. In particular, some authors chose to rely on the Rayleigh-Plesset Equation for a growing hemispherical bubble in a quiescent flow, obtaining a reaction force from the liquid perpendicularly to the wall.

F AM,RP E = -ρ L πR 2 R R + 3 2 Ṙ2 e y (14) 
Then, assuming a bubble inclination angle θ i , this force was projected along the x axis to obtain an Added Mass force parallel to the wall that hinders departure. The inclination angle value is often empiricial and used for data fitting [START_REF] Klausner | Vapor bubble departure in forced convection boiling[END_REF][START_REF] Sugrue | A modified force-balance model for prediction of bubble departure diameter in subcooled flow boiling[END_REF][START_REF] Mazzocco | A reassessed model for mechanistic prediction of bubble departure and lift off diameters[END_REF][START_REF] Ren | Development of force balance model for prediction of bubble departure diameter and lift-off diameter in subcooled flow boiling[END_REF].

F AM,RP E = -ρ L πR 2 R R + 3 2 Ṙ2 (sin (θ i ) e x + cos (θ i ) e y ) ( 15 
)
This approach is questionable on different aspects. First, the RPE assumes a spherical symmetry and moving boundary in a quiescent unbounded liquid, which is physically far from the real situation of a bubble growing on a wall in a boiling flow. Moreover, the subsequent projection along the different directions regarding an unknown angle is hardly reasonable if θ i is chosen arbitrarily.

On the other hand, some authors [START_REF] Klausner | Vapor bubble departure in forced convection boiling[END_REF][START_REF] Thorncroft | Bubble forces and detachment models[END_REF][START_REF] Guan | Bubble departure size in flow boiling[END_REF] considered two distinct contributions:

• RPE equation and inclination θ i , leading to Eq. 15 ;

• Spherical bubble growth in an uniform unbounded and inviscid liquid flow, which yields a detaching Added Mass term due to the interaction of bubble growth with the external flow:

F AM,U = 3 2 ρ L V b Ṙ R U L e x (16) 
By including the effect of the liquid flow, this approach can be considered as closer to the reality. However, it relies on two separate derivations associated to different physical considerations.

Proposed Approach

To tackle the Added Mass force derivation, we propose to follow the approach of Lamb [START_REF] Lamb | Hydrodynamics[END_REF] (also presented by Van Winjgaarden [START_REF] Wijngaarden | Hydrodynamic interaction between gas bubbles in liquid[END_REF]). By solving the potential flow around a bubble and its image, we can obtain the total liquid kinetic energy E L that corresponds to a situation where a bubble is at a given distance from a wall (represented by the line normal to the line of centers of the bubbles).

Then, using Lagrange's equations to compute the resulting forces along x and y:

F AM,x = - ∂ ∂t ∂E L ∂ ẋ + ∂E L ∂x (17) 
F AM,y = - ∂ ∂t ∂E L ∂ ẏ + ∂E L ∂y (18) 
To express the liquid kinetic energy, we can rely on the work of Van Der Geld [START_REF] Van Der Geld | The dynamics of a boiling bubble before and after detachment[END_REF] who derived E L in the case of a full or truncated growing spherical bubble laying on a wall and facing a uniform flow parallel to the wall of velocity U L (Eq. 19). If the bubble slides at a velocity U b = ẋ, it sees a liquid velocity U rel = U Lẋ.

E L = ρ L V b 2 α ẏ2 + tr (β) Ṙ2 + ψ Ṙ ẏ + α 2 (U L -ẋ) 2 (19) 
where (x, y) are the coordinates of the bubble's center and α, tr (β), ψ, α 2 are polynomials of R/y = 1/L R derived by Van Der Geld for 1 < R/y < 2 i.e. 0.5 < L R < 1. Injecting E L in Eq. 17 and 18 and computing the values for the sphere case (y = R and ẏ = Ṙ) yields:

F AM,x = ρ L V b 3C AM,x Ṙ R U rel -C AM,x ∂U b ∂t (20) 
with C AM,x ≈ 0.636.

F AM,y = ρ L V b -(3C AM,y1 + C AM,y2 ) Ṙ2 R -C AM,y1 R + C AM,y3 U 2 rel R (21) 
with C AM,y1 ≈ 0.27, C AM,y2 ≈ 0.326 and C AM,y3 ≈ 8.77 × 10 -3 .

Parallel to the wall, the coupled term Ṙ R U rel in Eq. 20 promotes detachment and sliding of the bubble if U rel > 0 e.g. if the bubble is attached to its nucleation site. This agrees with the detaching term of the "two situations" derivations detailed in 2.6.1 and clearly contradicts the aforementioned approach where solely projecting the RPE on both axes lead to an Added-Mass term related to bubble growth that only hinders the departure by sliding. Moreover, we see that accounting for wall presence enhances the added mass coefficient parallel to the wall by approximately 27% compared to Eq. 16 where we have an equivalent C AM,x = 0.5. Finally, Eq. 21 exhibits a term induced by the relative velocity that acts as a lift force, which seems to rarely appear in other approaches.

Here we want to insist on the importance on conducting an approach as rigorous as possible when deriving those transient aspects of the force balance. The RPE is only valid for a spherical bubble in an unbounded medium or for a hemispherical bubble laying on a wall as shown by the numerical simulations of Legendre et al. [START_REF] Legendre | Lift, drag and added mass of a hemispherical bubble sliding and growing on a wall in a viscous linear shear flow[END_REF]. Otherwise, some terms may be missing and lead to contradictory physical conclusions. Although the proposed method has already been used in different works, we obtained reassessed values of the Added Mass coefficients based on the derivation of the liquid kinetic energy by Van Der Geld. In the spirit of avoiding to introduce extra empirical terms, we keep the Added Mass force as presented in Eq. 20 and 21. [START_REF] Klausner | Vapor bubble departure in forced convection boiling[END_REF] [START_REF] Klausner | Vapor bubble departure in forced convection boiling[END_REF] Thorncroft (2001) [START_REF] Thorncroft | Bubble forces and detachment models[END_REF] Sugrue (2016) [START_REF] Sugrue | A modified force-balance model for prediction of bubble departure diameter in subcooled flow boiling[END_REF] Forces

F B 4 3 πR 3 (ρ L -ρ V ) g 4 3 πR 3 (ρ L -ρ V ) g 4 3 πR 3 (ρ L -ρ V ) g F C
Eq. 4, rw = 0.045 mm Eq. 4, rw = R sin (θ d ) Eq. 4, rw = 0.025R F CP Eq. 5, Rc = 5R Neglected Eq. 5, Rc = 5R

F D C D = 16 Re b 1 + 3 2 12 Re b n +0.796 n ) 1/n , n = 0.65 C D = 16 Re b 1 + 8 Re b + 1 2 1 + 3.315 √ Re b -1 C D = 16 Re b 1 + 3 2 12 Re b n +0.796 n ) 1/n , n = 0.65 F L C L = 2.74 √ Sr × Re -2 b + 0.24 √ Sr 4 1 4 C L = 0.71 √ Sr × 1.15J(ε) √ Re b 2 + 3 √ 2Sr 8 2 1 2 C L = 2.74 √ Sr × Re -2 b + 0.24 √ Sr 4 1 4 F AM 3 2 ρ L V b Ṙ R U L ex -ρ L πR 2 3 2 Ṙ2 + R R × (cos (θ i ) ey + sin (θ i ) ex), θ i = 10°2 πρ L R 2 ṘU L ex -ρ L πR 2 3 2 Ṙ2 + R R × (cos (θ i ) ey + sin (θ i ) ex), θ i = 45°- ρ L πR 2 3 2 Ṙ2 + R R × (cos (θ i ) ey + sin (θ i ) ex), θ i = 10°M
azzocco (2018) [START_REF] Mazzocco | A reassessed model for mechanistic prediction of bubble departure and lift off diameters[END_REF] Ren (2020) [START_REF] Ren | Development of force balance model for prediction of bubble departure diameter and lift-off diameter in subcooled flow boiling[END_REF] Present model Forces

F B 4 3 πR 3 (ρ L -ρ V ) g 4 3 πR 3 (ρ L -ρ V ) g 4 3 πR 3 (ρ L -ρ V ) g F C Eq. 4, rw = R/15
Eq. 4, rw = 0.2R Eq. 4, rw = R sin (θ)

F CP Eq. 5, Rc = 5R Eq. 5, Rc = 5R Eq. 5, Rc = R F D C D = 1.13 24 Re b 1 + 0.104Re 0.753 b C D = 16 Re b 1 + 3 2 12 Re b n +0.796 n ) 1/n , n = 0.65 C D = C D,U (1 + ∆C D )
C D,U by Eq. 8, ∆C D by Eq. 10 

F L C L = 2.61 C L = 2.74 √ Sr × Re -2 b + 0.24 √ Sr
F AM -1 4 πρ L K 4 (cos (θ i ) ey + sin (θ i ) ex), sin (θ i ) = 0.2, cos (θ i ) = 1 -ρ L πR 2 3 2 Ṙ2 + R R × (cos (θ i ) ey + sin (θ i ) ex), θ i = 15°F AM,x ρ L V b = C AM,x 3 Ṙ R U rel -∂U b ∂t , C AM,x = 0.636, F AM,y by Eq. 21.
Table 1: Summary of different force-balance mechanistic approaches.

Bubble Growth

The question of the bubble growth law during its lifetime including sliding is still an open question that aims to cover various types of heat transfer mechanisms:

• Evaporation due to superheated liquid near the bubble base ;

• Evaporation of a liquid microlayer trapped between the base of the bubble and the wall ;

• Condensation on top of the bubble when it reaches subcooled liquid ;

• Convective heat transfer due to relative velocity between the bubble and the liquid.

To our knowledge, authors that have been tackling this issue had to consider empirical parameters when trying to account for all the above heat transfers. For instance, Zhou [START_REF] Zhou | Experimental investigation on bubble contact diameter and bubble departure diameter in horizontal subcooled flow boiling[END_REF] and Yoo [START_REF] Yoo | Development of a mechanistic model for sliding bubbles growth prediction in subcooled boiling flow[END_REF] proposed growth models that consider the previously mentioned mechanisms, introducing many empirical values were used such as:

• The ratio between the bubble projected area and the microlayer area ;

• The fraction of bubble area facing subcooling liquid ;

• Value of coefficients in the condensation law [START_REF] Levenspiel | Collapse of Steam Bubbles in Water[END_REF].

Moreover, those models postulate the existence of a microlayer contributing to the growth while recent numerical and experimental investigations showed that the bubble may as well grow with a microlayer or in a pure contact line regime depending on the operating conditions [START_REF] Urbano | Direct numerical simulation of nucleate boiling in micro-layer regime[END_REF][START_REF] Bures | On the modelling of the transition between contact-line and microlayer evaporation regimes in nucleate boiling[END_REF][START_REF] Kossolapov | Experimental Investigation of Subcooled Flow Boiling and CHF at Prototypical Pressures of Light Water Reactors[END_REF].

In order to assess the force modeling proposed before, we choose a simpler growth law derived from heat conduction in the superheated liquid layer [START_REF] Plesset | The Growth of Vapor Bubbles in Superheated Liquids[END_REF].

R (t) = KJa w √ η L t ( 22 
)
where K is an adjustable constant around the unity depending on the boiling conditions, often expressed as K = 2b √ π . For pool boiling in an uniformly superheated liquid, Plesset & Zwick [START_REF] Plesset | The Growth of Vapor Bubbles in Superheated Liquids[END_REF] found b = √ 3, Forster & Zuber [START_REF] Forster | Growth of a Vapor Bubble in a Superheated Liquid[END_REF] obtained b = π/2 while Zuber [START_REF] Zuber | The dynamics of vapor bubbles in nonuniform temperature fields[END_REF] stated that values of b should be lying between 1 and √ 3. Similarly, Bhati & Paruya [START_REF] Bhati | Numerical simulation of bubble dynamics in pool boiling at heated surface[END_REF] found 1 ≤ b ≤ √ 5. We can thus observe that K = 2 is likely to be an upper bound value for the growth constant. This value can logically be lower in the case of subcooled flow boiling. For instance, later comparisons with experimental measurements suggest values of K slightly below 1 for subcooled flow boiling (Figure 8). Yoo et al. [START_REF] Yoo | Development of a mechanistic model for sliding bubbles growth prediction in subcooled boiling flow[END_REF] chose b = 0.24 for the diffusive heat flux while accounting for other heat transfer mechanisms.

This type of bubble growth has been widely used, and showed good agreement with many experimental observations and is particularly valid for early growth stages or small bubbles at high pressure [START_REF] Kossolapov | Experimental Investigation of Subcooled Flow Boiling and CHF at Prototypical Pressures of Light Water Reactors[END_REF][START_REF] Plesset | The Growth of Vapor Bubbles in Superheated Liquids[END_REF][START_REF] Klausner | Vapor bubble departure in forced convection boiling[END_REF]].

Liquid Velocity

To compute the liquid velocity and shear rate at bubble center height, we use the wall law of Reichardt [START_REF] Reichardt | Vollstandige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen[END_REF], which describes the velocity profile from the viscous sublayer to the logarithmic region in a single-phase flow.

U + L = 1 κ ln 1 + κy + + c 1 -e -y + /χ + y + χ e -y + /3 (23) 
U L =U + L U τ
with κ = 0.41, χ = 11 and c = 7.8.

∂U + L ∂y + = 1 1 + κy + + c χ e -y + /χ + 1 - y + 3 e -y + /3 ( 24 
)
∂U L ∂y =γ = U 2 τ ν L ∂U + L ∂y +
The friction velocity is computed using Mac Adams correlation [START_REF] Mcadams | Heat transmission[END_REF].

U τ = τ w ν L (25) 
τ w =0.018 Re -0.182

D h ρ L ⟨U L ⟩ 2 (26) 
3. Departure by Sliding

Non-Dimensional Analysis

Now that the force balance has been established, we can write it parallel to the wall before bubble departure by sliding, considering that the bubble is immobile i.e.

U b ≪ U L and ∂U b ∂t ≈ 0. -πRσf C,x + 4 3 πR 3 (ρ L -ρ V ) g + 1 2 C D ρ L πR 2 U 2 L + 4 3 πR 3 ρ L 3C AM,x Ṙ R U L = 0 (27) f C,x = 2.5 dθ (π/2) 2 -dθ 2 sin (θ) cos (dθ) with f C,x → 0 if dθ → 0.
We can note that the departure by sliding is promoted by the Buoyancy, the Drag and the Added Mass forces. Only the Capillary force keeps the bubble attached to its nucleation site, which will be discussed later.

Re-writing Eq. 27 in non-dimensional form by dividing the LHS by the Added Mass force yields:

- 1 2 f C,x K 2 C AM,x 1 Ca Pr L Ja 2 w + 1 3 1 K 2 C AM,x Re b Fr Pr L Ja 2 w + 1 8 
C D K 2 C AM,x Re b Pr L Ja 2 w + 1 = 0 ( 28 
)
where we have the following non-dimensional numbers:

Re b = 2RU L ν L ; Fr = ρ L U 2 L (ρ L -ρ V ) gR ; We = ρ L U 2 L R σ ; Eo = (ρ L -ρ V ) gR 2 σ ; Ja w = (T w -T sat ) ρ L c P,L ρ V h LV ; Pr L = ν L η L ; Ṙ U L = K 2 Ja 2 w Pr L Re b ; Ca = µ L U L σ
Eq. 28 exhibits terms that can be used to compare the magnitude of each detaching forces. We can obtain the following conditions: Added Mass greater than Drag if:

Ja

2 w Pr L > 1 8 
C D C AM,x 1 K 2 Re b (29) 
Added Mass greater than Buoyancy if: Ja

2 w Pr L > 1 3 1 C AM,x K 2 Re b Fr ( 30 
)
Drag greater than Buoyancy if: Re b > 16 3

1

C D Eo Ca = Re c (31) 
Those boundaries can be plotted on a Ja 2 w /Pr ; Re b map for a given fluid and bubble diameter D = 2R, an example of such a map is presented on Figure 3a. This allows to visualize the operating conditions under which each of the detaching forces will be dominant. Logically, Buoyancy dominates for low Re b regimes contrary to Drag. Added Mass dominates when values of Ja 2 w /Pr L are high i.e. when bubble grows rapidly.

Influence of Pressure

On Figure 3b, we draw the dominance map for 3 different pressures and associated orders of magnitude of bubble departure diameter [START_REF] Kocamustafaogullari | Pressure dependence of bubble departure diameter for water[END_REF].

The impact of pressure is mostly seen through the decrease of bubble departure diameter. As pressure increases, Buoyancy force decreases while Drag and Added Mass forces display much larger dominance zones. The competition between those two terms mainly relies on the competition between liquid flow velocity and wall superheat or heat flux.

Comparison between Fluids

On Figure 3c, we compare the dominance zones for R12 at 26 bar and water at 155 bar. Moderately pressurized R12 (10 to 30 bar) has often been used as a simulating fluid to mimic water in PWR since it has the same density ratio and Weber number for instance.

Assuming that the conservation of Weber and Boiling numbers may lead to similar bubble departure diameters, we can observe that the boundaries between the two fluids are very close. This qualitatively indicates that R12 shall present bubble departure by sliding mechanisms similar to what happens in PWR, which could comfort the confidence one may have in extrapolating the observations done using the simulating fluid to industrial applications. (c) Dominance map for R12 as simulating fluid for PWR. D d = 0.05mm chosen according to R12 measurements [START_REF] Garnier | Local Measurements On Flow Boiling Of Refrigerant 12 In A Vertical Tube[END_REF] with bubbles of ∼ 0.1mm diameter after lift-off. The same value is taken for water.

Figure 3: Examples of qualitative analysis using the non-dimensional regime map.

Application to Experimental Data

Now we want to apply this non-dimensional approach to experimental measurement in order to determine the actual bubble departure by sliding regimes. We rely on 7 experiments in which bubble departure diameters in vertical flow boiling were measured. The operating conditions are gathered in Table 2.

If the value of ∆T w is not available in the considered data-set, we estimate ∆T w using Frost & Dzakowic correlation [START_REF] Frost | American Society of Mechanical Engineers, An extension of the method for predicting incipient boiling on commercially finished surfaces[END_REF].

∆T w = Pr L,sat 8σϕ w T sat λ L ρ V h LV ( 32 
)
Author Fluid D h [mm] P [bar] G L [kg/m 2 /s] ∆T L [K] ϕw [kW/m 2 ] ∆Tw [K] D d [mm] (Nmes)
Thorncroft [ To place experimental measurements on the non-dimensional map, we need a bubble detachment diameter value D d to plot the dominance zones. Since measured D d vary significantly in each experiment, we draw the boundaries for the maximum and minimum values of D d as shown on Figure 4a. The range of bubble diameter is given in Table 2. If the considered data covers different pressures, boundaries for each pressure are plotted to exhibit its impact (Figures 4d, 4e and4f). We chose a value of K = 1 to draw the boundaries.

The Figure 4 shows that for most of the low pressure experiments, the detaching forces are the Added Mass and the Buoyancy forces. Smaller bubbles are mainly detached under the effect of the Added Mass force (Figures 4c, 4d and4e). When the bubbles detach at higher diameters, the impact of the Buoyancy force naturally increases and is comparable to the Added Mass force (Figures 4a and4b).

When the pressure increases, we observe that the experimental measurements gradually move towards the Drag dominant zone as seen on Figures 4e and4f. This main difference in the dynamic regime when bubble departs by sliding arises from multiple effects:

• The decrease of ρ L /ρ V with pressure, thus reducing Ja w and the impact of the detaching Added Mass term ;

• The higher liquid mass fluxes in Kossolapov experiments, increasing the impact of the Drag ;

• The decrease of D d with pressure, reducing the magnitude of Buoyancy.

However, we see that some measurements lie close to the Added Mass / Drag boundary (Figure 4f), indicating that the Added Mass force still plays a significant role for bubble detachment. This means that regardless of the operating pressure, the detaching term associated to the coupling between bubble growth and outer liquid flow should not be neglected in the force balance (Eq. 20). (f) Kossolapov data Figure 4: Dominance maps for each water data sets from Table 2.

Departure Diameter Prediction 3.3.1. About the Use of Empiricism

As previously mentioned, the case of bubble detachment in vertical flow boiling is particular since only one force maintains the bubble attached to its nucleation site: the Capillary force (Eq. 4). Its expression depends on the contact angle θ, the angle half-hysteresis dθ and the bubble foot radius r w (or ratio to bubble diameter r w /R) and is thus very sensitive to those values. Paradoxically, those terms are among the least precisely known due to the difficulty of measurement and associated uncertainties. For instance, conducting precise evaluations of the contact angle near the bubble base through optical techniques can be challenging because of the strong temperature gradients close to the heated surface.

Consequently, empirical choices have to be made in order to set a value to those parameters, often by relying on data-fitting or approximate measurements in other conditions. For instance, contact angles are often taken as arbitrary average values [START_REF] Ren | Development of force balance model for prediction of bubble departure diameter and lift-off diameter in subcooled flow boiling[END_REF] or measurements in room conditions [START_REF] Sugrue | A modified force-balance model for prediction of bubble departure diameter in subcooled flow boiling[END_REF] and applied over a whole set of experiments. This is questionable since contact angle is unlikely to remain unchanged over different operating conditions and surfaces with varying roughness and properties [START_REF] Song | Temperature dependence of the contact angle of water: A review of research progress, theoretical understanding, and implications for boiling heat transfer[END_REF].

However, no better information except those given by the authors can be used to evaluate the Capillary force since no generic model exists to compute the contact angle and hysteresis. In this work, admitting a significant uncertainty (typically 5°, as in Guan et al. [START_REF] Guan | Bubble departure size in flow boiling[END_REF]), we will use the following values for the contact angles :

• θ u = 25.3°and θ d = 6.6°for Thorncroft data (measured values for FC-87 on nichrome [START_REF] Thorncroft | Bubble forces and detachment models[END_REF]) ;

• θ u = 50°and θ d = 40°for Maity data (measured average contact angles for each bubble during its lifetime [START_REF] Maity | Effect of Velocity and Gravity on Bubble Dynamics[END_REF]) ;

• θ u = 130°and θ d = 65°for Chen data (chosen values in their study following measurements for water on stainless steel at high temperature by Kandlikar et al. [START_REF] Kandlikar | Contact angles and interface behavior during rapid evaporation of liquid on a heated surface[END_REF]) ;

• θ u = 91°and θ d = 8°for Sugrue data (measured values at room temperature [START_REF] Sugrue | An experimental study of bubble departure diameter in subcooled flow boiling including the effects of orientation angle, subcooling, mass flux, heat flux, and pressure[END_REF]) ;

• θ u = 75°and θ d = 30°for Guan data (measured average value through experimental visualizations [START_REF] Guan | Bubble departure size in flow boiling[END_REF]) ;

• θ u = 45°and θ d = 36°for Ren data (chosen values in their study [START_REF] Ren | Development of force balance model for prediction of bubble departure diameter and lift-off diameter in subcooled flow boiling[END_REF]) ;

• θ = 80°for Kossolapov data (typical contact angle for water on ITO [START_REF] Kossolapov | Experimental Investigation of Subcooled Flow Boiling and CHF at Prototypical Pressures of Light Water Reactors[END_REF]) and dθ = 0.5°assuming that the very small bubbles at high pressure are nearly not tilted.

Similarly, the bubble foot radius r w is often empirically assumed to be either constant [START_REF] Klausner | Vapor bubble departure in forced convection boiling[END_REF] proportional to the bubble radius [START_REF] Sugrue | A modified force-balance model for prediction of bubble departure diameter in subcooled flow boiling[END_REF][START_REF] Mazzocco | A reassessed model for mechanistic prediction of bubble departure and lift off diameters[END_REF] or to follow a linear or logarithmic law of R [START_REF] Zhou | Experimental investigation on bubble contact diameter and bubble departure diameter in horizontal subcooled flow boiling[END_REF][START_REF] Guan | Bubble departure size in flow boiling[END_REF]. That is why we chose to use the truncated sphere hypothesis (Eq. 2) to compute r w using R and θ.

Finally, we would like to acknowledge that the empiricism to evaluate those parameters represents one of the biggest flaws of the force-balance approach. Indeed, such a model aims to detect small sign changes in a sum of a few µN of forces that are decades larger as pointed out by Bucci et al. [START_REF] Bucci | The not-so-subtle flaws of the force balance approach to predict the departure of bubbles in boiling heat transfer[END_REF]. Mechanistic models are thus strongly sensitive to any extra parameter included in the modeling of the forces.

Growth Constant Value

Since the value K ≈ 2 represents an upper bound for the growth constant in a quiescent uniformly superheated liquid (Subsection 2.8) and that values below 1 can be a better fit for bubble growth in subcooled flow boiling (Figure 8), we choose the value proposed by Yoo et al. growth model [START_REF] Yoo | Development of a mechanistic model for sliding bubbles growth prediction in subcooled boiling flow[END_REF] for the diffusive heat flux from the superheated liquid layer, validated with different working fluids in subcooled boiling:

K = 2b √ π , b = 0.24 (33) 

Predictions

We consider the non-dimensional force balance before departure.

C AM,x K 2 Ja 2 w Pr L + 1 3 Re b Fr + 1 8 C D Re b = 1 2 f C,x Ca (34) 
Since we only have the capillary term hindering departure as a first approach, we can suppose that departure is reached when:

C AM,x K 2 Ja 2 w Pr L + 1 3 Re b Fr + 1 8 C D Re b > 1 2 f C,x Ca (35) 
which is similar to considering that the other forces overcome the Capillary force.

On Figure 5, we show the predictions obtained with the proposed modeling and those obtained with Mazzocco's recent model [START_REF] Mazzocco | A reassessed model for mechanistic prediction of bubble departure and lift off diameters[END_REF]. The model have an acceptable trend on some experimental sets, but strong overestimations occur on the cases of Sugrue. Moreover, we observe significant underestimations on the data of Ren at 2 bar and Thorncroft.

Mazzocco's model provides a good accuracy on the data of Sugrue, Guan, Maity and Ren (2 bar). However, we observe very large overestimation over Thorncroft's measurements and significant underestimation on Chen, Ren (3 and 5 bar) and Kossolapov measurements.

Discussion and accounting for parameters uncertainties

The aforementioned errors observed for the proposed model may originate from various reasons:

• The contact angle proposed for Sugrue cases is high with a large hysteresis, suggesting strongly deformed and flattened bubbles under the truncated sphere hypothesis. Based on images from Sugrue's work [START_REF] Sugrue | An experimental study of bubble departure diameter in subcooled flow boiling including the effects of orientation angle, subcooling, mass flux, heat flux, and pressure[END_REF], a comparison between a real bubble with the assumed shape is presented on Figure 6. This shows a huge difference which indicates that the contact angle and hysteresis values may be overestimated. Using the available images, the ratio of the bubble diameter to the apparent bubble foot would lead to an average contact angle θ ≈ 20°for a truncated sphere. Noting that a larger inclination is observed for the bubbles under higher mass fluxes leads us to suppose a value dθ ≈ 15°. This represent a similar inclination to contact angle ratio (dθ/θ) compared to the initially proposed values. The resulting new shape is also presented on Figure 6 and seems to better represent the actual bubble.

• For cases where limited under and overestimation is observed, we may allow to account for an uncertainty as high as 5°for the average contact angle θ and half-hysteresis dθ.

• As mentioned earlier, applying the same contact angle and hysteresis over a wide range of measurements is a strong assumption, especially for cases where different pressures and bubble diameter variations are observed. Thus, we may slightly distinguish the applied values of θ and dθ for different pressures within a given experiment, keeping a change no larger than 5°.

• Kossolapov cases at G L = 500 kg/m 2 /s are better predicted. Cases under higher mass fluxes (1000 and 1500 kg/m 2 /s) present underestimation that could come from the value of dθ. At such mass fluxes, the Weber number can be up to a decade higher and bubbles may thus accept a larger inclination before detachment.

• Cases of Ren and Chen rely on chosen values for θ and dθ and not on measured ones. They are therefore subject to strong uncertainties. We can note that the values for Chen cases are significantly high.

• The proposed growth law is still rather simple and may miss significant information, especially regarding bubble size and fluid properties such as the Prandtl number.

• Errors on Thorncroft cases may be linked to uncertainties regarding FC-87 properties. Indeed, we use the values given at T sat = 29°at 1 bar in his work [START_REF] Thorncroft | An experimental investigation of bubble growth and detachment in vertical upflow and downflow boiling[END_REF]. However, the saturation temperature indicated in his test matrix is close to 40°which means that measurements were conducted at a higher pressure, for which we do not have FC-87 properties.

Figure 6: Initially assumed, real and reassessed bubble shape for Sugrue cases (picture adapted from [START_REF] Sugrue | An experimental study of bubble departure diameter in subcooled flow boiling including the effects of orientation angle, subcooling, mass flux, heat flux, and pressure[END_REF]).

Therefore, using modified values of θ and dθ among experimental data sets with no more than a 5°change (except for Sugrue cases reassessed values) leads to predictions on Figure 7.

The predictive capacity of the model is significantly enhanced, especially on Sugrue's cases which tends to indicate that the contact angle reassessment was justified under the truncated sphere hypothesis. Table 7c summarizes the average errors obtained with the present model and Mazzoco's one.

The proposed model achieves an overall better predictive capability even when excluding measurements from Thorncroft on which Mazzocco's model strongly overestimates the departure diameter. Mazzocco's model is still better on Sugrue and Guan cases since it was built and validated using those measurements. It better predicts results from Ren but only for the 2 bar cases while it underestimates the departure diameter for higher pressures. Those results are a coupled effect of his optimized growth law along with the imposed value of r w /R and the use of the inclination angle to hinder departure as mentioned in 2.6.

The approach demonstrated the importance and the strong influence of the contact angle and hysteresis. A small change of their value (staying in the uncertainty range of 5°) allowed to reach reasonable predictions over a large range of bubble departure diameters with the model of this paper, using a reduced number of empirical parameters.

Sliding phase

Modeling

After departure, bubbles slide over a distance l sl which scales the impact of the sliding phenomenon over the wall heat transfer. Achieving good prediction of bubble sliding velocity is then important if one wishes to correctly quantify its impact.

Following the force balance framework presented in Section 2, we can write Newton's second law parallel to the wall for the sliding bubble.

ρ V d(V b U b ) dt = -πRσf C,x + 4 3 πR 3 (ρ L -ρ V ) g + 1 2 C D ρ L πR 2 U 2 L + 4 3 πR 3 ρ L 3C AM,x Ṙ R U rel -C AM,x dU b dt (36) 
This equation can be re-written to express the bubble acceleration.

1 + ρ L ρ V C AM,x dU b dt = ρ L ρ V -1 g + 3 8 C D R ρ L ρ V (U L -U b ) |U L -U b | + 3 Ṙ R C AM,x ρ L ρ V (U L -U b ) -U b - 3 4 σ ρ V f C,x R 2 (37) 
Then, we numerically solve this equation from the moment when R ≥ R d using a first order Euler scheme for a duration close to the experimental sliding time. To assess the accuracy of Eq. 37 and achieve separate-effect validation, we modify the growth constant K in order to roughly match experimental radius measurements. The goal is to verify if the force balance allows a good prediction of bubble velocity provided a correct bubble growth. Next sections compare obtained results against low and high pressure data.

Low Pressure Sliding

Maity [START_REF] Maity | Effect of Velocity and Gravity on Bubble Dynamics[END_REF] provided simultaneous measurements of bubble radius and velocity over time in vertical boiling for three liquid mass fluxes near saturation conditions. The contact angles were kept the same as in 3.3 since Maity provided average values over the bubble lifetime.

Results are displayed on Figure 8. The model seems to fairly good predict bubble sliding velocity for the 3 cases. The moment of departure is a bit underestimated as previously observed (Figure 5).

The biggest discrepancy is observed for the case at G L = 143.8 kg/m 2 /s. The slope of the velocity profile is close to the experiments, but the bubble reaches a nearly constant acceleration too rapidly which yields an approximately constant overestimation of 0.1 m/s.

The case at G L = 239.6 kg/m 2 /s is well predicted regarding the velocity. However, the growth profile was difficult to match since measurements exhibit significant changes in growth regime after departure, which is probably due to the bubble being large enough to be impacted by the bulk flow and recondensation. A finer model for bubble growth could be of interest here.

We can note that values of K between 0.5 and 1 were used to better fit the bubble radius time profile. 

High Pressure Sliding

In his work, Kossolapov [START_REF] Kossolapov | Experimental Investigation of Subcooled Flow Boiling and CHF at Prototypical Pressures of Light Water Reactors[END_REF] conducted measurements of radius and sliding length over thousands of individual bubbles and then provided the associated statistical distributions. To compare our model with his measurements, we took the upper and lower bounds of R and l sl over time and plotted the associated bands of measured values as shown on Figure 9.

Comparisons were done for cases at 20 bar and 40 bar and 3 different values of G L . The value of dθ for the simulations was kept really small (2°at 20 bar and 0.5°a t 40 bar) since bubble tilt is supposed to reduce during sliding because the relative velocity regarding the liquid flow is diminishing. Moreover, higher pressure means smaller bubbles that are even more unlikely to present a significant contact angle hysteresis. We also want to mention that neglecting the capillary term in Eq. 37 had a minor impact over the results except that the bubble accelerates a little bit faster.

The obtained results are in good agreement with the sliding length profile vs. time, which means bubble sliding velocity is well predicted for those cases.

Once the estimation of ∆T w using Eq. 32 is corrected as mentioned in 3.2, values of K between 0.8 and 1.3 reasonably fits the bubble radius measurements. 

K = 2 √ 3 √ π - Forster & Zuber : K = √ π -Bhati & Paruya : 2 √ π ≤ K ≤ 2 √ 5 √ π

Comparison of Forces in Sliding Stage

In order to identify the main accelerating forces, we compare the amplitude of the forces during the sliding phase for one low pressure case of Maity and one high pressure case of Kossolapov (Figure 10). It appears that at high pressure and liquid velocity, the Drag force is the main driving force and stays positive since the bubble do not slide faster than the rapid surrounding liquid (reaching approximately 80% of the local liquid velocity). On the other hand, larger bubbles observed at low pressure and liquid velocity are accelerated by Buoyancy due to their larger volume, with a nearly negligible Drag force. In both cases, the Added Mass force can not be neglected especially when bubble velocity rises by limiting its acceleration induced by the larger force (Buoyancy or Drag in the presented cases). This further emphasizes the importance of a proper derivation of the Added Mass force regardless of the boiling conditions. The Capillary force seems to be a limited but constant slowing term in both cases. Finally, the amplitude of the forces involved can span from roughly 10 × 10 -4 N at low pressure (much greater than the rate of change of bubble momentum laying around 10 -9 N) down to a few nN at higher pressure (same order of magnitude as the rate of change of bubble momentum), especially due to the bubble size.

This comparison highlights the fact that the proposed model is able to represent different forces hierarchy depending on the flow conditions and to acceptably predict the associated bubble sliding velocity, which is an encouraging point regarding its generality. 

Conclusion

In this work, we proposed a new expression of the force balance for a single bubble in a vertical upward boiling flow, including updated expressions for the drag and added mass forces. This force balance was then used to study bubble departure by sliding and compared with bubble departure diameter and sliding velocity measurements. The main highlights of this study are:

• A global force balance that avoids including extra empirical parameters. We notably get rid of empirical choices regarding bubble foot radius and bubble radius of curvature at its foot.

• The use of a recent formulation to compute the Drag coefficient thanks to DNS results of Shi et al. [START_REF] Shi | Drag and lift forces on a rigid sphere immersed in a wall-bounded linear shear flow[END_REF].

• Reassessed computation of the Added Mass force and associated coefficients from the expression of the liquid kinetic energy proposed by Van Der Geld [START_REF] Van Der Geld | The dynamics of a boiling bubble before and after detachment[END_REF], which lead to a unified calculation for a truncated spherical bubble growing on a wall in a flow.

• A non dimensional approach leading to force regime maps to qualitatively determine the dynamic regime in which bubbles are departing from the nucleation site. It shows that the detaching Added Mass term due to external liquid flow is rarely negligible and often dominates at low pressure. Increasing pressure mostly leads to Drag dominant regimes.

• Bubble departure diameter predictions are achieved with a reasonable accuracy over a large range of measured values from 7 data sets. This could be reached by accepting an uncertainty of 5°for the values of the contact angle θ and half-hysteresis dθ to which the model was sensitive. This indicates that using fixed values for large data sets seems incorrect and that extra empiricism may not be needed if a proper modeling of those parameters was achieved. For the estimation of the Added Mass force, the model of Yoo et al. [START_REF] Yoo | Development of a mechanistic model for sliding bubbles growth prediction in subcooled boiling flow[END_REF] for the diffusive heat flux from the superheated liquid has been chosen to estimate the bubble growth rate.

• Bubble sliding velocity simulations showed a good agreement with experimental observations at low pressure provided a correct bubble growth profile. The agreement is also reasonable at high pressure.

• Comparison of forces at stake showed that Buoyancy and Drag forces are respectively mainly responsible for bubble acceleration at low and high pressure.

As for the departure, Added Mass is not negligible regardless of the flow conditions.

• The final formulation of the model requires the knowledge of three parameters: the bubble growth rate K, the static contact angle θ and the contact angle hysteresis dθ. To remain physically consistent, those should not be chosen at random but rather rely on values following experimental or theoretical approaches corresponding the aimed physical conditions.

The limitations of the developed approach lie mainly in its sensitivity to the value taken for the growth constant K (Eq. 33). To avoid a fitting of the experimental values, the modeling of the bubble growth could be enriched by a clean modeling of the bubble growth including effects such as condensation, microlayer evaporation and impact of the external liquid flow. Existing models rely on empirical values which thus reduces their general applicability outside of their validation range. For instance, studies conducted by Zhou et al. [START_REF] Zhou | Experimental investigation on bubble contact diameter and bubble departure diameter in horizontal subcooled flow boiling[END_REF] and Yoo et al. [START_REF] Yoo | Development of a mechanistic model for sliding bubbles growth prediction in subcooled boiling flow[END_REF] could be used by enriching their modeling with finer results to get rid of data fitting. DNS results such as those regarding bubble growth in a flowing superheated or subcooled liquid by Legendre et al. [START_REF] Legendre | Thermal and dynamic evolution of a spherical bubble moving steadily in a superheated or subcooled liquid[END_REF] could be of interest in that prospect.

Finally, the precise estimation of the contact angle and hysteresis remains a critical parameter to predict departure by sliding as demonstrated throughout this study. Local measurements of those values and their evolution with operating conditions would be a very valuable information in that regard. The article of Song & Fan [START_REF] Song | Temperature dependence of the contact angle of water: A review of research progress, theoretical understanding, and implications for boiling heat transfer[END_REF] that sums up existing modeling and experimental measurements provides a good overview of the problem and identifies the associated challenges that are still to be tackled.
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 1 Figure 1: Sketch of the forces applied to the bubble facing an upward flow U L and sliding at velocity U b . Green dashed lines show the control volume for the force balance, excluding the microlayer or microregion.
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 2 Figure 2: Details on the work of Shi et al. [27] regarding the drag correction.
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 14 L by Shi et al.[START_REF] Shi | Drag and lift forces on a rigid sphere immersed in a wall-bounded linear shear flow[END_REF] 

  Dominance map regarding departure by sliding. Boundaries plotted for water at 1 bar and D d = 0.5mm. Dominance map plotted for water at different pressures and bubble departure diameters.
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 15 Figure 5: Predicted bubble departure diameters
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 7 Figure 7: Errors achieved by the model and Mazzoco et al. model.

Figure 8 :

 8 Figure 8: Bubble sliding velocity predictions on Maity cases -Plesset & Zwick : K = 2

Figure 9 :

 9 Figure 9: Bubble sliding length predictions on Kossolapov cases -Plesset & Zwick : K = 2

Figure 10 :

 10 Figure 10: Amplitude of each force during sliding

Table 2 :

 2 Bubble departure diameters data sets in vertical flow boiling. *∆T w values were recalculated based on fitted growth profiles proposed by Kossolapov[START_REF] Kossolapov | Experimental Investigation of Subcooled Flow Boiling and CHF at Prototypical Pressures of Light Water Reactors[END_REF].

2.7. Force Balance SummaryOn Table1, we sum up some of the mentioned force balances from the literature along with the proposed approach of this paper.
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