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ABSTRACT
We investigate a way to build a convivial plant identification tool
halfway between the complex determination keys of botanists and
the more recent but poorly explainable approaches based on AI
image recognition. Our approach consists of a formal language
to organize morphological traits and a Bayesian technique to de-
scribe plants with possible polymorphisms at all taxonomic levels,
and to handle errors and uncertainties. From these structured data,
automatic approaches can be designed to generate versatile deter-
mination keys, i.e. decision trees, which are otherwise tedious to
design by hand.
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1 INTRODUCTION
Knowledge about our vegetal neighbors has always been a key skill
for human survival, as plants provide food and medicine, among
others. The activity of describing and classifying plants is thus an-
cient, and a science has slowly developed from it over the centuries.
Taxonomic classifications were formalized by Linnaeus, with the
most widely used levels being species, genera, and families. These
classifications have been constantly modernized, recently following
phylogenetic criteria and using genetic markers instead of morpho-
logical ressemblance. Yet the ways to identify plants have remained
relatively constant, and continue to be used by scientists, farmers,
gardeners, pharmacists and amateurs alike.

Identification can be achieved by determination keys [de Lamarck
1779], which are decision trees, not necessarily following the taxon-
omy, whose leaves are species (or varieties, or families, or genera),
and nodes correspond to a morphological observation. Determina-
tion keys remain very popular today among botanists (Flora Gallica
[Société botanique de France 2014], Flora Europaea [Tutin et al.
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2001] for instance) as precise tools to identify an unknown plant,
despite some limits: (1) they require an expertise in plant morphol-
ogy; (2) they suppose the ability to answer questions concerning all
the organs (and in particular the flower) even if these organs are not
observable (because of seasonality for example) on the considered
plant; and (3) they leave little place for errors or uncertainties, both
from the descriptions and from the observations.

The popularization of computers has yielded attempts to digi-
tize determination keys12, design new ones3, invent other ways
to identify a plant than decision trees, as a flat “robot portrait” in-
stead of the decision tree456, or design algorithms to automatically
construct a key from data [Kerner and Lebbe 2019].

Surprisingly, these attempts have yielded little formalisation of
both the existing descriptions for use in computers, and the proper-
ties of the determination keys. Descriptions were mainly achieved
bymatrices with species as lines and attributes as columns, in which
an entry is a value of one attribute for one species. Uncertainties,
dependencies between attributes, polymorphism, were hardly ad-
dressed by this solution.

Research in this direction has fallen out of fashion because of
several concomitant scientific and cultural revolutions. On the one
hand the rise of genomics provided a more immediately formaliz-
able data source for scientific studies than morphological descrip-
tions. On the other hand the activity of identifying plants has been
extended to a wide public thanks to the combination of progress on
image recognition through deep learning and the cultural shift that
made billions of people own an internet-connected smartphone.
Applications identifying plants based on a single picture (iNatu-
ralist [Horn et al. 2018], Pl@ntNet [Affouard et al. 2019], Google
Lens) became very popular among amateurs, as they give an almost
instant answer.

We would nonetheless like to argue that such systems, although
we recognize their efficiency and usefulness, do not close defini-
tively the identification question. Firstly, precise identification often
requires a more thorough observation than what can be seen on an

1Tela-Botanica has digitised the Bonnier key https://www.tela-botanica.org/eflore/
bonnierpda/Bonnier.html
2https://efloras.org
3https://www.florenum.fr
4NatureGate https://luontoportti.com/fr
5FloraGator https://hort.ifas.ufl.edu/floragator/key_without_thome.html
6WeedId https://weedid.missouri.edu/weedKey.cfm
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amateur picture. Secondly, the answer of such applications lacks
explainability: it does not fully replace determination keys that
connect observable features with the identification. AI systems are
oracles that have to be trusted almost blindly, and they cannot
provide human-understandable feedback on the identification. Fur-
thermore, they require important infrastructure: servers to train
models on, a smartphone with a camera and a dense mobile cover-
age of the earth’s surface allowing internet connections.

Identification tools can be investigated and compared according
to their conviviality, with a reference to Illich [Illich 1973], as well
as to the connected notion of self-obviating systems [Tomlinson
et al. 2015]. Conviviality means, in our sense, inspired by Illich, a
tendency for a tool to increase the autonomy of users, and to avoid
creating either dependencies to the tool, or unwished dependen-
cies to other social groups or structures. Self-obviating tools are
good examples of convivial tools: they are designed so that their
usage makes themselves more and more useless. As remarked by
Tomlinson et al [Tomlinson et al. 2015] an ideal plant identification
tool would be self-obviating because each usage teaches to the user
an association of an observation with a name. Identification keys
reinforce this quality: the user associates the distinctive plant mor-
phological traits to the name, and even if very few persons would
be able to identify all species in a country without a key, its use
becomes easier through time as one knows more species, and the
distinctive traits at higher taxonomic levels. The explainability of a
tool thus plays an important role in this property: an association
is better learned if it is given a meaning that users can understand
and remember.

We here aim to use computers in plant identification in a way
that keeps this self-obviating aspect of identification keys, and
at the same time render them more convivial. In this paper we
revisit botanical determination keys in the light of both modern
computer science and conviviality. We take advantage of formal
language descriptions, bayesian statistics, and the generation of
decision trees [Quinlan 1986] to show that computer science has
the potential to improve determination keys without losing their
interesting characteristics.

Our proposition is based on (1) a formalisation of the morpholog-
ical description of species, including variabilities and uncertainties
(Section 3) (2) an algorithm generating determination keys (Sec-
tion 4) for formalized data. In Section 5, we present our ongoing
attempts at gathering data.

2 FORMALISING PLANT MORPHOLOGY
Descriptions of families, genera and species can be found in floras,
books compiling a list of existing species in a particular region
(e.g. province, country, mountain range, continent). These books
are written in natural language which is more or less codified and
thus the information they contain can be difficult to use in an
automatic way. We first summarise some difficulties in describing
plants in natural language, and then explore some difficulties in
translating them into a formal language.

2.1 Describing plants
A description is a list of properties that should be observablewithout
too much technological involvement (e.g. the leaf is directly attached

Figure 1: Potamogeton gramineus, photo fromWikipedia

to the stem). Properties have to be inclusive enough to capture
the variation within one species: they are based on observations of
several individuals of the species, in different locations, at different
times of the year, and at different stages of growth. They also have
to be exclusive enough to differentiate it from other species. They
contain discriminating aspects of the plant. For instance, few floras
mention that leaves are green as this is implied by default, and is
not a very helpful property to identify a plant.

Within a flora, descriptions tend to show some uniformity: reusing
the same terminology and the same properties across different
species exhibiting similar morphology, whenever possible.

For example, the description of Potamogeton gramineus, of which
a photo is shown on Figure 1, in the Flora Europaea [Tutin et al.
2001] is:

• “Floating leaves (if present) up to 7 × 3 cm, elliptical or ovate-
elliptical, cuneate or rounded at the base, opaque; petiole
often longer than the lamina. Submerged leaves (at least the
lower) up to 8 × 3 cm, sessile, narrowly elliptic-oblong to
narrowly elliptical or oblanceolate-oblong, cuneate at the
base, acute or acuminate, minutely denticulate at least when
young, with regularly ascending secondary veins (occasional
leaves more or less reduced to phyllodes). Stipules conspicu-
ous, herbaceous. Peduncles thickened upwards.”

2.2 Challenges in formalising descriptions
An immediate idea to transform floras into a formal language is
to transform a natural language property like the one extracted
from the description above “Submerged leaves (at least the lower)
up to 8 × 3 cm, sessile” into an attribution of values to variables
(the attributes): Attribute Attachment of the leaf has value sessile
(attached to the stem), attribute length has value up to 8, width has
value up to 3, position has value "submerged*.

A first challenge is the familiarity with the botanical vocabulary
(sessile, stipule, are not necessary common). For this we use a set
of drawings showing, at each occurrence, the associated organ or
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Figure 2: A botanical panel describing Fragaria vesca, the
wood strawberry, pictured from the book by Otto Wilhelm
Thomé Flora von Deutschland, Österreich und der Schweiz
1885, Gera, Germany, and used under Creative Commons
by wikimedia commons. The species has compound leaves
(each leaf consisting of three leaflets). 1,2. Flower bud at two
developmental stage. 3. Flower, where petals (white), sepals
(green), stamens (yellow) and pistils are visible. 4. Stamen.
5. Pistil. 6. The strawberry “fruit” consists of the expanded
flower receptacle, the actual fruits (in a botanical sense) being
the seeds attached to the surface of this receptacle.

character. In this article we illustrate this way of taking care of neo-
phytes by showing two botanical panels and refering to them when
using a specialised vocabulary. The first one, strawberry, illustrate
standard terms, with flowers, petals, sepals, stamen, pistil, fruits.
The second one illustrates a specialised inflorescence composed of
flowers that lack perianth (petals or sepals).

Another challenge is that from the example description above it
is obvious that this transformation is not immediate. For example,
there are several kinds of leaves, some submerged, some floating.
This polymorphism (several forms for a single subject) is frequent
also for non aquatic herbs, with different basal (attached to the
ground part of the plant) and caulinar (attached to the aerian part
of the stem) leaves. The range of quantitative traits is unprecise,
“more or less reduced to phyllodes” is hardly formalized.

Figure 3: Botanical panel of Euphorbia helioscopia (A) and
Euphorbia esula (B), from the same source as Figure 2, under
Creative Common licence. 1. Compound inflorescence, show-
ing three cyathia (see 3). 2. Outer inflorescence bract. 3. What
appears to be a flower is actually a compact inflorescence,
called “cyathium”, consisting of flowers that are highly re-
duced to one pistil or one stamen (5 is a cross-section). 4.
Dissected involucre, consisting of fused bracts surrounding
the flowers in the cyathium. 6. Male flowers, each consisting
of one stamen. 7,8. Female flower consisting of one pistil (7.
a horizontal cross-section of the ovary.) 9. Seed.

Polymorphism of leaves on a single plant like in the description
of Potamogeton gramineus can be generalized to polymorphism at
any level: fromwithin a single organ (a petal can have several colors,
several petals of a single flower can have different colors, petals
from different flowers from the same species can have different
colors). Attributing several values is thus ambiguous.

Indeed, variation is present at every level, both within a plant,
within populations or species, and among species. Although we
often present it in a discrete way (classification), it is mostly the
manifestation of some quantitative variation. There are for instance
many ways in which flowers can be organized into inflorescences,
and while some are readily identified (e.g. the “flower head” of
Asteraceae, the umbel of Apiaceae), there are many intermediate
cases. It’s like classifying colors, we have a few words (red, orange,
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yellow, etc.) to describe something that appears in nature as a
continuum.

This variation also makes it sometimes hard to correctly iden-
tify the organ. That the white structures that surround the daisy
“flower” aren’t petals but flowers themselves is relatively widely
known, even outside botanical circles. Most Euphorbia species (a
very large and widespread genus, see an exemplar in Figure 3)
have highly reduced flowers, each consisting of one pistil or one
stamen, organized in such a way that the inflorescence (called “cy-
athium”) mimics a flower quite perfectly: it usually takes a trained
botanist to know this. In some cases, determining the exact status
of a structure or organ requires detailed comparative anatomical
and genetic studies that have not yet been performed. E.g. petals,
sepals, stamens and pistils are floral structures all thought to be
more of less modified leaves, yet some species have petaloid sterile
anthers and lack “true” petals, so what one calls a petal is a matter
of scientific consensus that can change when the understanding of
flower development changes. Indeed, botany is a science in itself,
with its own vocabulary, theories and open questions.

Last but not least, the botanical knowledge is spread out in
different works. They have been published at different times, in
different countries and different languages, and thus use different
sets of attributes and values. There have been some efforts towards
standardization, but even a flora of a medium-sized country like
France contains about 6000 species, and it isn’t easily updated to
reflect the latest accepted terminology. Besides, for older works,
the terminology is not always explicitly defined, making it hard to
precisely compare the information contained in different floras.

In summary, floras are a way to shape botanical knowledge,
which is a first formalization step. Transforming floras into chosen
categories and values can only express knowledge at the cost of
sometimes arbitrary and unpredictable choices at the limits of the
categories, and at the risk of a loss of part of the knowledge, which
is not expressed with those categories. The process of transforming
knowledge into information is always at this cost. We will try
to partly tame this arbitraryness by using probabilities above the
categories.

2.3 Existing formalised databases
2.3.1 Existing botanical databases. Attempts to formalise plant
morphology are too numerous to be exhaustively cited, we will only
consider a few recent attempts that produced publicly available data.
They are often focused on particular aspects of plant morphology
to allow comparisons between species, populations or individuals,
and thus include traits that can be defined for (almost) all species
[e.g. Sauquet et al. 2017]. More specialized databases in ecology
focus on functional traits that are designed to be applicable to a
large number of species, such as the “Specific Leaf Area’ ’ which
measures the ratio of leaf surface and drymass.While plants species
differ in this trait, it is neither distinctive enough to identify species,
nor easily observable without specific tools. The popular database
TRY contains many of such functional traits.

2.3.2 Existing morphology descriptions. To go beyond relational
data (attribute/value for each species), knowledge bases tend to
be described ontologies. Ontologies are graphs where nodes are
concepts (in our case: plant, leaf, flower, . . . ); and edges relations

between concepts (in our case: plants may have leaves, meaning a
relation plant → leaf). We can then describe species as individ-
uals of the concept plant using a logical language such as OWL
[OWL 2012]. This uniform framework allows the design of tools
that work on all knowledge bases using this formalism (query, sta-
tistics, . . . ). Ontologies for plants [Jaiswal et al. 2005] focus on the
anatomy of the plants and growth stages, rather than identification
criteria. We also found that existing ontology frameworks were not
exactly what we wanted: in our opinion, concepts and relations
tend to make describing the hierarchy of attributes and values a
bit heavy. Moreover, there is no standard support for probabilistic
features we need, and thus we would have to probably modify an
existing system anyway.

For these reasons, we have instead drawn inspiration from ontol-
ogy systems but have designed something we believe to be simpler
to tailor to our specific needs. Our system is designed to be com-
patible with OWL so that the data can be exported into a format
most OWL-related software can work with.

3 A HIERARCHICAL, EVOLVABLE,
PROBABILISTIC DESCRIPTION OF PLANTS

We present our proposition of structure of a morphological database
of plants, suitable to construct a determination key, and by the way
usable in a large spectrum of scientific activities around plants,
their morphologies, functions, ecology, interactions, evolution.

3.1 Desired properties
1. Explicitation of the schema. The list of attributes and

their values is sometimes left implicit in existing databases.
We would like our schema to have an explicit description in
a formal language easy to understand, discuss and revise.

2. Hierarchy of attributes. Not all species have a value for
attributes. Indeed, there is a natural dependency relation be-
tween attributes that informs when an attribute is relevant
for a plant. For instance, if the species is not flowering, all the
attributes about flowers are irrelevant. We want a schema
that makes these dependencies explicit. This helps with en-
tering data (as we see directly which fields are relevant or
not) but also with understanding the structure of the schema.
Hierarchy can also encourage modularity of the schema by
splitting it into subschema.

3. Structured representation. Most databases are a flat rep-
resentation which must lose out on the structure of the flora
description. We believe a more structured approach is neces-
sary, in particular to understand correlations between traits.
In databases, each trait is supposed to be independent, which
is not always the case. Indeed, to represent species with dif-
ferent kinds of leaves (basal or on the stem for instance) or
flowers, matrices cannot provide a detailed representation.

Guided by intuitions from programming language theory, we
view schema as types of a programming language. Our method is
thus:

• To define a type theory, i.e. a language to define and manip-
ulate schema. We want this language to satisfy the criteria
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above, but also allow us to describe the schema (1) mod-
ularly (easily split in subschemas) and (2) mimic the way
morphology is presented in textbooks.

• To define a denotational semantics for this theory, that is
for every type (representing a schema) 𝑇 , we describe a set
𝒪(𝑇 ) of probabilistic observations valid according to schema
𝑇 . This resumes to attributing a value to an attribute with a
certain probability.

3.2 Schemas as types
Our first work was towards thinking about how to formalise a list
of attributes and values that are relevant for identification and used
in most floras. This list is meant to be evolvable, as the work of
actually compiling an exhaustive list adapted to all families, if at
all possible, is a an endeavor spanning years.

In terms of computer science, we want to describe our schema
as a type P in a suitable type theory, representing the structure
of observable traits on plants. Traditional databases have a simple
schema. Each attribute can be seen as a sum type (also known as
enum types), and the overall scheme is a product (or record, or
structs) of each attributes. Thus, such schema are products of sums.

To improve on this flat structure, we follow a more sophisticated
approach based on algebraic types found in ML languages [Milner
et al. 1997]. Their tree structure have two main advantages:

• Hierarchy. They can represent nicely the hierarchical struc-
ture of observable traits: flowers, then perianth, then petals,
. . . They also make explicit the dependency between traits:
petals only make sense for flowering plants.

• Incrementality. It makes it easy to leave some parts unde-
scribed to later detail and replace it with a more precise
description. For instance, we can start by describing the hair
on the stem as a boolean before moving on to amore complex
description of the hair. This is essential as we cannot wait to
have a complete type before starting to describe species, and
allows to easily insert new branches for describing specific
families (e.g. the conifers with the needles, the grasses, or
the composite flowers).

3.2.1 Algebraic types for describing plant structure. Algebraic types
are used in functional programming languages. They are built from
product types (often known as records in non-functional languages)
and sum types (related to union or enum in non-functional lan-
guages). They can be seen as describing the shape of hierarchies,
thus well-suited to represent morphological descriptions (plant,
then flowers, then perianth, then corolla, . . . .).

Standard traits can be represented as simple cases of sum types:
color := [ red | blue | yellow | ... ].

To describe an organ or a component composed of several sub-
components, records can be used:
corolla := { color: color; number: [ 3 | 5 | 6 | ... ] }.

This defines a corolla has having two sub-components: its color,
described by the previous color type, and the number of petals.

Sum types are convenient for representing parts of the descrip-
tion that are specific to certain species. For example, the case of
flower heads can be represented as follows:
inflorescence-type := [ capitulum (cap-descr) | umbel | . . . ].

cap-descr := {
involucre: involucre;
ray-flowers: [ yes | no ];
center-flowers: [ yes | no ];

}.

The first line defines the type of inflorescence. This definition can
be read as defining an attribute inflorescence-type with at least
two values capitulum and umbel. The (cap-descr) indicates that
when the value capitulum is selected, new attributes are unlocked,
described by cap-descr.

Finally, as leaves of the algebraic types, we also allow quantitative
traits (for representing lengths for example).

3.2.2 The formal grammar of types. To study mathematically types
obtained by such constructions, we define the following grammar:

𝑆 ::= 𝑆1 ⊕ . . . ⊕ 𝑆𝑛 Sum types
| 𝑆1 × . . . × 𝑆𝑛 Record types
| ℳ(𝑆) Multiple type
| [𝑎 − 𝑏]𝑢 Quantitative trait

In the first two lines, 𝑛 can be zero leading to the empty type
0 and the unit type 1. This abstract syntax does not have names
for constructors and fields, but our concrete syntax does. When
we write [yes | no], we mean the sub-type 1 ⊕ 1. And a record
{flower: [yes|no]; leaf:[yes|no]} becomes (1⊕ 1) × (1⊕ 1).
For instance, written formally the type inflorescence above is:

(involucre × 2 × 2) ⊕ 1 ⊕ . . .

where 2 := 1 ⊕ 1. Each operand to the ⊕ correspond to a case of
inflorescence. Empty cases (e.g. umbel) become 1.

The last line is a quantitative trait: 𝑢 is the unit, and [𝑎, 𝑏] is an
interval describing the default probability distribution. For instance,
leaf length could be represented as [1 − 100]cm.

The most surprising construct is the third lines, that we call
Multiple types. This can be used when the sub-type 𝑆 can have
several forms that need independent description. It can be thought
of as a type of multiset and is inspired by the exponentials in Linear
Logic [Girard 1987] and cardinality constraints in OWL.

3.2.3 Defining the type: methodology. We have started writing a
plant.scheme following this methodology, gathering information
both from floras and determination keys, as well as morphological
books, guided by the botanical expertise of members of the group.

As mentioned in Section 2, devising this formal scheme proves
to be a arduous endeavour. First, different authors have a different
way of structuring certain aspects and finding out which is the
best way to formalise can be tricky. Moreover, identification traits
are about delimiting certain behaviours (certain leaves are simple,
other are compound), but for each such delimitation, there are
always corner cases for which there is a bit of uncertainty involved
in choosing the value. As a guideline in formalising, we try to
limit the number of values for a trait, which means trying to split
traits with a large number of values into sub-traits. This may help
pushing the uncertainty to sub-traits which are less critical to the
identification.

Figure 4 represents part of our current plant.scheme. Nodes
in orange are attributes; nodes in purple values. The unlocking of
attributes corresponds to arrows from values to attributes.
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Figure 4: A part of our plant.scheme displayed as a tree. Note that for illustration purposes, only a subset of the attributes
(orange) and their values (purple) are shown.

3.3 Probabilistic and structured description of
plants

To model uncertainty in botanical knowledge and possible poly-
morphisms at all levels (within an organ, a plant or a population)
we follow a bayesian approach. For this, we need a probabilistic
description of species. In its simplest form, this means that a species
description does not assign a value to every attribute, but rather a
distribution of probability representing uncertainties. Obviously,
translating the often qualitative uncertainty present in floras into
quantitative probabilities involves a certain amount of guesstimat-
ing, but we believe that, even though the probabilities are not ex-
tremely reliable, they can be used to protect ourselves from errors
in the data, and difference in appreciation, as well as representing
species polymorphism evoked in Section 2.2. Moreover, as we will
see, we also want to adopt a bayesian approach for identifying a
species (see Section 4) and so it will fit right in.

As we will see in the next section, it is not quite enough to
just have probabilistic distribution of values for each attribute, as
this misses correlations between traits. Those correlations tend
to be quite rare but important for a large class of species. Typical
correlation include for instance structure of the leaf and position
in the plant (stem or base).

3.3.1 The space of observations. From the type P mentioned in
the previous section, we derive a structure for descriptions. De-
scriptions live in a space 𝒪(P). Since we want descriptions to be
probabilistic, we could have taken 𝒪(P) := 𝒟(P) the space of prob-
abilistic distributions over P.

Since P is complex, so is describing directly a probability distri-
bution on it. It is much easier to define a probability distribution
per attribute in most cases, while using multiple types to represent
correlations.

We take advantage of the inductive definition of P to describe
𝒪(P) by induction using simplification formulas.

• Records. It is well-known that there is a correspondence
between𝒟(𝑆×𝑇 ) – distributions over 𝑆×𝑇 and𝒟(𝑆)×𝒟(𝑇 )

– pairs of distributions. This correspondence is not one-to-
one as from left-to-right it forgets correlations between 𝑆 and
𝑇 . We still choose to use this correspondence here to simplify
𝒪(𝑆×𝑇 ), leaving correlations to be dealt with multiple types.
Thus we let:

𝒪(𝑆1 × · · · × 𝑆𝑛) := 𝒪(𝑆1) × · · · ×𝒪(𝑆𝑛)
We write tuples 𝒪(𝑆1 × · · · × 𝑆𝑛) as ⟨𝑜1, ..., 𝑜𝑛⟩.

• Sum. A distribution over a disjoint union 𝑆 ⊕ 𝑇 can be de-
scribed by a distribution over 𝑆 and one over𝑇 , plus a weight
in [0, 1] that says which side we are closer to. Thus, we let:

𝒪(𝑆1 ⊕ ... ⊕ 𝑆𝑛) := 𝒟( [1, 𝑛]) ×𝒪(𝑆1) × · · · ×𝒪(𝑆𝑛)
Instead of writing (𝑑, 𝑜1, ..., 𝑜𝑛) we write 𝑑 (1) · 𝑜1 ⊕ . . . ⊕
𝑑 (𝑛) · 𝑜𝑛 . If 𝑆𝑖 = 1 for all 𝑖 , we use 𝑖 to denote the certain
𝑖-th value of that attribute: (𝛿 (𝑖), (), ..., ()) where 𝛿 (𝑖) is the
Dirac distribution, i.e. maps 𝑖 to 1 and everything else to
zero.

• Multiple type. The values of ℳ(𝑆) are to be thought of
“multisets” of values of 𝑆 , to be able to represent several
forms of the same component. To be able to represent corre-
lations, we go beyond and chooseℳ(𝑆) to be represented
as probability distributions of 𝑆 :

𝒪(ℳ(𝑆)) = 𝒟(𝒪(𝑆)) .
The distributions are written [𝑝1 : 𝑜1, ..., 𝑝𝑛 : 𝑜𝑛].

• Quantitative data. For quantitative data, we just interpret
them as continuous distributions over R+. In the implemen-
tation for now, we only support normal distributions for
simplicity.

3.3.2 Representing correlations. Using multiple types, we can rep-
resent correlations. For instance, consider the following schema of
leaves:
leaf := { position: [basal|stem]; size:[small|large]}.

Formally, leaf := (1⊕ 1) × (1⊕ 1). Now assume we let plant :=
ℳ(leaf).
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We can represent a plant with small basal leaves and large stem
leaves as follows:

[0.5 · (1, 1), 0.5 · (2, 2)]

4 GENERATING A DETERMINATION KEY
Determination keys are particular cases of classification trees. We
review standard approaches to generate such trees from data.

4.1 Learning classification trees from examples
The problem of automating the reasoning of experts in a field (here:
identifying a plant) dates back to the beginning of Artificial Intelli-
gence, in particular with expert systems, where rules are created in
collaboration with an expert of the field and a knowledge engineer.
These rules tend to be deduction rules that are then fed to an in-
ference engine that can use them to try and replicate predictions
from expert. This process proved to be time-consuming and quickly
people tried to have the computer learn the rules on its own. This
gave rise to the field ofmachine learning, where the machine learns
by itself, without the need of understanding how an expert reasons.

In the case of classification problems (such as determining a
plant’s species), the approach using classification trees as learnt
knowledge became very popular. The computer learns from a set of
examples a trees whose leaves contain a prediction for the category.
Concretely an example is a tuple (𝑥1, ..., 𝑥𝑛, 𝑦) where each 𝑥𝑖 ∈ 𝑋𝑖
is an attribute value picked in a set of values 𝑋𝑖 . 𝑋𝑖 may be finite
(for instance the petal colors) or infinite (length of the leaf). The
final component, 𝑦 is the class of the example, i.e. the expected
result.

From such a set of examples, the goal is to learn classification tree:
leaves are predictions, i.e. elements of 𝑌 , and nodes are attributes
(e.g. 𝑥2), with one child per value of the attribute.

The main metric for such trees is (1) correctness and (2) concise-
ness. One of the first system to learn such trees is CSL [Hunt et al.
1966], which uses a min-max approach to generate an efficient tree.
This min-max approach involves exploring different branches of the
tree to evaluate how optimal a condition is. This min-max approach
tends to require a lot of computation, so other approaches were
developed.

4.2 The ID3 algorithm [Quinlan 1986]
ID3 [Quinlan 1986] is a greedy algorithm that at every step picks
the best condition according to some metric, and then recurses in
the two sub-branch. Compared to CSL, there is no backtracking
involved and so this algorithm is much faster. To get a performant
tree, all the magic happens in the choice of themetric to evaluate the
condition. In ID3, entropy is used to evaluate how well a condition
partitions the set of possible predictions.

4.2.1 Data of the algorithm. The algorithm assumes a list of at-
tributes, given as finite sets 𝑋1, ..., 𝑋𝑛 , and a set of 𝑌 . We assume
a set 𝑆 ⊆ 𝑋1 × ... × 𝑋𝑛 × 𝑌 . The output of the algorithm is a tree,
whose leaves are labelled with an element of 𝑌 , and nodes one of
the 𝑋𝑖 . A node labelled 𝑋𝑖 has |𝑋𝑖 | children.

4.2.2 Entropy. The entropy is a central notion in the ID3 algorithm
which measures how uncertain a set of examples 𝑆 is. The deeper

we go in the tree, the smaller 𝑆 becomes and thus the more certain
it is.

Given a set 𝑆 of examples and 𝑦 ∈ 𝑌 , we define the probability
of 𝑦 relative to 𝑆 :

𝑝 (𝑦, 𝑆) :=
|𝑆𝑦 |
|𝑆 |

where 𝑆𝑦 is the subset of 𝑆 containing only examples with class
𝑦. The entropy of a set of examples is based on Shannon’s formula
[Shannon 1948] for entropy as follows:

𝐻 (𝑆) := −
∑︁
𝑦∈𝑌

𝑝 (𝑦, 𝑆) × log2 𝑝 (𝑦, 𝑆) .

The minimal value of zero is reached when 𝑆 only contains
examples of the same class. In that case, the prediction is easy: it
must be that class.

4.2.3 Description of the algorithm. The ID3 algorithm can thus be
described as follows. It is parameterised by a set 𝑆 of examples:

Algorithm ID3(S):
1. If 𝐻 (𝑆) = 0, emit a leaf labelled with the only class present

in 𝑆 .
2. Otherwise, for each attribute number 1 ≤ 𝑖 ≤ 𝑛:

• Compute its score 𝐶𝑖 :=
∑

𝑣∈𝑋𝑖
𝑝 (𝑣)𝐻 (𝑆 [𝑥𝑖 := 𝑣])

3. Find the 𝑖 with the lowest 𝐶𝑖 .
4. For each 𝑣 ∈ 𝑋𝑖 compute recursively 𝑇𝑣 := 𝐼𝐷3(𝑆 [𝑥𝑖 := 𝑣]).
5. Produce the tree with node labelled𝑋𝑖 and children (𝑇𝑣)𝑣∈𝑋𝑖

.
where we use the following notations: 𝑆 [𝑥𝑖 := 𝑣] is the subset

of 𝑆 containing only examples where attribute 𝑖 is 𝑣 ; and 𝑝 (𝑣) is
defined as |𝑆 [𝑥𝑖 := 𝑣] |/|𝑆 |.

4.3 Adapting ID3 for our needs
There is a large body of work building on this algorithm trying to
improve different aspects of it. One key aspect is avoiding over-
fitting, which is often done by pruning the tree after generation.
This section is mostly informal, details can be found in Appendix
A.

4.3.1 Bayesian approach. To take into account polymorphism, un-
certainties and subjectivities our description are probabilistic. Thus,
we need to turn the algorithm probabilistic, which means main-
taining a distribution over species 𝑑 rather than a subset 𝑆 ⊆ 𝒮

of possible species. Since the notion of entropy was defined first
on probability distributions, this modifies little the algorithm. To
compute the effect of an answer, we use Bayes’ law (since our
probabilities are discrete).

4.3.2 Structured description. Our description is structured instead
of examples. To take this structure into account to improve the
algorithm, we use a score function defined by induction:

score : 𝒪(P) → O(P) → [0, 1]

This function computes the conditional probability needed for the
Bayes’ law.

4.3.3 Discussion and shortcomings.
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Prior distribution. One advantage of this approach compared to
the one described in Section 4.2 is that the algorithm is parameter-
ized by an initial probability distribution 𝑑0 (the prior in bayesian
term). This distribution can be taken to be the uniform distribution
over the set of species 𝒮. However, the weight of a species 𝑠 can be
related to its related to its frequency: the frequency in the region
of observation is an a priori probability to observe a plant. In our
proof of concept, we have used as a starting point, 𝑛1/5 where 𝑛
is the number of occurrences in the french territory as indicated
by GBIF7. The low exponent is necessary to flatten the disparities
between rarely and frequently observed and reported plants. Oth-
erwise, rarely reported plants cannot be found with the key as their
weight is too low.

This algorithm picks the most informative question, relative to
the current probability distribution. In other words, it picks the
question that is the best at discriminating the most likely species.
This is an improvement over standard key algorithms that may pick
questions to rule out very rare species.

Generating questions. In this algorithm, questions need to be
specified by the creator of the key. From the description of the type
P, it is possible to generate a set of basic questions about one trait.
For instance if P is described by:
plant := {

leaf: [yes | no];
flower_color: [ red | orange | yellow | blue ]

}.

Then we can easily generate two questions, one about the pres-
ence of the leaves and the second one about the color of flowers.
In general we can generate a set of questions inductively on the
structure of P.

These questions are too sharp: for instance not everyone uses the
same words to describe flower colors, and the boundaries between
two colours, e.g. pink and red, are unsharp. To alleviate this, we
equip every sum type appearing in P with a confusion matrix 𝑀

that explicits how likely is it to confuse a trait value for another. For
instance, here we could have𝑀red,orange = 10%, while𝑀red,blue =

5%.
Doing so protects us against user making mistakes while answer-

ing the question. Without the matrix, if the user answers orange,
all the red flowers disappear from the distribution (their weight
becomes zero). With the matrix, their relative weight is divided by
five: they take a hit, but are still around. This mechanism can allow
the user to make one or two mistakes in the exploration of the tree
and still get a correct identification while standard determination
keys tend to assume that the user is infallible.

Ambiguous questions. If 𝑞 = (𝑜1, ..., 𝑜𝑛) is a question and 𝑑 ∈
𝒟(𝒮) a probability distribution, we can look at the sum:

score(𝑜1, 𝑑) + · · · + score(𝑜𝑛, 𝑑).
We would expect this sum to be equal to one, which means

that every plant description is matched by exactly one of the 𝑜𝑖 .
This is not the case in general, especially for questions generated
with a confusion matrix. We are interested in the case when the
sum is greater than one, which means there is an overlap between

7Global Biodiversity Information Facility: https://www.gbif.org/fr/

different answers. This overlap may also come from the description
of species present in 𝑑 which may have several values for a trait.

This overlap quantifies how ambiguous the question is, and may
reflect how likely a user may make a mistake while answering this
question, given the current distribution 𝑑 . While we have not tested
it yet, we believe this quantity could be taken into account to make
a determination key that instead of taking the most informative
question, tries also to avoid too ambiguous question by picking
questions for which the answer is more clear-cut from the current
distribution.

Questions unlocking questions. When the sum is below one, the
question is partial. This means there are individuals for which no
answer really makes sense. This means typically that an answer is
missing. This happens for generated questions for nested sub-types.
Consider the following type for plants:
plant = { flower : [yes {color: [red | blue]} | no ] }.

This type has a single attribute, flower which can be yes or
no. In the case of yes, we are also interested in the color of the
petals. This type generates two questions: presence of flowers, and
color of petals. It is obvious that the question about color is partial,
indeed it only makes sense if we have established that the plant
observed has flowers. Since we do not want to present a question
to the user where they could get stuck, i.e. have no relevant answer,
we need to ask questions in order. However, the question “is it a
flowering plant” will often have a low score since most plants in
identification keys are flowering. Thus the question will not get
ask, even though it unlocks juicy questions such as the shape of
the inflorescence that are highly discriminating. To circmvent this
problem, we need to explore a few questions ahead to compute an
amortized score taking into account questions that are unlocked
by potential questions.

5 GATHERING AND USING DATA
To test the determination key generator we need a reasonable num-
ber of descriptions following our scheme. In this section, we de-
scribe our past and future attempts at gathering and formalizing
morphological data. We have mostly considered three approaches:
(1) mining existing sources online, (2) citizen science and (3) ma-
chine learning.

5.1 Database mining
So many databases of plant descriptions exist, either on books or
digitised, that it is tempting to gather data from this previous work.
However we were surprised by the recurrent obstacles. Firstly, very
few databases have a permissive license, which is understandable
because gathering data is a huge work and those who accomplished
it fear that it is used without any benefit for them. We could not en-
gage in individual collaborations with all of them, so we abandoned
the idea of using a big part of the existing data. Secondly, datasets
are not easily parsed. Let us take the example of the french flora by
Bonnier [Gaston and de Layens 1909] which has been digitised by
Tela-Botanica8. We attempted to translate the digitised questions
and answers into our formalism. It is easy to obtain a graph whose
nodes are questions (or taxons) and edges are answers to questions.

8https://www.tela-botanica.org/eflore/bonnierpda/Bonnier.html

https://www.gbif.org/fr/
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We had hoped at the beginning that we could just follow a path to a
species and get partial data for that species as the conjunction of its
edges. This proved difficult because, we had expected the graph to
be a tree (as in decision tree) but it is actually a DAG, that is there are
several paths leading to the same species. This phenomenon is due
to the key having a particular feature: it first identifies the family,
so several paths converging to a single family do not necessarily
concern the identified species in question.

We have also tried to parse the data from TRY, which is a trait
database for plants. Although it contains a lot of data, it actually
is a “database of databases”, thus including many sources which
are sometimes contradictory, and contains a lot of missing data.
As explained above, it was mainly conceived for plant ecological
studies with the goal to compare plants, not to distinguish them,
and thus not contain a lot of useful traits for plant identification.

5.2 Manual description filling
So we explored ways to reconstruct from scratch the datasets, in-
formed by existing floras, digitised or not, but manually filling the
fields instead of automatically mining. We have designed an inter-
face, parameterized by the plant.scheme that allows to input the
description of a species. Concretely, it means for each sum type in
the scheme, giving the value(s) for that particular species. Since our
model is probabilistic, we can also specify a probability distribution
on values for a trait, if there are several. The editor takes advantage
of the hierarchy of the plant.scheme: when selecting a trait value,
this may unlock new traits that were depending on it. For instance,
in the case of inflorescence, if we select capitulum, this would
unlock the traits relative to them. This allows us to only see the
traits that are relevant to the current species being edited, and also
to take it slowly, as the traits unfold the more we add information.

Data for a species is usually filled from some bibliographical
source. Due to the polymorphism and the uncertainty evoked above,
there is in general not a complete consensus about the existing plant
observation in the literature. For the database to be scientific value,
it is important to be able to source each value in the entry for a
species (especially the least obvious ones). To that end, the editor
allows to add bibliographic sources for each entry.

5.2.1 Experiments in citizen science. We would also like to involve
associations interested in conservation and environment education
to help us fill the database. We have obtained a small grant to
work with local and regional associations. The goal is to use the
knowledge from the employees and volunteers of the association
in exchange for producing determination keys for areas of interest.
This is also a good way for people to strengthen their botanical
knowledge, which is often a side goal of these associations. We
have devised the following methodology so far, where the goal is
to study a small ecosystem. Our partnership works as follows:

1. First fieldwork: Botanical inventory of the ecosystem, pay-
ing attention to how frequent the species are (this is needed
to get a good prior distribution).

2. Lab session: Adding missing species to the database.
3. Second fieldwork: After generating the key, we try to vali-

date it going back to where the inventory was made.
This methodology strengthens also a goal of the project which is

to get interested citizens more involved with their local ecosystems.

For a given environment, the methodology can be repeated several
times across the year as the species distribution tend to vary a lot.
This opens the door of making seasonal determination keys that
could even be more effective. Indeed, the current season tends to
be the first criteria used by botanists to guide what species they are
expected to find (and in what form).

5.2.2 Partnering with national networks of botanists. We also are
in the process of partnering with BotaScopia9 a french national
initiative led by Tela-Botanica and Université Paris-Saclay aiming
at providing uniform descriptions of species based on a formal
representation. In this project, the data is entered by students for
which this process is part of their curriculum.

5.3 Machine Learning
Another way to obtain data is to use machine learning techniques.
We see two possibilities.

5.3.1 Using NLP. There is a way to use NLP techniques to retrieve
information about natural language sources such as floras. It is
important that the model is able to source its values for attributes.
We have done some experiments with ChatGPT but they still have
to be thoroughly investigated. Before, however, we should ask
ourselves whether using such a tool, given its energy consumption
and its use of “human resources” in training it fits with our general
objectives. It seems preferable to directly work with botanists as
entering botanical data is meaningful for them.

5.3.2 Using image recognition. Deep learning could be imagined
to associate photos with traits, based on a training set. In this way
a subset of traits might be immediately recovered from a simple
image. However this might not be compatible with our idea of
staying in certain limits in terms of computations and resource
usage.

6 CONCLUSION AND FUTUREWORK
Determination keys are algorithms. They consist in deterministic
sequences of operations that lead to identification. This makes
appealing the idea to use some computer science theory to analyse,
generate and improve them. Surprisingly, even if computers have
been used a lot to help the botanical work, close concepts from
theoretical computer science (bayesian inference, decision trees,
information theory, formal languages) have been little explored in
this scope, apart from deep learning and notable exceptions like
xper [Kerner and Lebbe 2019].

We have presented a methodology for formalising botanical
knowledge, generating data according to this formalisation, and
using the data to generate determination keys. We believe that this
can be an improvement over the existing techniques for handling in
a probabilistic framework polymorphism, errors, uncertainties, and
proposing a hierarchical evolvable language that may solve the co-
nundrum between precision and accessibility of plant descriptions.
The system presented here is very much a work in progress. Some
aspects have been implemented, and we are running experiments.

Ultimately, we would like the determination keys to be possibly
printed on paper, at least for small floras, as well as being usable
9https://www.tela-botanica.org/2022/05/bientot-un-outil-de-creation-de-fiches-en-
botanique/

https://www.tela-botanica.org/2022/05/bientot-un-outil-de-creation-de-fiches-en-botanique/
https://www.tela-botanica.org/2022/05/bientot-un-outil-de-creation-de-fiches-en-botanique/
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offline on a modest smartphone or computer. Instead of a giant
national or international flora, we would also like to favour smaller
floras more adapted to specific ecosystems. In this way the comput-
ing systems are used to construct objects, and these objects, and
not the computers, are the daily used objects.

In this sense this work is an occasion to explore concretely in-
novative computer science concepts such as self-obviating systems
and transition computing, related to conviviality.

It is necessary to discuss how to evaluate a priori and a posteriori
the claim of convivial and self-obviating characters of the tools we
propose. According to Illich [Illich 1973], “The simple, poor, trans-
parent tool is a humble servant; the elaborate, complex, secret tool is
an arrogant master.” We will not achieve conviviality when we rely
on computer tools connected to the Internet that require a complex
arrangement of technologies. However compared to AI systems we
can argue that we progress in the three cited dimensions: compared
to AI based identification tools, our planned tools are simpler. Not in
their usage but in their conception. Indeed our proposed techniques
require some amount of computer science development and botany
knowledge, however these can be described without the reference
to theories that require a deep involvement to understand as neural
networks. Furthermore, our tools can be considered a progress on
the transparency vs secrecy dimension. Indeed, current AI tools,
even if explainability is an active field of research, never reveal
their tricks, even though they are necessarily based (implcitly or
explicitly) on already available human knowledge. Finally we will
have progressed on the poor vs complex dimension if for small
floras we can generate and print keys on papers. Then we will have
achieved the poor, transparent and humble qualities.

The explainability property is also a wished path to self-obviating
systems. Every use of the application should make it less useful for
a user, because every answer of the algorithm goes with a careful
observation of a plant and with an association of the observation
and the result. This remains to be evaluated: a posteriori, it will
be possible to measure if the users of explainable tools feel more
autonomous in their dialog with their vegetal environment than
AI users. Note that self-obviating for a user does not mean self-
obviating for a society: there will always be users who need training,
so that the tool never self-disappears eventually. However given
that we are living an important transformation of our societies due
to social and environmental crises, it is reasonable to consider all
tools as transitory, and their effects in this transition more than in
a stable society.

Eventually we claim the development of an humble computer
science. Humble in several meanings: (1) we use much less resources
than traditional AI approaches (2) we build on, and with the people
who already have the botanical knowledge and (3) we consider
computer science knowledge as a “back-office” supporting external
research questions, more than an “avant-garde” that would trans-
form the society by itself, to borrow the words of Bruno Latour
during his very last conference in Paris [Latour 2022]. Our goal is
not to replace botanists but to spread their knowledge and make it
accessible.

We believe our framework will be helpful for training botanists,
both formally (biology students) and informally (gardeners, ama-
teurs). Novices in botany could use a key based on the common

plants in their region, restricted to the species of interest (they of-
ten don’t start by identifying grasses), which will generate a rather
easy-to-use key. If the users progress, they might want to include
rarer species, or those occurring in a larger region, or those that are
notoriously difficult to identify. The keys will become increasingly
precise, requiring more botanical knowledge, but this procedure
offers the possibility to learn that knowledge step-by-step. Such an
incremental learning procedure is not possible with classical floras
and thus could have many applications in teaching and participative
science.

Finally, this work can have benefits outside the generation of
determination keys. Formalized botanical knowledge is useful in
evolutionary biology, ecology, and conservation biology. The ques-
tion of why there are so many plant species, and why some groups
are more species-rich than others (e.g. flowering plants vs. gym-
nosperms) is still largely unanswered. Morphology is at the intersec-
tion of evolution and ecology, as some traits are clearly adaptations
to enhance survival in certain environments (e.g. thorns prevent
plants to be eaten by large herbivores, leaves densely covered with
hairs protect against sunlight and evaporation), while others are the
result of evolutionary and developmental constraints (e.g. parallel
leaf nerves probably don’t influence the species’ ecological interac-
tions). Among others, the morphology of the species can be used
to quantify structural and functional diversity, allowing to better
understand the functioning of ecosystems than by species numbers
alone. Morphological descriptions should be available for all species
that have been described so far, thus allowing biodiversity studies
to benefit from centuries of botanical descriptions without the need
to spend time, human work and physical energy, all of which are
limited, for fieldwork to collect the data.
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A OUR BAYESIAN ALGORITHM
We present here our variation on ID3 that aims at addressing some
of the issues presented in the previous section. It is nowhere near
perfect and there are many choices still to be discussed. This is a
part of the design space that we have not yet been able to explore
in depth, in particular because we had to focus on building the
database first.

A.1 Questions and observations
As we have seen, the ID3 algorithm works as input with a set of
observations (𝑥1, ..., 𝑥𝑛, 𝑦). Another way to see it is that each 𝑦

has a set of observations. For traditional applications of ID3, these
observations are not necessarily exhaustive, thus the danger of
over-fitting.

In our setting, we fix a set 𝒮 of species along with a map 𝛿 :
𝑌 → 𝒪(P) mapping each species to a probabilistic description of it.
The pair (𝒮, 𝛿) is the database.

In ID3, the questions of the decision tree are given by the at-
tributes. We choose here thus to derive the questions from the
structured description P.

A question is a list of observations (𝑜1, ..., 𝑜𝑛) where 𝑜𝑖 ∈ 𝒪(P).
Each 𝑜𝑖 represents a possible answer to the question. We assume
fixed a set of questions 𝒬. We are going to apply the ID3 algorithm
where attributes are questions and attribute values are answers.

A.2 Definition of the score function
Given a question 𝑞 = (𝑜1, ..., 𝑜𝑛), and a class 𝑠 ∈ 𝒮, we need to
compute which answer is relevant for it. Because we are in a prob-
abilistic setting, for each answer 𝑜𝑖 , we want to compute the like-
lihood of 𝑠 satisfying answer 𝑜𝑖 . This weight is defined by a score
function score(𝑜, 𝑑) where the first argument is the observation
(answer) and the second is the description of the species. It returns a
number which says how likely an individual of species described by
𝑑 matches 𝑜 . The function is defined by induction on 𝒪(P), which
guarantees that the two observations have the same structure.

Scores for record and sum types are just taken from the formula
for conjunction and (probabilistic disjunction):

score(⟨𝑜1, ..., 𝑜𝑛⟩, ⟨𝑑1, . . . , 𝑑𝑛⟩) =
∏

𝑖∈[1,𝑛] score(𝑜𝑖 , 𝑑𝑖 )
score(⊕𝑖∈𝐼𝑤𝑖 · 𝑜𝑖 , ⊕𝑖∈𝐼 𝑣𝑖 · 𝑑𝑖 ) =

∑
𝑖∈[1,𝑛] 𝑤𝑖 × 𝑣𝑖 × score(𝑜𝑖 , 𝑑𝑖 )

The score formula for multiple types is a bit more subtle:

score( [𝑝1 · 𝑜1, ..., 𝑝𝑖 · 𝑜𝑖 ], [𝑞𝑖 · 𝑑1, ..., 𝑞 𝑗 · 𝑑 𝑗 ])
=

∏
𝑖∈𝐼 𝑝𝑖 ×

∑
𝑗∈ 𝐽 𝑞 𝑗 × score(𝑜𝑖 , 𝑑 𝑗 )

The choice on the left is understood as an implicit conjunction
(“we have observed leaves like this and like that”), while on the

right it is an implicit disjunction (“species may have leaves like this
or like that”), hence the product of sums.

Finally, for the case of quantitative trait, it depends on how they
are represented concretely. Our implementation has only normal
distributions (𝜇, 𝜎), and thus the score can be implemented as fol-
lows:

score((𝜇1, 𝜎1), (𝜇2, 𝜎2)) = 𝑑 (𝜇2,𝜎2 ) (𝜇1)
where 𝑑 (𝜇2,𝜎2 ) is the density function of the normal distribution

with parameters 𝜇2, 𝜎2.

A.2.1 Bayesian aspect. Another aspect we need to improve on
the standard formulation of the ID3 algorithm is to use a bayesian
approach. Concretely, instead of maintaining a set 𝑆 of candidates,
refined as we walk through the trees, we keep a probability dis-
tribution 𝑑 ∈ 𝒟(𝒮). Since the concept of entropy was originally
formulated at the level of distribution this part is easy to extend:

𝐻 (𝑑) = −
∑︁
𝑠∈𝒮

𝑑 (𝑠) × log2 𝑑 (𝑠) .

The main difficulty is to extend the construction 𝑆 [𝑥𝑖 := 𝑣]
which restricts a set of candidates to those for which 𝑥𝑖 := 𝑣 . In this
setting, we define the operation 𝑑 [𝑜] which updates a probability
distribution with the knowledge of observation 𝑜 using Bayesian
inference. As noticed above, score(𝑜, 𝑠) corresponds to the condi-
tional probability of observing 𝑜 , knowing we are observing 𝑠 . This
means that we can define 𝑑 [𝑜] as follows from Bayes’ law:

𝑑 [𝑜] (𝑠) = 𝑑 (𝑠) × score(𝑜, 𝑠)∑
𝑠′∈𝒮 score(𝑜, 𝑠′)

The denominator is simply a normalising factor.
Using those two notions, we can define the entropy of a question

as the average of the entropy of its answers. Given 𝑑 ∈ 𝒟(𝒮) and
𝑞 = (𝑜1, ..., 𝑜𝑛) we let

𝐻 (𝑑, 𝑞) :=
∑︁

1≤𝑖≤𝑛
score(𝑜𝑖 , 𝑑) × 𝐻 (𝑑 [𝑜𝑖 ])

Using this, we can define the score function to a probability
distribution of species, instead of a single species observation. Given
a observation 𝑜 in a probability distribution 𝑑 ∈ 𝒟(𝒮), we let:

score(𝑜𝑖 , 𝑑) :=
∑︁
𝑠∈𝒮

𝑑 (𝑠) × score(𝑜𝑖 , 𝛿 (𝑠))

A.3 Final algorithm
Using the previous definitions, we can now define our algorithm:

Inputs: A database (𝒮, 𝛿); a set of questions 𝒬.
Outputs: A tree, whose nodes are labelled with elements of 𝒬,

and leaves with distributions over 𝒮. Each node labelled 𝑞 has a
child per answer of 𝑞.

The recursive algorithm is parameterized by a distribution 𝑑 ∈
𝒟(𝒮) and 𝒬0 the remaining questions.

Algorithm ID3’(𝒬0, 𝑑):

1. If 𝒬0 is empty, return a leaf labelled with 𝑑 .
2. If 𝑑 is a Dirac distribution, return a leaf labelled with 𝑑
3. Find the question 𝑞 = (𝑜1, ..., 𝑜𝑛) ∈ 𝒬 that maximises𝐻 (𝑑, 𝑞).
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4. Return the tree with root node labelled 𝑞 and children, the
family:

(ID3′ (𝒬0 \ {𝑞}, 𝑑 [𝑜𝑖 ]))1≤𝑖≤𝑛 .
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