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ABSTRACT 

Thermoacoustic technology can play a significant role in the development of renewable 

energies. Thermoacoustic engines and heat pumps (or refrigerators) are however 

characterized by a low efficiency attributed to suboptimal components. The core of these 

devices is a porous material, named stack (or regenerator), in which thermoacoustic 

conversion takes place. The most frequently used stack in the literature remains the wire 

mesh, although there is still a lack of formulation for the corresponding thermoviscous 

response functions. Essentially, all the dynamic thermal and viscous behaviors of a porous 

structure can be derived thanks to the Johnson-Champoux-Allard-Lafarge (JCAL) semi-

phenomenological model, where transport parameters provide input information on the 

macroscopic level to the model. Here, we report a set of structure-property correlations 

between the transport parameters of the stack and the geometrical features of the wire mesh 

obtained from first-principles calculations. Validation of the model is carried out by means 

of experimental measurements performed on three different specimens. Our results show 

that the knowledge of the termoviscous functions for the wire mesh allows drawing 

preliminary considerations on the thermoacoustic efficiency of the stack, without needing 

to consider a full numerical simulation of the entire device.  

 

 

 

 

 

 

 

 



Nomenclature  
  Greek letters 

𝐴 Cross-sectional area [𝑚2] 𝛼∞ High frequency limit of tortuosity [−] 
𝐴𝑓𝑠 Fluid-solid interface area [𝑚2] 𝛾 Specific heat ratio [−] 

𝑐1, 𝑐2 Polynomial correlations 𝛿 Viscous/thermal boundary layer [𝑚]  
𝑐𝑝 Fluid specific heat at constant pressure [

𝐽

𝑘𝑔 ⋅𝐾
]   휀ℎ  Polynomial correlation 

𝑐𝑠 Solid specific heat at constant pressure [
𝐽

𝑘𝑔 ⋅𝐾
]   휀𝑠 Heat capacity ratio [−] 

𝑑 Sample thickness [𝑚] θp Oscillating velocity-Pressure Phase angle  
𝑑𝑠 Step between the struts [𝑚] θT Oscillating velocity-Temperature Phase angle  
𝐷𝑡  Size of the unit cell [𝑚] 𝜅 Fluid thermal conductivity [

𝑊

𝑚 ⋅𝐾
] 

𝐸 Local electric field [𝑉/𝑚] Λ Viscous characteristic length [𝑚] 
𝑓 Frequency [𝐻𝑧], thermoviscous functions [−] Λ′ Thermal characteristic length [𝑚] 

𝑓𝜈𝑡 Viscous transition frequency [𝐻𝑧] 𝜇 Dynamic viscosity [𝑃𝑎 ⋅ 𝑠] 
𝑓𝑡𝑡 Thermal transition frequency [𝐻𝑧] 𝜌 Density [𝑘𝑔/𝑚3] 

𝑔𝑐 , 𝑔𝜈 Trigonometric integrals  �̃� Complex density [𝑘𝑔/𝑚3] 
𝑖  Imaginary unit 𝜏 Scaled temperature [−] 

�̃� Complex wave number [1/𝑚] 𝜑 Porosity [−] 

𝐾 Complex bulk modulus [𝑃𝑎] 𝜔 Radial frequency [𝑟𝑎𝑑/𝑠] 
𝑘0 Static viscous permeability [𝑚2]   
𝑘0

′  Static thermal permeability [𝑚2]   
𝑝 Pressure [𝑃𝑎]   

𝑝𝑤𝑒𝑡 Wet perimeter [𝑚]   
Re Reynolds Number [−]   
𝑟𝑤 Tube radii [𝑚] Subscript  
𝑟ℎ Hydraulic radius [𝑚] ν Viscous  
𝑟𝑝 Strut radius [𝑚] κ Thermal  
𝑇 Temperature [𝐾] 𝑚 Mean time variable  

𝑢 
Projection of acoustic velocity vector 𝒗 along the 

wave propagation direction [𝑚/𝑠] 
𝑠 Solid part 

𝒗 Acoustic particle velocity [𝑚/𝑠] 1 First order variable  
𝑉𝑓  Fluid Volume [𝑚3]   

𝑉𝑡𝑜𝑡𝑎𝑙 Total Volume [𝑚3]   
𝑥 Coordinate [𝑚]   

 

 

I. INTRODUCTION 

Due to an increase of the energy consumption by human activity and a global attention 

towards pollution and environmental issues, research on sustainable technologies has been 

the focus of particular consideration for the last two decades. In this context, thermoacoustic 

engines can play a significant role for different reasons: low grade input energy (such as 

solar energy or industrial waste heat) can be used as energy source, environmental working 

fluid (air, noble gas) are employed, with low realization and maintenance costs [1]. Despite 

these advantages, thermoacoustic technology needs to be improved before it could 

represent a reasonable alternative solution to the present systems.  The core of 

thermoacoustic engines and heat pumps (or refrigerators) is represented by a particular 

porous material [2], named stack or regenerator, suitably designed to allow the correct 

viscous and thermal interactions between the oscillating fluid and its solid surface --in order 

to convert a mechanical energy (as a sound wave) into heat, and vice versa. Increasing the 



efficiency of these devices means to better understand the phenomena which occur in that 

porous core and then to find the optimal geometry for each specific case. The literature 

shows that thermoacoustic technologies have been used in different applications such as 

electricity generation [3–5], domestic refrigeration [6,7], automotive industry [8], cryogenics 

[9], and thermal management of electronic devices [10,11]. 

In these applications, wire meshes (or stacked screen bed) are largely used, because they are 

easy to realize with respect to other classical uniform cross-sectional stacks (parallel plates, 

circular pores and pin array); and they offer a low ratio between the fluid volume and the 

fluid-solid interface area which makes them suitable for travelling wave devices [8,12–17]. 

There is, however, a lack of an accurate model in the literature to describe the viscous and 

thermal properties of this kind of stacks. The performance predictions of a stack are usually 

determined from semi-empirical correlations provided by Swift and Ward [18]. They are, 

however, restricted to a specific geometrical configuration in their current form --which 

limits their ability to study how thermoacoustic efficiency relates to the geometrical details 

of the wire mesh stack.  

This paper is therefore devoted to the derivation of a more general model, linking wire mesh 

geometrical descriptors to classical thermoviscous functions 𝑓𝜈 and 𝑓𝜅, as available in the 

literature for standard uniform cross section stacks [19]. The knowledge of the visco-thermal 

behaviour as a function of the geometrical parameters of wire mesh (e. g., the radius of the 

struts 𝑟𝑝 and the step between the struts 𝑝; see Fig. 1) would offer the ability to find directly 

the optimal geometrical parameters for each specific application of interest, based on the 

other thermoacoustic device parameters (such as the working frequency, the length of the 

resonator, the hot and cold temperatures). Since the Johnson-Champoux-Allard-Lafarge 

(JCAL) [20–22] semi-phenomenological model conveniently describes the dynamic complex 

viscous and thermal behaviour of porous materials [23,24] at macro-scale from the 

knowledge of six transport parameters, the idea is to numerically solve the partial 

differential equations governing these macroscopic transport properties in the studied 

geometry; and then to provide detailed quantitative correlations of how transport 

parameters vary with geometrical descriptors.  

In the Sec. II, the theoretical background is introduced with a brief review of the viscous 𝑓𝜈 

and thermal 𝑓𝜅 functions of the porous material, in addition to providing their dependency 

on the six transport parameters of the JCAL model. In Sec. III, we then describe the 

geometrical model through which we simulate the flow, and the corresponding numerical 

computations leading to the transport parameters. Our present results linking geometrical 

parameters of the wire mesh with the transport parameters of the stacks are reported in 

Sec. IV, together with an analytical formulation of the heat capacity ratio accounting for the 

imperfect isothermal condition at the fluid-solid interface. A validation of the method is 

presented through the comparison of the calculated thermoviscous functions with 

laboratory measurements in Sec. V. Finally, a few remarks conclude this work.  



II. THEORETICAL BACKGROUND 

From a theoretical point of view, the dynamic viscous and thermal behaviour of a generic 

porous material under the action of an oscillating flow (with angular frequency 𝜔 = 2𝜋𝑓, 

and 𝑓 the frequency) can be derived by solving three linearized equations: continuity, 

momentum and energy coupled with the equation of state in the frequency domain. 

Considering the mean values of the thermodynamic quantities (𝑝𝑚, 𝑇𝑚) as being constant 

and assuming that the mean value of the velocity is zero, that is 𝒗𝒎 = 𝟎 (non-convective 

effects); pressure, temperature, and particle velocity can be written as: 

𝑝 = 𝑝𝑚 + ℜ[𝑝1𝑒𝑖𝜔𝑡]                                                                      (1) 

𝑇 = 𝑇𝑚 + ℜ[𝑇1𝑒𝑖𝜔𝑡]                                                                      (2) 

𝑢 = ℜ[𝑢1𝑒𝑖𝜔𝑡]                                                                              (3) 

where 𝑝1 is the acoustic pressure, 𝑇1 the excess oscillating temperature, 𝑢 (and 𝑢1) is the 

projection of acoustic velocity vector 𝒗 along the wave propagation direction, 𝑒𝑖𝜔𝑡 is the 

complex time factor, 𝑖 = √−1 is the imaginary unit and ℜ represents the real part of a 

complex number. Under scale separation between the wavelength and the characteristic size 

of the pore (as highlighted by Kirchhoff [25] for 𝑟𝑤𝑓3/2 < 106cm s−3/2, with 𝑟𝑤 the tube radii 

being greater than 10−3cm), momentum and energy equations allow to describe the visco-

inertial and heat diffusion effects separately [26, 27]: 

𝑖𝜔𝜌𝑚𝑢1 = −∇𝑝1 + 𝜇∇2𝑢1 ,                                                                (4) 

𝑖𝜔𝜌𝑚𝑐𝑝𝑇1 = 𝑖𝜔𝑝1 + 𝜅∇2𝑇1 ;                                                                 (5) 

𝜌𝑚 is the equilibrium density of air, 𝜇, 𝜅 and 𝑐𝑝 are respectively the dynamic viscosity, the 

thermal conductivity and the specific heat at constant pressure of air. Under the hypothesis 

of rigid and isothermal walls (𝑢1(𝑤𝑎𝑙𝑙) = 0, 𝑇1(𝑤𝑎𝑙𝑙) = 0) of the material solid skeleton, 

space-averaged solutions of Eqs. (4)-(5) can be written in terms of two frequency-dependent 

response-functions introduced by Zwikker and Kosten [28] to describe the overall acoustic 

behaviour of fluid saturated porous materials: the complex density �̃�(𝜔) and bulk modulus 

𝐾(𝜔).  

In thermoacoustics, a static temperature gradient along the material, 𝑑𝑇𝑚 𝑑𝑥⁄ ,  is artificially 

added by means of a hot and a cold heat exchanger. In this case the temperature field across 

the material is written as  

𝑇(𝑥) = 𝑇𝑚(𝑥) + ℜ[𝑇1𝑒𝑖𝜔𝑡] .                                                            (6) 

Taking into account Eq. (6), Eq. (5) becomes,  

𝑖𝜔𝜌𝑚𝑐𝑝𝑇1 + 𝜌𝑚𝑐𝑝

𝑑𝑇𝑚

𝑑𝑥
𝑢1 = 𝑖𝜔𝑝1 + 𝜅∇2𝑇1 .                                                 (7) 

Complex density and bulk modulus are obviously intrinsic properties of the material, which 

do not change when the thermal gradient is applied. In thermoacoustics, thermoviscous 

functions 𝑓𝜈 and 𝑓𝜅 are generally used to describe the dynamic behaviour of the porous 



media. These functions are strictly linked to the aforementioned complex density and bulk 

modulus, as shown by Dragonetti et al. [29]: 

�̃� =
𝜌𝑚

1 − 𝑓𝑣
 ,                                                                                 (8) 

𝐾 =
𝛾𝑝𝑚

1 + (𝛾 − 1)𝑓𝜅
 .                                                                       (9) 

For porous materials with simple geometrical shapes, such as uniform cross section (parallel 

plates, circular pores, pin array), thermoviscous functions (or, equivalently, complex 

density and bulk modulus) are expressed from analytical relations depending only on the 

geometrical factors of the system (semi-distance between plates, radius of circular pore, 

diameter of pin). In the case of complex porous media such as fibrous, granular and foam 

materials, the dynamic visco-thermal behaviour can be assessed through the Johnson-

Champoux-Allard-Lafarge (JCAL) semi-phenomenological model. This model requires six 

input parameters (termed transport parameters) which are related to geometrical quantities 

of the microstructure representing the porous material. The six transport parameters of the 

JCAL model are: the porosity 𝜑, the thermal Λ′ and viscous Λ characteristic lengths, the 

tortuosity 𝛼∞, the static viscous 𝑘0 and thermal 𝑘0
′  permeabilities. A definition of these 

transport parameters will be given in Sec. III. Once these parameters are known, the 

dynamic frequency-dependent visco-thermal properties can be expresses by combining the 

JCAL model with the Dragonetti et al. relations, Eqs. (8)-(9), as follows: 

𝑓𝜈 = 1 −
1

𝛼∞ (1 +
𝜑𝜇

𝑖𝜔𝜌𝑚𝑘0𝛼∞
√1 + 𝑖

4𝛼∞
2 𝑘0

2𝜌𝑚𝜔
𝜑2𝜇Λ2 )

 , (10)

 

𝑓𝜅 = 1 −
1

1 +
𝜑𝜅

𝑖𝑘0
′ 𝑐𝑝𝜔𝜌𝑚

√1 + 𝑖
4𝑘0

′ 2
𝑐𝑝𝜌𝑚𝜔

𝜅Λ′2𝜑2

 . (11)

 

Wire mesh, also named stacked screen (Fig. 1), was applied for the first time in 

thermoacoustics by Swift and Ward [18]. In their work, these authors introduced the 

possibility to use this kind of material as a porous core in thermoacoustic devices. In 

particular, wire mesh seemed to be suitable as a regenerator in travelling wave devices, 

where very small 𝑟ℎ 𝛿𝜈(𝜅)⁄  ratio are required; here 𝑟ℎ = 2 𝐴 𝑝𝑤𝑒𝑡⁄  is the hydraulic radius 

defined as the ratio between the cross-sectional area 𝐴 and the wet perimeter 𝑝𝑤𝑒𝑡, and 𝛿𝜈 =

√2𝜇 𝜔𝜌𝑚⁄  (𝛿𝜅 = √2𝜅 𝜔𝜌𝑚𝑐𝑝⁄  ) is the viscous (resp. thermal) boundary layer. General 

analytical solutions of Eqs. (4) and (5) do not exist, this is also the case for wire mesh 

geometries. For this reason, Swift and Ward [18] proposed a description of the dynamic 

viscous and thermal-relaxation effects of these materials from the friction factor and heat 

transfer data of Kays and London [30], derived from a steady-state assumption:  



𝑑𝑝1

𝑑𝑥
= −𝑖𝜔𝜌𝑚 [1 +

(1 − 𝜑)2

2(2𝜑 − 1)
] 〈𝑢1〉 −

𝜇

𝑟ℎ
2 (

𝑐1(𝜑)

8
+

𝑐2(𝜑)𝑅𝑒,1

3𝜋
) 〈𝑢1〉 , (12) 

𝑑〈𝑢1〉

𝑑𝑥
= −

𝑖𝜔

𝛾𝑝𝑚
𝑝1 +

1

𝑇𝑚

𝑑𝑇𝑚

𝑑𝑥
〈𝑢1〉 +

+
𝑖𝜔

𝑇𝑚
[

1

𝜌𝑚𝑐𝑝

(𝑔𝑐 + 𝑒2𝑖𝜃𝑝𝑔𝜈)휀ℎ

1 + 휀ℎ(𝑔𝑐 + 𝑒2𝑖𝜃𝑇𝑔𝜈)
𝑝1 −

1

𝑖𝜔

𝑑𝑇𝑚

𝑑𝑥

(𝑔𝑐 − 𝑔𝜈)휀ℎ

1 + (𝑔𝑐 + 𝑒2𝑖𝜃𝑇𝑔𝜈)휀ℎ

〈𝑢1〉] ; (13)

    

where 𝑅𝑒,1 = 4|〈𝑢1〉|𝑟ℎ𝜌𝑚/𝜇 is the complex Reynolds-number amplitude, and the angular 

brackets 〈 〉 represent a cross-sectional average. 𝜃𝑝 and 𝜃𝑇 are respectively the phase angle 

between the oscillating velocity and pressure and oscillating velocity and temperature. 

𝑐1(𝜑), 𝑐2(𝜑) and 휀ℎ are polynomial correlations expressed as functions of porosity, while 𝑔𝑐 

and 𝑔𝜈 can be assessed from trigonometric integrals. More details are reported in [31].  

All these elements make heavy and tedious the general description of the visco-thermal 

behavior of such materials. Therefore, it would be desirable to extend the simple use of 

thermoviscous functions, 𝑓𝜈 and 𝑓𝜅, to a convenient analytical formulation, as available for 

other canonical geometries (parallel plates, circular pores, pin arrays). Because 𝑓𝜈 and 𝑓𝜅 are 

intrinsic properties of the materials; the possibility to characterize the thermo-viscous 

functions for the wire mesh would allow making preliminary considerations on the 

behavior of these materials and then on their thermo-acoustic efficiency without simulating 

the entire device.   

The JCAL model can be employed to assess the thermoviscous functions for each porous 

materials under oscillating flows. In that case, the characterization of a material depends on 

the knowledge of six transport parameters. These intrinsic parameters can be assessed by 

means of numerical simulations, once the microstructure of the material is known.   

 

Figure 1. Schematic representation of the wire mesh stack and its geometrical descriptors. 

 

 



III. NUMERICAL APPROACH 

Linearized continuity, momentum and energy equations allow to solve the thermofluid 

dynamic fields inside the porous materials under oscillating flow conditions.  The 

homogenization theory [32] highlights that when a scale separation exists, viscous and 

thermal effects can be decoupled. In particular, thanks to the JCAL model, the knowledge 

of the dynamic complex behaviour of the material is a function of only six non-acoustical 

parameters, which can be assessed from three boundary value problems [33–37]. Wire 

meshes are practically obtained through superposition of several layers of grid, placed in a 

random way. The basic physics corresponding to the different simulations are as follows. 

- Firstly, solving the Stokes flow, leads to the assessment of the static viscous 

permeability 𝑘0 of the porous structure under study. For low Reynolds number flow 

hydrodynamics, corresponding to an incompressible Newtonian fluid, 

𝑘0 = 𝜑
〈𝑢〉

Δ𝑝 𝐷𝑡⁄
, (14) 

where 〈𝑢〉 is the average velocity over the fluid phase, Δ𝑝 the applied pressure 

difference and 𝐷𝑡 is the size of the unit cell.     

- Secondly, a resolution of the Laplace problem enables the assessment the high-

frequency parameters derived in the case of an inviscid ideal fluid: the tortuosity 𝛼∞ 

and the viscous characteristic length Λ. According to the electrical conduction 

analogy [20, 38], once an electric potential difference Δ𝑉 is applied across the unit cell 

in which the solid phase is insulating and the saturating fluid is conductive, the 

parameters can be estimated as 

𝛼∞ =
〈𝐸 ⋅ 𝐸〉𝑉𝑓

〈𝐸〉𝑉𝑓
⋅ 〈𝐸〉𝑉𝑓

, (15) 

Λ =
2 ∫ 𝐸 ⋅ 𝐸 𝑑𝑉𝑓𝑉𝑓

∫ 𝐸 ⋅ 𝐸 𝑑𝐴𝑓𝑠𝐴𝑓𝑠

; (16) 

 where 𝑉𝑓 and 𝐴𝑓𝑠 denote, respectively, the fluid volume and the fluid surface area of 

the pore space, 𝐸 is the local electric field deriving from a scalar potential, the scalar 

potential being itself the solution of the Laplace problem.  

- Third, finding the solution of the Poisson problem provides us with a means to assess 

the static thermal permeability, 𝑘0
′ , as 

𝑘0
′ = 𝜑〈𝜏〉𝑉𝑓

 ; (17) 

where 𝜏 is the scaled temperature field which solves Poisson’s equation inside the 

unit-cell, 

∇2𝜏 = −1 . (18) 

Porosity φ and thermal characteristic length Λ′ are geometrical parameters that can be 

evaluated directly from the unit-cell: 



𝜑 =
𝑉𝑓

𝑉𝑡𝑜𝑡𝑎𝑙
 , (19) 

Λ′ =
2 ∫ 𝑑𝑉𝑓𝑉𝑓

∫ 𝑑𝐴𝑓𝑠𝐴𝑓𝑠

 , (20) 

with 𝑉𝑡𝑜𝑡𝑎𝑙 the total volume of the unit cell including both the solid and fluid fractions. 

Periodic boundary conditions were applied through the thickness by imposing continuity 

of the microscopic velocity field while the lateral boundaries were subjected to continuity 

of the microscopic pressure field. 

It was observed, from the numerical procedure reported throughout Appendix A, that the 

relative error of both the viscous and thermal permeability computations between two 

subsequent calculations corresponding to the number n of grid layers, was typically less 

than 5 %, for n = 6. The maximum relative differences for the other transport parameters 

were less than 1%. The Representative Volume Element (RVE) was therefore considered in 

this study to be composed of six superimposed grid layers (Fig. 2). 

Lateral dimensions were imposed to be twice those of the thickness. Under these 

circumstances, it was observed that the lateral dimensions have no influence on the results 

when increasing their size. 

 

 

Figure 2 : An illustrative example of wire mesh stack representative volume element. For the sake of clarity, only the 

solid skeleton of the wire mesh stack of through-thickness 𝐷𝑡  is displayed.  

 

 



IV. SIMULATION RESULTS AND DERIVATION OF THE MODEL 

Simulations were carried out on 150 different unit-cells obtained by varying the strut radius 

𝑟𝑝 from 0.13 to 0.78 mm, and the distance between struts 𝑑𝑠 from 1 to 3.5 mm. Note that this 

range of variations of 𝑟𝑝 and 𝑑𝑠 parameters encompasses the typical dimensions of 

commercial wire screens [13-14]. It is also noteworthy that the geometry of wire mesh is 

characterized by intertwined metal filaments, while we constructed a simplified model of 

the wire mesh. The junction at two connected filaments was represented as a straight 

intersection. This model was found to be accurate enough for the prediction of the transport 

parameters of wire mesh stacks (Appendix A). 

Through Eqs. (14)-(20), transport parameters were evaluated for each unit-cell. 

Subsequently, the general structure of the proposed correlations between geometrical 

descriptors and transport parameters was inspired from the ones provided by Luu et al. [39]. 

This was possible because of the similarity between wire mesh and fibrous structure. The 

proposed correlations are summarized in Tab. I, together with some statistical indicators 

assessing the goodness-of-fit. A systematic quantitative appreciation of the adequacy of the 

fitted model was also performed through residuals analysis and reported in Appendix B.  

  



Table I. Transport parameters' correlations for wire mesh stacks. R-squared is the coefficient of determination, while SSE 

denotes the sum squared errors of residuals. 

Parameter Correlation R-squared SSE 

Porosity 𝜑 = 1 − 0.7099
𝜋𝑟𝑝

𝑑𝑠 + 2𝑟𝑝
 0.9806 0.0493 

Thermal 

Characteristic 

Length 

Λ′

𝑟𝑝
=

𝜑

1 − 𝜑 − 0.005133
 0.9845 10.38 

Viscous 

Characteristic 

Length 

Λ

𝑟𝑝
= 0.4825

𝜑

1 − 𝜑 + 0.04564
 0.9802 1.284 

Tortuosity 𝛼∞ = (
1

𝜑
)

0.5807

 0.9657 0.1303 

Static Viscous 

Permeability 
log10 (

𝑘0

𝑟𝑝
2

) = 0.7765 log10 (
𝜑3

(1 − 𝜑)2
) − 0.9855 0.9993 0.0605 

Static Thermal 

Permeability 

log10 (
𝑘0

′

𝑟𝑝
2

) = 0.7258 log10 (
𝜑3

(1 − 𝜑 + 0.3054)2
)

− 0.6741 

0.9992 0.1802 

 

To complete the thermoacoustic description of a porous material, the heat capacity ratio 휀𝑠 

parameter [2] is needed in order to take into account the imperfect isothermal condition 

provided by the solid matrix. Implicitly, Eq. (5) is solved in the case of an isothermal solid 

condition, meaning that a Dirichlet boundary condition is applied at the fluid-solid interface 

(𝑇1 = 0). In practical situations however, due to the variation of temperature, both fluid and 

solid thermal properties may evolve, and the most appropriate boundary condition for the 

energy equation is the Robin boundary condition as reported in [40], 

𝑇1,𝑓𝑙𝑢𝑖𝑑 = 𝑇1,𝑠𝑜𝑙𝑖𝑑 𝜅∇𝑇1,𝑓𝑙𝑢𝑖𝑑 = −𝜅𝑠∇𝑇1,𝑠𝑜𝑙𝑖𝑑 ; (21) 

where 𝜅𝑠 is the thermal conductivity of the solid matrix. Note that the subscript 1 indicates 

here that the solid matrix can no more act as a thermostat imposing its temperature. The 

heat capacity ratio 휀𝑠 allows to express how far the solid skeleton is from an isothermal 

condition. This parameter turns out to be equal to zero for a perfect isothermal solid 

condition and tends towards infinity in the case of an adiabatic condition. 휀𝑠 can be assessed 

in an operative way as follows,  

휀𝑠 =
𝜌𝑚𝑐𝑝𝑓𝜅

𝜌𝑠𝑐𝑠𝑓𝑠

𝜑

1 − 𝜑
, (22) 

where 𝜌𝑠 and 𝑐𝑠 are, respectively, the density and the heat capacity of the solid material and 

𝑓𝑠 is the dynamic thermal function (a solid dynamic thermal function understood as an 

analogue to 𝑓𝜅 for the fluid part) depending only on the geometry of the solid structure. 



Therefore, the dynamic thermal function 𝑓𝑠 is the only missing parameter to assess the heat 

capacity ratio 휀𝑠  and fulfil the overall thermoacoustic description of the stacks. In the case 

of a wire mesh, the solid structure geometry can be considered as an array of circular rods, 

for which an analytical formulation of the solid thermal function exists, 

𝑓𝑠 = 2
𝐽1[(𝑖 − 1)𝑟𝑝 𝛿𝑠⁄ ]

𝐽0[(𝑖 − 1)𝑟𝑝 𝛿𝑠⁄ ]
; (23) 

where 𝛿𝑠 = √2𝜅𝑆 𝜔𝜌𝑠𝑐𝑠⁄  is the thermal boundary layer inside the solid medium and 𝐽1, 𝐽0 

are respectively the Bessel’s functions of first and zero order.  

V. EXPERIMENTAL RESULTS  

Three different wire mesh specimens have been realized and tested to validate the proposed 

transport parameter models. Geometrical data of the experimental samples are reported in 

Tab. II.  

Table II. Geometrical data of the wire mesh samples. 

Sample 
 Radius of the struts 

𝑟𝑝 [𝑚𝑚]  
Step between the struts 

𝑑𝑠 [𝑚𝑚] 

Wire Mesh 1 

 

 

0.35 3.07 

Wire Mesh 2 

 

0.30 2.30 

Wire Mesh 3 

 

0.20  1.63 

 

  



In the literature, different experimental methodologies were applied to characterize the 

dynamic viscous and thermal properties of porous materials. The most commonly used 

experimental setups are the three-[41] and four-[42] microphones impedance tube 

techniques.  Other measurement methods, specific to low frequency stimuli, such as in 

thermo-acoustics, are the lumped element techniques [43–46]. Note that in thermo-

acoustics, the stack works primarily at frequencies below 500 Hz. For this reason, the low 

frequency acoustic methods presented in [45-46] were employed to characterize the viscous 

and thermal behaviours of the three wire mesh samples under study. This methodology 

requires the use of two single microphones, to measure the pressure in the cavity where the 

sample is placed and the pressure behind the loudspeaker. For the assessment of the viscous 

behavior, the sample is placed between the loudspeaker membrane and an open-end, while 

for the thermal behavior a rigid termination is placed back onto the specimen. For each test 

two measurements are required: once with the sample (full) and one only with air fulfilling 

the sample holder (empty). The techniques are particularly suitable in low frequency range, 

where the standard three- and four- microphones methods are limited from the geometrical 

dimensions of the setup, such as the separation distances between adjacent microphones 

and the inner diameter of the tube. As a control, the measurement procedure was repeated 

three times, for each of the considered sample. The reason for performing the measurements 

three times was to determine the dispersion of experimental data, in particular as a function 

of frequency.  

In agreement with the theoretical background introduced in Sec. II, the experimental results 

are reported in terms of the viscous and thermal functions, 𝑓𝜈 and 𝑓𝜅. Figs. 3-5 compare the 

experimental results obtained though the lumped element technique with our model 

combining the JCAL approach with the proposed transport parameter derivations (Tabs. I 

and II).  Plots are reported in terms of the real and imaginary parts of the viscous and 

thermal functions.  Experimental data are generally in good agreement with the theoretical 

predictions both for the viscous and thermal behaviors. Based on the equations reported in 

Table I, the estimated values of the viscous 𝑓𝑣𝑡 = 𝜇𝜑 (2𝜋𝜌0𝛼∞𝑘0)⁄  and thermal 𝑓𝑡𝑡 =

𝜅𝜑 (2𝜋𝜌0𝑐𝑝𝑘0
′ )⁄  transition frequencies, for the three wire mesh samples that were 

characterized (wire mesh 1 to 3), are respectively equal to 19, 32, 65 Hz and 14, 21, 45 Hz. 

Therefore, most of the measured behaviours of the viscous 𝑓𝜈 and thermal 𝑓𝜅 functions 

correspond only to the inertial and adiabatic regimes.  

It can be highlighted that experimental data start to deviate from the model prediction when 

the frequency increases. This is due to a limit in the high frequency range of the lumped 

element technique, where the validity range of the methodology is function of the sample 

parameters. Notably, the greater the viscous losses (i.e. the airflow resistivity) the smaller 

the range of frequencies in which the measurements are valid. In [45-46], the range of 

frequencies over which the measurements are valid was established for values 

corresponding to 𝑎𝑏𝑠(�̃�𝑑) < 0.5; where �̃� = 𝜔√
𝜌𝑚

𝛾𝑝𝑚

1+(𝛾−1)𝑓𝜅

1−𝑓𝜈
 is the complex wavenumber 



and 𝑑 is the sample thickness. For the experimental samples under study, the corresponding 

cut-off frequencies for Wire Mesh 1, 2 and 3 are respectively equal to 535, 521 and 509 Hz.  

Some differences between the experimental data and the model were observed for the 

imaginary part of the thermal response function, 𝑓𝜅 (below 50 Hz). This resulted mostly 

because of difficulties inherent to the measurement technique, which requires a perfectly 

sealed setup to avoid air losses and an acoustic source able to support the front and rear 

compliance volumes [45]. In our experimental setup, the used acoustic source was not 

properly designed to work under such low frequencies. As a consequence, an increasing 

standard deviation was characterized when the frequency decreases. Specifically, the 

difference in amplitude between the experimental results and the model predictions for the 

thermal function 𝑓𝜅 of the Wire Mesh 1 (Fig. 3a) resulted mostly from the fact that a larger 

thermal permeability 𝑘0
′  was observed when compared with the other samples (Tab. I and 

II). In agreement with the previous statement about the thermal transition frequency 𝑓𝑡𝑡t, 

the associated transition between the isothermal and adiabatic regimes of 14 Hz indicates 

that an accurate measurement of both the real and imaginary part of 𝑓𝜅 would require a 

specifically designed experimental setup. 

Because the experimental validation of the model is provided under ambient air conditions, 

the imperfect isothermal condition highlighted through Eqs. (21)-(23) had no impact, and 

the heat capacity ratio 휀𝑠 was clearly set to zero. It is noteworthy that, in classical 

thermoacoustic applications where the temperature gradients are high and the 

thermophysical properties of the fluid and the solid matrix make the isothermal condition 

no more valid, the proposed model is general enough and can be applied including Eqs. 

(21)-(23). 

 

 

Figure 3. Wire mesh 1: Comparison between experimental results (red circular points, mean value ± standard deviation) 

and modelling approach (continuous black line). Real and imaginary parts of the frequency-dependent (a) thermal 

function 𝑓𝜅 and (b) viscous function 𝑓𝑣. 



   

Figure 4. Wire mesh 2: Comparison between experimental results (red circular points, mean value ± standard deviation) 

and modelling approach (continuous black line). Real and imaginary parts of the frequency-dependent (a) thermal 

function 𝑓𝜅 and (b) viscous function 𝑓𝑣. 

 

Figure 5. Wire mesh 3: Comparison between experimental results (red circular points, mean value ± standard deviation) 

and modelling approach (continuous black line). Real and imaginary parts of the frequency-dependent (a) thermal 

function 𝑓𝜅 and (b) viscous function 𝑓𝑣. 

VI. CONCLUSION 

In this work, a model to assess the transport parameters of wire mesh stacks is provided as 

a function of its geometrical descriptors (the radius of the struts, 𝑟𝑝, and the characteristic 

step between two struts, 𝑝). These simple relationships between geometrical and transport 

parameters allow the use of the JCAL semi-phenomenological model, in order to 

characterize the dynamic viscous and thermal behavior of the porous system, in terms of 

two standards 𝑓𝜈 and 𝑓𝜅 response functions. To further elaborate on the thermoacoustic 

description of this kind of stacks (regenerators), a complementary formulation of the 

dynamic thermal function of the solid (and subsequently the heat capacity ratio, 휀𝑠) was also 

provided. Experimental measurements carried out on three different samples agreed quite 

well with the proposed model. In conclusion, because all transport parameters of wire mesh 

stacks can be determined from direct micro-macro relationships (Table I); this procedure 

makes it possible to obtain simultaneously the intrinsic viscous 𝑓𝜈 and thermal  𝑓𝜅  

frequency-dependent behavior from the geometrical description of the solid constituents 



(𝑟𝑝, 𝑑𝑠). It is especially well suited to further study the overall performance of 

thermoacoustic engines, using wire-mesh stacks, which depends on a certain number of 

operating parameters (working frequencies, stack position, amount of thermal energy to be 

exchanged, temperature gradient). An innovative method was therefore proposed to derive 

structure-property relationships, which are extremely useful in the early stages of design of 

a thermoacoustic engine, because they quickly promptly give the designer quantitative 

information allowing preliminary assessment of the viscous and thermal dissipative powers 

inside the stack. In particular, using these relationships should be extremely valuable to 

properly determine the geometrical parameters of the wire mesh so as to maintain a 

relatively low amount of viscous effects and increase the thermal ones in order to promote 

thermal energy exchanges. 
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Appendix A.  Definition of the unit cell used to perform the numerical simulations 

Wire meshes are realized by intertwined metal filaments (Figs. 6a and 6b). The geometry of 

the RVE was simplified by considering intersecting filaments at the junctions (Figs. 6c and 

6d).  

 

Figure 6. Intertwined metal filaments. [front (a) and perspective (b) views] compared to the simplified model with 

intersecting filaments [front (c) and perspective (d) views]. 

The effects of this simplification on the transport parameter values were assessed by means 

of numerical simulations on a single layer. The relative differences ∆ between transport 



parameters of intertwined and intersecting filaments was much lower than 5%, with a small 

exception for the characteristic length (attributed to the lower wetted surface area ratio of 

the straight pattern); Tab. III. Following this analysis, the simplified geometry was chosen 

to realize the RVE, mainly for two reasons: (i) the greater simplicity to build the geometry; 

(ii) this approach allowed us to avoid uncertainties usually associated with the analysis of 

singular geometrical problems (due to the mesh in the vicinity of critical points, such as the 

contact of two filaments in the intertwined case). 

Table III. Transport parameter values of an intertwined and intersecting wire mesh geometry (𝑟𝑝 = 0.15 𝑚𝑚, 𝑑𝑠 =

3.3 𝑚𝑚). 

 𝜑 
[−] 

𝛼∞ 
[−] 

𝛬  
[𝑚𝑚] 

𝛬′ 
 [𝑚𝑚] 

𝑘0  
[𝑐𝑚2] 

𝑘0
′  

 [𝑐𝑚2] 

Intertwined  0.9536 1.0385 0.7936 2.6254 0.2981 0.5115 

Intersecting 0.9533 1.0456 0.7596 2.7806 0.2930 0.5199 
𝚫% 0.04 0.68 4.49 5.58 1.73 1.60 

 

The representative volume element (RVE) on which the numerical simulations are carried 

out is based on six superimposed layers, randomly oriented (Fig. 2). The convergence of the 

transport parameters was assessed by adding progressively supplementary layers of wire-

mesh. For a given number of layers, the simulations were repeated four times with the 

relative orientation of each horizontal layer being chosen randomly. Results are presented 

as mean ± standard deviation (Fig. 7). The relative difference Δ between the mean value 

corresponding to a transport parameter with n layers and the mean value corresponding to 

the same transport parameter with n - 1 layers was found to be less than 1 % for the porosity 

(Fig. 7a) and for the tortuosity (Fig. 7b), and less that 5 % for the characteristic lengths (Figs. 

7c and 7d); with n = 6. Considering the viscous 𝑘0 and thermal 𝑘0′ permeabilities, the relative 

difference declines appreciably with the number of layers, with a relatively stable level for 

n ≥ 4 (Figs. 7e and 7f). A value of n = 6 represents a good tradeoff between accuracy and 

computational time. 



 

Figure 7. The relative variation between a calculation with n layers and the previous one with n - 1 layers for: (a) the 

porosity 𝜑, (b), the high frequency limit of tortuosity 𝛼∞, (c) the thermal characteristic length 𝛬′, (d) the viscous 

characteristic length 𝛬, (e) the static viscous permeability 𝑘0, (f) the static thermal permeability 𝑘0
′ .  

Appendix B. Range of applicability of the transport parameter correlations. 

Wire meshes are characterized by a simplicity in realization with respect to other 

thermoacoustic stacks. In fact, they can be derived by superimposing different layers of 

metal grids which are generally used for filtration applications. Therefore, the range of 

geometrical parameters used during numerical simulations was established based on both 

literature [13-14] and commercial data. The proposed correlations were summarized in 

Tab. I, with some statistical indicators assessing the goodness-of-fit. The coefficient of 

determination (R-squared) of the fit was 0.97 for the tortuosity, 0.98 for the porosity and the 

characteristic lengths, and 0.999 for the permeabilities. The proportionate amount of 

variation in the response variable (transport parameter) that is explained by the 

independent variables (geometrical descriptors) was therefore always very close to one. The 

residual analysis enables a local quantitative appreciation of the adequacy of the fitted 

model (Tab. IV). The residuals from a fitted model are defined as the differences between 

the response data (simulations) and the fitting to the response data (model) at each predictor 

value. The largest differences are observed for the thermal characteristic length Λ′, a strongly 

diverging function when 𝜑 → 1(see Ref. [39], Fig. 4); a behavior in agreement with the 

corresponding sum squared errors of residuals (SSE = 10.38, Tab. I). Together with a close 

match between the transport parameter values in the models and in the numerical 

simulations, this and the results above confirm the accuracy of the proposed correlations 

and indicate that they capture the essential physics of visco-thermal interactions in a wire-

mesh stack. 



 

Table IV. Fitting curve and residual plot of transport parameters correlations. 

Fitting curve Residual plot 
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