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Abstract

Various methods have been proposed to detect objects while reducing the cost of
data annotation. For instance, weakly supervised object detection (WSOD) methods
rely only on image-level annotations during training. Unfortunately, data annotation
remains expensive since annotators must provide the categories describing the
content of each image and labeling is restricted to a fixed set of categories. In this
paper, we propose a method to locate and label objects in an image by using a
form of weaker supervision: image-caption pairs. By leveraging recent advances
in vision-language (VL) models and self-supervised vision transformers (ViTs),
our method is able to perform phrase grounding and object detection in a weakly
supervised manner. Our experiments demonstrate the effectiveness of our approach
by achieving a 47.51% recall@1 score in phrase grounding on Flickr30k Entities
and establishing a new state-of-the-art in object detection by achieving 21.1 mAPs5q
and 10.5 mAP5¢.95 on MS COCO when exclusively relying on image-caption
pairs.

1 Introduction

Locating and classifying objects within an image is a fundamental task in computer vision that
enables the development of more complex tasks such as image captioning [47]], visual reasoning [21],
among others. Nevertheless, the success of object detection models [[15 [31] typically relies on
human supervision in the form of bounding box annotations. In particular, data annotation is a
time-consuming and arduous task that requires annotators to draw bounding boxes around objects
and label each bounding box with a category from a fixed set of categories. Furthermore, modifying
the number of categories may require annotators to relabel or add new bounding boxes.

Several approaches have been proposed to reduce the cost of data annotation in object detection by
using image-level labels [2} 5} /40, 156 10,53} 132 [13]], a dataset containing both labeled and unlabeled
data [37, 124} 125]] or sparsely-annotated data [46l 54,44} 18]]. For instance, WSOD methods only use
image-level annotations along with the multiple instance learning (MIL) [28]] approach. However, the
annotation effort is still significant and similar to that required for supervised classification.

In this paper, we take a step forward by learning to locate and label objects within an image from
image-caption pairs. Not only captions provide a more natural description of the image content than
image-level labels but also constitute a form of weaker supervision since image-caption pairs are
easier to collect in vast amounts (e.g. from the Web [34]]). Our approach combines recent advances in
vision-language (VL) models [[19] and self-supervised vision transformers (ViTs) [3l].

VL models leverage large-scale image-caption datasets and have strong performance on zero-shot
image classification, image-text retrieval, and visual reasoning tasks. These models align images with
their corresponding captions via contrastive learning. Notably, models that include a cross-modality
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Figure 1: Our approach leverages language from captions via ALBEF to annotate multiple objects per
image (e.g. we detect a dog and a frisbee while LOST generates a single categoryless bounding box).

encoder seem to implicitly learn a more fine-grained word-region alignment without using additional
supervision [19]. We propose to use the location ability of VL models to automatically annotate
objects of interest mentioned in captions. Moreover, VL models do not require retraining when the
number of categories to annotate changes as they are already included in the VL model’s vocabulary.

Despite the strong ability of VL models to locate objects, they aim at the most distinctive part of the
object rather than the whole object. For example, ALBEF [19] and ViIBERT [26] perform phrase
grounding by ranking the object proposals provided by the supervised detector MattNet [51]]. On the
other hand, recent work has shown that representations from self-supervised ViTs contain explicit
information about the scene layout of images and produce heatmaps that highlight salient objects [3].
LOST [36] and TokenCut [43]] show the effectiveness of self-supervised ViT representations to
perform unsupervised object discovery and detection without any labels.

We make the following contributions in this work. First, we propose a novel method to locate and
label objects in images by combining the ability of VL models to point at objects and the ability
of self-supervised ViTs to extract whole objects in Section[3} By building upon ALBEF [19] and
LOST [36], our method is able to locate multiple objects and generate accurate bounding boxes
without human supervision. Figure[T]illustrates the improved ability of our model over LOST. Second,
we use our approach to perform phrase grounding and object detection in a weakly supervised fashion.
In Section ] we demonstrate that our method achieves competitive performance in phrase grounding
on Flickr30k Entities [29] and establish a new state-of-the-art in object detection on MS COCO
when exclusively relying on image-caption pairs as unique source of supervision. Additionally, we
perform ablation experiments to investigate the key components of our approach, transfer learning
experiments on PASCAL VOC2007 [[7] and pseudo-labeling experiments to improve the performance
in WSOD. In Section[5] we discuss the limitations, future work and conclusions of our work.

2 Related work

Weakly supervised object detection: To reduce the cost of data annotation, several methods
propose to train object detectors using only image-level annotations without the need for bounding
box annotations. WSDDN [2] introduces the first end-to-end WSOD framework that adopts MIL [28].
Since then, several improvements have been proposed: PCL [40] performs clustering to improve
object proposals and W2F [56] leverages pseudo-label mining from a WSOD model to train a
supervised object detector. C-MIDN [10] introduces a method for coupling proposals to prevent the
detector from capturing the most discriminative object part rather than the whole object. WSOD? [53]]
performs pseudo-label mining and incorporates a bounding box regressor to fine-tune the location of



each proposal. Likely, MIST [32] performs pseudo-label mining where highly overlapping proposals
are assigned to the same label. CASD [[13] combines self-distillation with multiple proposal attention
maps generated via data augmentation. Closely related to our work, Cap2Det [48]] learns from
image-caption pairs by extracting image-level annotations from captions using a supervised text
classifier. These predicted image-level annotations are subsequently used to train a WSOD model
based on MIL. Additionally, Cap2Det [48]] refines the WSOD model by retraining on instance-level
pseudo-labels multiple times. Most of the existing WSOD methods rely on object proposal algorithms
(e.g. Selective Search [41]] or Edge Boxes[58]). By exclusively leveraging self-supervision on image-
caption pairs, our approach outperforms the state-of-the-art model Cap2Det [48]] without the need for
a supervised text classifier. Additionally, our approach outperforms relevant WSOD baselines [40} [10]
that use a form of stronger supervision (image-level annotations) and object proposal algorithms.

Learning from unlabeled or partially labeled data: Some approaches alleviate the lack of
bounding box annotations by leveraging a small labeled dataset and a large unlabeled dataset via
semi-supervised learning [37) 24} 25]] and active learning [43] 42]]. Li et al. [18] propose to train
an object detector using only a single instance annotation per category per image. Other methods
combine image-level and instance-level pseudo-annotations during training [46, 32]. Sohn et al. [37]]
propose a two-stage training in which an object detector is trained on available labeled data. This
model is subsequently used to select high-confidence bounding boxes on unlabeled data as pseudo-
labels. Wang et al. [44] address the missing annotation problem by introducing a siamese network
where each branch is used to generate pseudo-labels for each other. Likely, recent work [24} 25]]
leverage the teacher-student framework in object detection. In this work, we also explore the use of
pseudo-labels to improve WSOD performance.

VL models: Learning joint VL representations from image-caption pairs in a self-supervised
fashion has proven to be effective to perform multiple downstream tasks [26} 27] such as visual
question answering, image retrieval, image captioning, zero-shot classification, etc. VL. models [39,
20, 38, [16 18, 22] 14, [14], 1301 [19] are generally trained on a combination of loss functions: masked
language modelling (MLM), where a masked word token is predicted; masked image modelling
(MIM), where a masked image region feature or object category is predicted, image-text contrastive
learning (ITC), where positive/negative image-caption pairs are assigned to high/low similarity scores,
respectively; and image-text matching (ITM), that predicts whether an image and a caption match.
Many strategies have been proposed to achieve improved VL representations. VisualBERT [20] uses
a supervised object detector to extract visual embeddings. VILLA [8]] performs adversarial training
in the representations space. OSCAR [22] uses object tags to ease VL alignment. UNITER [4]
encourages alignment between words and image regions extracted by an object detector. More
recently, CLIP [30] leverages a massive amount of image-caption pairs and achieves impressive
performance at zero-shot classification. However, CLIP underperforms at other VL tasks as the
interaction between vision and language is very shallow (i.e. a simple dot product). Li et al. [[19]
propose a new model called ALBEF, which builds upon previous models [39, 26} |30, [16} [14]] and
is composed of a vision encoder, a language encoder, and a cross-modality encoder for deeper VL
interaction. By leveraging a large image-caption dataset [34]], ALBEF outperforms previous models
at many VL tasks without the need for a supervised object detector to extract region-based image
representations. Our approach leverages a pre-trained ALBEF model to locate the image region that
corresponds to a word or a textual description.

Open vocabulary detection: Classifying an object or image has been traditionally limited to a
small set of fixed categories. Zhang et al. [55]] leverages the vocabulary from image-caption datasets to
perform image classification across more than 30k classes. The recent success of VL models 30, [19]
has motivated other methods to leverage image-caption pairs to perform object detection on a larger
number of categories. Zareian et al. [[52]] use bounding box annotations from base classes to perform
correctly in target classes mentioned in captions. Gao et al. [9] use a supervised object detector
trained on MS COCO [23]] to generate pseudo-bounding box annotations for categories mentioned in
captions. Similar approaches [57, 35] have been proposed by extending CLIP [30]. We also leverage
VL models to annotate objects using an arbitrary number of categories in a self-supervised manner
without relying on bounding box annotations like previous methods.

Object discovery: Recently, several studies explore methods for object localization that rely solely
on visual cues. LOST [36] extracts image representations via a self-supervised ViT [3] which are
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Figure 2: Bounding box generation using the caption "A woman is steering a with a pole". First,

we select the initial and potential seeds (red and gray patches, respectively) via a VL model for
each category identified in the caption. Second, we perform seed expansion by measuring similarity
between patches via a ViT. Finally, each heatmap is thresholded and a bounding box is drawn on top.

subsequently used to identify the image patches corresponding to an object based on their correlation.
Wang et al. [45] also leverage DINO representations which are used to build a graph. A normalized
graph-cut is used to split the foreground object from the background. Both methods can only locate a
single object per image without providing its category. Our approach builds upon LOST by integrating
the language modality, enabling it to locate and label multiple objects per image.

3 Method

To annotate objects from image-caption pairs, our approach consists of two main stages. First, we
leverage the cross-modality encoder from a pre-trained VL model to automatically select the image
patches (or seeds) that may belong to a given object (defined by a word token or a set of word tokens).
The seed selection process is described in Section [3.1] Second, we use a self-supervised ViT to
compute the similarity between image patches. Intra-image similarity is used to filter out image
patches selected in the first stage and generate a heatmap corresponding to the object. This process
is known as seed expansion. Then, a heatmap threshold is computed via a Gaussian mixture model
(GMM) to separate the object patches from the background ones. Finally, a bounding box enclosing
the object patches is generated. Section [3.2]describes the process to generate a heatmap and extract
an object from it. Figure 2| shows an overview of our approach.

3.1 Pointing at objects with VL models

Our proposed method is motivated by the observation that VL models implicitly learn to align words
in the captions with patches in the images even though these models are only trained to align images
with their corresponding captions [19]. Furthermore, we can annotate a large amount of objects since
the number of objects categories is as large as the vocabulary used in the captions during training of
VL models. We leverage the ability of VL models to point at objects and the fact that most of the
salient objects in an image are mentioned in its respective caption [22].



In this section, we explain how the fine-grained alignment between words and patches is computed
in VL models implementing a cross-modality encoder (e.g. ALBEF [19]) and how we leverage it
to point at objects in an image. Let X = {p1,po, ..., pn, } be an image composed of Np patches
and C' = {wy,ws, ..., wn, } be its corresponding caption composed of N1 word tokens. An image
encoder and text encoder are used to extract image and text representations which are both fed into the
cross-modality encoder. In the [*!-th cross-attention layer of this encoder, we compute the value and
key representations for each image patch, i.e. V = {vg,v1,..., vy, } and K = {ko, k1, ..., kn, },
respectively, where vy and k are the representations of the classification token [CLS].

Given a word token of interest w,. (e.g. ‘person’, ‘dog’, etc.), we compute its query representation

d.. The relation between the word token w, and the image patches {pz 1 1s given by the hidden
representation h, as shown in Equation[I] where d is the dimension of the query representations.
N
= exp(alki/v/d)

h,. = Z Qe+ Vi Wwhereag; = @))

i=0 - Ej Ty exp(ql ]/\/a)

As observed, the hidden representation of w.. is a linear combination of the value representations
corresponding to the image patches. Furthermore, these representations are weighted according to
the attention scores a. ; that implicitly provide the similarity between w, and p; via the product q7k;.
Through the use of the cross-modality encoder, one can identify the image regions that are most
closely aligned with a particular word token. We use Grad-CAM [33]] to rank the image patches in
order of importance. Equation%dlsplays the importance score of the image patch p; with respect to
the word token w, where L/7™ (X, C) is the binary cross-entropy loss that measures whether the
image X and the caption C' match or not. When ranking image patches, we do not take into account
the attention score corresponding to the classification token [CLS], a. g.

oLmMX.C)
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Unfortunately, Grad-CAM scores are insufficient to generate an accurate bounding box by themselves
(see Section E]) For example, Gao et al. [9]] use a supervised Mask R-CNN [12] to generate bounding
boxes that cover the activated image patches by the word token w, for object detection. Similarly, Li
et al. [19] rank MattNet [51] proposals based on Grad-CAM maps for phrase grounding.

i = @

However, we observe that while Grad-CAM scores do not highlight the image patches corresponding
to the whole object, they are useful to point at the most discriminative parts of it. Therefore, we
propose to use a set D = {fi}M, of M image patches with the highest score ®.. ; for a given word
token of interest w,. to point at the object. The image patches in D are referred to as potential seeds
and this process is referred to as seed selection. Pointing is a natural way for humans to refer to an
object [1] and constitutes the first stage of our proposed approach.

3.2 Extracting objects with self-supervised ViTs

We make use of the self-supervised ViT capability [3] to measure the similarity between image
patches. Using the location information provided in the previous stage, our approach takes advantage
of the fact that object patches correlates positively with each other but negatively with background
patches. This idea is successfully applied in LOST [36] to perform object discovery. Our work is
inspired by LOST and extends its capabilities by incorporating the language modality.

Assuming that the object area is smaller than the background area, LOST uses the patch with the
smallest number of positive correlations with other patches in order to point at an object. However, this
assumption may not always hold in practice (e.g. an object covering more area than the background,
multiple objects, etc.). Compared to LOST, our method is able to generate multiple bounding boxes
per image (as many objects as mentioned in the caption). Furthermore, our method can annotate
each object with a label while LOST can only retrieve a single object without specifying its category.
Figure[I|displays the differences between our approach and LOST.

In this work, we average the first V patch locations with the highest value of ® ; in D to compute
the initial seed s for a given w,. Following LOST, we extract the key representations of the initial
and potential seeds, i.e. ks and {ky, }}4,, respectively, from the [***-th self-attention layer of a
self-supervised ViT [3]]. Then, the similarity between the initial seed and potential seeds is computed
via the dot product of their respective representations to determine the image patches belonging to the



object. We assume that potential seeds that are positively correlated to the initial seed belong to the
object while potential seeds that are negatively correlated to the initial seed belong to the background.

Thus, patches belonging to the object are defined by the set O = {s}U{f; | f; € D and kTky, > 0}.
Each patch p € O generates a heatmap WP € RV7, where the i-th dimension U? is computed via
the dot product between its key representation k,, and the key representation of the patch p; (also
extracted by the ViT), i.e. kj, Vi € {1,..., Np} as shown in Equation[3]

TP =klk,, 3)
Finally, the heatmap of the object w, is defined by the sum of the heatmaps corresponding to the
patches in O as shown in Equationd] This process is referred to as seed expansion.

=) (4)
peO

To extract the object from the heatmap V¢, we define a threshold ¢. While LOST sets t=0, we
assume that patches belonging to the object and background are defined by two normal distributions
Po=N (to, 02) and pp=N (up, o), respectively. The parameters ji,, 0o, iy, 0 € R are estimated
via a GMM per heatmap with k=2 components. Then, the threshold is calculated by solving
Po(t)=py(t) such that p, < t < p,. For small objects, p, is barely noticeable and hard to estimate
via GMM since only the background component is recognizable. We assume only one component is
distinguishable when the overlapping between the estimated distributions p, and py is significant (i.e.
wy 4+ 1.50p < o — 1.50,). In such a case, we use the threshold ¢ = u 4 o where + is a constant
and p and o are the mean and the standard deviation of W€, respectively. Supplementary material
provides bounding box examples using multiple ¢ values. To generate a bounding box, a mask m¢ is
obtained by thresholding the heatmap W* as shown Equation [5|where W{ is the i-th dimension of the
heatmap W¢. Later, a bounding box is drawn by enclosing the segment that includes the initial seed s.

mi = lge>y 5)

4 Experiments and results

4.1 Setup details

Tasks and datasets: We perform weakly supervised phrase grounding and object detection to
demonstrate the effectiveness of our method to annotate objects. In Section 4.2} we present our
experimental results for phrase grounding on Flickr30k Entities [29], an extension of Flickr30k [49]
which consists of ~ 32k images collected from Flickr each of which is described with 5 captions.
Image-caption samples are split into = 30k training, 1k validation, and 1k test samples. Flickr30k
Entities includes manually-annotated bounding boxes that are linked with entities mentioned in
captions. Results are reported in terms of recall@1 on the test set. In Section[d.3] we perform WSOD
on MS COCO [23] which contains 113k training and 5k validation images. Each image is described
with 5 captions. Additionally, the dataset provides bounding box annotations covering 80 object
categories such as person, bicycle, car, plane, etc. We also conduct transfer learning experiments
using samples from MS COCO to train an object detector that predicts PASCAL VOC2007 [7]
categories since this dataset does not provide captions. PASCAL VOC2007 is an object detection
dataset that contains 2501 training, 2510 validation, and 4952 test images. Objects are labeled into 20
classes (e.g. person, bird, cat, cow, dog, etc.). Results are reported in terms of mean average precision
at IoU=0.5, i.e. mAPs5, and average mAP over multiple IoU values ranging from 0.5 to 0.95 with a
step of 0.05, i.e. mAPs5q.95. Results are reported on the MS COCO validation set and the PASCAL
VOC2007 test set. In all cases, bounding box annotations are only used during evaluation.

Model architecture: To point at objects, we use ALBEF pre-trained on 14M image-caption pairs [19]
and fine-tuned on 20k image-caption pairs [50]. It is worth mentioning that any VL model that includes
a cross-modality encoder can be used. To perform seed expansion, we use the self-supervised ViT
from DINO (i.e. ViT-S/16 [3]]). For comparative purposes, we also use the image encoder from
ALBEEF (i.e. ViT-B/16 [6]]) to compute the similarity between image patches. In WSOD, our approach
generates bounding box annotations to train a YOLOVS object detector [[15]] in a supervised manner.

Hyperparameters: We set the VL cross-attention layer to [*'=8 and the ViT self-attention layer to
[Y"*=11. To compute the initial seed, we average the first N=3 patch locations from D and set the
number of potential seeds to M/ =10. To compute the threshold, we use v = 1.75. Our experiments
are executed on a NVIDIA GeForce RTX 3090.



Table 1: Weakly supervised phrase grounding performance on Flickr30k Entities.

Supervised object

Method Training data Recall@1
proposal generator?
ALBEF C-A maps  14M image-caption pairs [19]] No 36.86
ALBEF ViT maps  14M image-caption pairs [19] No 43.97
DINO ViT maps | #M image-caption pairs [19] No 47.51
+ ImageNet images [3]]
InfoGround [[11]] Flickr30k Entities [29] Yes, Faster R-CNN [31]] 47.88
InfoGround [[11]] MS COCO [23] Yes, Faster R-CNN [31]] 51.67

4.2 Weakly supervised phrase grounding

We conduct experiments on Flickr30k Entities to evaluate the ability of our approach to associate
phrases describing objects to image regions. While a single word can define the category of an object,
a phrase provides additional attributes (e.g. color, size, position, etc.). Our method processes phrases

by simply adding up the heatmaps of each word w,, in the phrase P, i.e. WP — Zcie p U,

In Table[I] we report our results in terms of recall@1 that represents the ratio of the number of
phrases whose ground truth bounding boxes have significant overlap with the generated bounding
boxes by our model (i.e. IoU > 0.5) to the total number of phrases.

Our baseline model (referred to as ALBEF C-A maps) uses the cross-modality encoder to produce
heatmaps ®P""° | which are then thresholded to generate bounding boxes. As shown in Section
our approach builds upon ®P" via a self-supervised ViT to generate the expanded heatmaps WP,
We evaluate two variants of our approach by using the ViT from ALBEF and DINO to generate the
object heatmaps (referred to as ALBEF ViT maps and DINO ViT maps, respectively).

As observed, the variants ALBEF ViT maps and DINO ViT maps achieve higher performance
compared to the baseline (improvements of 7.11% and 10.65%, respectively). As hypothesized, the
baseline model exhibits limitations in accurately capturing the spatial extent of objects despite its
ability to point at them in the image as shown in Figure[3] Moreover, DINO ViT maps outperform
ALBEF ViT maps by a margin of 3.54%. This difference suggests that DINO’s loss function is more
effective to capture the underlying relationships between image patches.

For the sake of comparison, we also report the performance of the state-of-the art model for weakly
supervised phrase grounding, i.e. InfoGround [11]. Our approach achieves a competitive score of
47.51% comparable to InfoGround performance (47.88% and 51.67% when trained on Flickr30k
Entities and MS COCO, respectively). Nevertheless, InfoGround uses a Faster R-CNN [31] pre-
trained on Visual Genome [[17] to generate object proposals and extract object features. Thus, our
approach offers an efficient solution for phrase grounding without the need for an object detector. Our
approach represents a promising alternative to InfoGround, particularly in scenarios where the object
detector does not include some categories or where obtaining bounding box annotations is difficult.

4.3 Weakly supervised object detection

We investigate the ability of our approach to perform WSOD. Our methodology involves defining
a set of object categories and searching through captions to identify if any of these categories are
mentioned. If a category is found, our approach generates a corresponding bounding box as described
in Section[3] Then, we train an object detector (i.e. Yolov5 [15]) from scratch in a supervised manner
using the generated bounding box annotations. We evaluate our approach on MS COCO [23]] and
PASCAL VOC 2012 [[7]]. While our method is capable of labeling a large number of object categories,
we use these datasets as they provide bounding box annotations for evaluation purposes.

Comparison with WSOD methods: We compare our approach with state-of-the-art WSOD
methods to demonstrate its effectiveness in Table@ Our approach achieves 21.1 mAP5q and 10.5
mAP50.95 on MS COCO outperforming the variants of Cap2Det [48] that learn from image-caption
pairs: Cap2Det®™ that generates image-level annotations from captions via lexical matching and
Cap2Det“ISF that employs a supervised text classifier to process captions and extract image-level
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Figure 3: Heatmaps and generated bounding boxes corresponding to ‘man’, ‘ball’ and ‘racquet’.
ALBEF C-A maps point successfully at objects while struggle to get the object extent. ALBEF ViT
maps tend to be noisier than DINO ViT maps which generate high-quality bounding boxes.

annotations. Our approach demonstrates better performance without the need for an object proposal
algorithm, a supervised text classifier or using refinement. Compared to methods that learn from
image-level annotations [10} 5332} [13]], our approach demonstrates competitive performance and
outperforms relevant baselines such as PCL [40] and C-MIDN [10] (8.5 mAP5g.95 and 9.6 mAPs5.95,
respectively) by achieving 10.5 mAP5¢.95. It is worth noting that these WSOD methods rely on
pseudo-labeling techniques and image-level annotations that constitute a form of stronger supervision.
For the sake of comparison, we also report the results of Yolov5 trained in a fully-supervised manner.

Transfer learning and pseudo-labeling (P-L): Due to the lack of captions in PASCAL VOC2007,
our approach generates annotations by searching PASCAL VOC2007 object categories from MS
COCO image-caption pairs. Results in terms of mAP5( per category are reported in Table [3| where
best results are highlighted in bold. Our approach achieves 40.9 mAPj, outperforming Cap2Det™™
(39.9 mAP5() while being behind CapZDetCLSF (43.1 mAP5p). To further improve performance,
we propose a simple pseudo-labeling (P-L) technique. First, we use the trained object detector to
generate predictions on the training images of PASCAL VOC2007. Pseudo-labels are selected by
setting the confidence and IoU thresholds to 0.2 and 0.5, respectively in the NMS algorithm. Then,
we fine-tune our trained object detector on these pseudo-labels. We report an improvement of 1.6
mAPsg and 1.1 mAPs.95. Despite the global mAPs being inferior to that of Cap2Det“™SF, it is
worth noting that our approach implementing P-L outperforms Cap2Det““SF in many categories.

Ablation experiments: We also perform ablation experiments to identify the key components of
our approach in WSOD. To annotate objects, we employ the variants of our approach presented



Table 2: Comparison with WSOD models on MS COCO.

Model Supervision source mAPsg  mAP50.95
Cap2Det™™ [48] image-captions pairs 19.7 8.9
Cap2Det“tSF [48]] image-captions pairs 20.2 9.1
Ours image-captions pairs 21.1 10.5
PCL [40] image-level annotations 194 8.5
C-MIDN [10] image-level annotations 214 9.6
WSOD?2 [53] image-level annotations 22.7 10.8
MIST [32] image-level annotations 25.8 12.4
CASD [13]] image-level annotations 26.4 12.8
Fully supervised [15] bounding box annotations 66.2 46.7

in Section i.e. ALBEF C-A maps, ALBEF ViT maps and DINO ViT maps. Tables [] and 3]
display the results of our experiments on MS COCO and PASCAL VOC2007, respectively. As
observed, ALBEF C-A maps perform poorly at object detection achieving the lowest scores mAPgg
and mAP5.95. While ALBEF C-A maps are able to accurately point at objects, they fail to correctly
detect their extent. On the other hand, self-supervised ViTs (ALBEF ViT maps and DINO ViT maps)
are effective to capture the extent of objects through the seed expansion. In MS COCO, DINO ViT
maps outperform ALBEF ViT maps as expected since DINO ViT maps are less noisy and generates
visually more accurate bounding boxes as shown in Figure[3] Surprisingly, ALBEF ViT maps achieve
slightly better results than DINO ViT maps in PASCAL VOC2007.

Table 3: Comparison with WSOD models on PASCAL VOC2007.

)
) - o « = - 5 z 2 50 2 2

Model £ E 2 5 gz Z -
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bottle
sofa
train
v

2 mAPs5q

aero
person

Cap2Det™ [48]  63.0 503 507 259 141 645 508 334 172 490 482 467 442 592 104 143 498 377 215 476 399
Cap2Det®'SF [48]  63.8 426 504 299 12.1 612 46.1 416 166 612 483 551 515 597 169 152 505 532 382 482 431
Ours 588 64.6 523 289 100 572 422 507 128 543 324 388 374 619 242 17.6 473 390 523 344 409
Ours + P-L 56.1 685 556 311 123 648 486 488 155 578 229 348 423 590 232 191 51.8 428 548 410 425

Supervised [15 702 743 428 404 408 73.6 833 620 377 613 583 561 775 712 78.0 355 505 550 751 602 602

Table 4: Ablation experiments on MS COCO. Table 5: Ablation experiments on VOC2007.

Method IIIAP50 IIlAP50;95 Method mAP50 IIlAP50;95
ALBEF C-A maps 9.4 3.7 ALBEF C-A maps 9.2 3.3
ALBEF ViT maps  18.4 9.0 ALBEF ViT maps 42.9 20.8
DINO ViT maps  21.1 10.5 DINO ViT maps 40.9 18.0

5 Conclusion

In this paper, we present a two-stage method to locate and label objects by leveraging image-caption
pairs without additional supervision. We demonstrate the effectiveness of our approach by performing
two tasks in a weakly supervised setting: phrase grounding and object detection. We have performed
extensive experiments on Flickr30k Entities, MS COCO and PASCAL VOC2007 achieving state-
of-the-art results without the need for supervised object proposal algorithms or text classifiers to
process captions. Despite the remarkable performance of our approach, we acknowledge some
limitations. Our approach produces a single bounding box per object mentioned in the caption. An
interesting direction for further investigation is to extend our method to produce multiple bounding
boxes for words representing more than one object instance in the image (e.g. "people"”, "group of
animals", etc.). This is particularly challenging, especially when object instances are overlapping in
the image. Also, our approach does not generate bounding boxes for objects present in the image but
not mentioned in the caption (or due to spelling mistakes). We believe that an important direction for
future work is to extend our approach to explicitly take into account missing annotations. Improved
performance could be achieved using a more sophisticated pseudo-labeling framework [46| 44, [18]].
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