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Read, look and detect: Bounding box annotation from image-caption pairs

Various methods have been proposed to detect objects while reducing the cost of data annotation. For instance, weakly supervised object detection (WSOD) methods rely only on image-level annotations during training. Unfortunately, data annotation remains expensive since annotators must provide the categories describing the content of each image and labeling is restricted to a fixed set of categories. In this paper, we propose a method to locate and label objects in an image by using a form of weaker supervision: image-caption pairs. By leveraging recent advances in vision-language (VL) models and self-supervised vision transformers (ViTs), our method is able to perform phrase grounding and object detection in a weakly supervised manner. Our experiments demonstrate the effectiveness of our approach by achieving a 47.51% recall@1 score in phrase grounding on Flickr30k Entities and establishing a new state-of-the-art in object detection by achieving 21.1 mAP 50 and 10.5 mAP 50:95 on MS COCO when exclusively relying on image-caption pairs.

Introduction

Locating and classifying objects within an image is a fundamental task in computer vision that enables the development of more complex tasks such as image captioning [START_REF] Yang | Image captioning with object detection and localization[END_REF], visual reasoning [START_REF] Harold | Grounded language-image pre-training[END_REF], among others. Nevertheless, the success of object detection models [START_REF] Jocher | ultralytics/yolov5: v7.0 -YOLOv5 SOTA Realtime Instance Segmentation[END_REF][START_REF] Shaoqing Ren | Faster r-cnn: Towards real-time object detection with region proposal networks[END_REF] typically relies on human supervision in the form of bounding box annotations. In particular, data annotation is a time-consuming and arduous task that requires annotators to draw bounding boxes around objects and label each bounding box with a category from a fixed set of categories. Furthermore, modifying the number of categories may require annotators to relabel or add new bounding boxes.

Several approaches have been proposed to reduce the cost of data annotation in object detection by using image-level labels [START_REF] Bilen | Weakly supervised deep detection networks[END_REF][START_REF] Diba | Weakly supervised cascaded convolutional networks[END_REF][START_REF] Tang | Pcl: Proposal cluster learning for weakly supervised object detection[END_REF][START_REF] Zhang | W2f: A weaklysupervised to fully-supervised framework for object detection[END_REF][START_REF] Gao | C-midn: Coupled multiple instance detection network with segmentation guidance for weakly supervised object detection[END_REF][START_REF] Zeng | Wsod2: Learning bottom-up and top-down objectness distillation for weakly-supervised object detection[END_REF][START_REF] Ren | Instance-aware, context-focused, and memory-efficient weakly supervised object detection[END_REF][START_REF] Huang | Comprehensive attention self-distillation for weakly-supervised object detection[END_REF], a dataset containing both labeled and unlabeled data [START_REF] Sohn | A simple semi-supervised learning framework for object detection[END_REF][START_REF] Liu | Unbiased teacher for semi-supervised object detection[END_REF][START_REF] Liu | Unbiased teacher v2: Semi-supervised object detection for anchor-free and anchor-based detectors[END_REF] or sparsely-annotated data [START_REF] Xu | Missing labels in object detection[END_REF][START_REF] Zhang | Solving missing-annotation object detection with background recalibration loss[END_REF][START_REF] Wang | Co-mining: Self-supervised learning for sparsely annotated object detection[END_REF][START_REF] Li | Siod: single instance annotated per category per image for object detection[END_REF]. For instance, WSOD methods only use image-level annotations along with the multiple instance learning (MIL) [START_REF] Maron | A framework for multiple-instance learning[END_REF] approach. However, the annotation effort is still significant and similar to that required for supervised classification.

In this paper, we take a step forward by learning to locate and label objects within an image from image-caption pairs. Not only captions provide a more natural description of the image content than image-level labels but also constitute a form of weaker supervision since image-caption pairs are easier to collect in vast amounts (e.g. from the Web [START_REF] Sharma | Conceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning[END_REF]). Our approach combines recent advances in vision-language (VL) models [START_REF] Li | Align before fuse: Vision and language representation learning with momentum distillation[END_REF] and self-supervised vision transformers (ViTs) [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF].

VL models leverage large-scale image-caption datasets and have strong performance on zero-shot image classification, image-text retrieval, and visual reasoning tasks. These models align images with their corresponding captions via contrastive learning. Notably, models that include a cross-modality
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Figure 1: Our approach leverages language from captions via ALBEF to annotate multiple objects per image (e.g. we detect a dog and a frisbee while LOST generates a single categoryless bounding box).

encoder seem to implicitly learn a more fine-grained word-region alignment without using additional supervision [START_REF] Li | Align before fuse: Vision and language representation learning with momentum distillation[END_REF]. We propose to use the location ability of VL models to automatically annotate objects of interest mentioned in captions. Moreover, VL models do not require retraining when the number of categories to annotate changes as they are already included in the VL model's vocabulary.

Despite the strong ability of VL models to locate objects, they aim at the most distinctive part of the object rather than the whole object. For example, ALBEF [START_REF] Li | Align before fuse: Vision and language representation learning with momentum distillation[END_REF] and VilBERT [START_REF] Lu | Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks[END_REF] perform phrase grounding by ranking the object proposals provided by the supervised detector MattNet [START_REF] Yu | Mattnet: Modular attention network for referring expression comprehension[END_REF]. On the other hand, recent work has shown that representations from self-supervised ViTs contain explicit information about the scene layout of images and produce heatmaps that highlight salient objects [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF]. LOST [START_REF] Siméoni | Localizing objects with self-supervised transformers and no labels[END_REF] and TokenCut [START_REF] Wang | Selfsupervised transformers for unsupervised object discovery using normalized cut[END_REF] show the effectiveness of self-supervised ViT representations to perform unsupervised object discovery and detection without any labels.

We make the following contributions in this work. First, we propose a novel method to locate and label objects in images by combining the ability of VL models to point at objects and the ability of self-supervised ViTs to extract whole objects in Section 3. By building upon ALBEF [START_REF] Li | Align before fuse: Vision and language representation learning with momentum distillation[END_REF] and LOST [START_REF] Siméoni | Localizing objects with self-supervised transformers and no labels[END_REF], our method is able to locate multiple objects and generate accurate bounding boxes without human supervision. Figure 1 illustrates the improved ability of our model over LOST. Second, we use our approach to perform phrase grounding and object detection in a weakly supervised fashion.

In Section 4, we demonstrate that our method achieves competitive performance in phrase grounding on Flickr30k Entities [START_REF] Bryan A Plummer | Flickr30k entities: Collecting region-to-phrase correspondences for richer image-to-sentence models[END_REF] and establish a new state-of-the-art in object detection on MS COCO [START_REF] Lin | Microsoft coco: Common objects in context[END_REF] when exclusively relying on image-caption pairs as unique source of supervision. Additionally, we perform ablation experiments to investigate the key components of our approach, transfer learning experiments on PASCAL VOC2007 [START_REF] Everingham | The pascal visual object classes (voc) challenge[END_REF] and pseudo-labeling experiments to improve the performance in WSOD. In Section 5, we discuss the limitations, future work and conclusions of our work.

Related work

Weakly supervised object detection: To reduce the cost of data annotation, several methods propose to train object detectors using only image-level annotations without the need for bounding box annotations. WSDDN [START_REF] Bilen | Weakly supervised deep detection networks[END_REF] introduces the first end-to-end WSOD framework that adopts MIL [START_REF] Maron | A framework for multiple-instance learning[END_REF]. Since then, several improvements have been proposed: PCL [START_REF] Tang | Pcl: Proposal cluster learning for weakly supervised object detection[END_REF] performs clustering to improve object proposals and W2F [START_REF] Zhang | W2f: A weaklysupervised to fully-supervised framework for object detection[END_REF] leverages pseudo-label mining from a WSOD model to train a supervised object detector. C-MIDN [START_REF] Gao | C-midn: Coupled multiple instance detection network with segmentation guidance for weakly supervised object detection[END_REF] introduces a method for coupling proposals to prevent the detector from capturing the most discriminative object part rather than the whole object. WSOD 2 [START_REF] Zeng | Wsod2: Learning bottom-up and top-down objectness distillation for weakly-supervised object detection[END_REF] performs pseudo-label mining and incorporates a bounding box regressor to fine-tune the location of each proposal. Likely, MIST [START_REF] Ren | Instance-aware, context-focused, and memory-efficient weakly supervised object detection[END_REF] performs pseudo-label mining where highly overlapping proposals are assigned to the same label. CASD [START_REF] Huang | Comprehensive attention self-distillation for weakly-supervised object detection[END_REF] combines self-distillation with multiple proposal attention maps generated via data augmentation. Closely related to our work, Cap2Det [START_REF] Ye | Cap2det: Learning to amplify weak caption supervision for object detection[END_REF] learns from image-caption pairs by extracting image-level annotations from captions using a supervised text classifier. These predicted image-level annotations are subsequently used to train a WSOD model based on MIL. Additionally, Cap2Det [START_REF] Ye | Cap2det: Learning to amplify weak caption supervision for object detection[END_REF] refines the WSOD model by retraining on instance-level pseudo-labels multiple times. Most of the existing WSOD methods rely on object proposal algorithms (e.g. Selective Search [START_REF] Jasper Rr Uijlings | Selective search for object recognition[END_REF] or Edge Boxes [START_REF] Zitnick | Edge boxes: Locating object proposals from edges[END_REF]). By exclusively leveraging self-supervision on imagecaption pairs, our approach outperforms the state-of-the-art model Cap2Det [START_REF] Ye | Cap2det: Learning to amplify weak caption supervision for object detection[END_REF] without the need for a supervised text classifier. Additionally, our approach outperforms relevant WSOD baselines [START_REF] Tang | Pcl: Proposal cluster learning for weakly supervised object detection[END_REF][START_REF] Gao | C-midn: Coupled multiple instance detection network with segmentation guidance for weakly supervised object detection[END_REF] that use a form of stronger supervision (image-level annotations) and object proposal algorithms.

Learning from unlabeled or partially labeled data: Some approaches alleviate the lack of bounding box annotations by leveraging a small labeled dataset and a large unlabeled dataset via semi-supervised learning [START_REF] Sohn | A simple semi-supervised learning framework for object detection[END_REF][START_REF] Liu | Unbiased teacher for semi-supervised object detection[END_REF][START_REF] Liu | Unbiased teacher v2: Semi-supervised object detection for anchor-free and anchor-based detectors[END_REF] and active learning [START_REF] Wang | Towards human-machine cooperation: Self-supervised sample mining for object detection[END_REF][START_REF] Huy | Active learning strategies for weakly-supervised object detection[END_REF]. Li et al. [START_REF] Li | Siod: single instance annotated per category per image for object detection[END_REF] propose to train an object detector using only a single instance annotation per category per image. Other methods combine image-level and instance-level pseudo-annotations during training [START_REF] Xu | Missing labels in object detection[END_REF][START_REF] Ren | Instance-aware, context-focused, and memory-efficient weakly supervised object detection[END_REF]. Sohn et al. [START_REF] Sohn | A simple semi-supervised learning framework for object detection[END_REF] propose a two-stage training in which an object detector is trained on available labeled data. This model is subsequently used to select high-confidence bounding boxes on unlabeled data as pseudolabels. Wang et al. [START_REF] Wang | Co-mining: Self-supervised learning for sparsely annotated object detection[END_REF] address the missing annotation problem by introducing a siamese network where each branch is used to generate pseudo-labels for each other. Likely, recent work [START_REF] Liu | Unbiased teacher for semi-supervised object detection[END_REF][START_REF] Liu | Unbiased teacher v2: Semi-supervised object detection for anchor-free and anchor-based detectors[END_REF] leverage the teacher-student framework in object detection. In this work, we also explore the use of pseudo-labels to improve WSOD performance.

VL models: Learning joint VL representations from image-caption pairs in a self-supervised fashion has proven to be effective to perform multiple downstream tasks [START_REF] Lu | Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks[END_REF][START_REF] Lu | 12-in-1: Multi-task vision and language representation learning[END_REF] such as visual question answering, image retrieval, image captioning, zero-shot classification, etc. VL models [START_REF] Tan | Lxmert: Learning cross-modality encoder representations from transformers[END_REF][START_REF] Harold | Visualbert: A simple and performant baseline for vision and language[END_REF][START_REF] Su | Vl-bert: Pre-training of generic visual-linguistic representations[END_REF][START_REF] Kim | Vilt: Vision-and-language transformer without convolution or region supervision[END_REF][START_REF] Gan | Large-scale adversarial training for vision-and-language representation learning[END_REF][START_REF] Li | Oscar: Object-semantics aligned pre-training for vision-language tasks[END_REF][START_REF] Chen | Uniter: Universal image-text representation learning[END_REF][START_REF] Jia | Scaling up visual and vision-language representation learning with noisy text supervision[END_REF][START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF][START_REF] Li | Align before fuse: Vision and language representation learning with momentum distillation[END_REF] are generally trained on a combination of loss functions: masked language modelling (MLM), where a masked word token is predicted; masked image modelling (MIM), where a masked image region feature or object category is predicted, image-text contrastive learning (ITC), where positive/negative image-caption pairs are assigned to high/low similarity scores, respectively; and image-text matching (ITM), that predicts whether an image and a caption match. Many strategies have been proposed to achieve improved VL representations. VisualBERT [START_REF] Harold | Visualbert: A simple and performant baseline for vision and language[END_REF] uses a supervised object detector to extract visual embeddings. VILLA [START_REF] Gan | Large-scale adversarial training for vision-and-language representation learning[END_REF] performs adversarial training in the representations space. OSCAR [START_REF] Li | Oscar: Object-semantics aligned pre-training for vision-language tasks[END_REF] uses object tags to ease VL alignment. UNITER [START_REF] Chen | Uniter: Universal image-text representation learning[END_REF] encourages alignment between words and image regions extracted by an object detector. More recently, CLIP [START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF] leverages a massive amount of image-caption pairs and achieves impressive performance at zero-shot classification. However, CLIP underperforms at other VL tasks as the interaction between vision and language is very shallow (i.e. a simple dot product). Li et al. [START_REF] Li | Align before fuse: Vision and language representation learning with momentum distillation[END_REF] propose a new model called ALBEF, which builds upon previous models [START_REF] Tan | Lxmert: Learning cross-modality encoder representations from transformers[END_REF][START_REF] Lu | Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks[END_REF][START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF][START_REF] Kim | Vilt: Vision-and-language transformer without convolution or region supervision[END_REF][START_REF] Jia | Scaling up visual and vision-language representation learning with noisy text supervision[END_REF] and is composed of a vision encoder, a language encoder, and a cross-modality encoder for deeper VL interaction. By leveraging a large image-caption dataset [START_REF] Sharma | Conceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning[END_REF], ALBEF outperforms previous models at many VL tasks without the need for a supervised object detector to extract region-based image representations. Our approach leverages a pre-trained ALBEF model to locate the image region that corresponds to a word or a textual description.

Open vocabulary detection: Classifying an object or image has been traditionally limited to a small set of fixed categories. Zhang et al. [START_REF] Zhang | Online collaborative learning for open-vocabulary visual classifiers[END_REF] leverages the vocabulary from image-caption datasets to perform image classification across more than 30k classes. The recent success of VL models [START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF][START_REF] Li | Align before fuse: Vision and language representation learning with momentum distillation[END_REF] has motivated other methods to leverage image-caption pairs to perform object detection on a larger number of categories. Zareian et al. [START_REF] Zareian | Open-vocabulary object detection using captions[END_REF] use bounding box annotations from base classes to perform correctly in target classes mentioned in captions. Gao et al. [START_REF] Gao | Open vocabulary object detection with pseudo bounding-box labels[END_REF] use a supervised object detector trained on MS COCO [START_REF] Lin | Microsoft coco: Common objects in context[END_REF] to generate pseudo-bounding box annotations for categories mentioned in captions. Similar approaches [START_REF] Zhong | Regionclip: Region-based language-image pretraining[END_REF][START_REF] Shi | Proposalclip: unsupervised open-category object proposal generation via exploiting clip cues[END_REF] have been proposed by extending CLIP [START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF]. We also leverage VL models to annotate objects using an arbitrary number of categories in a self-supervised manner without relying on bounding box annotations like previous methods.

Object discovery: Recently, several studies explore methods for object localization that rely solely on visual cues. LOST [START_REF] Siméoni | Localizing objects with self-supervised transformers and no labels[END_REF] extracts image representations via a self-supervised ViT [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF] which are "A woman is steering a boat with a pole" subsequently used to identify the image patches corresponding to an object based on their correlation. Wang et al. [START_REF] Wang | Selfsupervised transformers for unsupervised object discovery using normalized cut[END_REF] also leverage DINO representations which are used to build a graph. A normalized graph-cut is used to split the foreground object from the background. Both methods can only locate a single object per image without providing its category. Our approach builds upon LOST by integrating the language modality, enabling it to locate and label multiple objects per image.
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Method

To annotate objects from image-caption pairs, our approach consists of two main stages. First, we leverage the cross-modality encoder from a pre-trained VL model to automatically select the image patches (or seeds) that may belong to a given object (defined by a word token or a set of word tokens).

The seed selection process is described in Section 3.1. Second, we use a self-supervised ViT to compute the similarity between image patches. Intra-image similarity is used to filter out image patches selected in the first stage and generate a heatmap corresponding to the object. This process is known as seed expansion. Then, a heatmap threshold is computed via a Gaussian mixture model (GMM) to separate the object patches from the background ones. Finally, a bounding box enclosing the object patches is generated. Section 3.2 describes the process to generate a heatmap and extract an object from it. Figure 2 shows an overview of our approach.

Pointing at objects with VL models

Our proposed method is motivated by the observation that VL models implicitly learn to align words in the captions with patches in the images even though these models are only trained to align images with their corresponding captions [START_REF] Li | Align before fuse: Vision and language representation learning with momentum distillation[END_REF]. Furthermore, we can annotate a large amount of objects since the number of objects categories is as large as the vocabulary used in the captions during training of VL models. We leverage the ability of VL models to point at objects and the fact that most of the salient objects in an image are mentioned in its respective caption [START_REF] Li | Oscar: Object-semantics aligned pre-training for vision-language tasks[END_REF].

In this section, we explain how the fine-grained alignment between words and patches is computed in VL models implementing a cross-modality encoder (e.g. ALBEF [START_REF] Li | Align before fuse: Vision and language representation learning with momentum distillation[END_REF]) and how we leverage it to point at objects in an image. Let X = {p 1 , p 2 , . . . , p N P } be an image composed of N P patches and C = {w 1 , w 2 , . . . , w N T } be its corresponding caption composed of N T word tokens. An image encoder and text encoder are used to extract image and text representations which are both fed into the cross-modality encoder. In the l vl -th cross-attention layer of this encoder, we compute the value and key representations for each image patch, i.e. V = {v 0 , v 1 , . . . , v N P } and K = {k 0 , k 1 , . . . , k N P }, respectively, where v 0 and k 0 are the representations of the classification token [CLS].

Given a word token of interest w c (e.g. 'person', 'dog', etc.), we compute its query representation q c . The relation between the word token w c and the image patches {p i } N P i=1 is given by the hidden representation h c as shown in Equation 1where d is the dimension of the query representations.

h c = N P i=0 a c,i • v i where a c,i = exp(q ⊺ c k i / √ d) N P j=0 exp(q ⊺ c k j / √ d) (1) 
As observed, the hidden representation of w c is a linear combination of the value representations corresponding to the image patches. Furthermore, these representations are weighted according to the attention scores a c,i that implicitly provide the similarity between w c and p i via the product q ⊺ c k i . Through the use of the cross-modality encoder, one can identify the image regions that are most closely aligned with a particular word token. We use Grad-CAM [START_REF] Ramprasaath R Selvaraju | Grad-cam: Visual explanations from deep networks via gradient-based localization[END_REF] to rank the image patches in order of importance. Equation 2 displays the importance score of the image patch p i with respect to the word token w c where L IT M (X, C) is the binary cross-entropy loss that measures whether the image X and the caption C match or not. When ranking image patches, we do not take into account the attention score corresponding to the classification token [CLS], a c,0 .

Φ c,i = ∂L IT M (X, C) ∂a c,i • a c,i (2) 
Unfortunately, Grad-CAM scores are insufficient to generate an accurate bounding box by themselves (see Section 4). For example, Gao et al. [START_REF] Gao | Open vocabulary object detection with pseudo bounding-box labels[END_REF] use a supervised Mask R-CNN [START_REF] He | Mask r-cnn[END_REF] to generate bounding boxes that cover the activated image patches by the word token w c for object detection. Similarly, Li et al. [START_REF] Li | Align before fuse: Vision and language representation learning with momentum distillation[END_REF] rank MattNet [START_REF] Yu | Mattnet: Modular attention network for referring expression comprehension[END_REF] proposals based on Grad-CAM maps for phrase grounding.

However, we observe that while Grad-CAM scores do not highlight the image patches corresponding to the whole object, they are useful to point at the most discriminative parts of it. Therefore, we propose to use a set D = {f i } M i=1 of M image patches with the highest score Φ c,i for a given word token of interest w c to point at the object. The image patches in D are referred to as potential seeds and this process is referred to as seed selection. Pointing is a natural way for humans to refer to an object [START_REF] Bearman | What's the point: Semantic segmentation with point supervision[END_REF] and constitutes the first stage of our proposed approach.

Extracting objects with self-supervised ViTs

We make use of the self-supervised ViT capability [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF] to measure the similarity between image patches. Using the location information provided in the previous stage, our approach takes advantage of the fact that object patches correlates positively with each other but negatively with background patches. This idea is successfully applied in LOST [START_REF] Siméoni | Localizing objects with self-supervised transformers and no labels[END_REF] to perform object discovery. Our work is inspired by LOST and extends its capabilities by incorporating the language modality. Assuming that the object area is smaller than the background area, LOST uses the patch with the smallest number of positive correlations with other patches in order to point at an object. However, this assumption may not always hold in practice (e.g. an object covering more area than the background, multiple objects, etc.). Compared to LOST, our method is able to generate multiple bounding boxes per image (as many objects as mentioned in the caption). Furthermore, our method can annotate each object with a label while LOST can only retrieve a single object without specifying its category. Figure 1 displays the differences between our approach and LOST.

In this work, we average the first N patch locations with the highest value of Φ c,i in D to compute the initial seed s for a given w c . Following LOST, we extract the key representations of the initial and potential seeds, i.e. k s and {k fi } M i=1 , respectively, from the l vit -th self-attention layer of a self-supervised ViT [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF]. Then, the similarity between the initial seed and potential seeds is computed via the dot product of their respective representations to determine the image patches belonging to the object. We assume that potential seeds that are positively correlated to the initial seed belong to the object while potential seeds that are negatively correlated to the initial seed belong to the background. Thus, patches belonging to the object are defined by the set O = {s} ∪ {f i | f i ∈ D and k ⊺ s k fi ≥ 0}. Each patch p ∈ O generates a heatmap Ψ p ∈ R N P , where the i-th dimension Ψ p i is computed via the dot product between its key representation k p and the key representation of the patch p i (also extracted by the ViT), i.e. k pi ∀i ∈ {1, . . . , N P } as shown in Equation 3.

Ψ p i = k ⊺ p k pi (3 
) Finally, the heatmap of the object w c is defined by the sum of the heatmaps corresponding to the patches in O as shown in Equation 4. This process is referred to as seed expansion.

Ψ c = p∈O Ψ p (4) 
To extract the object from the heatmap Ψ c , we define a threshold t. While LOST sets t=0, we assume that patches belonging to the object and background are defined by two normal distributions

p o =N (µ o , σ 2 o ) and p b =N (µ b , σ 2 b )
, respectively. The parameters µ o , σ o , µ b , σ b ∈ R are estimated via a GMM per heatmap with k=2 components. Then, the threshold is calculated by solving p o (t)=p b (t) such that µ b < t < µ o . For small objects, p o is barely noticeable and hard to estimate via GMM since only the background component is recognizable. We assume only one component is distinguishable when the overlapping between the estimated distributions p o and p b is significant (i.e. µ b + 1.5σ b < µ o -1.5σ o ). In such a case, we use the threshold t = µ + γσ where γ is a constant and µ and σ are the mean and the standard deviation of Ψ c , respectively. Supplementary material provides bounding box examples using multiple t values. To generate a bounding box, a mask m c is obtained by thresholding the heatmap Ψ c as shown Equation 5where Ψ c i is the i-th dimension of the heatmap Ψ c . Later, a bounding box is drawn by enclosing the segment that includes the initial seed s.

m c i = 1 Ψ c i ≥t (5) 
4 Experiments and results

Setup details

Tasks and datasets: We perform weakly supervised phrase grounding and object detection to demonstrate the effectiveness of our method to annotate objects. In Section 4.2, we present our experimental results for phrase grounding on Flickr30k Entities [START_REF] Bryan A Plummer | Flickr30k entities: Collecting region-to-phrase correspondences for richer image-to-sentence models[END_REF], an extension of Flickr30k [START_REF] Young | From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions[END_REF] which consists of ≈ 32k images collected from Flickr each of which is described with 5 captions. Image-caption samples are split into ≈ 30k training, 1k validation, and 1k test samples. Flickr30k Entities includes manually-annotated bounding boxes that are linked with entities mentioned in captions. Results are reported in terms of recall@1 on the test set. In Section 4.3, we perform WSOD on MS COCO [START_REF] Lin | Microsoft coco: Common objects in context[END_REF] which contains 113k training and 5k validation images. Each image is described with 5 captions. Additionally, the dataset provides bounding box annotations covering 80 object categories such as person, bicycle, car, plane, etc. We also conduct transfer learning experiments using samples from MS COCO to train an object detector that predicts PASCAL VOC2007 [START_REF] Everingham | The pascal visual object classes (voc) challenge[END_REF] categories since this dataset does not provide captions. Model architecture: To point at objects, we use ALBEF pre-trained on 14M image-caption pairs [START_REF] Li | Align before fuse: Vision and language representation learning with momentum distillation[END_REF] and fine-tuned on 20k image-caption pairs [START_REF] Yu | Modeling context in referring expressions[END_REF]. It is worth mentioning that any VL model that includes a cross-modality encoder can be used. To perform seed expansion, we use the self-supervised ViT from DINO (i.e. ViT-S/16 [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF]). For comparative purposes, we also use the image encoder from ALBEF (i.e. ViT-B/16 [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF]) to compute the similarity between image patches. In WSOD, our approach generates bounding box annotations to train a YOLOv5 object detector [START_REF] Jocher | ultralytics/yolov5: v7.0 -YOLOv5 SOTA Realtime Instance Segmentation[END_REF] in a supervised manner.

Hyperparameters:

We set the VL cross-attention layer to l vl =8 and the ViT self-attention layer to l vit =11. To compute the initial seed, we average the first N =3 patch locations from D and set the number of potential seeds to M =10. To compute the threshold, we use γ = 1.75. Our experiments are executed on a NVIDIA GeForce RTX 3090. [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF] InfoGround [START_REF] Gupta | Contrastive learning for weakly supervised phrase grounding[END_REF] Flickr30k Entities [START_REF] Bryan A Plummer | Flickr30k entities: Collecting region-to-phrase correspondences for richer image-to-sentence models[END_REF] Yes, Faster R-CNN [START_REF] Shaoqing Ren | Faster r-cnn: Towards real-time object detection with region proposal networks[END_REF] 47.88 InfoGround [START_REF] Gupta | Contrastive learning for weakly supervised phrase grounding[END_REF] MS COCO [START_REF] Lin | Microsoft coco: Common objects in context[END_REF] Yes, Faster R-CNN [START_REF] Shaoqing Ren | Faster r-cnn: Towards real-time object detection with region proposal networks[END_REF] 51.67

Weakly supervised phrase grounding

We conduct experiments on Flickr30k Entities to evaluate the ability of our approach to associate phrases describing objects to image regions. While a single word can define the category of an object, a phrase provides additional attributes (e.g. color, size, position, etc.). Our method processes phrases by simply adding up the heatmaps of each word w ci in the phrase P , i.e. Ψ phrase = ci∈P Ψ ci .

In Table 1, we report our results in terms of recall@1 that represents the ratio of the number of phrases whose ground truth bounding boxes have significant overlap with the generated bounding boxes by our model (i.e. IoU ≥ 0.5) to the total number of phrases.

Our baseline model (referred to as ALBEF C-A maps) uses the cross-modality encoder to produce heatmaps Φ phrase , which are then thresholded to generate bounding boxes. As shown in Section 3.1, our approach builds upon Φ phrase via a self-supervised ViT to generate the expanded heatmaps Ψ phrase . We evaluate two variants of our approach by using the ViT from ALBEF and DINO to generate the object heatmaps (referred to as ALBEF ViT maps and DINO ViT maps, respectively).

As observed, the variants ALBEF ViT maps and DINO ViT maps achieve higher performance compared to the baseline (improvements of 7.11% and 10.65%, respectively). As hypothesized, the baseline model exhibits limitations in accurately capturing the spatial extent of objects despite its ability to point at them in the image as shown in Figure 3. Moreover, DINO ViT maps outperform ALBEF ViT maps by a margin of 3.54%. This difference suggests that DINO's loss function is more effective to capture the underlying relationships between image patches.

For the sake of comparison, we also report the performance of the state-of-the art model for weakly supervised phrase grounding, i.e. InfoGround [START_REF] Gupta | Contrastive learning for weakly supervised phrase grounding[END_REF]. Our approach achieves a competitive score of 47.51% comparable to InfoGround performance (47.88% and 51.67% when trained on Flickr30k Entities and MS COCO, respectively). Nevertheless, InfoGround uses a Faster R-CNN [START_REF] Shaoqing Ren | Faster r-cnn: Towards real-time object detection with region proposal networks[END_REF] pretrained on Visual Genome [START_REF] Krishna | Visual genome: Connecting language and vision using crowdsourced dense image annotations[END_REF] to generate object proposals and extract object features. Thus, our approach offers an efficient solution for phrase grounding without the need for an object detector. Our approach represents a promising alternative to InfoGround, particularly in scenarios where the object detector does not include some categories or where obtaining bounding box annotations is difficult.

Weakly supervised object detection

We investigate the ability of our approach to perform WSOD. Our methodology involves defining a set of object categories and searching through captions to identify if any of these categories are mentioned. If a category is found, our approach generates a corresponding bounding box as described in Section 3. Then, we train an object detector (i.e. Yolov5 [START_REF] Jocher | ultralytics/yolov5: v7.0 -YOLOv5 SOTA Realtime Instance Segmentation[END_REF]) from scratch in a supervised manner using the generated bounding box annotations. We evaluate our approach on MS COCO [START_REF] Lin | Microsoft coco: Common objects in context[END_REF] and PASCAL VOC 2012 [START_REF] Everingham | The pascal visual object classes (voc) challenge[END_REF]. While our method is capable of labeling a large number of object categories, we use these datasets as they provide bounding box annotations for evaluation purposes.

Comparison with WSOD methods: We compare our approach with state-of-the-art WSOD methods to demonstrate its effectiveness in annotations. Our approach demonstrates better performance without the need for an object proposal algorithm, a supervised text classifier or using refinement. Compared to methods that learn from image-level annotations [START_REF] Gao | C-midn: Coupled multiple instance detection network with segmentation guidance for weakly supervised object detection[END_REF][START_REF] Zeng | Wsod2: Learning bottom-up and top-down objectness distillation for weakly-supervised object detection[END_REF][START_REF] Ren | Instance-aware, context-focused, and memory-efficient weakly supervised object detection[END_REF][START_REF] Huang | Comprehensive attention self-distillation for weakly-supervised object detection[END_REF], our approach demonstrates competitive performance and outperforms relevant baselines such as PCL [START_REF] Tang | Pcl: Proposal cluster learning for weakly supervised object detection[END_REF] and C-MIDN [10] (8.5 mAP 50:95 and 9.6 mAP 50:95 , respectively) by achieving 10.5 mAP 50:95 . It is worth noting that these WSOD methods rely on pseudo-labeling techniques and image-level annotations that constitute a form of stronger supervision.

For the sake of comparison, we also report the results of Yolov5 trained in a fully-supervised manner.

Transfer learning and pseudo-labeling (P-L): Due to the lack of captions in PASCAL VOC2007, our approach generates annotations by searching PASCAL VOC2007 object categories from MS COCO image-caption pairs. Results in terms of mAP 50 per category are reported in Table 3 where best results are highlighted in bold. Our approach achieves 40.9 mAP 50 outperforming Cap2Det EM (39.9 mAP 50 ) while being behind Cap2Det CLSF (43.1 mAP 50 ). To further improve performance, we propose a simple pseudo-labeling (P-L) technique. First, we use the trained object detector to generate predictions on the training images of PASCAL VOC2007. Pseudo-labels are selected by setting the confidence and IoU thresholds to 0.2 and 0.5, respectively in the NMS algorithm. Then, we fine-tune our trained object detector on these pseudo-labels. We report an improvement of 1.6 mAP 50 and 1.1 mAP 50:95 . Despite the global mAP 50 being inferior to that of Cap2Det CLSF , it is worth noting that our approach implementing P-L outperforms Cap2Det CLSF in many categories.

Ablation experiments: We also perform ablation experiments to identify the key components of our approach in WSOD. To annotate objects, we employ the variants of our approach presented 

Conclusion

In this paper, we present a two-stage method to locate and label objects by leveraging image-caption pairs without additional supervision. We demonstrate the effectiveness of our approach by performing two tasks in a weakly supervised setting: phrase grounding and object detection. We have performed extensive experiments on Flickr30k Entities, MS COCO and PASCAL VOC2007 achieving stateof-the-art results without the need for supervised object proposal algorithms or text classifiers to process captions. Despite the remarkable performance of our approach, we acknowledge some limitations. Our approach produces a single bounding box per object mentioned in the caption. An interesting direction for further investigation is to extend our method to produce multiple bounding boxes for words representing more than one object instance in the image (e.g. "people", "group of animals", etc.). This is particularly challenging, especially when object instances are overlapping in the image. Also, our approach does not generate bounding boxes for objects present in the image but not mentioned in the caption (or due to spelling mistakes). We believe that an important direction for future work is to extend our approach to explicitly take into account missing annotations. Improved performance could be achieved using a more sophisticated pseudo-labeling framework [START_REF] Xu | Missing labels in object detection[END_REF][START_REF] Wang | Co-mining: Self-supervised learning for sparsely annotated object detection[END_REF][START_REF] Li | Siod: single instance annotated per category per image for object detection[END_REF].

∂ac • a c Figure 2 :

 c2 Figure2: Bounding box generation using the caption "A woman is steering a boat with a pole". First, we select the initial and potential seeds (red and gray patches, respectively) via a VL model for each category identified in the caption. Second, we perform seed expansion by measuring similarity between patches via a ViT. Finally, each heatmap is thresholded and a bounding box is drawn on top.

Figure 3 :

 3 Figure 3: Heatmaps and generated bounding boxes corresponding to 'man', 'ball' and 'racquet'. ALBEF C-A maps point successfully at objects while struggle to get the object extent. ALBEF ViT maps tend to be noisier than DINO ViT maps which generate high-quality bounding boxes.

  PASCAL VOC2007 is an object detection dataset that contains 2501 training, 2510 validation, and 4952 test images. Objects are labeled into 20 classes (e.g. person, bird, cat, cow, dog, etc.). Results are reported in terms of mean average precision at IoU=0.5, i.e. mAP 50 , and average mAP over multiple IoU values ranging from 0.5 to 0.95 with a step of 0.05, i.e. mAP 50:95 . Results are reported on the MS COCO validation set and the PASCAL VOC2007 test set. In all cases, bounding box annotations are only used during evaluation.

Table 1 :

 1 Weakly supervised phrase grounding performance on Flickr30k Entities.

	Method	Training data	Supervised object proposal generator?	Recall@1
	ALBEF C-A maps 14M image-caption pairs [19]	No	36.86
	ALBEF ViT maps 14M image-caption pairs [19]	No	43.97
	DINO ViT maps	14M image-caption pairs [19] + ImageNet images	No	47.51

Table 2 .

 2 Our approach achieves 21.1 mAP 50 and 10.5 mAP 50:95 on MS COCO outperforming the variants of Cap2Det[START_REF] Ye | Cap2det: Learning to amplify weak caption supervision for object detection[END_REF] that learn from image-caption pairs: Cap2Det EM that generates image-level annotations from captions via lexical matching and Cap2Det CLSF that employs a supervised text classifier to process captions and extract image-level

	'man'	'ball'	'racquet'	Bounding boxes
	ALBEF C-A maps			
	ALBEF ViT maps			
	DINO ViT maps			
	(Ours)			

Table 2 :

 2 Comparison with WSOD models on MS COCO. ALBEF ViT maps and DINO ViT maps. Tables4 and 5display the results of our experiments on MS COCO and PASCAL VOC2007, respectively. As observed, ALBEF C-A maps perform poorly at object detection achieving the lowest scores mAP 50 and mAP 50:95 . While ALBEF C-A maps are able to accurately point at objects, they fail to correctly detect their extent. On the other hand, self-supervised ViTs (ALBEF ViT maps and DINO ViT maps) are effective to capture the extent of objects through the seed expansion. In MS COCO, DINO ViT maps outperform ALBEF ViT maps as expected since DINO ViT maps are less noisy and generates visually more accurate bounding boxes as shown in Figure3. Surprisingly, ALBEF ViT maps achieve slightly better results than DINO ViT maps in PASCAL VOC2007.

	Model	Supervision source	mAP 50 mAP 50:95
	Cap2Det EM [48]	image-captions pairs	19.7	8.9
	Cap2Det CLSF [48]	image-captions pairs	20.2	9.1
	Ours	image-captions pairs	21.1	10.5
	PCL [40]	image-level annotations	19.4	8.5
	C-MIDN [10]	image-level annotations	21.4	9.6
	WSOD 2 [53]	image-level annotations	22.7	10.8
	MIST [32]	image-level annotations	25.8	12.4
	CASD [13]	image-level annotations	26.4	12.8
	Fully supervised [15] bounding box annotations 66.2	46.7
	in Section 4.2, i.e. ALBEF C-A maps,		

Table 3 :

 3 Comparison with WSOD models on PASCAL VOC2007. .3 50.7 25.9 14.1 64.5 50.8 33.4 17.2 49.0 48.2 46.7 44.2 59.2 10.4 14.3 49.8 37.7 21.5 47.6 39.9 Cap2Det CLSF [48] 63.8 42.6 50.4 29.9 12.1 61.2 46.1 41.6 16.6 61.2 48.3 55.1 51.5 59.7 16.9 15.2 50.5 53.2 38.2 48.2 43.1 Ours 58.8 64.6 52.3 28.9 10.0 57.2 42.2 50.7 12.8 54.3 32.4 38.8 37.4 61.9 24.2 17.6 47.3 39.0 52.3 34.4 40.9 Ours + P-L 56.1 68.5 55.6 31.1 12.3 64.8 48.6 48.8 15.5 57.8 22.9 34.8 42.3 59.1 23.2 19.1 51.8 42.8 54.8 41.0 42.5 Supervised [15] 70.2 74.3 42.8 40.4 40.8 73.6 83.3 62.0 37.7 61.3 58.3 56.1 77.5 71.2 78.0 35.5 50.5 55.0 75.1 60.2 60.2

	Model	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv	mAP50
	Cap2Det EM [48]	63.0 50																			

Table 4 :

 4 Ablation experiments on MS COCO.

	Method	mAP 50 mAP 50:95
	ALBEF C-A maps 9.4	3.7
	ALBEF ViT maps 18.4	9.0
	DINO ViT maps	21.1	10.5

Table 5 :

 5 Ablation experiments on VOC2007.

	Method	mAP 50 mAP 50:95
	ALBEF C-A maps 9.2	3.3
	ALBEF ViT maps 42.9	20.8
	DINO ViT maps	40.9	18.0

Acknowledgments

This work was conducted as part of the MINDS project of IRT Saint Exupéry. We would like to thank Michelle Aubrun, Ahmad Berjaoui, David Bertoin and Franck Mamalet for useful feedback and suggestions and Jérôme Mathieu for invaluable technical support.