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On cyclotomic arrangements of lines in the plane

P. Ryckelyncka,, L. Smocha

aULCO, LMPA, 62100 Calais, France.

Abstract

In this paper, we consider the seemingly simple problem of describing and enu-
merating the set of connected components delimited by the cyclotomic arrange-
ment of straight lines in the plane generated from the edges of a regular n-gon.
Knowing the exact position of each intersection point of the arrangement, an
exhaustive study of the di�erent areas of the components is also provided.
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1. Introduction and notation

We address mainly in this work the problem of providing a detailed list
of the various connected components generated and bounded by a particular
cyclotomic arrangement of straight lines in the plane which coincide with the
edges of a regular n-gon.

The very �rst result related to this subject, valid for any arrangement, is the
Jacobus Steiner's bound for the number of connected components in the plane,
that is to say 1

2 (n
2 +n+2) where n denotes the cardinality of the arrangement

and which is easy to prove by induction (see for example [5, 9]). However, this
result does not give insight in some features of interest including listing the
number of triangles, quadrilaterals and so on, generated by the arrangement,
nor prove the existence of some relationships between those amounts, or even
provide the numbers of compact or non-compact components. In [8], Wetzel
gave an historical account of the Steiner's problem and focus on generalization
of Broussaud's formula for the defect number, that is the di�erence between
the Steiner's upperbound 1

2 (n
2 + n+ 2) and the actual value of the number of

connected components. Wetzel highlighted the multiplicities of the intersection
points as well as the existence of parallel straight lines but did not use sym-
metries of the arrangements. For their part, Poonen and Rubinstein [6] got
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interested in the number of intersection points formed inside a regular n-gon
by its diagonals while making clear the distinct multiplicities. While Poonen
and Rubinstein focused mostly on formulas describing the various situations,
some other authors worked on e�cient deterministic algorithms to report and
to count geometric intersections convex polygons, inducing naturally time and
storage constraints (see for example [1], [4]).

We emphasize on the fact that none of the authors mentioned previously
nor those who are cited in their respective bibliographies have studied the dis-
tribution of connected components according to their shape, characterized by
the numbers of vertices or the property of being compact or not compact. It
should be however speci�ed that the question of counting special shapes among
those connected components has been discussed from an algorithmic point of
view in [4] and literature therein. Nevertheless, the computation of the areas
of these shapes is not considered contrary to what is being done in the present
paper. Indeed, providing an exhaustive description of the straight lines and the
intersection points generated by the arrangement, we are able to specify the
exact area of each polygon as well as an asymptotic expansion of it.

To state our results and the convenient formulation, let us give notation used
hereafter. First, we identify R2 and C and we denote by I the complex number
I =

√
−1. As usual, if x ∈ R then [x] denotes the greatest integer function.

Given an integer n, let us set

cα = cos
(απ

n

)
and sα = sin

(απ
n

)
, ∀α ∈ R, (1)

provided the value of n is obvious from the context.
Let A = (L0, . . . ,Ln−1) be an arrangement of n lines in the euclidean plane,
with Li : aix+ biy + ci = 0. If Lk ∩ Lℓ ̸= ∅ for k, ℓ ∈ {0, . . . , n− 1}, k ̸= ℓ, we
denote by zk,ℓ this intersection point. We suppose throughout the paper that

n ≥ 3 and that at least two lines are not parallel. The space Z = R2 −
⋃n−1

i=0 Li

that we may denote Z = R2 − A, is locally compact and locally arcwise con-
nected. The set π0(Z) of arcwise connected components is �nite with cardinality
♯π0(Z). By Steiner's bound, we have ♯π0(Z) ≤ 1

2 (n
2 + n+ 2). At last, we will

denote by πC(Z) and πNC(Z) the respective sets of compact and non-compact
components of Z.
In the remainder of the paper we call chamber the closure of any connected
component of a space R2 − A, this terminology is justi�ed as in the theory
of Lie groups (see [3][Lie, chap 5, �3]) and in di�erential topology. Chambers
correspond to intersections of a �nite number of closed half-planes, they are all
convex and may be compact or non-compact.

The rest of this paper is organized as follows. In section 2, we present some
preliminaries on arrangements of lines in the plane. We remind Robert's formula
and we present the defects of the arrangements. We de�ne the boundi�cation
Ab of the complement R2 − A of an arrangement of lines A = (L0, . . . ,Ln−1)
and we provide some results on the numbers of connected components of Ab
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whether or not they are compact. In Section 3, we introduce for any integer
n ≥ 3 the cyclotomic minimal arrangement R(n) containing the regular n-gon
Pn (see for example Figure 1) and we get interested in the exhaustive description
of R2 −R(n). In Section 4, taking into account the rich symmetry of the space
R(n)b, we provide some nice results for the areas of each kind of chambers of
R(n)b and especially the value of the sums

ν−1∑
m=2

sin
(mπ

n

)
sec

(
(m− 1)

π

n

)
sec

(
m
π

n

)
sec

(
(m+ 1)

π

n

)
.

Figure 1: A partial geometric view of the cyclotomic arrangement of lines constructed from
the regular 50-gon together with its circular orbits

2. Preliminaries on arrangements of lines in the plane.

The �nal result of Samuel Robert in 1889, that we quote from Wetzel [8] is
stated as follows

Proposition 2.1 (Robert's formula). Let A = (L0, . . . ,Ln−1) be an arrangement
of n lines in the euclidean plane. Let p be the number of points of multiplicity
≥ 3 and, for each 1 ≤ i ≤ p, let λi ≥ 3 be the multiplicity of any multiple
intersection point. Let q be the number of parallel straight lines in A and, for
each 1 ≤ j ≤ q, let µj ≥ 2 be the number of parallel lines in some direction.
Then the number of connected components of R2 −A is equal to

♯(π0(R2 −A)) = 1 + n+

Ç
n

2

å
−

p∑
i=1

Ç
λi − 1

2

å
−

q∑
j=1

Ç
µj

2

å
. (2)

3



It is interesting to observe that the proof given in [8] proceeds by subtracting
the various degeneracies in connected components being lost due to multiplici-
ties of intersection points or parallelism of lines, while, on the contrary, we will
obtain our main results of the next section by adding the various numbers of
connected components of several shapes. We may use the phrasing of Wetzel
to speak of the sum δM (A) =

∑p
i=1

(
λi−1

2

)
as the number of regions lost be-

cause of the multiple points and to speak of the sum δP (A) =
∑q

j=1

(
µj

2

)
as

the number of regions lost because of parallellism. We will call hereafter those
two sums δM (A), δP (A) defects of the arrangements of type M and P respec-
tively and call defect of the arrangement A the quantity δ(A) = δM (A)+δP (A).

Let A be an arrangement of lines. There exists a real number R such that the
compact disk DR of radius R, centered at the origin, contains all the intersection
points from A in its interior. Let κ : C → C de�ned as follows: if |z| ≥ R, then
κ(z) = Rz/|z|, and κ(z) = z otherwise. The mapping κ is a retraction of R2

on the disk DR. Moreover, κ preserves the nature and the number of connected
components of the complement of the arrangement A in R2. However, the
mapping κ does not preserve convexity. For instance for any ε > 0, the triangle

T with vertices {γ(1 + I), a+ bI, b+ aI}, a, b > 1, a ̸= b, γ ∈]0,
√
2
2 [, has a

non convex range κ(T ). We may de�ne the boundi�cation of A as the relatively
compact subset Ab = κ(R2−A), and the topology of this space does not depend
on R.

If one really wants to obtain a compact space, it will be preferable to con-
sider an open tubular neighborhood B of A, of width ε > 0 small enough, and
then the space (R2 − B) ∩ D(0, R). In that way, it is possible to compactify
the complement set of an arrangement of lines. A naive illustration of this is
depicted in [9]. We warn the reader not to confuse this compacti�cation with
the Alexandrov usual compacti�cation; this last one indeed maps the comple-
ment of the whole ��nite� space to one point at in�nity, while the retraction κ
maps on a given large circle all points at in�nity on rays emanating from the
origin. For illustrative purpose, let us mention that we may substitute to the
circle |z| = R �at in�nity� any convex polygon, say a square or a lozenge, which
contains all the intersection points in its interior. Doing so, some constructions
given hereafter do not use smooth polygons inducing circular segments but or-
dinary polygons instead.

We easily prove that the connected components of the complement R2 −A
of a general arrangement A are convex. We may distinguish among them com-
pact and non-compact components, and in the �rst category bounded polygonal
components of which the boundary has k = 3, 4, . . . vertices. If we consider the
images of the various components by the retraction κ, we see that the images
of bounded polygonal components remain compact while the images of non-
compact components become polygonal components implying only one curvi-
linear arc along their boundary.

Lemma 2.1. If the arrangement A = (L0, . . . ,Ln−1) contains at least one inter-
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section point, we have

♯(πNC(Ab)) = 2n and ♯(πC(Ab)) ≤ 1

2
(n2 − 3n+ 2).

Proof. Let us consider R large enough to ensure that the disc x2+y2 < R2 con-
tains all the intersection points Li ∩ Lj . Due to this hypothesis, each straight
line Li has some points belonging to the interior of the disc and cuts the circle
in two distinct points because Li cannot be tangent to the circle. Let us de-
�ne (R cos ηi,1, R sin ηi,1) and (R cos ηi,2, R sin ηi,2) as the two intersection points
between Li and x2 + y2 = R2, with 0 ≤ ηi,1 < ηi,2 ≤ 2π. Let us consider
the sequence obtained by rearranging in ascending order the roots ηi,1, ηi,2,
0 ≤ i ≤ n− 1, i.e.

0 ≤ η1 < η2 < . . . < η2n < 2π. (3)

Since the arrangement contains at least two secant straight lines, we do not
have ηi = ηj,1 and ηi+1 = ηj,2 for some index j. Therefore, if >uv denotes the arc
between points u and v along the circle DR, each non-compact component is

partially de�ned through a circular arc
>
RiRi+1, where Ri = (R cos ηi, R sin ηi),

together with the two straight lines Lj and Lk the two points Ri and Ri+1

belong to respectively. We have in this way 2n non-compact components. Next,
Steiner's bound becomes

♯(πC(Ab)) ≤ 1

2
(n2 + n+ 2)− ♯(πNC(Ab)) =

1

2
(n2 − 3n+ 2),

which ends the proof. Let us mention that when the arrangement consists
exclusively of parallel straight lines, ♯(πNC(Ab)) = n+ 1.

To conclude this section, let us discuss the compacity of the chambers. Each
chamber, say Y, of R2 − A becomes a chamber κ(Y) of Ab. Moreover, the
boundary of Y is sent to the boundary of the chamber κ(Y). Lastly, the number
of points of intersection lying on the boundary of a chamber Y of R2 − A is
preserved under the retraction κ since R is large enough such that DR contains
all the intersection points of A. Hence, the space Ab has a set of connected
components π0(Ab) in 1-to-1 correspondence with the set π0(R2 − A). The
number of vertices and edges of each chamber of R2 − A remains conserved
through the retraction κ. By the way, we warn the reader that some chambers
are not anymore polygonal, but have boundary consisting of zero or one arc of
circle DR and of several segments. Although all connected components of Ab

are compact, we speak anyway of non-compact components when considering
components of Ab intersecting the boundary ∂DR.

As a consequence of the Krein-Milman theorem (see [2]), the chambers are
the convex hulls of the sets of their extremal points, i.e. Y = Conv(Ext(Y))
where Conv and Ext denote respectively the convex hull of a set and the set of
extremal points. For non-compact chambers Y, Y and Ext(Y) contain circular
arcs of DR.
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3. The cyclotomic arrangement R(n).

In this and following sections, we deal with the regular arrangement of n ≥ 3
lines R(n) constructed from the regular polygon with n vertices. Let us remark
that in the particular case where n = 2, the arrangement R(2) consists only in
a single straight line passing through the center of the unit circle which yields
that R(2)b has two connected components all being (non-compact) half-planes.

Given an integer n ≥ 3, let us construct the regular polygon Pn with n ver-
tices zk = exp

(
2Ikπ
n

)
, 0 ≤ k < n, uniformly distributed on the unit circle. As a

geometric graph, the vertices of Pn are the points zk and each vertex zk of Pn

is connected to the next one zk+1 where k + 1 is computed modulo n. For any
index 0 ≤ i < n, let Li be the a�ne straight line passing through zi and zi+1

(indices being computed modulo n). Then R(n) is the union of all lines Li.

Before introducing the main result of this paper, let us recall that if Sn

denotes the symmetric group on the set {1, 2, . . . , n}, then, to each permutation
σ ∈ Sn, we may associate in a 1-to-1 way an invertible boolean matrix µ(σ) ∈
Mn(R). For all σ ∈ Sn, the transpose of µ(σ) is obviously the matrix µ(σ)T =
µ(σ−1). For instance, if we consider the n-cycle τn = (1 2 3 . . . n) ∈ Sn, then
τ ′n = (n . . . 3 2 1) ∈ Sn is nothing but the reverse n-cycle of τn.

Theorem 3.1. Let n ≥ 5 and R(n) be the regular arrangement of n lines con-
structed from the regular polygon Pn with n vertices. We set ν =

[
n−1
2

]
and

we denote P = µ(τn) ∈ Mn(R). The number of vertices of R(n)b is equal to
N = n(ν + 2) while the distribution of cardinalities of chambers of R(n)b is
given as follows

Vertices 3 3 4 5 n
Type C NC C NC C
♯ n n n(ν − 2) n 1

Table 1: Types and cardinalities of the chambers of R(n)b

Moreover, there is a convenient numbering of the N vertices of R(n)b so that
the adjacency matrix A of the unoriented geometric graph R(n)b may be written
as the following boolean symmetric square block matrix of size N

A =



P + PT P + In 0n . . . 0n 0n 0n

PT + In 0n P + In
. . .

.

.

.

0n(ν−2)×2n
0n PT + In 0n

. . . 0n
.
.
.

. . .
. . .

. . . P + In
0n . . . 0n PT + In 0n In In
0n

02n×n(ν−2)

In 0n PT + In
0n In P + In 0n


(4)

where 0n and In stand respectively for the usual zero and identity matrices of
size n and 0J denotes the zero matrix of order J .
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Proof. Clearly, the matrix A consists of ν + 2 rows of boolean blocks of size
n × n. Since the matrix P = µ(τn) ∈ Mn(R) is the adjacency matrix of the
path consisting of the n points zk = exp( 2Ikπn ) for k from 0 to n− 1 with edges
(zk, zk+1), the(1, 1)-block P+PT stands for the adjacency matrix of the circular
chain consisting of the n points zk, k ∈ {0, . . . , n − 1} with unoriented edges
{zk, zk+1}.

Using notation (1), a bit of computations gives for all k ∈ {0, . . . , n− 1} the
equation

Lk : y =
1

s2k+1
(−c2k+1x+ c1) . (5)

Because of the nonzero y-intercept, none of those n straight lines emanate from
the origin. In order to determine the intersection point between Lk and Lℓ

where k, ℓ ∈ {0, . . . , n− 1} and k ̸= ℓ, we have to solve the following systemß
c2k+1x+ s2k+1y = c1
c2ℓ+1x+ s2ℓ+1y = c1

. (6)

Since the determinant of (6) is equal to s2(k−ℓ), Lk and Lℓ are parallel if and only
if |k− ℓ| = n

2 , which occurs only when n is even. Since δP (R(n)) is zero when n
is odd and is equal to n

2 when n is even, it rewrites as δP (R(n)) = n
(
n−1
2 − ν

)
which provides, for any integer n ≥ 5, the number of directions admitting
parallel lines in the arrangement R(n). When the determinant of (6) is nonzero,
the coordinates zk,ℓ = zℓ,k = (xk,ℓ, yk,ℓ) of Lk ∩ Lℓ are equal to®

xk,ℓ = c1
ck−ℓ

ck+ℓ+1

yk,ℓ = c1
ck−ℓ

sk+ℓ+1
. (7)

Throughout this paper, it is further assumed that zk,ℓ is mentioned if and only
if |k − ℓ| ≠ n

2 . Moreover, the indices of z have always to be considered modulo
n. Clearly, ∀k ∈ {0, . . . , n − 1}, zk,k−1 = zk. The number of distinct couples
(k, ℓ) satisfying the conditions k, ℓ ∈ {0, . . . , n− 1}, k ̸= ℓ and |k − ℓ| ≠ n

2 , that
is to say the number of points of intersection zk,ℓ, is obviously N ′ = nν. Since
there exist 2n points at in�nity as mentioned in Lemma 2.1, we conclude that
the number of vertices of R(n)b is equal to N = N ′ + 2n = n(ν + 2).

Let us consider the sequence of real numbers (rm) =
Ä

c1
cm

ä
, with 1 ≤ m ≤

n− 1 and m ̸= n
2 , which occurs in (7). We may easily prove that the sequence

(rm) contains actually ν distinct values since rn−m = rm. Due to the behaviour
of the cosinus mapping over [0, π

2 ], the sequence (rm)1≤m≤ν is positive and
strictly increasing.

In polar coordinates, the point zk,ℓ = xk,ℓ + Iyk,ℓ has a modulus and an
argument given respectively by

|zk,ℓ| = r|k−ℓ|, θk+ℓ = (k + ℓ+ 1)
π

n
. (8)

Let Cm be the circle of radius rm centered at the origin, C1 de�ning naturally
the unit circle. Let ρ be the rotation with center the origin and angle of rotation
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2π
n . Since ρ preserves R(n), each point zk,ℓ ∈ Cm gives rise to homologous points
ρp(zk,ℓ) = zk+p,ℓ+p for all integers p modulo n, and where the indices k+ p and
ℓ+p have also to be considered modulo n. Thus, all these points are, at the same
time, intersection points of the arrangement as well as points distributed along
a same circle Cm for some m. In other words, the nν points zk,ℓ are regularly
distributed on the ν circles Cm. Now each circle Cm contains at least one point
zk,ℓ and thus at least n such points because of rotation invariance. The amount
of points being nν, we conclude that each circle Cm contains exactly n points
zk,ℓ. We call those circles the orbits of the arrangement R(n).

Now, let us prove that the points Lk ∩ Lℓ = zk,ℓ are simple, that is to say
each multiplicity is equal to 2. In other words, if (x, y) is given as in (7), let
us prove that the integers k and ℓ are unique up to permutation. Indeed, we
deduce easily from (8) a system to recover the indices k and ℓ from the polar
coordinates (r, θ) of any intersection point zk,ℓ and which provides two couples
(k, ℓ) and (ℓ, k) uniquely de�ned modulo n. Since no multiple point occurs,
δM (R(n)) = 0 holds for all n.

Let S be the segment in N de�ned as S = J1, n(ν + 2)K. We may reindex
the intersection points zk,ℓ using lexicographical ordering with respect �rst to
radius and next to polar angles. The points zk = zk,k−1, 0 ≤ k ≤ n − 1,
which are located on the circle C1, keep naturally their original labels shifted by
one unit. For all the other orbits characterized by 2 ≤ m ≤ ν, we proceed as
follows. Let m ∈ {2, . . . , ν}, then the points zk,ℓ belonging to Cm are indexed
by g(k, ℓ) = (m − 1)n + ℓ + 1, ℓ ∈ {0, . . . , n − 1}, m = |k − ℓ|. What preceeds
de�nes without ambiguity a 1-to-1 mapping from the set of vertices not lying
at in�nity to the segment J1, nνK.

From now on, let us assume that R > rν = c1
cν

in compliance with Section
2. In such a way, the points at in�nity Ri = (R cos ηi, R sin ηi) located on the
circle |z| = R may also be renumbered. Using formulas in the proof of Lemma
2.1, we show that the polar angles of the two points Lk ∩ DR are equal to

η′k =
(2k + 1)π

n
+ arccos

(c1
R

)
and η′′k =

(2k + 1)π

n
− arccos

(c1
R

)
,

modulo 2π, 0 ≤ k < n. Then, we collect these angles η′k and η′′k in an ascending
order sequence (ηi) as in (3). Next, we gather into a �rst class CR,ν+1 the points
Ri with i even and into a second class CR,ν+2 the other Ri with i odd (or vice
versa). In this way, we may extend the numbering g to include the 2n points at
in�nity, �rst the �even� points, and next the others, respectively indexed by

g(R2i) = nν + i and g(R2i−1) = n(ν + 1) + i, 1 ≤ i ≤ n.

This explains the appearance in the lower right corner of (4) of the adjacency ma-

trix of the subgraph consisting of points at in�nity, that is

Å
0n PT + In

P + In 0n

ã
.

For any index k ∈ {0, . . . , n− 1}, we de�ne R′
k and R′′

k as the two points among
the collection {R1, . . . , R2n} that belong to Lk. Let us remark that when n is

odd, all straight lines Li and Lj intersect, so that all circular angles
>
R′

k, R
′′
k

8



contain one and only one point R′
j or R′′

j for any other index j ̸= k. Hence, in
this particular case, the preceding numbering satis�es g(R′′

k) = g(R′
k)+n for all

indices k.

Now we are interested in the closest neigbours of each vertex zk,ℓ. In this
respect, we introduce for each index j, 0 ≤ j ≤ n− 1, the linear form

ξj(x, y) = −xs2j+1 + yc2j+1.

This mapping describes the abscissa along the straight line Lj computed in an
orthogonal frame. What is important here is the fact that ξj is injective on Lj .
For each k ∈ {0, . . . , n− 1}, we get

ξk(zk,ℓ) =
c1ck−ℓ

sk−ℓ
, ∀ℓ ∈ {0, . . . , n− 1}, ℓ ̸= k, |k − ℓ| ≠ n

2
. (9)

For sake of conciseness, let us denote τj =
c1sj
cj

for all integers j such that

j ̸= n
2 mod n. The increasing re-arrangement of the sequence (ξk(zk,ℓ)) gives

rise to the antisymmetric sequence of length 2ν

(τ−ν , . . . , τ−1, τ1, . . . , τν) = (−τν , . . . ,−τ1, τ1, . . . , τν).

We notice that the sequence of abscissas along Lk does not depend on k. Now,
for each j ∈ {2, . . . , ν− 1}, the closest points of τj in this sequence are τj−1 and
τj+1. This amounts to saying that in the geometric graph R(n)b, the closest
neighbours of zk,ℓ on Lk are thus zk,ℓ−1 and zk,ℓ+1. So we are led to the crucial
fact:

Lemma 3.1. Let k, ℓ two integers in {0, . . . , n−1} such that k ̸= ℓ and |k−ℓ| ≠ n
2 ,

then the four closest neighbours of zk,ℓ, if applicable, are zk−1,ℓ, zk+1,ℓ, zk,ℓ−1

and zk,ℓ+1.

Proof. Indeed, the indices p, q of a neighbour zp,q of a given point zk,ℓ must
satisfy {k, ℓ} ∩ {p, q} ≠ ∅ and the requirement that abscissas ξj(zk,ℓ) and
ξj(zp,q) along the straight line Lj containing zk,ℓ and zp,q cannot be inter-
twinned by any other value ξk(zs,t). Since this second condition is equivalent
to max(|k − ℓ| , |p− q|) = 1, the result of the lemma holds.

If |k − ℓ| = m, the closest neighbours of the point zk,ℓ lie on one of the two
circles Cm−1 and Cm+1. It amounts to saying that two adjacent points zk,ℓ and
zp,q in the geometric graph R(n)b lie on two successive circles. In the (k, ℓ)-
representation, the geometric graph R(n)b is mapped to a �diamond lattice� (see
Figure 2). The opposite vertical sides correspond to the half-lines θ = 0 and
θ = 2π and must be identi�ed as usual to catch R∗× [0, 2π]/ ∼ as R2−{(0, 0)}.
This explains the distinct oblique crossing edges.

Let us give three consequences of the Lemma 3.1. First, the adjacency ma-
trix contains two upper and lower triangular arrays of size n(ν − 1) consisting
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Figure 2: �Diamond lattice� associated to R(50)

of zero blocks 0n located at entries (i, j) with 2 ≤ |i− j| ≤ ν. Second, if two
points zk,ℓ and zp,q lie on the same circle, i.e. |zk,ℓ| = |zp,q| = rm with m ≥ 2,
they are not adjacent. In other words, two points zk,ℓ and zp,q, neither at
in�nity nor on the unit circle, such that |k − ℓ| ≠ |p − q| and which are con-
nected, do not lie on a same circle Cm. Indeed, otherwise, we would have for
instance |k− ℓ| = |p− q| = m, and {k, ℓ} ∩ {p, q} ≠ ∅ which is impossible. As a
consequence, the adjacency matrix (4) has zero blocks 0n at entries (i, i) with
2 ≤ i ≤ ν. Third and last result, since each point zk,ℓ lying on some circle
Cm (2 ≤ m ≤ ν − 1) has valency equal to 4, we obtain the blocks P + In and
PT +In in (4) respectively located at positions (m,m+1) and (m−1,m), which
highlights the connectivity between the various four neighbours.

So far, we have speci�ed the locations of the di�erent intersection points of
the arrangement and discussed about their closest neighbours. At this point, the
structure of the adjacency matrix A de�ned by (4) has been totally detailed and
explained. The next step consists in characterizing the chambers generated by
the arrangement and, in order to do this, we shall repetitively use the following
trick:

Scholia 3.1. To prove that a convex subset Y of Ab is a chamber, we proceed
as follows. We give the �nite sequence of vertices (v1, v2, . . . , vp, v1) of Y then,
help to the crucial lemma 3.1 and its consequences, we verify that ∀j, {vj , vj+1}
shares one index k so that {vj , vj+1} ⊂ Lk, and lastly that no straight line Li

cuts Y.

Let k ∈ {0, 1, . . . , n}, then the triangle with vertices {zk, zk+1, zk−1,k+1} is a
chamber. Indeed, this triangle exists, that is to say all segments of the boundary
are included in straight lines Lj . Because of the indices of its vertices, the convex
hull Conv({zk, zk+1, zk−1,k+1}) does not contain any auxiliary vertex, so that

10



no straightline Lj cuts this triangle. Then we obtain, by rotation, n compact
triangles as chambers of R(n)b.

Let k, ℓ be two integers such that k, ℓ ∈ {0, . . . , n− 1}, k ̸= ℓ and |k− ℓ| ≠ n
2

then the quadrilateral Conv({zk,ℓ, zk+1,ℓ, zk+1,ℓ−1, zk,ℓ−1}) is a chamber. In-
deed, this quadrilateral exists in R(n) and no straightline Lj cuts this quadri-
lateral because of the indices of its vertices. While the requirement |k − ℓ| ≠ n

2
avoids singular system when determining Lk ∩ Lℓ, the two following conditions
|k− ℓ| ≥ 1 and |(k+1)− (ℓ− 1)| ≤ ν ensure the existence of the four connected
edges that characterize the quadrilateral. The �rst condition being obviously
satis�ed, we easily prove that the number of those quadrilaterals is equal to
n(ν − 2).

Let k, ℓ ∈ {0, . . . , n − 1} such that |k − ℓ| = ν, then zk,ℓ ∈ Cν . Accord-
ing to previous notation, let CR ∩ Lk = {R′

k, R
′′
k} for all k. Straightforward

computations show that the coordinates of these two points are equal to(
c1c2k+1 + εs2k+1

»
R2 − c21, c1s2k+1 − εc2k+1

»
R2 − c21

)
,

where ε ∈ {−1, 1}. We de�ne R′
k as the closest neighbour of zk,ℓ on CR along

Lk, that is to say

|ξk(R′
k)− ξ(zk,ℓ)| < |ξk(R′′

k)− ξ(zk,ℓ)|, (10)

where ξ(zk,ℓ) is given by (9), and we choose R′
ℓ similarly. We remind that R′

k

and R′
ℓ are two points that belong necessarily to {R1, . . . , R2n}. Since R > c1,

there exists β ∈ [0, n
2 ] such that c1

R = cβ . We may prove that

∀R >
c1
cν

, 0 < β − ν =
n

π
arccos

(c1
R

)
−
ï
n− 1

2

ò
< 1. (11)

This results from applying the cosinus mapping to cν+1 < 0 < c1
R < cν . Next

we may state that for any couple of indices (k, ℓ) such that |k − ℓ| = ν, the
euclidean distance dk,ε between zk,ℓ and R′

k or R′′
k may be expressed as

d2k,ε =

Å
c1
cν

ã2

+R2 − 2

Å
c1
cν

ã
Rcβ+εν =

Å
R

cν

ã2

s2β+εν ,

while the distance dε,ℓ between zk,ℓ and R′
ℓ or R

′′
ℓ writes as

d2ε,ℓ =

Å
c1
cν

ã2

+R2 − 2

Å
c1
cν

ã
Rcβ−εν =

Å
R

cν

ã2

s2β−εν = d2ℓ,−ε.

Since β π
n and ν π

n belong to [0, π
2 ], sβ+ν − sβ−ν = 2cβsν > 0. Because of (11),

sβ−ν > 0 and thus, d2k,1 > d2k,−1. It occurs that the distances dk,ε and dε,ℓ are
minimal if and only if ε is equal to −1 and 1 respectively. Therefore,

R′
k =

Ç
c1c2k+1 − s2k+1

√
R2 − c21

c1s2k+1 + c2k+1

√
R2 − c21

å
= R

Å
cβ+(2k+1)

sβ+(2k+1)

ã
= ReI(β+(2k+1))π

n

11



and

R′′
k =

Ç
c1c2k+1 + s2k+1

√
R2 − c21

c1s2k+1 − c2k+1

√
R2 − c21

å
= R

Å
cβ−(2k+1)

sβ−(2k+1)

ã
= ReI(β−(2k+1))π

n .

The non-compact triangle with vertices zk,ℓ, R
′
k and R′

ℓ exists and is a cham-
ber. Indeed, if a straight line Lj cut this triangle, we would have an intersection
point beyond Cν and this is impossible. So R′

k and R′
ℓ are closest neighbours

on the circle CR and the polar angles of the two points R′
k and R′

ℓ are consecu-
tive terms of the sequence (η1, . . . , η2n). At this point, since k ∈ {0, . . . , n− 1}
determines ℓ, we obtain n such non-compact triangles.

Next, let us consider zk,ℓ such that |k − ℓ| = ν − 1, then we know that
zk+1,ℓ and zk,ℓ−1 belong to Cν . As before, we de�ne R′

k+1 ∈ CR ∩ Lk+1 and
R′

ℓ−1 ∈ CR ∩ Lℓ−1 as the closest neighbours of zk+1,ℓ and zk,ℓ−1 on CR along
Lk+1 and Lℓ−1 respectively. Then, the non-compact pentagon

Conv({zk,ℓ, zk+1,ℓ,
>
R′

k+1R
′
ℓ−1, zk,ℓ−1})

is a chamber. Indeed, by the crucial fact mentioned above, no straight line Lj

cuts this pentagonal region. Therefore, R′
k+1 and R′

ℓ−1 are closest neighbours
on CR and lie in separate classes CR,ν+1 or CR,ν+2. So, since n vertices lie on
Cν−1, we obtain n non-compact pentagonal regions.

At last, taking into account the central n-gon, we see that the enumeration
of chambers is complete. Let us note to conclude that Robert's formula (2)
allows to write that

1 + n+

Ç
n

2

å
− 0− n

Å
n− 1

2
− ν

ã
= n(ν + 1) + 1,

which states a mathematical equivalence between the number of connected com-
ponents of R2−R(n) and the amount of chambers given in the table of Theorem
3.1.

Remark 3.1. Although the previous theorem holds only for n ≥ 5, we may state
some results for n = 3 and n = 4 by invoking simple geometric considerations.

� R2 −R(3) consists in one compact triangle, 3 non-compact triangles and
3 non-compact quadrilaterals.

� R2 −R(4) consists in one compact quadrilateral, 4 non-compact triangles
and 4 non-compact quadrilaterals.

Remark 3.2. Let sn = n(ν + 1) + 1 be the total number of chambers of R(n)b.
This sequence is referred as A249333 in [7] and is attributed to Richard Stanley.
In contrast, the speci�c sequence which counts the number of quadrilaterals in
R(n)b is not referenced in OEIS.
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Remark 3.3. The angular diameters of the circular arcs bounding �at in�nity�
any non-compact triangle and any non-compact pentagon of R(n) are respec-
tively equal to

βT = Ÿ�R′
k+1ORℓ =

2π

n
(ν − β) and βP = ¤�R′

ℓ−1OR′
k+1 =

2π

n
(ν + 1− β).

We may then observe that the sequence of angles (ηj+1 − ηj) is a 2-periodic
sequence with terms alternatively equal to βT and βP . More accurately, we have

η2p − η2p−1 =

ß
βP if n ≡ 0, 3
βT if n ≡ 1, 2

and η2p+1 − η2p =

ß
βT if n ≡ 0, 3
βP if n ≡ 1, 2

for all integers n computed modulo 4 and for all convenient indices p.

Remark 3.4. Instead of using the adjacency matrix A, we could use a boolean
mapping B : V (R(n)b)2 → {0, 1} detecting the connectivity of the pairs of
vertices in the geometric graph R(n)b. For the ��nite� points, we would have

B((ℓ− 1, ℓ); (ℓ′ − 1, ℓ′)) = 1 i� |ℓ− ℓ′| = 1,

B((k, ℓ); (k′, ℓ′)) = 1 i� |k − k′|+ |ℓ− ℓ′| = 1, |k − ℓ| ≥ 1, |k′ − ℓ′| ≥ 1.

Unfortunately, the 2n points at in�nity are di�cult to handle because they in-
volve transcendental extraneous conditions and not only diophantine ones.

4. About the areas of the chambers

In this last section, we give the formulas for the areas of the chambers of
the space R(n)b. Let An,0 = n

2 s2 be the area of the central regular n-gon. Let
us denote by An,T the area of a compact triangle, by An,Q(m) the area of a
compact quadrilateral of which two vertices lie on Cm, and by An,P and An,S

the respective areas of the non-compact pentagonal and non-compact triangular
chambers. Invoking the distribution given in Theorem 3.1, we have

πR2 = An,0 + nAn,T + n

ν∑
m=2

An,Q(m) + n(An,P +An,S).

The two hand-sides of this equation are polynomials of degree 2 w.r.t. R, pro-
vided R > rν , while An,P and An,S are algebraic functions of R. In the following,
we repetitively use the rotation ρ to deduce from one particular calculus, the
area of congruent chambers of R(n)b. Using geometric considerations, we may
provide the following interesting result

Theorem 4.1. For all integers n ≥ 5, we have

ν−1∑
m=2

sin
(
mπ
n

)
cos

(
(m− 1)πn

)
cos

(
mπ

n

)
cos

(
(m+ 1)πn

)
=

1

2 sin
(
π
n

)
Ñ

1

cos
Ä
(ν−1)π

n

ä
cos

(
νπ
n

) − 1

cos
(
π
n

)
cos

(
2π
n

)
é

. (12)
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Proof. The proof proceeds from the exact computation of the explicit values
of the areas found in the regular n-gon homothetic to the central regular n-
gon of ratio rν = c1

cν
. This regular n-gon is partitioned in a series of convex

polygons with pairwise disjoint interiors, including the central regular n-gon, the
compact triangles, the whole sequence of compact quadrilaterals, as well as the
triangular parts An,P,1 extracted from the non-compact pentagonal chambers
and characterized exclusively by some vertices zk,ℓ. All these terms will be
de�ned shortly and allow to state

An,0r
2
ν = An,0 + nAn,T + n

ν−1∑
m=2

An,Q(m) + nAn,P,1, (13)

or what amounts to the same thing

ν−1∑
m=2

An,Q(m) =
s2
2
(r2ν − 1)−An,T −An,P,1. (14)

As will be explained below, this formula is the exact replica of the result men-
tioned in the theorem up to a multiplicative factor 2

ns22
.

So, to begin, the area of a triangle is given as 1
2 |(x2 − x1)(y3 − y1) − (x3 −

x1)(y2 − y1)| when the coordinates of all vertices are known. We consider the
triangle Conv({zk, zk+1, zk−1,k+1}), see Figure 3, and we deduce from its area,
the area of any compact triangle

An,T =
s21s2
c2

. (15)

Figure 3: Area An,T of a compact triangle

Now, let m be an integer such that 2 ≤ m ≤ ν − 1, and let us consider the
quadrilateral in R(n)b whose vertices zk,ℓ, zk+1,ℓ, zk,ℓ−1, zk+1,ℓ−1 are such that
|k + 1− ℓ| = m, see Figure 4.
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Figure 4: Area An,Q(m) of a compact quadrilateral

As seen previously, two vertices lie on Cm, one is on Cm−1 and the last is on
Cm+1. Since the polar angles of zk,ℓ and zk+1,ℓ−1 are equal, the straight line ∆

′

joining zk,ℓ and zk+1,ℓ−1 passes through the origin. Furthermore, the straight
line ∆′′ from zk+1,ℓ to zk,ℓ−1 is orthogonal to ∆′. The orthogonal symmetry
w.r.t the straight line ∆′′ shows that the area An,Q(m) is the half of the area
of the rectangle with two sides parallel to straight line ∆′′ and having on its
boundary the four vertices zk,ℓ, zk+1,ℓ, zk,ℓ−1, zk+1,ℓ−1. By the way, the length
of one side of this rectangle is rm+1 − rm−1 = s2sm

cm+1cm−1
while the length of the

other side is given by the distance between zk+1,ℓ and zk,ℓ−1 that is to say s2
cm

.
Hence we get the area

An,Q(m) =
s22sm

2cm−1cmcm+1
, (16)

with the usual restriction on the integer m characterizing the three circles
Cm−1, Cm, Cm+1, i.e. m,m ± 1 ̸= n

2 . Next, we may state that the area of
Conv({zℓ+ν−1,ℓ, zℓ+ν,ℓ, zℓ+ν−1,ℓ−1}), see Figure 5, is equal to

An,P,1 =
c21s

2
1sν−1

c2νcν−1
. (17)

Gathering together (14), (15), (16) and (17), we get

s22
2

ν−1∑
m=2

sm
cm−1cmcm+1

=
s2
2

Å
c21
c2ν

− 1

ã
− s21s2

c2
− c21s

2
1sν−1

c2νcν−1

or equivalently

ν−1∑
m=2

sm
cm−1cmcm+1

=
c21
s2c2ν

− 1

s2
− 2s21

s2c2
− 2c21s

2
1sν−1

s22c
2
νcν−1

=
c21
s2c2ν

− 1

s2c2
− c1s1sν−1

s2c2νcν−1
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which provides after a few simpli�cation the formula (12).

Remark 4.1. The area Qn =
∑ν

m=2 An,Q(m) of the whole cohort of quadrilat-
erals may be, as a function of n, expressed as an interesting algebraic number
in the cyclotomic �eld Q

(
exp

(
2Iπ
n

))
. For n = 5 and n = 6, the two sums are

void and thus are equal to 0. One obtains also for example

Q8 =
1

2

√
2, Q12 =

√
3

6
+

Ç
5

6

√
6−

√
2

2

å
cos

π

12
,

while Q16 is an explicit rational expression involving surds and cos π
8 .

We provide now a synopsis of the areas of the chambers of R(n)b.

Theorem 4.2. Notation being as above, the areas of the di�erent chambers of
R(n)b and their asymptotics as n tends to +∞ are given by

Polygon Area of the polygon Asymptotic equivalent

An,0
n
2 s2 π

An,T
s21s2
c2

2π3

n3

An,Q(m)
s22sm

2cm−1cmcm+1

2mπ3

n3 (m �xed)

Qn s22
4s1

Ä
1

cν−1cν
− 1

c1c2

ä n
2π if n is even

4n
3π if n is odd

An,P,1
c21s

2
1sν−1

c2νcν−1

n
2π if n is even

8n
3π if n is odd

An,P,2

Ä
Rsν+1−β + c1s1

cν

ä
R

sν+1sβ−ν

cν

2R− 2n
π if n is even

πR2

2n − 6n
π + 2R if n is odd

An,P,3 R2(ν + 1− β)πn − R2

2 s2(ν+1−β)

4
3R if n is even

4
3R

2
(
π
n

)3 ( 1
2 + n

πR

)3
if n is odd

An,S,1 R2s2β−ν
sν
cν

πR2

n − 2R+ n
π if n is even

πR2

2n − 2R+ 2n
π if n is odd

An,S,2 R2(β − ν)πn − R2

2 s2(β−ν)

4
3R

2
(
π
n

)3 (
1− n

πR

)3
if n is even

4
3R

2
(
π
n

)3 ( 1
2 − n

πR

)3
if n is odd

Table 2: Areas of the chambers of R(n)b and their asymptotics as n tends to +∞

Proof. The �rst half of the results presented in this array has already been
proved in the previous theorem. Before embarking on the asymptotic expansions
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of these areas, it remains to focus on the areas of the non-compact chambers
which are characterized by vertices lying on the two last orbits Cν−1, Cν and the
circle CR and that we formalize below through the relationships k = ℓ+ ν − 1,
0 ≤ ℓ < ν, k > ℓ.
In order to determine the area An,P of any pentagon, all others being congruent
modulo ρ and thus having the same area, we split it into a triangle Conv({zℓ+ν−1,ℓ, zℓ+ν,ℓ, zℓ+ν−1,ℓ−1}),

a quadrilateral Conv({zℓ+ν,ℓ, zℓ+ν−1,ℓ−1, R
′
ℓ−1, R

′
ℓ+ν}),

a disk segment R′
ℓ+ν R′

ℓ−1.

The area An,P,1 of Conv({zℓ+ν−1,ℓ, zℓ+ν,ℓ, zℓ+ν−1,ℓ−1}), see Figure 5, has already
been computed and is given in (17). Let us remind next that the intersection
points R′

ℓ−1 and R′
ℓ+ν obtained by intersecting CR with the straight lines Lℓ−1

and Lℓ+ν have the following coordinates

R′
ℓ−1 = R(c2ℓ−1+β , s2ℓ−1+β) and R′

ℓ+ν = R(c2ℓ+2ν+1−β , s2ℓ+2ν+1−β).

Figure 5: Area An,P of a non-compact pentagon

We remark next that the quadrilateral Conv({zℓ+ν,ℓ, zℓ+ν−1,ℓ−1, R
′
ℓ−1, R

′
ν+ℓ})

is a trapezoid since the straight lines (zℓ+ν,ℓzℓ+ν−1,ℓ−1) and (R′
ℓ−1R

′
ℓ+ν) are par-

allel, their slope being equal to − c2ℓ+ν

s2ℓ+ν
. In order to determine the height between

these two bases, we note that the origin O of the coordinate system and the
respective middles P1 and P2 of the sides zℓ+ν,ℓzℓ+ν−1,ℓ−1 and R′

ℓ−1R
′
ℓ+ν are

colinear. Indeed,

P1 =
c21
cν

(c2ℓ+ν , s2ℓ+ν) and P2 = Rcν+1−β(c2ℓ+ν , s2ℓ+ν).

Therefore, the height of the trapezoid is simply equal to the euclidean distance
between P1 and P2 that is to say

0 < dist(P1, P2) =
c21
cν

−Rcν+1−β = R
sν+1sβ−ν

cν
,
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the positive sign being obtained using (11). We may then compute the lengths
of the two bases zℓ+ν,ℓzℓ+ν−1,ℓ−1 and R′

ℓ−1R
′
ℓ+ν which are respectively equal to

2 c1s1
cν

and 2(c1sν+1 − cν+1

√
R2 − c21) = 2Rsν+1−β . We deduce that

An,P,2 =

Å
Rsν+1−β +

c1s1
cν

ã
R
sν+1sβ−ν

cν
.

In order to determine the area of the circular segment R′
ℓ+ν R′

ℓ−1, we use
Al-Kashi's law of cosines which states that the distance between R′

ℓ−1 and R′
ℓ+ν

checks the relationship

dist(R′
ℓ−1, R

′
ℓ+ν)

2 = 4R2s2ν+1−β = 2R2 − 2R2 cos ¤�R′
ℓ+νOR′

ℓ−1

which yields¤�R′
ℓ+νOR′

ℓ−1 = arccos
(
1− 2s2ν+1−β

)
= arccos c2(ν+1−β) = 2(ν + 1− β)

π

n
.

Then,

An,P,3 = R2(ν + 1− β)
π

n
− R2

2
s2(ν+1−β).

Using the distinct areas presented above, we �nd

An,P =
c21s

2
1sν−1

c2νcν−1
+R2

ÅÅ
sν+1−β +

cβs1
cν

ã
sν+1sβ−ν

cν
+

Å
(ν + 1− β)− 1

2
s2(ν+1−β)

ãã
.

(18)

The last step consists in computing the areas of the non-compact triangles which
are all identical and may identi�ed to Conv({zℓ+ν,ℓ, R

′
ℓ, R

′
ℓ+ν}), see Figure 6.

Figure 6: Area An,S of a non-compact triangle

By introducing the middle point P = Rcν−β(c2ℓ+ν+1, s2l+ν+1) of the side
R′

ℓR
′
ℓ+ν , it is obvious that O, zℓ+ν,ℓ =

c1
cν
(c2ℓ+ν+1, s2l+ν+1) and P are colinear,
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which means that the areaAn,S,1 of the triangular part of Conv({zℓ+ν,ℓ, R
′
ℓ, R

′
ℓ+ν})

is twice the area of the triangle Conv({zℓ+ν,ℓ, R
′
ℓ, P}). We deduce easily that

An,S,1 =
1

2
(2Rsβ−ν)

Å
R

cν
sβ−νsν

ã
= R2s2β−ν

sν
cν

.

At last, we proceed as before to determine the area of the circular segment
R′

ℓ+ν R′
ℓ, i.e.

An,S,2 = R2(β − ν)
π

n
− R2

2
s2(β−ν).

Therefore,

An,S = R2s2β−ν

sν
cν

+R2(β − ν)
π

n
− R2

2
s2(β−ν). (19)

It remains then to prove the asymptotics. First we have R > n
π since R > c1

cν
,

then when n tends to +∞, so does R. Next we use the following simple results

Quantities n even n odd

ν n
2 − 1 n

2 − 1

cν
π
n

π
2n

rν
n
π

2n
π

β − ν 1− n
πR

1
2 − n

πR

sβ−ν 1− n
πR

1
2 − n

πR

ν + 1− β n
πR

1
2 + n

πR

sν+1−β
n
πR

1
2 + n

πR

Table 3: Asymptotics as n tends to +∞ of several parameters

In this way we obtain the asymptotics of all the areas except An,P,3 and
An,S,2. To obtain these last ones, we use the asymptotic expansion R2(θ −
1
2 sin(2θ)) ∼ 4

3R
2θ3. Here, θ tends to 0, R tends to +∞ and θ is chosen as

(β − ν)πn or (ν + 1− β)πn , these two angles being positive and less than π
n .

Remark 4.2. Let us consider the ratios of areas in formula (13) w.r.t. the total
area πr2ν . An interesting feature arises from the asymptotics. The subsequence
with n odd or even of the preceding sequence of ratios have the following be-
haviour

1

πr2ν

ν−1∑
m=2

An,Q(m) →
+∞

®
1
2 , n ≡ 0 mod 2
1
3 , n ≡ 1 mod 2

,
1

πr2ν
nAn,P,1 →

+∞

®
1
2 , n ≡ 0 mod 2
2
3 , n ≡ 1 mod 2

.

Remark 4.3. Let us consider the function f(t) = sin(t)
cos(t)3 on

[
0, π

2

[
whose integral

on this interval is divergent. Let us denote by Sn the left Riemann sum of f over
the interval

[
0, π

2

[
. Using the relationship sm−1sm+1 − s2m = −s21 < 0, for all
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2 ≤ m ≤ ν, we easily get s22Sn ≤ nQ2n. Comparison theorem between integrals
and Riemann sums for monotonic functions implies that the sums Pn = 2n

π Sn

lie in O(n2) as n tends to +∞. It would be interesting to study the link between

Pn and
∑ν−1

m=2
cm

sm−1smsm+1
as well as to obtain the explicit value of the limit of

the sequence
(
Pn

n2

)
.
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