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In this paper, we consider the seemingly simple problem of describing and enumerating the set of connected components delimited by the cyclotomic arrangement of straight lines in the plane generated from the edges of a regular n-gon.

Knowing the exact position of each intersection point of the arrangement, an exhaustive study of the dierent areas of the components is also provided.

Introduction and notation

We address mainly in this work the problem of providing a detailed list of the various connected components generated and bounded by a particular cyclotomic arrangement of straight lines in the plane which coincide with the edges of a regular n-gon.

The very rst result related to this subject, valid for any arrangement, is the Jacobus Steiner's bound for the number of connected components in the plane, that is to say 1 2 (n 2 + n + 2) where n denotes the cardinality of the arrangement and which is easy to prove by induction (see for example [START_REF] Moore | Using Euler's Formula to Solve Plane Separation Problems[END_REF]9]). However, this result does not give insight in some features of interest including listing the number of triangles, quadrilaterals and so on, generated by the arrangement, nor prove the existence of some relationships between those amounts, or even provide the numbers of compact or non-compact components. In [START_REF] Wetzel | On the Division of the Plane by Lines[END_REF], Wetzel gave an historical account of the Steiner's problem and focus on generalization of Broussaud's formula for the defect number, that is the dierence between the Steiner's upperbound 1 2 (n 2 + n + 2) and the actual value of the number of connected components. Wetzel highlighted the multiplicities of the intersection points as well as the existence of parallel straight lines but did not use symmetries of the arrangements. For their part, Poonen and Rubinstein [START_REF] Poonen | The number of intersection points made by the diagonals of a regular polygon[END_REF] got interested in the number of intersection points formed inside a regular n-gon by its diagonals while making clear the distinct multiplicities. While Poonen and Rubinstein focused mostly on formulas describing the various situations, some other authors worked on ecient deterministic algorithms to report and to count geometric intersections convex polygons, inducing naturally time and storage constraints (see for example [START_REF] Smoch | Intersection and Decomposition Algorithms for Planar Arrangements[END_REF], [START_REF] Fink | Counting Convex k-gons in an Arrangement of Line Segments[END_REF]).

We emphasize on the fact that none of the authors mentioned previously nor those who are cited in their respective bibliographies have studied the distribution of connected components according to their shape, characterized by the numbers of vertices or the property of being compact or not compact. It should be however specied that the question of counting special shapes among those connected components has been discussed from an algorithmic point of view in [START_REF] Fink | Counting Convex k-gons in an Arrangement of Line Segments[END_REF] and literature therein. Nevertheless, the computation of the areas of these shapes is not considered contrary to what is being done in the present paper. Indeed, providing an exhaustive description of the straight lines and the intersection points generated by the arrangement, we are able to specify the exact area of each polygon as well as an asymptotic expansion of it.

To state our results and the convenient formulation, let us give notation used hereafter. First, we identify R 2 and C and we denote by I the complex number I = √ -1. As usual, if x ∈ R then [x] denotes the greatest integer function. Given an integer n, let us set c α = cos απ n and s α = sin απ n , ∀α ∈ R,

provided the value of n is obvious from the context. Let A = (L 0 , . . . , L n-1 ) be an arrangement of n lines in the euclidean plane, with L i : a i x + b i y + c i = 0. If L k ∩ L ℓ ̸ = ∅ for k, ℓ ∈ {0, . . . , n -1}, k ̸ = ℓ, we denote by z k,ℓ this intersection point. We suppose throughout the paper that n ≥ 3 and that at least two lines are not parallel. The space Z = R 2 -n-1 i=0 L i that we may denote Z = R 2 -A, is locally compact and locally arcwise connected. The set π 0 (Z) of arcwise connected components is nite with cardinality ♯π 0 (Z). By Steiner's bound, we have ♯π 0 (Z) ≤ 1 2 (n 2 + n + 2). At last, we will denote by π C (Z) and π N C (Z) the respective sets of compact and non-compact components of Z.

In the remainder of the paper we call chamber the closure of any connected component of a space R 2 -A, this terminology is justied as in the theory of Lie groups (see [START_REF] Bourbaki | Groupes et Algèbres de Lie[END_REF][Lie, chap 5, 3]) and in dierential topology. Chambers correspond to intersections of a nite number of closed half-planes, they are all convex and may be compact or non-compact.

The rest of this paper is organized as follows. In section 2, we present some preliminaries on arrangements of lines in the plane. We remind Robert's formula and we present the defects of the arrangements. We dene the boundication A b of the complement R 2 -A of an arrangement of lines A = (L 0 , . . . , L n-1 ) and we provide some results on the numbers of connected components of A b whether or not they are compact. In Section 3, we introduce for any integer n ≥ 3 the cyclotomic minimal arrangement R(n) containing the regular n-gon P n (see for example Figure 1) and we get interested in the exhaustive description of R 2 -R(n). In Section 4, taking into account the rich symmetry of the space R(n) b , we provide some nice results for the areas of each kind of chambers of R(n) b and especially the value of the sums The nal result of Samuel Robert in 1889, that we quote from Wetzel [START_REF] Wetzel | On the Division of the Plane by Lines[END_REF] is stated as follows Proposition 2.1 (Robert's formula). Let A = (L 0 , . . . , L n-1 ) be an arrangement of n lines in the euclidean plane. Let p be the number of points of multiplicity ≥ 3 and, for each 1 ≤ i ≤ p, let λ i ≥ 3 be the multiplicity of any multiple intersection point. Let q be the number of parallel straight lines in A and, for each 1 ≤ j ≤ q, let µ j ≥ 2 be the number of parallel lines in some direction.

ν-1 m=2 sin mπ n sec (m -1) π n sec m π n sec (m + 1) π n .
Then the number of connected components of R 2 -A is equal to

♯(π 0 (R 2 -A)) = 1 + n + Ç n 2 å - p i=1 Ç λ i -1 2 å - q j=1 Ç µ j 2 å . (2) 
It is interesting to observe that the proof given in [START_REF] Wetzel | On the Division of the Plane by Lines[END_REF] proceeds by subtracting the various degeneracies in connected components being lost due to multiplicities of intersection points or parallelism of lines, while, on the contrary, we will obtain our main results of the next section by adding the various numbers of connected components of several shapes. We may use the phrasing of Wetzel to speak of the sum δ M (A) =

p i=1 λi-1 2 
as the number of regions lost because of the multiple points and to speak of the sum δ P (A) = q j=1 µj 2 as the number of regions lost because of parallellism. We will call hereafter those two sums δ M (A), δ P (A) defects of the arrangements of type M and P respectively and call defect of the arrangement A the quantity δ(A) = δ M (A)+δ P (A).

Let A be an arrangement of lines. There exists a real number R such that the compact disk D R of radius R, centered at the origin, contains all the intersection points from A in its interior. Let κ : C → C dened as follows: if |z| ≥ R, then κ(z) = Rz/|z|, and κ(z) = z otherwise. The mapping κ is a retraction of R 2 on the disk D R . Moreover, κ preserves the nature and the number of connected components of the complement of the arrangement A in R 2 . However, the mapping κ does not preserve convexity. For instance for any ε > 0, the triangle T with vertices {γ(1

+ I), a + bI, b + aI}, a, b > 1, a ̸ = b, γ ∈]0, √ 2 
2 [, has a non convex range κ(T ). We may dene the boundication of A as the relatively compact subset A b = κ(R 2 -A), and the topology of this space does not depend on R.

If one really wants to obtain a compact space, it will be preferable to consider an open tubular neighborhood B of A, of width ε > 0 small enough, and then the space (R 2 -B) ∩ D(0, R). In that way, it is possible to compactify the complement set of an arrangement of lines. A naive illustration of this is depicted in [9]. We warn the reader not to confuse this compactication with the Alexandrov usual compactication; this last one indeed maps the complement of the whole nite space to one point at innity, while the retraction κ maps on a given large circle all points at innity on rays emanating from the origin. For illustrative purpose, let us mention that we may substitute to the circle |z| = R at innity any convex polygon, say a square or a lozenge, which contains all the intersection points in its interior. Doing so, some constructions given hereafter do not use smooth polygons inducing circular segments but ordinary polygons instead.

We easily prove that the connected components of the complement R 2 -A of a general arrangement A are convex. We may distinguish among them compact and non-compact components, and in the rst category bounded polygonal components of which the boundary has k = 3, 4, . . . vertices. If we consider the images of the various components by the retraction κ, we see that the images of bounded polygonal components remain compact while the images of noncompact components become polygonal components implying only one curvilinear arc along their boundary. Lemma 2.1. If the arrangement A = (L 0 , . . . , L n-1 ) contains at least one inter-section point, we have

♯(π N C (A b )) = 2n and ♯(π C (A b )) ≤ 1 2 (n 2 -3n + 2).
Proof. Let us consider R large enough to ensure that the disc x 2 + y 2 < R 2 contains all the intersection points L i ∩ L j . Due to this hypothesis, each straight line L i has some points belonging to the interior of the disc and cuts the circle in two distinct points because L i cannot be tangent to the circle. Let us dene (R cos η i,1 , R sin η i,1 ) and (R cos η i,2 , R sin η i,2 ) as the two intersection points between L i and x 2 + y 2 = R 2 , with 0 ≤ η i,1 < η i,2 ≤ 2π. Let us consider the sequence obtained by rearranging in ascending order the roots

η i,1 , η i,2 , 0 ≤ i ≤ n -1, i.e. 0 ≤ η 1 < η 2 < . . . < η 2n < 2π. (3) 
Since the arrangement contains at least two secant straight lines, we do not have η i = η j,1 and η i+1 = η j,2 for some index j. Therefore, if > uv denotes the arc between points u and v along the circle D R , each non-compact component is partially dened through a circular arc

> R i R i+1 , where R i = (R cos η i , R sin η i
), together with the two straight lines L j and L k the two points R i and R i+1 belong to respectively. We have in this way 2n non-compact components. Next, Steiner's bound becomes

♯(π C (A b )) ≤ 1 2 (n 2 + n + 2) -♯(π N C (A b )) = 1 2 (n 2 -3n + 2),
which ends the proof. Let us mention that when the arrangement consists exclusively of parallel straight lines, ♯(π N C (A b )) = n + 1.

To conclude this section, let us discuss the compacity of the chambers. Each chamber, say Y, of R 2 -A becomes a chamber κ(Y) of A b . Moreover, the boundary of Y is sent to the boundary of the chamber κ(Y). Lastly, the number of points of intersection lying on the boundary of a chamber Y of R 2 -A is preserved under the retraction κ since R is large enough such that D R contains all the intersection points of A. Hence, the space A b has a set of connected components π 0 (A b ) in 1-to-1 correspondence with the set π 0 (R 2 -A). The number of vertices and edges of each chamber of R 2 -A remains conserved through the retraction κ. By the way, we warn the reader that some chambers are not anymore polygonal, but have boundary consisting of zero or one arc of circle D R and of several segments. Although all connected components of A b are compact, we speak anyway of non-compact components when considering components of A b intersecting the boundary ∂D R .

As a consequence of the Krein-Milman theorem (see [START_REF] Bourbaki | Espaces vectoriels topologiques[END_REF]), the chambers are the convex hulls of the sets of their extremal points, i.e. Y = Conv(Ext(Y ))

where Conv and Ext denote respectively the convex hull of a set and the set of extremal points. For non-compact chambers Y, Y and Ext(Y ) contain circular arcs of D R .

The cyclotomic arrangement R(n).

In this and following sections, we deal with the regular arrangement of n ≥ 3 lines R(n) constructed from the regular polygon with n vertices. Let us remark that in the particular case where n = 2, the arrangement R(2) consists only in a single straight line passing through the center of the unit circle which yields that R(2) b has two connected components all being (non-compact) half-planes.

Given an integer n ≥ 3, let us construct the regular polygon P n with n vertices z k = exp 2Ikπ n , 0 ≤ k < n, uniformly distributed on the unit circle. As a geometric graph, the vertices of P n are the points z k and each vertex z k of P n is connected to the next one z k+1 where k + 1 is computed modulo n. For any index 0 ≤ i < n, let L i be the ane straight line passing through z i and z i+1 (indices being computed modulo n). Then R(n) is the union of all lines L i .

Before introducing the main result of this paper, let us recall that if S n denotes the symmetric group on the set {1, 2, . . . , n}, then, to each permutation σ ∈ S n , we may associate in a 1-to-1 way an invertible boolean matrix µ(σ) ∈ M n (R). For all σ ∈ S n , the transpose of µ(σ) is obviously the matrix µ(σ

) T = µ(σ -1 ). For instance, if we consider the n-cycle τ n = (1 2 3 . . . n) ∈ S n , then τ ′ n = (n . . . 3 2 1) ∈ S n is nothing but the reverse n-cycle of τ n .
Theorem 3.1. Let n ≥ 5 and R(n) be the regular arrangement of n lines constructed from the regular polygon P n with n vertices. We set ν = n-1 2 and

we denote P = µ(τ n ) ∈ M n (R). The number of vertices of R(n) b is equal to N = n(ν + 2) while the distribution of cardinalities of chambers of R(n) b is given as follows Vertices 3 3 4 5 n Type C NC C NC C ♯ n n n(ν -2) n 1
Table 1: Types and cardinalities of the chambers of R(n) b

Moreover, there is a convenient numbering of the N vertices of R(n) b so that the adjacency matrix A of the unoriented geometric graph R(n) b may be written as the following boolean symmetric square block matrix of size 

N A =                P + P T P + In 0n . . . 0n 
In 0n P T + In 0n In P + In 0n                (4)
where 0 n and I n stand respectively for the usual zero and identity matrices of size n and 0 J denotes the zero matrix of order J .

Proof. Clearly, the matrix A consists of ν + 2 rows of boolean blocks of size n × n. Since the matrix P = µ(τ n ) ∈ M n (R) is the adjacency matrix of the path consisting of the n points z k = exp( 2Ikπ n ) for k from 0 to n -1 with edges (z k , z k+1 ), the(1, 1)-block P +P T stands for the adjacency matrix of the circular chain consisting of the n points z k , k ∈ {0, . . . , n -1} with unoriented edges {z k , z k+1 }.

Using notation (1), a bit of computations gives for all k ∈ {0, . . . , n -1} the equation

L k : y = 1 s 2k+1 (-c 2k+1 x + c 1 ) . (5) 
Because of the nonzero y-intercept, none of those n straight lines emanate from the origin. In order to determine the intersection point between L k and L ℓ where k, ℓ ∈ {0, . . . , n -1} and k ̸ = ℓ, we have to solve the following system

ß c 2k+1 x + s 2k+1 y = c 1 c 2ℓ+1 x + s 2ℓ+1 y = c 1 . (6) 
Since the determinant of ( 6) is equal to s 2(k-ℓ) , L k and L ℓ are parallel if and only if |k -ℓ| = n 2 , which occurs only when n is even. Since δ P (R(n)) is zero when n is odd and is equal to n 2 when n is even, it rewrites as δ P (R(n)) = n n-1 2 -ν which provides, for any integer n ≥ 5, the number of directions admitting parallel lines in the arrangement R(n). When the determinant of ( 6) is nonzero,

the coordinates z k,ℓ = z ℓ,k = (x k,ℓ , y k,ℓ ) of L k ∩ L ℓ are equal to ® x k,ℓ = c1 c k-ℓ c k+ℓ+1 y k,ℓ = c1 c k-ℓ s k+ℓ+1 . ( 7 
)
Throughout this paper, it is further assumed that z k,ℓ is mentioned if and only if |k -ℓ| ̸ = n 2 . Moreover, the indices of z have always to be considered modulo n. Clearly, ∀k ∈ {0, . . . , n -1},

z k,k-1 = z k . The number of distinct couples (k, ℓ) satisfying the conditions k, ℓ ∈ {0, . . . , n -1}, k ̸ = ℓ and |k -ℓ| ̸ = n 2 , that
is to say the number of points of intersection z k,ℓ , is obviously N ′ = nν. Since there exist 2n points at innity as mentioned in Lemma 2.1, we conclude that the number of vertices of R(n

) b is equal to N = N ′ + 2n = n(ν + 2). Let us consider the sequence of real numbers (r m ) = Ä c1 cm ä , with 1 ≤ m ≤ n -1 and m ̸ = n
2 , which occurs in (7). We may easily prove that the sequence (r m ) contains actually ν distinct values since r n-m = r m . Due to the behaviour of the cosinus mapping over [0, π 2 ], the sequence (r m ) 1≤m≤ν is positive and strictly increasing.

In polar coordinates, the point z k,ℓ = x k,ℓ + Iy k,ℓ has a modulus and an argument given respectively by

|z k,ℓ | = r |k-ℓ| , θ k+ℓ = (k + ℓ + 1) π n . (8) 
Let C m be the circle of radius r m centered at the origin, C 1 dening naturally the unit circle. Let ρ be the rotation with center the origin and angle of rotation 2π n . Since ρ preserves R(n), each point z k,ℓ ∈ C m gives rise to homologous points ρ p (z k,ℓ ) = z k+p,ℓ+p for all integers p modulo n, and where the indices k + p and ℓ+p have also to be considered modulo n. Thus, all these points are, at the same time, intersection points of the arrangement as well as points distributed along a same circle C m for some m. In other words, the nν points z k,ℓ are regularly distributed on the ν circles C m . Now each circle C m contains at least one point z k,ℓ and thus at least n such points because of rotation invariance. The amount of points being nν, we conclude that each circle C m contains exactly n points z k,ℓ . We call those circles the orbits of the arrangement R(n). Now, let us prove that the points L k ∩ L ℓ = z k,ℓ are simple, that is to say each multiplicity is equal to 2. In other words, if (x, y) is given as in [START_REF] Sloane | The On-Line Encyclopedia of Integer Sequences[END_REF], let us prove that the integers k and ℓ are unique up to permutation. Indeed, we deduce easily from (8) a system to recover the indices k and ℓ from the polar coordinates (r, θ) of any intersection point z k,ℓ and which provides two couples (k, ℓ) and (ℓ, k) uniquely dened modulo n. Since no multiple point occurs, δ M (R(n)) = 0 holds for all n.

Let S be the segment in N dened as S = 1, n(ν + 2) . We may reindex the intersection points z k,ℓ using lexicographical ordering with respect rst to radius and next to polar angles. The points From now on, let us assume that R > r ν = c1 cν in compliance with Section 2. In such a way, the points at innity R i = (R cos η i , R sin η i ) located on the circle |z| = R may also be renumbered. Using formulas in the proof of Lemma 2.1, we show that the polar angles of the two points L k ∩ D R are equal to

z k = z k,k-1 , 0 ≤ k ≤ n -1,
η ′ k = (2k + 1)π n + arccos c 1 R and η ′′ k = (2k + 1)π n -arccos c 1 R , modulo 2π, 0 ≤ k < n.
Then, we collect these angles η ′ k and η ′′ k in an ascending order sequence (η i ) as in [START_REF] Bourbaki | Groupes et Algèbres de Lie[END_REF]. Next, we gather into a rst class C R,ν+1 the points R i with i even and into a second class C R,ν+2 the other R i with i odd (or vice versa). In this way, we may extend the numbering g to include the 2n points at innity, rst the even points, and next the others, respectively indexed by

g(R 2i ) = nν + i and g(R 2i-1 ) = n(ν + 1) + i, 1 ≤ i ≤ n.
This explains the appearance in the lower right corner of (4) of the adjacency matrix of the subgraph consisting of points at innity, that is

Å 0 n P T + I n P + I n 0 n ã .
For any index k ∈ {0, . . . , n -1}, we dene R ′ k and R ′′ k as the two points among the collection {R 1 , . . . , R 2n } that belong to L k . Let us remark that when n is odd, all straight lines L i and L j intersect, so that all circular angles > R ′ k , R ′′ k contain one and only one point R ′ j or R ′′ j for any other index j ̸ = k. Hence, in this particular case, the preceding numbering satises g(R ′′ k ) = g(R ′ k ) + n for all indices k. Now we are interested in the closest neigbours of each vertex z k,ℓ . In this respect, we introduce for each index j, 0 ≤ j ≤ n -1, the linear form

ξ j (x, y) = -xs 2j+1 + yc 2j+1 .
This mapping describes the abscissa along the straight line L j computed in an orthogonal frame. What is important here is the fact that ξ j is injective on L j . For each k ∈ {0, . . . , n -1}, we get

ξ k (z k,ℓ ) = c 1 c k-ℓ s k-ℓ , ∀ℓ ∈ {0, . . . , n -1}, ℓ ̸ = k, |k -ℓ| ̸ = n 2 . ( 9 
)
For sake of conciseness, let us denote τ j = c1sj cj for all integers j such that j ̸ = n 2 mod n. The increasing re-arrangement of the sequence (ξ k (z k,ℓ )) gives rise to the antisymmetric sequence of length 2ν (τ -ν , . . . , τ -1 , τ 1 , . . . , τ ν ) = (-τ ν , . . . , -τ 1 , τ 1 , . . . , τ ν ).

We notice that the sequence of abscissas along L k does not depend on k. Now, for each j ∈ {2, . . . , ν -1}, the closest points of τ j in this sequence are τ j-1 and τ j+1 . This amounts to saying that in the geometric graph R(n) b , the closest neighbours of z k,ℓ on L k are thus z k,ℓ-1 and z k,ℓ+1 . So we are led to the crucial fact: Lemma 3.1. Let k, ℓ two integers in {0, . . . , n-1} such that k ̸ = ℓ and |k-ℓ| ̸ = n 2 , then the four closest neighbours of z k,ℓ , if applicable, are z k-1,ℓ , z k+1,ℓ , z k,ℓ-1 and z k,ℓ+1 .

Proof. Indeed, the indices p, q of a neighbour z p,q of a given point z k,ℓ must satisfy {k, ℓ} ∩ {p, q} ̸ = ∅ and the requirement that abscissas ξ j (z k,ℓ ) and ξ j (z p,q ) along the straight line L j containing z k,ℓ and z p,q cannot be intertwinned by any other value ξ k (z s,t ). Since this second condition is equivalent to max(|k -ℓ| , |p -q|) = 1, the result of the lemma holds.

If |k -ℓ| = m, the closest neighbours of the point z k,ℓ lie on one of the two circles C m-1 and C m+1 . It amounts to saying that two adjacent points z k,ℓ and z p,q in the geometric graph R(n) b lie on two successive circles. In the (k, ℓ)representation, the geometric graph R(n) b is mapped to a diamond lattice (see Figure 2). The opposite vertical sides correspond to the half-lines θ = 0 and θ = 2π and must be identied as usual to catch R * × [0, 2π]/ ∼ as R 2 -{(0, 0)}.

This explains the distinct oblique crossing edges.

Let us give three consequences of the Lemma 3.1. First, the adjacency matrix contains two upper and lower triangular arrays of size n(ν -1) consisting So far, we have specied the locations of the dierent intersection points of the arrangement and discussed about their closest neighbours. At this point, the structure of the adjacency matrix A dened by (4) has been totally detailed and explained. The next step consists in characterizing the chambers generated by the arrangement and, in order to do this, we shall repetitively use the following trick: Scholia 3.1. To prove that a convex subset Y of A b is a chamber, we proceed as follows. We give the nite sequence of vertices (v 1 , v 2 , . . . , v p , v 1 ) of Y then, help to the crucial lemma 3.1 and its consequences, we verify that ∀j, {v j , v j+1 } shares one index k so that {v j , v j+1 } ⊂ L k , and lastly that no straight line L i cuts Y.

Let k ∈ {0, 1, . . . , n}, then the triangle with vertices {z k , z k+1 , z k-1,k+1 } is a chamber. Indeed, this triangle exists, that is to say all segments of the boundary are included in straight lines L j . Because of the indices of its vertices, the convex hull Conv({z k , z k+1 , z k-1,k+1 }) does not contain any auxiliary vertex, so that no straightline L j cuts this triangle. Then we obtain, by rotation, n compact triangles as chambers of R(n) b .

Let k, ℓ be two integers such that k, ℓ ∈ {0, . . . 

n(ν -2). Let k, ℓ ∈ {0, . . . , n -1} such that |k -ℓ| = ν, then z k,ℓ ∈ C ν . Accord- ing to previous notation, let C R ∩ L k = {R ′ k , R ′′ k } for all k.
Straightforward computations show that the coordinates of these two points are equal to

c 1 c 2k+1 + εs 2k+1 » R 2 -c 2 1 , c 1 s 2k+1 -εc 2k+1 » R 2 -c 2 1 , where ε ∈ {-1, 1}. We dene R ′ k as the closest neighbour of z k,ℓ on C R along L k , that is to say |ξ k (R ′ k ) -ξ(z k,ℓ )| < |ξ k (R ′′ k ) -ξ(z k,ℓ )|, (10) 
where ξ(z k,ℓ ) is given by ( 9), and we choose R ′ ℓ similarly. We remind that R ′ k and R ′ ℓ are two points that belong necessarily to {R 1 , . . . , R 2n }. Since R > c 1 , there exists β ∈ [0, n 2 ] such that c1 R = c β . We may prove that

∀R > c 1 c ν , 0 < β -ν = n π arccos c 1 R - ï n -1 2 ò < 1. (11) 
This results from applying the cosinus mapping to c ν+1 < 0 < c1 R < c ν . Next we may state that for any couple of indices (k, ℓ) such that |k -ℓ| = ν, the euclidean distance d k,ε between z k,ℓ and R ′ k or R ′′ k may be expressed as

d 2 k,ε = Å c 1 c ν ã 2 + R 2 -2 Å c 1 c ν ã Rc β+εν = Å R c ν ã 2 s 2 β+εν , while the distance d ε,ℓ between z k,ℓ and R ′ ℓ or R ′′ ℓ writes as d 2 ε,ℓ = Å c 1 c ν ã 2 + R 2 -2 Å c 1 c ν ã Rc β-εν = Å R c ν ã 2 s 2 β-εν = d 2 ℓ,-ε . Since β π n and ν π n belong to [0, π 2 ], s β+ν -s β-ν = 2c β s ν > 0. Because of (11), s β-ν > 0 and thus, d 2 k,1 > d 2 k,-1 .
It occurs that the distances d k,ε and d ε,ℓ are minimal if and only if ε is equal to -1 and 1 respectively. Therefore,

R ′ k = Ç c 1 c 2k+1 -s 2k+1 R 2 -c 2 1 c 1 s 2k+1 + c 2k+1 R 2 -c 2 1 å = R Å c β+(2k+1) s β+(2k+1) ã = Re I(β+(2k+1)) π n and R ′′ k = Ç c 1 c 2k+1 + s 2k+1 R 2 -c 2 1 c 1 s 2k+1 -c 2k+1 R 2 -c 2 1 å = R Å c β-(2k+1) s β-(2k+1) ã = Re I(β-(2k+1)) π n .
The non-compact triangle with vertices z k,ℓ , R ′ k and R ′ ℓ exists and is a cham- ber. Indeed, if a straight line L j cut this triangle, we would have an intersection point beyond C ν and this is impossible. So R ′ k and R ′ ℓ are closest neighbours on the circle C R and the polar angles of the two points R ′ k and R ′ ℓ are consecu- tive terms of the sequence (η 1 , . . . , η 2n ). At this point, since k ∈ {0, . . . , n -1} determines ℓ, we obtain n such non-compact triangles.

Next, let us consider z k,ℓ such that |k -ℓ| = ν -1, then we know that z k+1,ℓ and z k,ℓ-1 belong to C ν . As before, we dene

R ′ k+1 ∈ C R ∩ L k+1 and R ′ ℓ-1 ∈ C R ∩ L ℓ-1
as the closest neighbours of z k+1,ℓ and z k,ℓ-1 on C R along L k+1 and L ℓ-1 respectively. Then, the non-compact pentagon

Conv({z k,ℓ , z k+1,ℓ , > R ′ k+1 R ′ ℓ-1 , z k,ℓ-1 })
is a chamber. Indeed, by the crucial fact mentioned above, no straight line L j cuts this pentagonal region. Therefore, R ′ k+1 and R ′ ℓ-1 are closest neighbours on C R and lie in separate classes C R,ν+1 or C R,ν+2 . So, since n vertices lie on C ν-1 , we obtain n non-compact pentagonal regions. At last, taking into account the central n-gon, we see that the enumeration of chambers is complete. Let us note to conclude that Robert's formula [START_REF] Bourbaki | Espaces vectoriels topologiques[END_REF] allows to write that

1 + n + Ç n 2 å -0 -n Å n -1 2 -ν ã = n(ν + 1) + 1,
which states a mathematical equivalence between the number of connected components of R 2 -R(n) and the amount of chambers given in the table of Theorem This sequence is referred as A249333 in [START_REF] Sloane | The On-Line Encyclopedia of Integer Sequences[END_REF] and is attributed to Richard Stanley.

In contrast, the specic sequence which counts the number of quadrilaterals in R(n) b is not referenced in OEIS.

Proof. The proof proceeds from the exact computation of the explicit values of the areas found in the regular n-gon homothetic to the central regular ngon of ratio r ν = c1 cν . This regular n-gon is partitioned in a series of convex polygons with pairwise disjoint interiors, including the central regular n-gon, the compact triangles, the whole sequence of compact quadrilaterals, as well as the triangular parts A n,P,1 extracted from the non-compact pentagonal chambers and characterized exclusively by some vertices z k,ℓ . All these terms will be dened shortly and allow to state

A n,0 r 2 ν = A n,0 + nA n,T + n ν-1 m=2 A n,Q (m) + nA n,P,1 , (13) 
or what amounts to the same thing

ν-1 m=2 A n,Q (m) = s 2 2 (r 2 ν -1) -A n,T -A n,P,1 . (14) 
As will be explained below, this formula is the exact replica of the result mentioned in the theorem up to a multiplicative factor 2 ns 2

2

.

So, to begin, the area of a triangle is given as 1 2 |(x 2 -x 1 )(y 3 -y 1 ) -(x 3x 1 )(y 2 -y 1 )| when the coordinates of all vertices are known. We consider the triangle Conv({z k , z k+1 , z k-1,k+1 }), see Figure 3, and we deduce from its area, the area of any compact triangle A n,T = s 2 1 s 2 c 2 .

(15) As seen previously, two vertices lie on C m , one is on C m-1 and the last is on C m+1 . Since the polar angles of z k,ℓ and z k+1,ℓ-1 are equal, the straight line ∆ ′ joining z k,ℓ and z k+1,ℓ-1 passes through the origin. Furthermore, the straight line ∆ ′′ from z k+1,ℓ to z k,ℓ-1 is orthogonal to ∆ ′ . The orthogonal symmetry w.r.t the straight line ∆ ′′ shows that the area A n,Q (m) is the half of the area of the rectangle with two sides parallel to straight line ∆ ′′ and having on its boundary the four vertices z k,ℓ , z k+1,ℓ , z k,ℓ-1 , z k+1,ℓ-1 . By the way, the length of one side of this rectangle is r m+1 -r m-1 = s2sm cm+1cm-1 while the length of the other side is given by the distance between z k+1,ℓ and z k,ℓ-1 that is to say s2 cm .

Hence we get the area

A n,Q (m) = s 2 2 s m 2c m-1 c m c m+1 , (16) 
with the usual restriction on the integer m characterizing the three circles

C m-1 , C m , C m+1 , i.e. m, m ± 1 ̸ = n 2 .
Next, we may state that the area of Conv({z ℓ+ν-1,ℓ , z ℓ+ν,ℓ , z ℓ+ν-1,ℓ-1 }), see Figure 5, is equal to

A n,P,1 = c 2 1 s 2 1 s ν-1 c 2 ν c ν-1
which provides after a few simplication the formula (12).

Remark 4.1. The area Q n = ν m=2 A n,Q (m) of the whole cohort of quadrilaterals may be, as a function of n, expressed as an interesting algebraic number in the cyclotomic eld Q exp 2Iπ n . For n = 5 and n = 6, the two sums are void and thus are equal to 0. One obtains also for example

Q 8 = 1 2 √ 2, Q 12 = √ 3 6 + Ç 5 6 √ 6 - √ 2 2 å cos π 12 ,
while Q 16 is an explicit rational expression involving surds and cos π 8 .

We provide now a synopsis of the areas of the chambers of R(n) b .

Theorem 4.2. Notation being as above, the areas of the dierent chambers of R(n) b and their asymptotics as n tends to +∞ are given by Polygon Area of the polygon Asymptotic equivalent 

A n,0 n 2 s 2 π A n,T s 2 1 s2 c2 2π 3 n 3 A n,Q (m) s 2 2 sm 2cm-1cmcm+1 2mπ 3 n 3 (m xed) Q n s 2 2 4s1 Ä 1 cν-1cν -1 c1c2 ä n 2π if n is even 4n 3π if n is odd A n,P,1 c 2 1 s 2 1 sν-1 c 2 ν cν-1 n 2π if n is even 8n 3π if n is odd A n,P,2 Ä Rs ν+1-β + c1s1 cν ä R sν+1s β-ν cν 2R -2n π if n is even πR 2 2n -6n π + 2R if n is odd A n,P,3 R 2 (ν + 1 -β) π n -R 2 2 s 2(ν+1-β) 4 3R if n is even 4 3 R 2 π n 3 1 2 + n πR 3 if n is odd A n,S,1 R 2 s 2 β-ν sν cν πR 2 n -2R + n π if n is even πR 2 2n -2R + 2n π if n is odd A n,S,2 R 2 (β -ν) π n -R 2 2 s 2(β-ν) 4 3 R 2 π n 3 1 -n πR 3 if n is even 4 3 R 2 π n 3 1 2 -n πR 3 if n is odd
k = ℓ + ν -1, 0 ≤ ℓ < ν, k > ℓ.
In order to determine the area A n,P of any pentagon, all others being congruent modulo ρ and thus having the same area, we split it into

   a triangle Conv({z ℓ+ν-1,ℓ , z ℓ+ν,ℓ , z ℓ+ν-1,ℓ-1 }), a quadrilateral Conv({z ℓ+ν,ℓ , z ℓ+ν-1,ℓ-1 , R ′ ℓ-1 , R ′ ℓ+ν }), a disk segment R ′ ℓ+ν R ′ ℓ-1 .
The area A n,P,1 of Conv({z ℓ+ν-1,ℓ , z ℓ+ν,ℓ , z ℓ+ν-1,ℓ-1 }), see Figure 5 . In order to determine the height between these two bases, we note that the origin O of the coordinate system and the respective middles P 1 and P 2 of the sides z ℓ+ν,ℓ z ℓ+ν-1,ℓ-1 and R ′ ℓ-1 R ′ ℓ+ν are colinear. Indeed,

P 1 = c 2 1 c ν (c 2ℓ+ν , s 2ℓ+ν ) and P 2 = Rc ν+1-β (c 2ℓ+ν , s 2ℓ+ν ).
Therefore, the height of the trapezoid is simply equal to the euclidean distance between P 1 and P 2 that is to say

0 < dist(P 1 , P 2 ) = c 2 1 c ν -Rc ν+1-β = R s ν+1 s β-ν c ν ,
the positive sign being obtained using (11). We may then compute the lengths of the two bases z ℓ+ν,ℓ z ℓ+ν-1,ℓ-1 and R ′ ℓ-1 R ′ ℓ+ν which are respectively equal to 2 c1s1 cν and 2(c

1 s ν+1 -c ν+1 R 2 -c 2 1 ) = 2Rs ν+1-β . We deduce that A n,P,2 = Å Rs ν+1-β + c 1 s 1 c ν ã R s ν+1 s β-ν c ν .
In order to determine the area of the circular segment R ′ ãã .

(
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The last step consists in computing the areas of the non-compact triangles which are all identical and may identied to Conv({z ℓ+ν,ℓ , R ′ ℓ , R ′ ℓ+ν }), see Figure 6. At last, we proceed as before to determine the area of the circular segment

R ′ ℓ+ν R ′ ℓ , i.e.
A n,S,2 = R 2 (β -ν) π n -R 2 2 s 2(β-ν) .

Therefore,

A n,S = R 2 s 2 β-ν s ν c ν + R 2 (β -ν) π n - R 2 2 s 2(β-ν) . (19) 
It remains then to prove the asymptotics. First we have R > n π since R > c1 cν , then when n tends to +∞, so does R. Next we use the following simple results

Quantities

n even n odd ν In this way we obtain the asymptotics of all the areas except A n,P,3 and A n,S,2 . To obtain these last ones, we use the asymptotic expansion R 2 (θ -1 2 sin(2θ)) ∼ 4 3 R 2 θ 3 . Here, θ tends to 0, R tends to +∞ and θ is chosen as (β -ν) π n or (ν + 1 -β) π n , these two angles being positive and less than π n . 2 ≤ m ≤ ν, we easily get s 2 2 S n ≤ nQ 2n . Comparison theorem between integrals and Riemann sums for monotonic functions implies that the sums P n = 2n π S n lie in O(n 2 ) as n tends to +∞. It would be interesting to study the link between P n and ν-1 m=2 cm sm-1smsm+1 as well as to obtain the explicit value of the limit of the sequence Pn n 2 .

Figure 1 :

 1 Figure 1: A partial geometric view of the cyclotomic arrangement of lines constructed from the regular 50-gon together with its circular orbits

  which are located on the circle C 1 , keep naturally their original labels shifted by one unit. For all the other orbits characterized by 2 ≤ m ≤ ν, we proceed as follows. Let m ∈ {2, . . . , ν}, then the points z k,ℓ belonging to C m are indexed by g(k, ℓ) = (m -1)n + ℓ + 1, ℓ ∈ {0, . . . , n -1}, m = |k -ℓ|. What preceeds denes without ambiguity a 1-to-1 mapping from the set of vertices not lying at innity to the segment 1, nν .

Figure 2 :

 2 Figure 2: Diamond lattice associated to R(50)

2 then 2 avoids

 22 , n -1}, k ̸ = ℓ and |k -ℓ| ̸ = n the quadrilateral Conv({z k,ℓ , z k+1,ℓ , z k+1,ℓ-1 , z k,ℓ-1 }) is a chamber. Indeed, this quadrilateral exists in R(n) and no straightline L j cuts this quadrilateral because of the indices of its vertices. While the requirement |k -ℓ| ̸ = n singular system when determining L k ∩ L ℓ , the two following conditions |k -ℓ| ≥ 1 and |(k + 1) -(ℓ -1)| ≤ ν ensure the existence of the four connected edges that characterize the quadrilateral. The rst condition being obviously satised, we easily prove that the number of those quadrilaterals is equal to

3. 1 .Remark 3 . 1 .

 131 Although the previous theorem holds only for n ≥ 5, we may state some results for n = 3 and n = 4 by invoking simple geometric considerations.

R 2 -R( 3 )

 23 consists in one compact triangle, 3 non-compact triangles and 3 non-compact quadrilaterals.

R 2 -R( 4 )

 24 consists in one compact quadrilateral, 4 non-compact triangles and 4 non-compact quadrilaterals. Remark 3.2. Let s n = n(ν + 1) + 1 be the total number of chambers of R(n) b .

Figure 3 :

 3 Figure 3: Area A n,T of a compact triangle

Figure 4 :

 4 Figure 4: Area A n,Q (m) of a compact quadrilateral

  , has already been computed and is given in (17). Let us remind next that the intersection points R ′ ℓ-1 and R ′ ℓ+ν obtained by intersecting C R with the straight lines L ℓ-1 and L ℓ+ν have the following coordinates R ′ ℓ-1 = R(c 2ℓ-1+β , s 2ℓ-1+β ) and R ′ ℓ+ν = R(c 2ℓ+2ν+1-β , s 2ℓ+2ν+1-β ).

Figure 5 :

 5 Figure 5: Area A n,P of a non-compact pentagon We remark next that the quadrilateral Conv({z ℓ+ν,ℓ , z ℓ+ν-1,ℓ-1 , R ′ ℓ-1 , R ′ ν+ℓ }) is a trapezoid since the straight lines (z ℓ+ν,ℓ z ℓ+ν-1,ℓ-1 ) and (R ′ ℓ-1 R ′ ℓ+ν ) are parallel, their slope being equal to -c 2ℓ+ν

  's law of cosines which states that the distance between R ′ ℓ-1 and R ′ ℓ+νchecks the relationship dist(R ′ ℓ-1 , R ′ ℓ+ν ) 2 = 4R 2 s 2 ν+1-β = 2R 2 -2R 2 cos ¤ R ′ ℓ+ν OR ′ ℓ-1 which yields ¤ R ′ ℓ+ν OR ′ ℓ-1 = arccos 1 -2s 2 ν+1-β = arccos c 2(ν+1-β) = 2(ν + 1 -β)

Figure 6 :

 6 Figure 6: Area A n,S of a non-compact triangle By introducing the middle point P = Rc ν-β (c 2ℓ+ν+1 , s 2l+ν+1 ) of the side R ′ ℓ R ′ ℓ+ν , it is obvious that O, z ℓ+ν,ℓ = c1 cν (c 2ℓ+ν+1 , s 2l+ν+1 ) and P are colinear,

Remark 4 . 2 . 2 ν≡ 0 mod 2 2 3 , n ≡ 1 mod 2 .

 422232 Let us consider the ratios of areas in formula (13) w.r.t. the total area πr . An interesting feature arises from the asymptotics. The subsequence with n odd or even of the preceding sequence of ratios have the following be-

Remark 4 . 3 .

 43 Let us consider the function f (t) = sin(t) cos(t) 3 on 0, π 2 whose integral on this interval is divergent. Let us denote by S n the left Riemann sum of f over the interval 0, π 2 . Using the relationship s m-1 s m+1 -s 2 m = -s 2 1 < 0, for all

Table 2 :

 2 Areas of the chambers of R(n) b and their asymptotics as n tends to +∞ Proof. The rst half of the results presented in this array has already been proved in the previous theorem. Before embarking on the asymptotic expansions of these areas, it remains to focus on the areas of the non-compact chambers which are characterized by vertices lying on the two last orbits C ν-1 , C ν and the circle C R and that we formalize below through the relationships

Table 3 :

 3 Asymptotics as n tends to +∞ of several parameters

Remark 3.3. The angular diameters of the circular arcs bounding at innity any non-compact triangle and any non-compact pentagon of R(n) are respectively equal to

We may then observe that the sequence of angles (η j+1 -η j ) is a 2-periodic sequence with terms alternatively equal to β T and β P . More accurately, we have

for all integers n computed modulo 4 and for all convenient indices p.

Remark 3.4. Instead of using the adjacency matrix A, we could use a boolean mapping B :

detecting the connectivity of the pairs of vertices in the geometric graph R(n) b . For the nite points, we would have

Unfortunately, the 2n points at innity are dicult to handle because they involve transcendental extraneous conditions and not only diophantine ones.

About the areas of the chambers

In this last section, we give the formulas for the areas of the chambers of the space R(n) b . Let A n,0 = n 2 s 2 be the area of the central regular n-gon. Let us denote by A n,T the area of a compact triangle, by A n,Q (m) the area of a compact quadrilateral of which two vertices lie on C m , and by A n,P and A n,S the respective areas of the non-compact pentagonal and non-compact triangular chambers. Invoking the distribution given in Theorem 3.1, we have

The two hand-sides of this equation are polynomials of degree 2 w.r.t. R, provided R > r ν , while A n,P and A n,S are algebraic functions of R. In the following, we repetitively use the rotation ρ to deduce from one particular calculus, the area of congruent chambers of R(n) b . Using geometric considerations, we may provide the following interesting result (12)