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Transonic buffet refers to the self-sustained periodic motion of shock waves observed in
transonic flows over wings and can limit the flight envelope of aircraft. Based on the
boundary layer characteristics at the shock foot, buffet has been classified as laminar
or turbulent and the mechanisms underlying the two have been proposed to be different
(Dandois et al., J. Fluid Mech., vol. 18, 2018, pp. 156–178). The effect of various flow
parameters (freestream Mach and Reynolds numbers and sweep and incidence angles)
on laminar transonic buffet on an infinite wing (Dassault Aviation’s supercritical V2C
aerofoil) is reported here by performing large-eddy simulations (LES) for a wide range
of parameters. A spectral proper orthogonal decomposition identified the presence of
a low-frequency mode associated with buffet and high-frequency wake modes related
to vortex shedding. A flow reconstruction based only on the former shows periodic
boundary-layer separation and reattachment accompanying shock wave motion. A modal
reconstruction based only on the wake mode suggests that the separation bubble breathing
phenomenon reported by Dandois et al. is due to this mode. Together, these results
indicate that the physical mechanisms governing laminar and turbulent buffet are the
same. Buffet was also simulated at zero incidence. Shock waves appear on both aerofoil
surfaces and oscillate out of phase with each other indicating the occurrence of a Type I
buffet (Giannelis et al., Aerosp. Sci. Technol., vol. 18, 2018, pp. 89–101) on a supercritical
aerofoil. These results suggest that the mechanisms underlying different buffet types are
the same.
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1. Introduction

Interaction between shock waves and the boundary layer (BL) developing on rigid wings
can lead to self-sustained periodic flow oscillations referred to as transonic buffet (Helmut
1974). It can cause strong variations in lift coefficients possibly leading to wing vibrations
and structural fatigue or failure. For these reasons, transonic buffet can limit the flight
envelope of civilian aircraft and the manoeuvrability of combat aircraft (Roos 1980;
Lee 2001; Giannelis, Vio & Levinski 2017). Transonic buffet on infinite wing sections
(i.e. aerofoil buffet), which we henceforth refer to as ‘buffet’ for brevity, usually occurs
at low frequencies, with the Strouhal number based on the chord and freestream velocity,
St < 1. Most studies on buffet focus on ‘turbulent buffet’ where a turbulent BL develops
well upstream of the shock wave (e.g. due to fully turbulent inflow conditions or forced
transition (Jacquin et al. 2009) or even under free transition conditions at high Re (Lee
1989)). Although the fundamental mechanisms that drive this buffet type remain unclear
(Giannelis et al. 2017), recent studies have shown that this phenomenon arises through a
supercritical Hopf bifurcation associated with an unstable global mode (Crouch, Garbaruk
& Magidov 2007; Crouch et al. 2009; Sartor, Mettot & Sipp 2015; Crouch, Garbaruk &
Strelets 2019; Timme 2020). In contrast to turbulent buffet, relatively few studies have
examined ‘laminar buffet’, for which the BL remains laminar from the leading edge until
approximately the shock foot location. The mechanisms governing laminar buffet have
been proposed to be distinct from those governing turbulent buffet (Dandois, Mary &
Brion 2018). Further, the effects of various flow parameters on laminar buffet remain
largely unexplored. Motivated by these open questions, we examine the influence of flow
parameters on laminar buffet by studying the flow past an infinite wing section based
on a laminar supercritical aerofoil using large-eddy simulations (LES) while varying the
incidence and sweep angles (α and Λ), and the freestream Mach and Reynolds numbers
(M and Re). The main objectives of this study are: (1) to provide a numerical database for
laminar buffet over a large parametric range based on scale-resolved simulations for future
studies to compare with; (2) to find underlying aspects that are common to buffet over the
entire range in which it is observed, and use these to (3) assess buffet models and (4) make
comparisons with turbulent buffet.

Buffet on supercritical aerofoils has been examined extensively in various experimental
studies (Tijdeman 1976; Lee 1989; Jacquin et al. 2009; Hartmann, Klaas & Schröder 2012;
Brion et al. 2020). Similarly, computational studies have successfully simulated buffet
using a wide range of numerical approaches from integral BL equations (Tijdeman &
Seebass 1980), unsteady Reynolds-averaged Navier–Stokes (URANS) equations (Xiao,
Tsai & Liu 2006), detached eddy simulations (DES) (Deck 2005), wall-modelled LES
(Fukushima & Kawai 2018), wall-resolved LES (Dandois et al. 2018) and direct numerical
simulations (DNS) (Zauner, De Tullio & Sandham 2019). Based on these studies, several
models have been proposed to explain buffet on supercritical aerofoils, although the
physical mechanisms that drive it remain unclear, as elaborated below.

Based on previous studies on shock wave responses to a trailing edge (TE) flap
(Tijdeman 1976, 1977), a model for buffet based on a feedback loop was proposed in
Lee (1990), as follows. Pressure waves generated by the shock wave motion convect from
the shock foot to the TE along the BL in a time, tdown. These pressure waves interact with
the TE, generating ‘Kutta waves’ (Tijdeman 1977). The Kutta waves propagate upstream
outside the BL and reach the shock wave near its foot in a time, tup. At this point, they
interact with the shock foot and induce shock wave motion, completing the loop. The buffet
time period is then predicted as τLee = tdown + tup. There is some evidence supporting
this model. For example, the presence of propagating pressure waves in the flow field is
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well-documented (Jacquin et al. 2009; Hartmann, Feldhusen & Schroder 2013; Zauner
& Sandham 2020b). The predicted frequency has been shown to match with observed
buffet frequency in some studies (Deck 2005; Xiao et al. 2006). However, other studies
have not found the predictions to match (Jacquin et al. 2009; Garnier & Deck 2010) and
modifications that alter the distance travelled by the Kutta waves have been proposed
(Jacquin et al. 2009; Hartmann et al. 2013). Furthermore, Lee’s model does not explain
how the Kutta waves generated at the TE lead to shock motion. This question was partly
addressed in Hartmann et al. (2013), where it was suggested that an increase or decrease
in intensity of acoustic waves generated at the TE causes upstream or downstream shock
wave motion. This intensity was predicted to increase/decrease due to strong/weak vortices
generated by shock-induced BL separation interacting with the TE when the shock wave
is at its most downstream/upstream position.

Other studies have proposed that buffet might occur due to the interplay of shock
wave strength and BL separation (McDevitt, Levy & Deiwert 1976; Tijdeman 1977;
McDevitt & Okuno 1985; Gibb 1988; Raghunathan, Mitchell & Gillan 1998). If the shock
wave is perturbed to move upstream, it would strengthen, causing stronger shock-induced
separation. The decambering effects caused by shock-induced separation would lead to
the shock moving further upstream, which, in turn, would increase the shock strength due
to increasing effective Mach number upstream to the shock. Iovnovich & Raveh (2012)
further refined this model by proposing that the shock strengthening and weakening could
be governed by the wedge, dynamic and curvature effects with the influence of each
varying based on the phase of the cycle.

As noted previously, strong evidence supporting the notion that buffet occurs as a global
instability was first provided in Crouch et al. (2007) using a global linear stability analysis.
However, a physical mechanism explaining what drives the global instability is not evident
from this result, implying that other physical models that can be interpreted to rely on
instabilities (McDevitt & Okuno 1985; Gibb 1988; Raghunathan et al. 1998; Iovnovich
& Raveh 2012) might complement it. Importantly, all of the models discussed above are
based on turbulent buffet, whereas their applicability to laminar buffet has not been tested.

Motivated by requirements of reducing civilian aircraft emissions, buffet has also been
investigated on laminar supercritical aerofoils (Dor et al. 1989; Dandois et al. 2018;
Memmolo, Bernardini & Pirozzoli 2018; Zauner et al. 2019; Brion et al. 2020; Plante et al.
2020; Zauner & Sandham 2020b). In an experimental study of the laminar supercritical
OALT25 profile, Brion et al. (2020) observed that unlike turbulent buffet which occurs
(when BL tripping is employed) at a low Strouhal number of St ≈ 0.05, laminar buffet (no
trip) is dominated by pressure fluctuations at St ≈ 1.2. LES at the same flow conditions
(Re = 3 × 106) were carried out in Dandois et al. (2018). Based on the LES results,
the authors concluded that, unlike turbulent buffet, the former is driven by a separation
bubble breathing phenomenon. However, the authors reported only temporal variations
in the position of the shock foot and not the entire shock wave. Laminar buffet at a
lower Reynolds number (Re = 5 × 105) was examined for the V2C profile in our previous
studies (Zauner et al. 2019; Zauner & Sandham 2020a,b). Unlike Dandois et al. (2018),
a shock system comprising multiple shock wave structures was observed (identified by
where the local Mach number is unity), with the entire shock system exhibiting periodic
oscillations. This has been recently confirmed by an ongoing experimental campaign at
ONERA (Zauner et al. 2021).

From this discussion it is evident that further exploration is required in assessing
the various models proposed for both laminar and turbulent buffet. In this regard,
comprehensive parameter studies for multiple aerofoils are useful for assessing the
validity of various models and also for quantifying the sensitivity of buffet to the
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profile shape. Here, we continue our studies on laminar buffet (Zauner et al. 2019;
Zauner & Sandham 2020a,b) focusing on Dassault aviation’s supercritical laminar
V2C profile which complements those on the OALT25 profile carried out by others
(Dandois et al. 2018; Brion et al. 2020). Furthermore, we have opted to employ
wall-resolved LES of laminar buffet on the V2C profile, which has several advantages
over other methods. Various challenges faced in experimental studies when examining
buffet are avoided, including confinement and side-wall effects (Davidson 2016), surface
quality/manufacturing tolerances, fluid–structure interaction, measurement uncertainties,
wind-tunnel noise and free-stream turbulence levels (Giannelis et al. 2017). Furthermore,
although major insights into buffet features have come from URANS studies (Xiao et al.
2006; Crouch et al. 2009; Iovnovich & Raveh 2012, 2015; Sartor et al. 2015), these too have
several drawbacks related to sensitivity of results to turbulence closure models (Grossi,
Braza & Hoarau 2014; Giannelis et al. 2017), accuracy of modelling free transition and
the capturing of vortex shedding (Grossi et al. 2014; Sartor et al. 2015; Poplingher, Raveh
& Dowell 2019). Indeed, due to the strong sensitivity of predicted buffet features to the
turbulence closure model adopted, Giannelis et al. (2017) concluded that ‘the simulation
of shock buffet through URANS becomes more so an art than a science’, which motivates
the present LES study.

In addition to the commonly investigated parameters of M, α and Re, we also briefly
examine the effect of sweep here. Although buffet remains essentially two dimensional
(2D) for unswept infinite wings, Iovnovich & Raveh (2015) reported three-dimensional
(3D) ‘buffet cells’ that occur with the introduction of sweep. Subsequent studies have
shown this feature to occur over finite wings (Dandois 2016), arise as a global instability
(Crouch et al. 2019; Paladini et al. 2019a; Timme 2020) and is related to stall cells
superimposed on 2D buffet (Plante et al. 2020).

The rest of the article is organised as follows. The methodology used for the simulations
and modal decomposition are discussed in § 2. A description of the flow states that
occur as the different parameters are varied is provided in § 3. Subsequently, the coherent
features of these flows are scrutinised in § 4 by performing a spectral proper orthogonal
decomposition (SPOD) and reconstructing the flow field based on relevant modes obtained
from the same. The implications of these results are discussed in § 5 and § 6 concludes the
study.

2. Methodology

2.1. Numerical simulations

2.1.1. Flow solver
The numerical simulations were carried out using the in-house code, SBLI (Yao et al.
2009), which is a scalable compressible flow solver with multi-block and shock-capturing
capabilities and has been used previously to study buffet (Zauner et al. 2019; Zauner &
Sandham 2020a,b). SBLI solves for the compressible Navier–Stokes equations which
govern the flow evolution in a dimensionless form (see Zauner & Sandham 2020b,
pp. 3–4). The aerofoil chord, the freestream density, streamwise velocity (non-swept) and
temperature are used as reference scales implying that their corresponding dimensionless
equivalents are given by c = ρ∞ = U∞ = T∞ = 1, respectively. Fourth-order finite
difference schemes (central at interior and the Carpenter scheme Carpenter, Nordström
& Gottlieb (1999) at boundaries) are employed for spatial discretisation, and a low-storage
third-order Runge–Kutta scheme is used for time discretisation. To capture features of
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shock waves, a total variation diminishing scheme is employed, details of which can be
found in Sansica (2015).

2.1.2. LES
To perform the LES, we adopt the spectral-error-based implicit LES approach which
has been validated against DNS for flows where buffet is observed (Zauner & Sandham
2020b). This approach utilises the error estimator proposed in Jacobs et al. (2018) for
identifying regions of insufficient grid resolution in DNS. Based on this estimator, a
low-pass filter is used on all conserved variables to locally correct spectral deviations
whenever and wherever they occur. Sixth-order compact finite difference schemes for
filtering applications (Lele 1992) are used for this purpose. A blending function is used to
reduce the impact of filtering at higher wavenumbers. This is given by qupdated = qunfilt. −
alim(qunfilt. − qfilt.), where the updated flow field is computed as an affine combination of
the unfiltered and filtered flow fields (Bogey & Bailly 2004) with the constant, alim = 0.4.
The parametric values used here are the same as those used in Zauner & Sandham (2020b)
(see their table 1).

2.1.3. Geometry, grid and boundary conditions
Dassault Aviation’s supercritical, laminar V2C profile with a blunt TE (thickness 0.5 %
chord), as used in the TFAST project (Billard et al. 2021), is employed in the simulations.
To accurately model the blunt TE, maintain grid smoothness and ensure flexibility in
the distribution of grid points, C-H multiblock structured grids were generated using an
in-house, open-source code (Zauner & Sandham 2018). A grid was generated for each
incidence angle so as to ensure that the aerofoil wake remains consistently well resolved
as α changes. Features of a typical case of α = 4◦ (‘reference grid’) are highlighted in
figure 1(a). The aerofoil (cyan) is treated as an isothermal wall with the temperature
set equal to that of the freestream. Integral and zonal characteristic boundary conditions
(CBCs) (Sandhu & Sandham 1994; Sandberg & Sandham 2006) are used on the freestream
(green) and outflow boundaries (brown), respectively. A localised filter is adopted to
handle the singular points at the corners of the blunt TE by employing the strategy
proposed in Jones, Sandberg & Sandham (2006). For the unswept cases, x and z represent
the dimensionless streamwise and spanwise Cartesian coordinates based on the freestream,
respectively. The coordinate orthogonal to the two is represented by y. The chordwise
coordinate is represented by x′. The curvilinear circumferential and radial coordinates
are ξ and η, respectively. The 3D grid was obtained by extruding in the z-direction
with a uniform grid spacing of 10−3 for two different spanwise lengths, Lz = 0.05
(‘narrow domain’) and Lz = 1 (‘wide domain’ (WD), see Appendix A.1), with a total
of approximately 75 million and 1.5 billion grid points present, respectively. For all cases,
the spanwise boundaries are assumed to be periodic (to model an infinite unswept wing).
The narrow domain is employed for all cases other than those used to examine the effect
of sweep. Note that when Λ = 0◦, the flow configuration is of an unswept wing and
the x-coordinate is based on the streamwise direction. Thus, the freestream x-velocity
component is unity whereas other components are zero.

The reference grid’s features in the aerofoil’s vicinity are highlighted in figure 1(b). The
blunt TE contains 30 grid points. A curve at a constant wall-normal distance of 0.05c from
the aerofoil’s surface, is also shown (dashed curve). The latter is used for monitoring shock
wave motion and will be referred to as C5 henceforth. The grid clustering is relatively
denser close to the aerofoil surface, in its wake, and in the region where the shock wave
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Figure 1. Multi-block grid shown by plotting every 15th grid point in ξ and η directions for the case of α = 4◦:
(a) entire domain and (b) vicinity of aerofoil. Characteristic boundary conditions (CBCs) are applied on the
inflow and outflow boundaries, while isothermal no-slip conditions are applied on the wall. The pink dashed
curve is positioned at a normal distance of 0.05 from the aerofoil surface and is used to monitor shock wave
features.

is expected. The wall-normal and wall-parallel spacings at the wall vary between 1 × 10−4

to 1.7 × 10−4 and 4 × 10−4 to 2 × 10−3, respectively.

2.1.4. Flow parameters
The fluid is assumed to be a perfect gas with a specific heat ratio, γ = 1.4 which satisfies
Fourier’s law of heat conduction (Prandtl number, Pr = 0.72). It is also assumed to be
Newtonian, with its viscosity variation with temperature governed by the Sutherland’s
law (Sutherland coefficient, CSuth = 110.4/268.67 ≈ 0.41). We examine the effect of the
flow parameters, M, α, Re and Λ on buffet by starting from a baseline ‘reference’ case
with M = 0.7, α = 4◦, Re = 5 × 105 and Λ = 0◦ and varying the value of only one of
these parameters while keeping the other parameters the same as that of the reference.
In addition to these, a case at M = 0.8 and α = 0◦, with other parameters at reference
value, was also simulated to examine buffet features at zero incidence. This is referred
to as the A0M8 case (see § 3.2.3). A complete list of all cases studied (except those on
grid convergence and domain extent) and the parametric values for each are provided in
table 1. Note that the grid resolution close to the leading edge is relatively coarser than
at other regions of the aerofoil (figure 1b). This was found to introduce minor grid-level
oscillations in the flow field only for the highest incidence angle considered (α = 6◦, see
table 1). This occurred in parts of the buffet cycle when the shock wave moved in close
proximity to the leading edge due to the high amplitude of buffet at this α. However, this
was only during a small part of the buffet cycle and no significant effect on the buffet
flow features could be discerned. Nevertheless, higher angles of attack (α > 6◦) were not
examined for this reason. The effect of varying sweep angle, Λ is also reported here, but
due its limited scope, we present it in Appendix A.

2.1.5. Temporal features
For all cases except those where α is varied, the simulations were initialised with
freestream conditions used at all grid points. For the study on varying α, because it was
originally initiated as part of a different study, the initial conditions were chosen as the
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Name M α Re Λ Lz Parameter values

Reference 0.7 4◦ 5 × 105 0◦ 0.05 —
Effect of M — 4◦ 5 × 105 0◦ 0.05 0.5, 0.6, 0.65, 0.68, 0.69, 0.7, 0.735, 0.75, 0.775, 0.8, 0.85, 0.9
Effect of α 0.7 — 5 × 105 0◦ 0.05 3◦, 4◦, 5◦, 6◦
Effect of Re 0.7 4◦ — 0◦ 0.05 2 × 105, 5 × 105, 1 × 106, 1.5 × 106

Effect of Λ 0.7 4◦ 5 × 105 — 1 0◦, 20◦, 40◦
A0M8 0.8 0◦ 5 × 105 0◦ 0.05 —

Table 1. Parameter values for various cases simulated (cases with buffet in boldface).

fully evolved solutions of the reference case. Note that the choice of initial conditions
have been shown to not affect flow features that occur past the transients for supercritical
aerofoils (Xiao et al. 2006). A constant dimensionless time step of 3.2 × 10−5 is used
(approximately 3 × 105 time steps per buffet cycle).

We denote the time taken for the flow to evolve past initial transients as t0. When
oscillations resembling buffet are present in CL(t) (with St ∼ 0.1), this approximate
transient time, t0, is chosen such that it coincides with the high-lift phase and such
that CL(t) is periodic and the oscillations persist (i.e. do not monotonically dampen)
for t � t0 when visually inspected (e.g. compare figures 2 and 5(a) for the reference
case, where t0 = 18). Beyond the transients, the simulations were run until at least 10
low-frequency cycles were completed (or for 20 time units when such oscillations are
absent) for the non-swept cases so as to improve statistical convergence of mean quantities
and the accuracy of modal decomposition. To confirm if buffet is present, the power
spectral density (PSD) of the fluctuating component of the span-averaged lift coefficient,
PSD(C′

L), was computed based only the data past the initial transient time (i.e. C′
L(t) for

t > t0). As the signals are strongly coherent, a periodogram of C′
L was computed with

frequency resolution δf ≈ 0.01, sampling frequency, fS = 128 and a Hamming window (to
reduce spectral leakage). Through visual inspection, buffet is confirmed to have occurred
when there is a time past which CL(t) exhibits sustained (non-decaying) low-frequency
oscillations and when a discernible local maximum is present in the power spectrum
in the low-frequency range 0 < St < 0.5. In addition to the PSD, a continuous wavelet
transformation of the same signal (C′

L) was also computed using MATLAB. For this,
the commonly used Morse wavelet, with symmetry parameter as 3 and time-bandwidth
product as 60, was employed.

2.2. Validity of simulation results
The LES approach used here is the same as that in Zauner & Sandham (2020b), and
has been validated in that study for the reference case by comparing with a DNS. Key
flow features, including the frequency and amplitude of buffet agree well between the
two. As noted in § 1, an ongoing experimental campaign at ONERA on laminar buffet at
Reynolds numbers similar to those studied here has confirmed several results observed
in this study including the presence of multiple shock wave structures, shock system
oscillation and a buffet frequency of St ≈ 0.1 (Zauner et al. 2021). Further support for
the present simulations, including the choice of spanwise width and grid resolution are
provided in the following.
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Figure 2. Temporal variation of span-averaged aerofoil coefficients, lift, pressure drag, friction drag and TE
pressure (corner on suction surface) past initial transients for the reference case. Dashed lines correspond to
high-lift (red), low-lift (blue), low-friction-drag (green) and high-friction-drag (brown) phases.

2.2.1. Considerations on domain extent
The validation of the LES with DNS in Zauner & Sandham (2020b) was performed in a
narrow domain of Lz = 0.05. To examine the effect of spanwise width, an LES for a WD of
Lz = 1 was also performed. It was observed that some differences exist between the two,
including increases in the buffet amplitude (≈40 % difference in PSD of lift fluctuations,
compare reference and Λ = 0◦ (WD) cases in table 2) and regularity of the oscillations for
the WD, but the major flow features, including the development of multiple shock wave
structures, their propagation features and buffet frequency (variation of ≈6 %) remain
similar.

As the focus of this study is on examining qualitative aspects of buffet, we have
chosen Lz = 0.05. Results from other previous studies on turbulent buffet also support
this choice. Experiments reported in Jacquin et al. (2009) have shown that although weak
3D features associated with flow separation are present in the flow, buffet on unswept
wings is characterised by a 2D mode. Wall-modelled LES in a domain of span 0.065c
was shown in Fukushima & Kawai (2018) to accurately capture buffet features observed in
experiments. Similarly, in Grossi et al. (2014), 3D structures with the spanwise wavelength
between 0.029c and 0.04c were observed in DES.

The flow field in the vicinity of the inflow and outflow boundaries was checked a
posteriori for gradients. These were found to be insignificant for all cases simulated. To
further investigate the effect of domain extent, a new grid was generated with the domain
boundaries extended further by 40 %. Simulations were carried out for the same settings
as M = 0.85 and M = 0.9. The latter is the case for which the supersonic region’s extent
was found to be largest, whereas the former is the case for which it is largest and for
which buffet occurs (see, e.g., figures 11 and 13). We observed that for M = 0.85, the
lift coefficient variation and buffet frequency are not significantly different (Stb ≈ 0.33,
C̄L = 0.16 and the root-mean-square value of C̄′

L = 0.025 for both cases) suggesting that
for this M and, by extension, for lower M (where supersonic regions are smaller), the
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Case C̄L (C̄D)p (C̄D)f C̄D MSL Stb PSD(C′
L, Stb)

Reference 0.77 0.046 0.0037 0.049 0.30 0.12 0.26
M = 0.5 0.84 0.042 0.0047 0.047 0 — —
M = 0.6 0.87 0.037 0.0040 0.041 0.15 — —
M = 0.65 0.87 0.039 0.0037 0.043 0.24 — —
M = 0.68 0.87 0.042 0.0037 0.045 0.32 — —
M = 0.69 0.85 0.042 0.0037 0.045 0.37 — —
M = 0.735 0.56 0.056 0.0034 0.060 0.55 0.15 0.37
M = 0.75 0.46 0.062 0.0033 0.066 0.54 0.17 0.27
M = 0.775 0.34 0.067 0.0033 0.071 0.54 0.17 0.01
M = 0.8 0.15 0.066 0.0033 0.069 0.66 0.16 0.004
M = 0.85 0.16 0.106 0.0039 0.110 0.60 0.32 0.003
M = 0.9 0.35 0.154 0.0052 0.160 0.33 — —
α = 3◦ 0.67 0.040 0.0038 0.044 0.34 0.15 0.01
α = 5◦ 0.82 0.058 0.0035 0.062 0.19 0.10 0.96
α = 6◦ 0.86 0.079 0.0034 0.082 0.22 0.10 1.21
Re = 2 × 105 0.22 0.050 0.0050 0.055 0.60 — —
Re = 1 × 106 0.87 0.046 0.0034 0.045 0.05 0.11 0.65
Re = 1.5 × 106 0.92 0.045 0.0030 0.048 0.09 0.11 0.54
Λ = 0◦ (WD) 0.77 0.048 0.0038 0.052 0.25 0.12 0.45
Λ = 20◦ (WD) 0.76 0.048 0.0038 0.052 — — —
Λ = 40◦ (WD) 0.75 0.049 0.0036 0.053 — — —
A0M8 −0.03 0.067 0.0033 0.070 0.35 0.13 1.13

Table 2. Mean aerofoil coefficients, separation length and buffet measures for various cases simulated. Here
Stb is the buffet frequency and PSD(C′

L, Stb) is the PSD of the fluctuating component of lift at Stb.

effect of extending the domain further on buffet is negligible. For M = 0.9, C̄L was found
to increase from 0.35 to 0.39 and the extent of the supersonic region also expanded. Thus,
the results of this case alone must be interpreted with caution. However, because the flow
remained approximately steady with no buffet present for either domain extent, this case
of M = 0.9 was not explored further.

2.2.2. Grid resolution
In the present simulations, the main feature of the flow is a laminar BL that develops
from the leading edge up to the shock foot. To examine if this is accurately captured,
a new grid with 25 % more points was generated (≈100 million grid points), with the
grid spacing in ξ and η directions in the laminar BL region (0 � x � 0.5) approximately
halved. The simulation was carried out at the highest Reynolds number studied here (Re =
1.5 × 106). The results, including instantaneous lift coefficient evolution and mean surface
coefficients, match well for the two grids (not shown, provided as supplementary material
available at https://doi.org/10.1017/jfm.2022.471), confirming the adequacy of the original
grid in capturing the laminar BL.

In the regions where the mean flow is attached and turbulent, for most cases studied, the
grid spacing in wall units at the aerofoil surface computed based on the mean wall shear
stress, 
ξ+, 
η+ and 
z+, were found to be approximately 10, 1 and 10, respectively.
This indicates that the grid resolution is more than adequate for LES (Garnier & Deck
2010; Dandois et al. 2018). For a few cases close to buffet onset (α = 3◦ and M � 0.69),
the 
η+ value is higher (≈2), but only in a small region downstream to where shock waves
occur (approximately 0.85 � x � 0.9, see figure 6b). Additionally, for Re > 5 × 105, we
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found 
ξ+, 
z+ ≈ 30 and 
η+ ≈ 5 in some regions of the flow. Although the 
ξ+
and 
z+ are still adequate (for comparison, Garnier & Deck (2010) used 
ξ+ ≈ 50 and

z+ ≈ 20 for LES), the 
η+ values are higher than recommended. We do not expect
this to play a significant role in affecting buffet dynamics because we have a laminar BL
upstream to the shock wave and, downstream, a separation bubble which reattaches only
in parts of the buffet cycle to form a turbulent BL which persists only a short distance
before reaching the TE. Care has been taken to ensure that the regions associated with
separated flow are well-resolved, based on visual checks of instantaneous flow fields and
using the spectral-error indicator to check filter activity. In addition, as noted previously,
a grid study at Re = 1.5 × 106, did not show any significant changes in buffet features.
Thus, the adequacy of the grid is supported by a combination of wall-unit checks, grid
sensitivity studies and careful monitoring of simulations using the spectral error detector.

2.3. Modal decomposition and reconstruction
We employ SPOD to examine coherent structures observed in the flow field (Lumley
1970; Glauser, Leib & George 1987; Picard & Delville 2000; Towne, Schmidt & Colonius
2018). This approach has several advantages over other modal decomposition techniques.
Compared with the classic proper orthogonal decomposition, the modes extracted using
SPOD are temporally orthogonal and monochromatic. In addition, as compared with the
dynamic mode decomposition (DMD), which also obtains modes with such properties,
it is shown in Towne et al. (2018) that the SPOD modes are optimally averaged DMD
modes. Thus, SPOD provides better estimates of coherent features by reducing the ‘noise’
that can accompany DMD modes. This is particularly useful in the modal reconstruction
that we have implemented here. Furthermore, the problem of spurious modes that are
observed for DMD (Ohmichi, Ishida & Hashimoto 2018; Zauner & Sandham 2020a) are
avoided here. However, note that this approach also suffers from the drawbacks associated
with adopting Fourier transforms. For example, temporal variations in frequency can be
unresolved (compare with a wavelet transform). In addition, better spectral estimates might
require longer simulation times.

2.3.1. Formulation
Given an ensemble of spatiotemporal realisations that represent a stochastic process,
{qζ (x, t)}, with ζ denoting the realisation’s index, a set of orthogonal basis functions,
{φi(x, t)}, that ideally represents the coherent aspects of the process is determined by
maximising a utility functional (Lumley 1970; Towne et al. 2018),

J(φ) = Eζ

[
|〈qζ ,φ〉(x,t)|2
〈φ,φ〉(x,t)

]
. (2.1)

Here Eζ [] is the expectation operator, and 〈, 〉(x,t) denotes the appropriate inner product
over space, x, and time, t. This allows for choosing each basis function such that the
projection of qζ on φi, (i.e. 〈qζ ,φi〉(x,t)), is maximised over ζ in a least-square sense. It is
possible to show (e.g. by assuming that φi are normal and reformulating using Lagrange
multipliers) that the extrema of this functional satisfy the eigenvalue problem

〈C(x, x′, t, t′),φi(x
′, t′)〉(x′,t′) = λiφi(x, t), (2.2)

where C is the two-point spatiotemporal correlation tensor based on any two points x and
x′ in the spatial domain and t and t′ in time, and φi and λi are the ith eigenfunction and
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eigenvalue, respectively. Note that, as is common for eigenvalue problems, the index i
on the right-hand side does not denote a summation. Here, λi = J(φi), implying that the
maximum of J is given by the maximum eigenvalue. The expansion of any realisation, qζ ,
using the basis φ is given by

qζ (x, t) =
∑

i

〈qζ ,φi〉(x,t)φi(x, t) =
∑

i

ai,ζφi(x, t), (2.3)

where ai,ζ are the expansion coefficients. It follows from the above equations and the
orthonormality of the basis functions (〈φj,φk〉(x,t) = δjk) that

Eζ [aj,ζ a∗
k,ζ ] = 〈〈C(x, x′, t, t′),φj(x

′, t′)〉(x′,t′),φk(x, t)〉(x,t)

⇒ Eζ [aj,ζ a∗
k,ζ ] = λjδjk, (2.4)

where δjk is the Kronecker Delta function and ()∗ denotes complex conjugation.
For a zero-mean, statistically stationary flow, the correlation tensor is dependent only on

the time interval, τ = t′ − t and, thus, a Fourier transform in time can be used to compute
the cross-spectral density tensor, S. The relations between the two are

S(x, x′, f ) =
∫ ∞

−∞
C(x, x′, τ ) exp(−2iπf τ ) dτ,

C(x, x′, τ ) =
∫ ∞

−∞
S(x, x′, f ) exp(2iπf τ ) df ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.5)

where f is the frequency. Following the proof outlined in Towne et al. (2018, pp. 859–860),
we can relate the eigenvalue problem of C with that of S. Assuming the inner product to
be a weighted integral in space and time, and substituting for C in (2.5) into (2.2), we get∫ ∞

−∞

∫
Ω

∫ ∞

−∞
S(x, x′, f ) exp(2iπf (t − t′)) df W (x′)φi(x

′, t′) dx′ dt′ = λiφi(x, t), (2.6)

where W is the weight matrix associated with the quadrature on the curvilinear grid on
the spatial domain, Ω . From the definition of a Fourier transform in time of φi(x

′, t′),
φ̂i(x

′, f ), we obtain∫ ∞

−∞

∫
Ω

S(x, x′, f ) W (x′)φ̂i(x
′, f ) exp(2iπft) dx′ df =

∫ ∞

−∞
λiφ̂i(x, f ) exp(2iπft) df .

(2.7)

To solve further, we assume the following:

φ̂i(x, f ) = ψ i(x, f0)δ( f − f0). (2.8)

Substituting in (2.7) and eliminating exp (2iπf0t) on both sides leads to the eigenvalue
problem: ∫

Ω

S(x, x′, f0) W (x′)ψ i(x
′, f0) dx′ = λiψ i(x, f0). (2.9)

Here, ψ i(x, f0) and λi are the ith eigenfunction and eigenvalue at a given frequency, f0,
respectively, with the former referred to as an SPOD mode.
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Flow fields were reconstructed using the SPOD mode at a given f0 by reverting back to
the time domain. Using an inverse Fourier transform in time in (2.8), we have

φi(x, t) =
∫ ∞

−∞
ψ i(x, f0)δ( f − f0) exp(2iπft) df = ψ i(x, f0) exp (2πif0t). (2.10)

In addition, although the expansion coefficients, ai,ζ , vary for different realisations, we are
interested in one that best captures the entire ensemble. Based on (2.4), we achieve this by
choosing an ideal realisation with an ‘average’ expansion coefficient

ai,ζ0 =
√

Eζ

[|ai,ζ |2
] =

√
λi. (2.11)

Note that SPOD is carried out after subtracting the mean flow field. Thus, the
reconstruction based on the required SPOD mode is obtained by summing up the mean
with the real part of the truncated basis expansion. From (2.3), (2.10) and (2.11) we obtain

q̃(x, t) = q̄(x, t) + Re{
√
λiψ i(x, f0) exp (2πif0t)}, (2.12)

where q̃ and q̄ represent reconstructed and mean quantities, respectively. This approach
is sufficient for the present study, but we note that a more general, low-rank flow
reconstruction using SPOD has been implemented for a compressible turbulent jet at a
low Mach number in a recently published study (Nekkanti & Schmidt 2021).

2.3.2. Implementation
Indexing the eigenvalues such that λ1 > λ2 > λ3 > · · · , we have the most-energetic
SPOD mode as ψ1 with higher indices representing lower energies. The first two SPOD
modes were computed in this study using the memory-efficient streaming algorithm and
the software tool provided in Schmidt & Towne (2019). Negligible energy content was
observed for ψ2 for all cases studied (comparisons of λi provided as supplementary
material) and thus only features of ψ1 are reported. The weight matrix, W , was chosen
to represent a weighted 2-norm (see Schmidt & Colonius 2020, § B.2, p. 1027), with
its elements being the area associated with each grid point related to the 2D data used
for SPOD. The area was approximated as that of the quadrilateral with vertices as the
centroids of the cells surrounding a given grid point. SPOD based on an alternative choice
of W = I (identity matrix) was also implemented and found to have no significant effect
on the qualitative features of the mode shapes or the eigenvalue spectra.

To perform SPOD, two sets of data were used. The first, henceforth referred to as
‘Data-2D’, is based on the instantaneous flow field variables density, velocity vector
and pressure, all extracted from the z = 0 plane (no span-averaging). The data based
on all these variables at a given time instant were combined together into a ‘snapshot’.
Snapshots were stored at regular time intervals of 
t = 0.08 (sampling frequency, Fs =
12.5 implying ≈125 snapshots per buffet cycle). These were then divided into blocks of
total time, Tζ , each block representing a realisation of the stochastic process. Their number
is further increased by using a 50 % overlap and this ensemble is used to compute S using
the Welch’s method. As noted previously, at least 10 buffet cycles were simulated for all
cases where buffet occurs. To examine the low-frequency buffet which occurs at St ≈ 0.1,
it was ensured that at least four cycles occur in a block by choosing Tζ = 44 (frequency
resolution, 
Fζ ≈ 0.02). In addition to buffet, we also observed high-frequency coherent
structures that we refer to as ‘wake’ modes (St ∼ O(1), see figure 23a). To obtain a better
spectral estimate of the energy associated with these modes, the number of blocks for
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SPOD was increased, which reduces the duration associated with each individual block
(and, hence, the frequency resolution). For these modes, Tζ = 5 was chosen, which allows
for at least five cycles to be captured while increasing the total number of blocks. As the
expected value increases with an increase in the number of realisations in an ensemble,
the increase in blocks allows for a better spectral estimate. A higher sampling frequency
of Fs = 125 was also examined, but no new features were observed in the spectrum.

The second set of data used for SPOD, Data-SpAv, is based on the variation of
instantaneous span-averaged wall-pressure and skin-friction coefficients and the local
Mach number on the monitor curve C5 shown in figure 1(b). This was only used for
flow reconstruction related to a simple one-dimensional representation (in space) of the
flow field (e.g., figure 27). The reconstructed Cp allows to examine the pressure variations
on the aerofoil surface, and the reconstructed Cf shows where the flow separates and the
reconstructed Mach number giving the approximate position of the shock wave. We found
that because the coefficients are span-averaged, this further reduces the non-coherent noise
that is present in the SPOD modes. We note that the coherent features extracted are not
significantly different between the two approaches and, thus, we have used the second
approach exclusively for examining the reconstructed flow field only on the aerofoil surface
and the curve C5.

Flow reconstruction based on the desired SPOD mode was carried out based on (2.12).
However, because the reconstruction is carried out only at a specified frequency f0, it is
convenient to represent the reconstructed flow based on the phase of the sinusoidal cycle
instead of time, t. Thus, we use φ = 2πf0t to compute q̃(x, φ), with φ = 0◦ chosen as
when the lift coefficient is the maximum.

3. Description of flow states

We first present a basic description of buffet features for the reference case, following
which the results for variation of M, α and Re are reported (see Appendix A for Λ). For all
cases where buffet occurs, the BL remained laminar up to the vicinity of the shock foot,
implying laminar buffet, as categorised in Dandois et al. (2018). A summary of the main
results for all cases is provided in table 2. Here, the mean separation length (MSL) on the
suction side is computed by summing the lengths of regions where the mean skin-friction
coefficient, C̄f < 0. As noted previously, to compute the buffet frequency, Stb, the LES was
run for at least 10 buffet cycles for the narrow-domain cases and 7 cycles for the Λ = 0◦,
WD case. For the swept WD cases (Λ /= 0), since only a few cycles were simulated (see
Appendix A.1), we do not compute Stb. Note that the MSL is not a good representation of
the separation dynamics and can be misleading (e.g. compare phase-averaged Cf at high-
and low-lift phases in figure 9, Zauner & Sandham 2020b). Modal decomposition and flow
field reconstruction using modes of interest are considered separately in the subsequent
section (§ 4).

3.1. Reference case
Some aspects of the results for the reference case (M = 0.7, α = 4◦, Re = 5 × 105 and
Λ = 0◦) have already been presented in Zauner & Sandham (2020b), but it is useful to
review these here to aid later comparisons. The temporal variation of various aerofoil
coefficients once buffet has been established are shown in figure 2. Here, CL and CD
represent the instantaneous span-averaged lift and drag coefficients, with the pressure and
skin-friction components of the drag denoted as (CD)p and (CD)f , respectively. Here, the
contribution from the blunt TE is neglected when computing the aerodynamic coefficients.
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Figure 3. Streamwise density gradient contours on the x–y plane shown at different phases of the buffet
cycle for the reference case: (a) high-lift, (b) low-skin-friction-drag, (c) low-lift and (d) high-skin-friction-drag
phases. The sonic line is highlighted using a grey curve.

The variation of the span-averaged pressure coefficient, Cp, at the corner of the blunt TE on
the suction surface, xTE, is also shown. Low-frequency periodic oscillations (period τLES =
1/St ≈ 8.6 time units) are apparent for all coefficients shown, with the strong fluctuation
of the lift coefficient (fluctuation amplitude >10 % of mean CL) clearly indicating the
occurrence of buffet. Minor irregularities between cycles can also be seen, which has
been reported for supercritical aerofoils (Roos 1980) and at moderate Re (McDevitt &
Okuno 1985). There are discernible phase differences between all the variables plotted and
especially between CL and (CD)f . This was observed to be present for all cases simulated
here. The time instants when these two coefficients reach their maximum and minimum in
a single buffet cycle are highlighted using dashed lines.

To visualise flow features at these times in a manner approximately equivalent to
Schlieren images in experiments, contours of streamwise density gradient, dρ/dx, on the
z = 0 plane (not span-averaged) are plotted and shown in figure 3. The contour range has
been reduced to [−5, 5] for clarity while a grey curve is used to delineate the sonic line
based on the instantaneous local Mach number, i.e. Mloc = 1. At all times, the presence
of multiple shock waves is evident. This appears to be a characteristic flow feature at
moderate Re, as is elaborated in § 3.4. For convenience, we use the term ‘sonic edge’
to refer to the downstream-most edge of the supersonic region, beyond which the flow
remains subsonic. In addition, we use the term ‘shock wave structures’ to refer to the
multiple shock waves that are present in the flow which are identified by the presence
of steep adverse pressure gradients and the sonic line based on the local Mach number,
with Mloc = 1. We observed that the low/high-lift phases of the cycle approximately occur
when the sonic edge is at its most upstream/downstream position, respectively, whereas the
minimum/maximum (CD)f occurs when the sonic edge is approximately at the mid-point
of its upstream/downstream motion, respectively.

At t = 70 (figure 3a), when the lift is at a maximum and the sonic edge is at its most
downstream position, the shock wave structures appear clustered together at x ≈ 0.6, and
a transitional separation bubble was found to be present for 0.4 � x � 0.7. Subsequently,
as the sonic edge moves upstream, the number of shock wave structures reduces and they
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Figure 4. Spatiotemporal variation of streamwise pressure gradient on the suction side of curve C5 for the
reference case: (a) entire suction side and (b) close-up. The approximate times associated with different phases
of interest, high lift (red), low skin-friction drag (green), low lift (blue) and high skin-friction drag (brown), are
highlighted using dashed lines, and the sonic line and the sonic edge (see the text) are shown using solid black
and dashed pink curves, respectively.

appear strengthened, while the BL separates and transitions at a more upstream position at
t = 72 (see x ≈ 0.5 in figure 3b). When the sonic edge reaches its most upstream position
at t = 74 (lowest lift, figure 3c), the inclined shock wave structures seem well-separated
and the supersonic regions have a triangular shape. The BL reattaches at x ≈ 0.6, although
it remains separated at the TE. At t = 76 (figure 3d), at the mid-point of the sonic
edge’s motion downstream and when (CD)f (t) reaches its maximum, the BL remains
mostly attached, with a transitional separation bubble present at 0.5 � x � 0.7. A larger
supersonic region is present at t = 70 and t = 72 when compared with t = 74 and t = 76.

The shock wave motion can be further understood by examining the flow features on
the monitor curve C5 highlighted in figure 1b. This curve is at a wall-normal distance of
0.05 from the aerofoil’s surface and is above the BL in the supersonic regions of the flow
(cf. figure 3). The spatiotemporal variation of the streamwise pressure gradient, dp/dx,
on the suction side of this curve is shown in figure 4 (figure 4(b) shows a close-up view
of the sonic edge for a single buffet cycle). The contour lines for Mloc = 1 are overlaid
as black curves (sonic line). In determining the sonic edge, we have filtered out the
high-frequency variations in the sonic line present in the spatiotemporal diagrams due
to the shock wave structures, so that the focus is on the low-frequency buffet. This is
shown using a pink dashed curve. Here, the horizontal axis represents the variation in
the chordwise direction, whereas the vertical axis represents time. Thus, features with a
positive slope represent downstream moving structures and vice versa. The time instants
associated with the extrema discussed previously are highlighted using dashed horizontal
lines. We emphasise that what is shown are flow features on a single curve at a specified
wall-normal distance, so the changes, especially of the sonic line, must be interpreted
cautiously.

The sonic edge (pink dashed curve) is approximately at its most downstream and
upstream position at t = 70 (high lift) and 74 (low lift), respectively. Emanating from
the sonic edge, we see streaks in the sonic line (black curve) oriented with a negative
slope, i.e. propagating upstream. These streaks are due to the shock wave structures and
are seen to be only generated during the downstream motion of the sonic edge. These
shock wave structures weaken as they travel upstream and eventually seem to degenerate
into downstream propagating pressure waves. In the subsonic region downstream of the
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sonic edge, linear streaks in the pressure gradient contour at a positive slope can be seen
(figure 4b). The phase speed of the waves associated with these streaks can be computed
from the figure as the inverse of the slope. This falls in the range 0.65–0.7U∞. Lower
convection speeds of ≈0.55–0.65U∞ were observed for other cases studied here. This
is similar to the convection speeds, 0.7U∞ and 0.41U∞, of Kelvin–Helmholtz (K–H)
instabilities that are reported to accompany buffet in Dandois (2016) and Dandois et al.
(2018), respectively.

The model proposed in Lee (1990) assumes that pressure waves are generated at the
shock foot and convect downstream within the BL until they reach the TE (see § 1). Here,
the streaks seen in figure 4(b) represent the dominant pressure waves within the BL that
reach the TE starting from the sonic edge. The approximate time required for these waves
to do so can be inferred from the figure to vary in the range 0.4 � tdown � 0.6 (based
on sonic edge’s position), which is useful to examine the predictions of Lee’s model.
This range does not vary significantly when the aerofoil surface is chosen instead of
C5, indicating that it is not sensitive to the distance from the aerofoil surface. As shown
later in § 4.1, upstream propagating waves outside the BL can be identified using SPOD.
The buffet frequency predicted by Lee’s model based on these upstream and downstream
propagating waves is considered there.

3.2. Effect of Mach number
When the freestream Mach number alone is varied (with α = 4◦, Re = 5 × 105 and Λ =
0◦), the lowest value at which a small pocket of supersonic flow develops in the flow
field (approximate critical Mach number) was found to be M = 0.6. Increasing M further,
buffet was observed in the range 0.7 � M � 0.85, above which it was absent. However,
for M � 0.8 shock wave structures were observed on both the suction and pressure sides
of the aerofoil. Buffet features in the former range are reported first. The cases of higher
M are presented subsequently.

3.2.1. Buffet onset and deep buffet
The temporal evolution of CL for a few select cases of M in the range 0.5 � M � 0.775 is
shown in figure 5(a). For all cases simulated in the range 0.5 � M � 0.68 (see table 1),
the variation of CL is similar to that shown for M = 0.6 in the figure, with the equilibrium
values attained past transients being approximately the same. This occurs even though the
flow is entirely subsonic for M = 0.5 and becomes transonic at and above the approximate
critical Mach number of M = 0.6. Interestingly, at M = 0.69, sinusoidal oscillations can
be discerned during the initial evolution (t < 50), but they slowly dampen with time, with
the CL stabilising at a value close to that of M = 0.6. By contrast, a small increase in M
to 0.7 (reference case) leads to relatively large-amplitude sustained oscillations implying
an abrupt onset of buffet with M, which is similar to the results reported for turbulent
buffet in Giannelis, Levinski & Vio (2018). This trend suggests that a marginally stable
eigenmode becomes unstable as the parameter, M, is increased from M = 0.69 to the
onset value of M = 0.7. This is characteristic of a supercritical Hopf bifurcation and
supports the global linear instability model proposed for buffet (Crouch et al. 2007).
Interestingly, the maximum of CL(t) at M = 0.7 coincides with that of the approximately
steady value attained for pre-onset conditions examined. In addition, a sharp drop in mean
lift coefficient past onset is apparent, with C̄L (the time average of CL) dropping almost
linearly with M in a small range of 0.7 � M � 0.775 from approximately 0.85 to 0.3.
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Figure 5. Effect of varying freestream Mach number: (a) temporal variation of lift coefficient and (b) PSD
of its fluctuating component as a function of the Strouhal number (for cases for which buffet occurs). The
reference case of M = 0.7 is shown using a black curve. Dashed vertical lines and circles highlight the buffet
Strouhal number, Stb, and peaks in the PSD.

The PSD estimate of the fluctuating component of the lift coefficient, C′
L is shown in

figure 5(b) for cases where buffet is observed. Here, C′
L(t) = CL(t) − C̄L, where C̄L is the

time-averaged lift coefficient and the PSD is computed using a periodogram of this signal
for times after buffet is established (t > 18 for the reference case, see figure 2 and § 2.1.5
for details). The dominant peaks and their corresponding St are highlighted using circles
and broken horizontal lines, respectively, with the latter indicating the buffet frequencies,
Stb. It is evident from the figure that the buffet frequency increases monotonically in the
range shown. Such a monotonic increase in frequency with M for turbulent buffet has
been previously reported for aerofoils (Dor et al. 1989; Jacquin et al. 2009; Giannelis et al.
2018; Brion et al. 2020) and swept wings (Dandois 2016). Note that the buffet frequency
seen here is somewhat higher (Stb ≈ 0.1, see also table 2) compared with those reported
for other commonly used aerofoils (OALT25, OAT15A, NACA0012, for which 0.06 �
Stb � 0.08 (Dandois 2016)). However, similar results have been reported for the V2C in
simulations (Szubert et al. 2015) and preliminary experiments (Zauner et al. 2021). For a
different supercritical laminar aerofoil, DRA-2303, Hartmann et al. (2012) report a case
for which the Strouhal number can be computed to be Stb = 0.1082, which is closer to the
frequency observed here.

The flow features of pre-onset cases of M are shown in figure 6 using streamwise density
gradient contours. At M = 0.65, a small elongated pocket of supersonic region is present.
Although there is no shock wave terminating the supersonic region, multiple weak pressure
waves can be discerned in the flow at x ≈ 0.5. Similar ‘wavelets’ were reported in Hilton
& Fowler (1947) for low M at which no shock waves were present. In contrast to M = 0.65,
a shock system is observed at M = 0.69, with the pressure waves now strengthening
sufficiently to form oblique shock waves. As noted previously, we use the term ‘shock
wave’ to refer to regions where there are steep adverse pressure gradients (few grid points)
within which the local Mach number, Mloc, becomes unity. By contrast, the term ‘pressure
wave’ is used when there are isolated regions of weaker pressure gradients for which Mloc
is everywhere above or below unity. Thus, shock waves have contours lines of Mloc = 1
passing through them, whereas pressure waves do not. Note that the time instant shown
for M = 0.69 is well past the initial transient evolution and after the buffet mode is fully
damped (cf. figure 5a). Interestingly, these flow features of M = 0.69 resemble those
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Figure 6. Streamwise density gradient contours on the x–y plane shown for times well past initial transients
for freestream Mach numbers below buffet onset: (a) M = 0.65 and (b) M = 0.69. The sonic line is highlighted
using a grey curve.
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Figure 7. Streamwise density gradient contours on the x–y plane shown for the high (a,c) and low (b,d) lift
phases of the buffet cycle for the cases M = 0.735 (a,b) and 0.75 (c,d). The sonic line is highlighted using a
grey curve.

seen for the reference case (M = 0.7) in the high-lift phase (see figure 3a), which is also
indicated by the evolution of CL for these cases.

Flow features above the onset M are shown for M = 0.735 (top) and M = 0.75 (bottom)
in figure 7 at high- (left) and low-lift (right) phases of the buffet cycle (see also
supplementary movie 1). Note that the maximum PSD(C′

L) at buffet frequency is achieved
for M = 0.735 (cf. figure 5b). For both cases, the flow features far from the aerofoil surface
change drastically in a given cycle indicating that buffet can affect the entire supersonic
region. Contours of spanwise vorticity magnitude, |Ωz| at these instants are shown in
figure 8 for M = 0.735. Strongly coherent, concentrated vortices that shed into the wake
can be seen in the low-lift phase. Indeed, for all cases where buffet is observed in this
study, the vortices were found to be strongest when the sonic edge is at its most upstream
position (see also figures 12, 18 and 21). This is also supported by the results based on a
time-frequency analysis reported later in § 4.1.1. This contradicts the model proposed in
Hartmann et al. (2013), which requires that the vortices that reach the TE are most intense
when the shock wave is at its most downstream position and vice versa (see their figure 15,
p. 14).
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Figure 8. Contours of spanwise vorticity magnitude on the x–y plane shown for (a) high- and (b) low-lift
phases of the buffet cycle for the case M = 0.735. The sonic line is highlighted using a grey curve.
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Figure 9. Spatiotemporal variation of streamwise pressure gradient on the suction side of C5 for (a) M =
0.735 and (b) M = 0.75. The sonic line is highlighted using black curves. The approximate times associated
with different phases of interest, high lift (red), low skin-friction drag (green), low lift (blue) and high
skin-friction drag (brown), are highlighted using dashed lines.

The spatiotemporal variation of the pressure gradient along the C5 monitor curve is
shown in figure 9. Multiple transitions between locally supersonic and subsonic regions
that were observed for M = 0.7 as the sonic edge moves downstream (figure 4) are reduced
here, as indicated by the reduction in the number and extent of the black curves. The
approximate times associated with the local extrema of CL and (CD)f are highlighted in
the figure using dashed vertical lines (see figure 4 for the colour scheme). As expected,
the maximum (minimum) CL occurs when the sonic edge is at its most downstream
(upstream) position. Interestingly, similar to the reference case, the minimum (maximum)
(CD)f occurs when the sonic edge is approximately in the mid position of its upstream
(downstream) motion. Downstream propagating structures in the BL, similar to those seen
for the reference case, can also be observed. The convection velocities of these were
observed to be slightly lower than in the reference case, with the approximate range of
their phase speed being 0.55–0.65U∞, and the time required for them to reach the TE is
in the range 0.5 � tdown � 1.5 (which is used to comment on Lee’s model in § 4.1.2).

Mean pressure and skin friction coefficients C̄p and C̄f (computed by time- and
span-averaging the flow field) are compared for various M in figure 10. As M increases,
we see an increase of C̄p on the suction surface, and a reduction on the pressure surface.
This accounts for the monotonic reduction in mean lift with M seen in figure 5(a). The
presence of large-amplitude buffet causes what has been referred to as shock smearing
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Figure 10. Variation of mean (time- and span-averaged) (a) pressure and (b) skin friction coefficients along
suction (——) and pressure (— · —) surfaces for various Mach numbers.

(Giannelis et al. 2017), where the mean pressure increases along the aerofoil surface in a
gradual fashion in contrast to the abrupt increase present when a stationary shock wave
occurs (Jacquin et al. 2009). This can be inferred by comparing the pre-onset cases of
M � 0.69 with the rest. From figure 10(b), we see that the mean skin-friction remains
approximately a constant on the pressure surface for all M, but changes significantly on
the suction surface when M is increased above onset. For M = 0.6, the presence of a short
separation bubble (Cf < 0) can be inferred in 0.64 � x′ � 0.66, whereas for M = 0.69
and 0.7, there is another region of flow separation seen slightly upstream to this bubble,
with the two merging for M � 0.735 to form a separation zone that extends from upstream
of the shock foot to close to the TE. Note that although this merged separation zone is
present in the mean flow, there are phases in the buffet cycle (high-lift phase) when there
is flow reattachment (see § 4).

3.2.2. High-Mach-number features and buffet offset
For M � 0.8, shock wave structures are present on both aerofoil surfaces. The temporal
variation of CL for these cases and the PSD of the corresponding fluctuating component are
shown in figure 11. The case of M = 0.775, for which shock wave structures are observed
only on the suction side, is additionally shown for reference. Buffet offset is seen to occur
at M = 0.9, with CL approximately a constant, although, as noted in § 2.2.1, the domain
extent might not be sufficient and the results must be interpreted with caution. At this M
the mean lift is seen to be significantly higher than that of M = 0.85. The PSD at the
buffet frequency (highlighted using circles) reduces by two orders of magnitude as M is
increased from 0.775 to 0.8. For M = 0.8, low-frequency oscillations are still present, but
are accompanied intermittently by high-frequency oscillations of significant amplitude.

The instantaneous flow features at the high- and low-lift phases based on the
low-frequency oscillations for M = 0.8 are shown in figure 12. Both the suction and
pressure sides have substantial regions of supersonic flow. This development of a
supersonic region on the pressure side was observed with increasing M first for M = 0.775,
with a small (<0.1c) pocket of supersonic flow occurring on the pressure side close to
mid-chord in part of the buffet cycle, but without any shock wave present. From figures 11
and 12, we can see that although the temporal fluctuations in CL are low for this M, there
are significant changes in the sonic edge’s positions and the wall-normal extent of the
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Figure 11. (a) Temporal variation of lift coefficient for various freestream Mach number and (b) the PSD of
its fluctuating component past initial transient. Dashed vertical lines and circles highlight the buffet Strouhal
number and peaks in the PSD. The high-frequency peak (St ≈ 1.7) for M = 0.85 is highlighted using the square
symbol.
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Figure 12. Streamwise density gradient contours on the x–y plane shown for the (a) high- and (b) low-lift
phases of the buffet cycle for M = 0.8. The sonic line is highlighted using a grey curve.

supersonic region. Indeed, the qualitative flow features on the suction side resemble those
seen for the other cases where buffet occurs (cf. figure 7).

For M = 0.85, as shown in figure 11(b), a peak at St ≈ 1.7 in the PSD is present
(highlighted by the square symbol) in addition to that at the buffet frequency. The former
arises from a regular vortex shedding and is shown in figure 13(a) at an arbitrary instant.
Note that only part of the domain extent is shown. For this M, a single shock wave exists
at the TE on each aerofoil surface. The shock wave positions on both sides were observed
not to change significantly from that shown, although buffet could still be discerned. This
was also confirmed using SPOD (not shown). Strongly coherent vortices in the wake,
indicating a Kármán vortex street, are apparent from the figure. By contrasting with the
reference case, where large-amplitude shock wave motion is observed but the vortical
structures are not dominant, we can make an important conclusion that vortex shedding
does not directly influence buffet. That is, an increase in vortex shedding strength does not
necessarily translate to an increase in buffet amplitude.

944 A16-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

47
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.471


P. Moise, M. Zauner and N.D. Sandham

1.5

1.0

0.5

0y

x x

–0.5

–1.0

–1.5
0 0.5 1.0 1.5 2.0

t = 71.648 t = 89.6

2.5 3.0 0 0.5 1.0 1.5 2.0 2.5 3.0

1.5 5

4

3

2

1

0

–1

–2

–3

–4

–5

1.0

0.5

0

–0.5

–1.0

–1.5

(b)(a)

Figure 13. Instantaneous streamwise density gradient contours on the x–y plane shown at (a) M = 0.85 and
(b) M = 0.9. The sonic line is highlighted using a grey curve.

The flow features for the offset freestream Mach number, M = 0.9, are shown in
figure 13(b). Unlike all the other cases simulated, the BL is now laminar up to the
TE, although BL separation still occurs just upstream of the TE on the suction surface.
Although quantitative differences exist when the domain is extended (see 2.2.1), these
qualitative features were found to be the same. The increase in CL observed for M = 0.9
as compared with M = 0.85 (figure 11a) is likely due to this separation being relatively
aft for the former. Vortices in the wake are also smaller. Similar results of subdued vortex
shedding have been observed when M is increased close to unity for transonic flows over
circular cylinders (Murthy & Rose 1978) whereas the shock wave moving to the TE has
been seen for the NACA 0012 aerofoil at zero incidence (Bouhadji & Braza 2003). A
fish-tail structure was reported in the latter flow, similar to the one that can be discerned
here in the aft of the aerofoil, starting from x ≈ 0.6.

3.2.3. Buffet at zero incidence on a supercritical aerofoil
Possibly based on distinctions made previously (e.g. Lee (2001, p. 149), ‘There is some
difference in the mechanisms of periodic shock motion between a lifting airfoil at
incidence and a symmetrical one at zero incidence’ and Iovnovich & Raveh (2012, § III,
p. 884)), buffet has been classified in Giannelis et al. (2017) as either Type I or Type II.
The former is typically associated with buffet on biconvex or symmetric aerofoils at zero
incidences and is characterised by the presence of shock waves on both aerofoil surfaces.
The latter is observed on supercritical aerofoils at relatively high incidence, with shock
waves present only on the suction side. Based on the differences in the models for Type I
buffet in Gibb (1988) and Type II buffet in Lee (1990), it was proposed in Lee (2001)
that the two types are sustained by distinct mechanisms. This distinction was also noted in
Iovnovich & Raveh (2012), where the two were referred to as type one and two.

Here, for 0.7 � M � 0.775, the buffet observed is clearly Type II. However, for 0.8 �
M � 0.85, we have buffet with shock waves appearing on both surfaces, albeit at a high
incidence angle of α = 4◦. To check if similar buffet features can be observed at zero
incidence, we carried out simulations for an additional case of M = 0.8 and α = 0◦.
The temporal variation of CL past transients is shown in figure 14, with the reference
case result also provided for comparison. The frequency of the oscillations seen was
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Figure 14. Temporal variation of lift coefficient for buffet at zero and non-zero incidence angles.

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6
0 0.5

x

y

x
1.0

t – t0 = 21.12

1.5 0 0.5 1.0 1.5

5

4

3

2

1

0

–1

–2

–3

–4

–5

t – t0 = 25.73

(b)(a)

Figure 15. Streamwise density gradient contours on the x–y plane shown for the (a) high- and (b) low-lift
phases of the buffet cycle for M = 0.8 at α = 0◦. The sonic line is highlighted using a grey curve.

computed as St ≈ 0.14 for the zero-incidence case, which is slightly higher than that of the
reference case (St ≈ 0.12), but lower than that of M = 0.8 case at α = 4◦ (St ≈ 0.16). The
mean lift is approximately zero for the zero-incidence case despite the aerofoil not being
symmetric (see table 2). The density gradient contours at the high- and low-lift phases are
shown in figure 15 (see also supplementary movie 2). The spatiotemporal variations of
the streamwise pressure gradient on both the suction and pressure sides of the curve C5
are shown in figure 16. Pockets of supersonic flow and shock wave structures are seen on
both surfaces for parts of the buffet cycle, although in other parts of the buffet cycle the
flow becomes mostly or entirely subsonic on one of the surfaces. The high-lift (red dashed
line) and low-lift (blue dashed line) phases are characterised by the shock wave structures
being at their most downstream position on the suction and pressure sides, respectively.
Furthermore, the extent of the supersonic regions on either surface varies approximately
180◦ out of phase with the other surface which can be inferred by comparing the sonic
edge’s positions at the high- and low-lift phases in figure 16. This suggests that the present
case is of a Type I buffet, albeit on a supercritical aerofoil. This is further explored using
SPOD in § 4.3.
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Figure 16. Spatiotemporal variation of streamwise pressure gradient on the (a) suction and (b) pressure sides
of curve C5. The sonic line is highlighted using black curves. The approximate times associated with different
phases of interest, high lift (red), low skin-friction drag (green), low lift (blue) and high skin-friction drag
(brown), are highlighted using dashed lines.

3.3. Effect of angle of attack
In this section, we examine the effect of incidence angles on buffet. As noted previously,
the highest angle reported here is α = 6◦, although buffet was also observed for α = 7◦,
albeit accompanied by minor but persistent grid-level oscillations. At a higher incidence
of α = 8◦, preliminary simulations showed that the aerofoil stalls with separation
beginning at the leading edge, causing the simulations to fail in the current grid. As the
grid requirements for capturing leading edge stall would exceed current computational
resources, we were unable to determine whether buffet persists in the presence of
stall, although this seems unlikely based on previous studies (Iovnovich & Raveh 2012;
Giannelis et al. 2018).

The variation of CL with α and the PSD of its fluctuating component are shown in
figure 17. For α = 3◦, irregular temporal variations are observed, although footprints of
buffet can also be discerned. This was confirmed using SPOD (not shown for brevity).
For the same flow settings, Zauner & Sandham (2020a) have performed DNS in a wider
domain and observed weak buffet indicating onset at this α. Based on the observation of
Zauner & Sandham (2020b) that a reduction in span can lead to more irregularity in the
buffet cycle, we conclude that buffet onset occurs at approximately α = 3◦.

With increasing α, we see a substantial increase in the amplitude of lift oscillations. The
buffet frequency decreases when α is increased from 3◦ to 5◦, but remains approximately a
constant when α is raised to 6◦. For turbulent buffet, a similar increase in buffet amplitude
is commonly reported (Jacquin et al. 2009; Giannelis et al. 2018). However, in contrast to
the present results, the frequency is reported to be approximately a constant (Jacquin et al.
2009) or increase (Dor et al. 1989; Brion et al. 2020) for turbulent buffet.

No qualitative differences in mean aerofoil coefficients (C̄p and C̄f ) were observed with
variations in α and, thus, these results are not shown for brevity. The instantaneous flow
features highlight some interesting quantitative differences, as shown in figure 18 using
streamwise density gradient contours. For higher α, we see a large supersonic region in the
high-lift phase (left) which reduces considerably in size in the low-lift phase (right). This
is accompanied by a large upstream excursion of the shock structures, which is especially
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Figure 17. (a) Temporal variation of the lift coefficient past initial transients for various incidence angles and
the (b) PSD of its fluctuating component. Dashed vertical lines and circles highlight the buffet Strouhal number
and peaks in the PSD.
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Figure 18. Streamwise density gradient contours on the x–y plane shown for the (a,c) high- and (b,d) low-lift
phases of the buffet cycle for the cases (a,b) α = 5◦ and (c,d) α = 6◦. The sonic line is highlighted using a
grey curve.

evident for α = 6◦. Similar to cases of buffet at high M, large-scale vortices are observed
in the low-lift phase.

The spatiotemporal variation of the pressure gradient on the suction side of curve C5
is shown for α = 5◦ and α = 6◦ in figure 19. The sonic edge’s minimum and maximum
position is, as with the other cases, seen to approximately align with the time at which the
lift is lowest and highest (horizontal blue and red dashed lines), respectively. However, the
motion is no longer symmetrical about the mean position, with the sonic line (black curve)
resembling an inverse sawtooth wave at α = 6◦. Based on the slopes observed, we can infer
that the sonic edge moves upstream rapidly, whereas its downstream excursion contains
phases in which it is substantially slower. The sonic edge moves more rapidly compared
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Figure 19. Spatiotemporal variation of streamwise pressure gradient on the suction side of C5 for (a) α =
5◦ and (b) α = 6◦. The sonic line is highlighted using black curves. The approximate times associated with
different phases of interest, high lift (red), low skin-friction drag (green), low lift (blue) and high skin-friction
drag (brown), are highlighted using dashed lines.

with the reference case, which is expected given the strong increase in amplitude, as
opposed to the moderate reduction in frequency of the buffet cycle seen at higher α

(figure 17b). In addition, the number of shock wave structures is reduced. The time required
for the pressure waves to reach the TE was found to be in the range 0.6 � tdown � 1.1
(which, as noted previously, is used to comment on Lee’s model in § 4.1.2).

3.4. Effect of Reynolds number
The effect of varying Re is reported here. At the lowest value of Re = 2 × 105 simulated,
buffet is absent and only BL separation leading to stall was observed. This case is not
shown here and we focus only on cases in the range 5 × 105 � Re � 1.5 × 106. One of
the motivating factors for this is the presence of multiple shock wave structures at Re =
5 × 105. Most other studies, which are usually at higher Re, report a single shock wave
and not the shock system seen here. The temporal variation of CL and the PSD(C′

L) are
shown in figure 20. A small reduction of the buffet frequency occurs as Re is increased
beyond the reference value. Similar minor reduction in frequency has been noted at low Re
for turbulent buffet (see Raghunathan et al. 1998; Lee 2001). The spectra also show that
the first harmonic of the buffet frequency has significant energy content. It is interesting
to connect these results with those reported for the V2C using an URANS approach at a
higher Reynolds number of Re ≈ 3 × 106, at the same M = 0.7, in Szubert et al. (2016).
In the latter study, buffet was not observed at α = 4◦, with onset incidence being predicted
as approximately 5.5◦. This suggests that if Re is increased with other parameters fixed,
there is an offset value of Re beyond which no buffet occurs.

The streamwise density gradient contours for Re = 1 × 106 and 1.5 × 106 are shown
in figure 21. It is apparent from the plots that the supersonic-to-subsonic transition is
dominated by a single shock wave structure, which is accompanied by only a small pocket
of supersonic region downstream. Similar to the other cases, this dominant shock wave
structure has an orientation of a negative slope in the low-lift phase. At all times, we
observed shock wave structures to be strongly reduced in number in comparison with the
reference case, with the supersonic region not having any strong pressure waves (compare
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Figure 20. (a) Temporal variation of lift coefficient past initial transients for various freestream Reynolds
numbers and (b) the PSD of its fluctuating component. Dashed vertical lines and circles highlight the buffet
Strouhal number and peaks in the PSD.
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Figure 21. Streamwise density gradient contours on the x–y plane shown at (a,c) high- and (b,d) low-lift phases
of the buffet cycle for the cases (a,b) Re = 1 × 106 and (c,d) Re = 1.5 × 106. The sonic line is highlighted
using a grey curve.

with figure 3). This suggests that with further increase in Re, there could be a critical Re
above which only a single shock wave is present at all times. This is consistent with other
studies on buffet because most of these examine a higher Re range than that studied here
and report only a single shock wave (e.g. Brion et al. 2020).

The spatiotemporal variation of the streamwise pressure gradient at different Re are
shown in figure 22. The reduced number of shock wave structures is also apparent here. In
addition, these structures are seen to become pressure waves within a short distance from
where they first appear, in contrast to the large upstream excursion seen for the other cases
at the lower Re = 5 × 105 (cf. figures 4, 9 and 19). The time required for pressure waves to
propagate from the sonic edge to the TE was found to be in the range 0.5 � tdown � 0.7.
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Figure 22. Spatiotemporal variation of streamwise pressure gradient on the suction side of C5 for (a) Re =
1 × 106 and (b) Re = 1.5 × 106. The sonic line is highlighted using black curves. The approximate times
associated with different phases of interest, high lift (red), low skin-friction drag (green), low lift (blue) and
high skin-friction drag (brown), are highlighted using dashed lines.

4. Modal decomposition and reconstructed flow fields

The presence of multiple shock wave structures, a turbulent BL and vortices leads to a
complex flow field that makes it difficult to understand their individual characteristics.
To overcome this issue, we present a modal decomposition using SPOD and study
the coherent flow features individually. As will be shown, the two dominant coherent
structures are the buffet and wake modes associated with the low-frequency shock
oscillations and high-frequency vortex shedding, respectively. A flow field reconstruction
based on each of these modes is used to characterise their influence on the dynamics
of shock wave BL interactions, which also allows us to examine the different models
proposed to explain buffet. For brevity, only the reference case and one case from each
parametric variation are reported in the following. Among these, we focus mainly on the
former and, in addition, α = 6◦, for which the buffet amplitude is maximum. The cases
where shock waves appear on both aerofoil surfaces are examined separately in § 4.3.
Unless otherwise mentioned, the data set used for SPOD is Data-2D (see § 2.3.2).

4.1. Features of modes

4.1.1. Temporal features
A comparison of the spectra for the dominant eigenvalue, λ1, obtained through SPOD
for the reference case and one case selected from each parameter variation is shown in
figure 23(a). For all cases, we see peaks at a fundamental frequency of St ≈ 0.1, i.e. the
buffet frequency and, in addition, peaks at its harmonics. Significant energy content is
also present in a medium-frequency range of 1 � St � 4 associated with what we refer to
as wake modes. These are shown in the following to be associated with vortex shedding
(e.g. see figure 24c). A bump in the spectrum similar to that seen here and associated with
vortex shedding was reported for turbulent buffet in the DES of the OAT15A aerofoil in
Grossi et al. (2014) and organised eddy simulations of Szubert et al. (2015). We have also
extracted a similar mode at St ≈ 1.87 for the reference case using DMD in our previous
study (Zauner & Sandham 2020a). Note that modes similar to the wake modes, and
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Figure 23. (a) Eigenvalue spectra (logarithmic scale) based on SPOD of the dominant eigenvalue for the
reference case and a typical case for each parameter varied. Circles highlight the buffet peaks. (b) Scalogram
based on the lift coefficient (log10 |W(C′

L)|) with the temporal variation of the same overlaid (black curve) for
the case of α = 6◦.
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Figure 24. SPOD modes for the reference case shown using contour plots of real part of the density field: (a)
buffet mode (St = 0.11), (b) its first harmonic (St = 0.23) and (c) a wake mode (St = 2.1). The red, black and
blue curves represent the sonic lines based on the high-lift phase, mean flow and low-lift phase, respectively.

accompanying turbulent buffet, were also reported in Sartor et al. (2015). This was shown
for the OAT15A using resolvent analysis (see their figures 16 and 18) with a frequency
range 0.95 � St � 4 which is the same as the range of St seen here. Although not
frequently reported in experiments, Szubert et al. (2015) have shown that phase-averaging
implemented in experiments to capture buffet features can prevent the effects of such
modes from being observed. From the figure, it is evident that a change in any parameter
(M/α/Re) leads to an increase in the energy content of the wake modes, indicating a
stronger vortex shedding beyond buffet onset. With increasing α, the frequency associated
with these modes seems to be shifted to lower values.

To check for temporal variations in the intensities and frequencies of these modes,
a time-frequency analysis using the continuous wavelet transform was also carried out
(see § 2.1.5 for details). The scalogram based on the transform of the lift coefficient’s
fluctuating component, W(C′

L), is shown for the case of α = 6◦ in figure 23(b). Note that
the contours are based on the logarithm of the magnitude, i.e. log10 |W(C′

L)|. The temporal
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variation of CL is also overlaid to identify high- and low-lift phases. A horizontal band in
the contour at the buffet frequency (St ≈ 0.1) confirms that it does not vary with time.
However, it is also evident that there are periodic changes of |W(C′

L)| in the frequency
range 1 � St � 3. As seen from figure 23(a), this is associated with the wake modes for
this case. It is evident from the figure that the intensity of these modes is approximately
a maximum in the low-lift phase and vice versa. This is expected based on the vortex
shedding behaviour reported in § 3.3 (see figure 18). Similar results have been reported for
turbulent buffet in Szubert et al. (2015).

4.1.2. Spatial features
The spatial structure of the SPOD modes of importance are shown for the reference case
in figure 24 using the real part of the density field. From left to right, these are the buffet
mode (St = 0.11), its first harmonic (St = 0.23) and a typical wake mode (St = 2.1), where
the bump in the spectra attains a local maximum). The sonic line based on the mean local
Mach number (black curve) is shown for reference along with the sonic lines at high- (red)
and low-lift (blue) phases (reconstructions, see § 4.2.1). For the buffet mode we see that
strong density fluctuations are present in the vicinity of the TE and near-wake which are
out of phase (i.e. opposite sign) with those near the shock foot. Thus, the density increases
at the shock foot when it reduces at the TE and in the wake and vice versa. The harmonic
mode is of a shorter wavelength relative to the buffet mode. The mode shapes of the buffet
mode and its harmonic reported here are similar to those in Poplingher et al. (2019) for
turbulent buffet (see their figure 9).

The wake mode has a structure similar to that of the von Kármán vortex street. Similar
structures were also observed in the resolvent analysis of steady RANS solutions in Sartor
et al. (2015) where they are referred to arise as Kelvin–Helmholtz instabilities. Note that
the flow field contains both a free shear layer due to a separated BL and a wake. The former
can lead to a Kelvin–Helmholtz inflectional instability. On the other hand, a von Kármán
instability can arise in the wake and studies such as Triantafyllou & Karniadakis (1990)
and Pier & Huerre (2001) have shown that this instability can arise even when only the
wake is considered in isolation (i.e. without the inclusion of the solid body and upstream
regions). Although the wake mode’s structure resembles a von Kármán vortex street (see
also figure 8), a stability analysis is required to understand the origin of the instability that
leads to this mode which is beyond the scope of this study.

In addition to this, waves in the flow field that seem to be generated at the TE and
propagate upstream outside the BL on both sides of the aerofoil can be identified. These
appear to be the Kutta waves suggested in Lee (1990). Based on visualisations of the time
evolution of the wake mode, the upper limit on the time required for these waves to reach
the shock wave starting from the TE was estimated as tup < 1.5. Thus, for the reference
case, Lee’s model predicts the buffet time period as τLee = tup + tdown < 2.1, which is
substantially lower than the actual buffet period of τLES = 8 observed in the LES (see
§ 3.1). Similar results were observed for other wake modes associated with the spectral
bump and for all other cases where buffet was observed, suggesting that Lee’s model is
invalid. This is further considered in § 5.3.

The modification to Lee’s model proposed in Jacquin et al. (2009) assumes that tup
should be replaced with tJup, the time required for the waves to travel upstream along the
pressure surface and turn around the leading edge to reach the shock foot. Such upward
propagating waves are also seen in figure 24(c) on the pressure side of the aerofoil.
However, we observed that they reduce in intensity by more than an order of magnitude
upstream of mid chord and they are unidentifiable past the leading edge in the supersonic
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Figure 25. SPOD modes for α = 6◦ shown using contour plots of real part of the density field: (a) buffet mode
(St = 0.10), (b) its first harmonic (St = 0.21) and (c) a wake mode (St = 1.3). The red, black and blue curves
represent the sonic lines based on the high-lift phase, mean flow and low-lift phase, respectively.

region, likely because their intensity is reduced to levels similar to that of noise in the
SPOD modes. By using the same approximation as Jacquin et al. (2009) that the time spent
in the supersonic region is negligible, we observed tJup < 3 implying that the predicted time
period is τJ = tJup + tdown < 3.6 which still remains significantly lower than τLES.

Features of the corresponding SPOD modes for α = 6◦ are shown in figure 25. We see
that the wave number associated with each mode is substantially lower with all modes
showing a larger spatial structure. A relatively strong separation in the vicinity of the
shock foot is apparent, whereas the wake mode’s energy is high at the TE. These results
match with the flow features observed in the simulations (cf. figures 3 and 18). Similar to
the reference case, upstream propagating waves emanating from the TE can be observed
for the wake mode. Based on this, it was estimated that tup < 2 and tJup < 3 implying that
τLee < 3.1 and τJ < 4.1 compared with τLES = 9.9.

4.2. Modal reconstruction
The features of the buffet and wake modes are further scrutinised here by performing
a flow field reconstruction, superposing each mode separately with the mean flow field.
All quantities described here (lift, velocity, local Mach number, etc.) are based on the
reconstructed flow field. As noted in § 2.3.2, the temporal variation is described using the
phase, φ, with φ = 0◦ and 180◦ signifying the phases at which maximum and minimum
lift (reconstructed) are attained, respectively.

4.2.1. Buffet mode
Contours of axial velocity at different phases are shown in figure 26 for α = 6◦. For
this case, the phases of φ = 73◦ and 253◦ represent the minimum and maximum skin
friction drag, respectively. In contrast to the actual flow field in which multiple shock
structures are present, the reconstructed flow field contains only a single supersonic region
enclosed by the sonic line. This is expected, because these multiple shock structures arise
at a frequency higher than the buffet frequency (see, e.g., figure 4). For convenience, the
approximate aft part of the sonic line that terminates the supersonic region is referred to
as a shock wave. The BL remains attached over most of the aerofoil when the shock wave
is at its most downstream position (φ = 0◦). As the shock wave moves upstream, we see
that at φ = 73◦, the flow is fully separated beyond the foot of the shock wave (ũx < 0).
As the shock wave reaches its most upstream position (φ = 180◦), the BL is attached until
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Figure 26. Reconstructed flow field based on the buffet mode for α = 6◦ shown using axial velocity contour
at (a) high-lift, (b) low-skin-friction-drag, (c) low-lift and (d) high-skin-friction-drag phases. The sonic line is
highlighted using a black curve.

x ≈ 0.7. We found the qualitative features described previously to be common to all cases
considered.

To better understand the dynamical behaviour of buffet, it is useful to examine the
variation of flow features on the aerofoil surface at different phases. This spatiotemporal
variation is reconstructed based on the data set Data-SpAv (see § 2.3.2) and shown using
x′ − φ diagrams for the different cases in figure 27 (right-hand side contours). Unlike the
preceding sections where the streamwise pressure gradient on the curve C5 was used to
scrutinise shock wave structures, we show here the variation of the pressure coefficient
on the aerofoil surface. In addition, we overlay the contour line, C̃f = 0 (green curve),
which delineates flow reversal (C̃f � 0). To include the shock wave position, we also
overlay the sonic line based on the local Mach number (black curve). We emphasise that
only this quantity is computed based on the curve C5 whereas the rest are based on the
aerofoil surface. As before, the phases at which minimum and maximum (C̃D)f occur are
highlighted using dashed horizontal lines.

The shock wave’s most upstream and downstream positions (black curve) occur when
the lift is close to its minimum (φ = 180◦) and maximum (φ = 0◦), although there seems
to be a small phase lag between the two. As alluded to in § 3.1, the maximum and minimum
(C̃D)f occur when the flow is ‘least’ and ‘most’ separated, as can be inferred from the
chordwise extent of separation delineated by the C̃f = 0 isoline (green curve). Indeed,
the BL remains separated up to the TE (C̃f < 0) at the phase when the minimum (C̃D)f
is attained (dashed horizontal green line) for all cases. By contrast, during the phase
of maximum (C̃D)f (dashed horizontal brown line), the BL is fully attached from the
leading edge to TE for the cases Re = 1.5 × 106 and α = 6◦, whereas the flow reattaches
(C̃f > 0) downstream to the shock wave (black curve) and remains attached up to the TE
for the other cases. Thus, we can conclude that the surface coefficients C̃L and (C̃D)f are
approximate indicators of the shock wave position and the BL separation, respectively. The
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Figure 27. Temporal variation of the shock wave’s strength shown using M̃eff (left-hand side subplot) and
spatiotemporal contours of C̃p on the aerofoil suction surface (right-hand side contours) for (a) reference, (b)
M = 0.735, (c) α = 6◦ and (d) Re = 1.5 × 106 cases. The isolines for M̃loc = 1 (solid black curve) and C̃f = 0
(solid green curve) and the phases associated with maximum (dashed brown line) and minimum (dashed green
line) (C̃D)f are also shown for reference.

reasons for these relations can be explained by observing that a negative C̃p exists upstream
of the shock wave, and an increase in the chordwise extent of this low-pressure region leads
to an increased lift. Similarly, as mentioned previously, an attached BL leads to larger skin
friction due to large positive velocity gradients on the aerofoil surface, whereas a separated
BL and flow reversal above the surface contribute to a low (C̃D)f .

Another aspect of interest is the temporal variation of the shock wave’s strength as it
is expected to play an important role in BL separation and, thus, on buffet. One estimate
of this strength is the ratio of the instantaneous pressure immediately downstream and
upstream of the sonic line in the x − φ diagram, p̃(x+

S , φ)/p̃(x−
S , φ), where xS represents

the shock wave’s streamwise position (i.e. xS = x(M̃loc = 1)) and the symbols ‘+’ and
‘−’ indicate downstream and upstream, respectively. However, this choice was found
to be sensitive to the choice of x+

S and x−
S . This is possibly because the actual flow

field has multiple shock wave structures and the single shock wave seen in the modal
reconstruction is only an approximation, implying that choosing points both upstream
and downstream of the shock introduces relatively large errors in the estimation of the
pressure ratio. Instead, we found the upstream effective Mach number, which is based on
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the instantaneous upstream velocity in the inertial frame of reference moving at a speed
equal to the instantaneous speed of the shock wave (i.e. dxS/dφ), to be more robust with
regard to the choice of x−

S . This is given by

M̃eff (x−
S , φ) = M̃loc(x−

S , φ) −
(

dxS

dt

)
1

a(x−
S )

, (4.1)

where a represents the local speed of sound. The effective Mach number can then be used
to represent the shock strength based on the Rankine–Hugoniot conditions (Gibb 1988).
However, note that this approximation neglects the effect of shock wave acceleration. The
left-hand side subplots in figure 27 show the effective upstream Mach number’s temporal
variation for x−

S = xS − 0.1. It is seen from the plots that M̃eff reaches a maximum or
minimum when the shock is approximately at the mid-point of its upstream or downstream
excursion, respectively. This implies that the shock wave is always strongest/weakest close
to its mean streamwise position during its upstream/downstream motion. A similar result
based on Mach number was shown in Fukushima & Kawai (2018) (their figure 18),
and other studies have also noted the same trend (Tijdeman & Seebass 1980; Lee
2001; Iovnovich & Raveh 2012; Hartmann et al. 2013). The plots show that there is a
small interval in which M̃eff < 1. This is possibly not of physical significance, because
there are shock wave structures present at all times suggesting that it arises due to the
approximations in the estimate of shock strength.

From figure 27, the following sequence of events can be inferred for all cases.

(i) When the shock wave is at its most downstream position, the BL is separated
upstream of the shock wave, but reattaches downstream, forming a separation
bubble.

(ii) As the shock moves towards the leading edge, it strengthens. The upstream
separation point moves in the same direction and the reattachment point moves
further downstream (or vanishes), increasing the chordwise extent of the separation
region.

(iii) The BL is ‘most’ separated when the shock wave is approximately at the mid-point
of its upstream excursion, where its strength is close to its maximum.

(iv) Past the mid-point, the BL separation weakens leading to the formation of a
separation bubble that reattaches at the shock foot for all cases except M = 0.735,
where this occurs later.

(v) Once the shock wave reaches its most upstream position and starts to move
downstream, the separation point upstream of the shock wave abruptly moves
downstream by almost δx′ = 0.1 for the M = 0.735 and reference case, whereas it
completely vanishes for the other cases.

(vi) As the shock wave reaches the midpoint of its downstream excursion it strength is
relatively weakened and the flow is ‘least’ separated.

(vii) The reattached flow is associated with a pressure rise in the TE region, with this
back pressure exceeding the freestream pressure (red contours, C̃p > 0 ⇒ p̃ > p̃∞).
The chordwise extent of this region of increased pressure attains a maximum before
the shock wave reaches its most downstream position.

The above description indicates that the laminar buffet observed in this study is
essentially related to a moving shock wave of temporally varying strength whose motion is
accompanied by BL separation and reattachment. Importantly, the following two features
are common to all buffet cases studied: a phase lag between the shock wave position and
the separation extent and the build up of back pressure. In addition, it is interesting to note

944 A16-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

47
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.471


Simulations and modal reconstruction of transonic buffet

0

0

0.2

–0.2

0.4

0.6

x

y

0.5 1.0 1.5 0

0

0.2

–0.2

0.4

0.6

x
0.5

φ = 0° φ = 180°

1.0

0

1.0

1.5

0.5

–0.5
1.5

(a) (b)

Figure 28. Reconstructed flow field based on the wake mode for α = 6◦ shown using axial velocity contour
at (a) high- and (b) low-lift phases. The sonic line is highlighted using a black curve.

that, for all cases, there are phases in the buffet cycle where the flow separation extends
up to the TE, indicating that the aerofoil is intermittently stalled. However, we emphasise
that it is difficult to disentangle cause, correlation and effect. The possible implications of
these observations are discussed in § 5.

4.2.2. Wake mode
The contours of reconstructed axial velocity field based on the wake mode for the case
of α = 6◦ are shown in figure 28 at phases corresponding to the highest (φ = 0◦) and
lowest (φ = 180◦) values of C̃L. Note that the phase, φ, considered here is based on the
time period of the wake mode and not the buffet mode. Thus, the high-lift phase signifies
the phase at which the wake mode interaction with the mean flow induces the maximum
lift obtained for the reconstructed flow field and is not related to the buffet mode. In the
plots, the sonic line (black curve) indicates that the shock foot extends and retracts at
different phases, similar to the shock foot motion observed in Dandois et al. (2018) for the
OALT25 at M = 0.735, α = 4◦ and Re = 3 × 106, implications of which are discussed in
§ 5.1. The streamwise positions of the sonic edge at φ = 0◦ and 180◦ are x ≈ 0.6 and 0.5,
respectively, implying that the shock foot moves approximately a streamwise distance of
10 % chord. This indicates that the wake mode can cause significant variations in the flow
field. However, these are limited to the shock foot as the approximate wall-normal height
up to which differences in the sonic line at these two phases are significant is only around
10 % (contrast with figures 26(a) and 26(c) for the reconstruction based on the buffet
mode, where the streamwise distance moved is 30 % chord with the sonic line changing
drastically in the wall-normal direction also).

4.3. High-Mach-number features
The spatial structure of the buffet mode, its first harmonic and a typical wake mode for the
A0M8 case (α = 0◦ and M = 0.8) are shown in figure 29 using the real part of the density
field. It is evident that the buffet mode is approximately antisymmetric about the y-axis,
which indicates that the flow behaviours on the suction and pressure sides are out of phase
with each other. By contrast, the first harmonic exhibits symmetric features.

Reconstructions using the data set Data-SpAv and based on the buffet mode at M = 0.8
for the cases of α = 0◦ (A0M8 case) and α = 4◦ (M = 0.8 case) are shown in figure 30.
The effective Mach number is not plotted here because there are phases at which no
shock wave is present for the case of α = 0◦ on the pressure side. It is evident from
the figure that the motion of shock wave (black curve) on the suction side is of similar
amplitude as that observed for other M (cf. figure 27). However, the flow is also seen
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Figure 29. SPOD modes for the A0M8 case (α = 0◦, M = 0.8) are shown using contour plots of the real
part of the density field: (a) buffet mode (St = 0.13), (b) its first harmonic (St = 0.27) and (c) a wake mode
(St = 1.86). The red, black and blue curves represent the sonic lines based on the high-lift phase, mean flow
and low-lift phase, respectively.

to be separated downstream of some chordwise position for almost all times, especially
at α = 4◦. Importantly, this implies that strong buffet can occur even when the BL is
permanently separated. Note also that for the M = 0.8 and α = 4◦ case, the amplitudes
of lift fluctuations are relatively low as compared with lower M (see figure 11b), although
the amplitude of shock wave motion remains approximately the same. This implies that
the determination of buffet occurrence merely based on temporal variations in CL or Cp
might not be always accurate due to the low variation in these coefficients when the BL is
permanently separated.

As noted before, a phase difference between the shock wave positions on the suction
and pressure sides is present for both cases. For α = 4◦, although the amplitude of
the streamwise excursion of the shock wave on the pressure side is relatively weak in
comparison with that on the suction side, the former was found to lag the latter by ≈69◦.
For the α = 0◦ case, in which the shock wave vanishes for part of the cycle, this phase
difference was computed using the most downstream shock position. This was computed
as approximately 179◦, which is similar to that seen for biconvex aerofoils (McDevitt
et al. 1976). A phase difference between the shock wave positions and the extent of flow
separation is also seen in figure 30, albeit, significantly reduced. An increase in back
pressure close to when the shock wave reaches its most downstream position can also
be discerned. Thus, these two features seem to be common to all buffet cases simulated
here.

5. Discussion

5.1. The relation between laminar and turbulent buffet
An important conclusion on the relation of laminar and turbulent buffet can be made
based on the present results. Laminar buffet, as identified in Dandois et al. (2018), is
characterised by the BL remaining laminar up to the shock foot during the entire buffet
cycle. Based on their simulations of the OALT25 at a specific flow setting, the authors
concluded that unlike the turbulent buffet, which occurs as a ‘global instability of the flow
with intermittent boundary-layer separation and reattachment between the shock and the
trailing edge’, the laminar buffet occurs due to a ‘separation bubble breathing phenomenon
associated with a vortex shedding mechanism’. In the present study, the previous sections
clearly show that we have a laminar buffet, with the BL laminar until the vicinity of
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Figure 30. Spatiotemporal contours of C̃p for the cases of (a,b) α = 0◦ and (c,d) α = 4◦ at M = 0.8 on (a,c)
suction and (b,d) pressure surfaces. The isolines for M̃loc = 1 (solid black curve) and C̃f = 0 (solid green
curve) and the phases associated with maximum (dashed brown line) and minimum (dashed green line) (C̃D)f
are also shown for reference.

the shock foot for all cases studied (e.g. figure 3). However, the results of the SPOD
reconstruction of the buffet mode indicate that the laminar buffet observed here is driven
by boundary-layer separation and reattachment (see figure 27), a characteristic feature of
turbulent buffet.

The modal reconstruction based on the wake mode shows that this mode can cause a
localised motion of the shock foot (figure 28), and the vortices shed are characteristic
of bubble breathing observed in shock wave BL interactions. Thus, we suggest that
the self-sustained oscillations reported in Dandois et al. (2018) are not associated with
the buffet mode, but are due to the wake mode. These two modes can both coexist
for the same flow settings, as shown here for the V2C and it is possible that for the
OALT25, the wake mode alone is the predominant unstable mode under certain conditions,
and the buffet mode is weak. This hypothesis is supported by the experimental results
for the same aerofoil reported in Brion et al. (2020), where an increase in α or M at
Re = 3 × 106 leads to the emergence of a minor low-frequency peak at St ≈ 0.05. This
peak can be interpreted as indicating weak laminar buffet occurring in the experiments (in
contrast to the strong dominant discrete peak at St ≈ 0.1 seen here). This interpretation
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is supported by some interesting differences that exist between the experimental and LES
results. As noted in § 3.4, buffet offset can occur with increasing Re, suggesting that the
experiments might be close to offset conditions at the higher Re ≈ 3 × 106 studied there.
Similarly, because shock wave position strongly affects the strength of vortices shed (see,
e.g., figures 7 and 23b), this would explain the broad frequency range associated with
the wake modes seen here (1 � St � 4) compared with the discrete frequency peak at
St ∼ O(1) seen in the experiments.

Based on these considerations, we conclude that laminar buffet is essentially the same
as turbulent buffet with regard to the physical mechanisms that sustain the low-frequency
oscillation. This allows for using the present results to make general comments on the
buffet phenomenon. Note that quantitative differences (e.g. onset conditions and buffet
amplitude) between the laminar and turbulent buffet types are expected due to features
such as the laminar/turbulent BL’s streamwise variation of thickness and tendency to
separate.

5.2. The relation between Type I and II buffet
In the previous sections, we have shown that buffet also occurs at zero incidence (M =
0.8 and Re = 5 × 105) with shock waves present on both aerofoil surfaces exhibiting
oscillatory motion such that they are out of phase with each other. These aspects are
the defining characteristics of Type I buffet, albeit for a supercritical aerofoil instead
of a biconvex/symmetrical aerofoil as is typically reported. However, the flow features
seen for this case, including the presence of multiple shock wave structures and the
temporal variation of CL, also resemble those observed for Type II buffet discussed for
0.7 � M � 0.775 at α = 4◦. This indicates that Type I and Type II buffet potentially have
the same underlying mechanisms. Similar inferences can also be made from McDevitt &
Okuno (1985) for the symmetric NACA 0012 aerofoil (see their figure 25) and it would
be interesting to see whether this can be confirmed further by looking for Type I buffet on
other commonly used supercritical aerofoils. Thus, although it is still useful to differentiate
buffet into these two types to highlight the presence or absence of shock waves on the
pressure side, the two appear to be governed by the same mechanisms irrespective of the
aerofoil used. This implies that any model for buffet should be capable of explaining either
buffet type.

Building on earlier studies (Tijdeman 1977; McDevitt & Okuno 1985), Gibb (1988)
proposed a model for Type I buffet based on an instability arising from the shock wave BL
interactions which couples with the wake deflection, i.e. if a perturbation causes the shock
wave on one side, say the upper surface, to move upstream, it can cause it to strengthen
leading the BL to separate at its foot which would cause the wake to deflect upward. This
would cause the flow on the lower surface to accelerate, causing the shock wave on that
surface to move downstream further deflecting the wake upward which, in turn, promotes
the upstream excursion of the upper shock wave. This would continue until the upper shock
wave moves sufficiently far upstream that the local Mach number it encounters is small,
causing it to weaken, which, in turn, leads to BL reattachment and subsequent downstream
motion. This model requires that shock waves are present on both aerofoil surfaces and
play an active role in sustaining buffet. However, this model fails for Type II buffet, where
there is a negligible temporal variation in the coherent flow features on the pressure side
(see, e.g., pressure side, figure 26). Similarly, models proposed exclusively for Type II
buffet must be reinterpreted to explain Type I buffet.
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5.3. The wake mode and the model of Lee
As shown in § 4.1, the time periods of buffet predicted by the models proposed in
Lee (1990) and Jacquin et al. (2009) are substantially lower than those observed in the
simulations. Although this quantitative difference implies that the models are inaccurate,
there are physical reasons to suspect that the proposed physical mechanism itself is invalid.
As indicated by the results of SPOD, the waves that are observed in these simulations are
due to the wake modes. These modes are essentially related to vortex shedding implying
that they are primarily dependent on the position of the BL separation. Although the
buffet mode strongly influences BL separation, the results from the variation of M indicate
that the buffet mode is not influenced by the intensity of vortex shedding. First, wave
propagation can be discerned for cases where no buffet is present, as seen for the case
M = 0.65 (figure 6a). In addition, as M is increased from M = 0.7 to 0.85, we observe a
monotonic increase in vortex shedding intensity, but the energy of the buffet mode initially
increases when 0.7 � M � 0.735 and substantially reduces when 0.735 � M � 0.85. The
frequencies associated with the buffet and wake modes differ by an order of magnitude
(here, St ≈ 0.1 and 1 � St � 4, respectively). Note that for turbulent buffet, only the
former mode is predicted in a global linear stability analysis (Crouch et al. 2007) whereas
a resolvent analysis is required to predict the latter (Sartor et al. 2015). Furthermore,
URANS simulations that capture essential turbulent buffet features, usually do not capture
vortex shedding, which is exemplified by the URANS results in Sartor et al. (2015) (e.g.
their figure 10(b) shows sinusoidal buffet oscillations devoid of high-frequency content
predicted in resolvent analysis in figure 16). Similarly, it was shown in Grossi et al.
(2014) using delayed DES that vortex shedding accompanies turbulent buffet for the
same conditions where 2D URANS simulations do not show any. In addition, a modal
decomposition of the URANS flow field for turbulent buffet in Poplingher et al. (2019)
did not show any vortical structures of significant energy. Other examples that indicate
the same include figure 5 in Crouch et al. (2009), figures 5–9 and 15–17 in Giannelis
et al. (2018), figures 9–12 in Iovnovich & Raveh (2012), figures 3 and 5 in Memmolo
et al. (2018), figure 9(b,c) in Paladini et al. (2019b), figures 11 and 20 in Szubert et al.
(2016) and figures 5, 6 and 10 in Xiao et al. (2006). Results from all these studies indicate
that there exist various URANS simulations where buffet mode features are captured well
but wake mode features are not. Thus, with the observations that the dominant waves
accompanying buffet are related only to the wake modes, but that such modes do not
directly influence buffet, we find no convincing evidence for buffet models based on
feedback loops involving wave propagation. Note that the validity of such models has also
been questioned in Paladini et al. (2019b) based on other physical arguments. The authors,
using a localised selective frequency damping approach, showed that the subsonic region
above the BL (where the upstream propagating waves travel) and the pressure side do
not play a role in the instability and suggested that the feedback must occur within the
separated BL.

5.4. Phase lags in buffet
The phase lag between BL separation and shock wave location that is persistent for all
cases where buffet occurs (see figure 27) seems to be a characteristic feature of buffet,
although it does not appear to have been highlighted previously. For example, it is noted
in Jacquin et al. (2009) that ‘the boundary layer is separated when the shock is in the
upstream location [. . . ] and attached when it moves downstream’. However, indications
that this phase lag exists can be inferred from some previous studies. Re-examining the
results from Xiao et al. (2006) (see their figure 11) for buffet on the BGK supercritical
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aerofoil, we can infer that the chordwise extent of separation is minimum at φ ≈ 90◦
and maximum at φ ≈ 270◦, which further corroborates the importance of this phase
difference. Similarly, examining figure 8 in Grossi et al. (2014) (OAT15A aerofoil), we
see that the streamwise extent of flow separation is a minimum when the shock wave
is approximately at the mid-point of its downstream motion. Similar inferences can be
made by considering figures 17( f ) and 17(g) in Fukushima & Kawai (2018). As with any
harmonic oscillator system, phase lags between competing forces can act as the drivers of
self-sustained oscillations. Thus, we suggest that this lag could be an essential physical
feature for the development and sustenance of buffet, although the exact role it plays
remains unclear, as discussed in the following section, and requires scrutiny.

5.5. The role of shock waves in buffet
The results from the flow reconstruction show two common features that are conserved
for all cases: the phase lag discussed previously and the build up of back pressure close to
when the shock wave starts to move upstream. These results indicate that there are three
possibilities regarding the role of the shock wave in buffet. The first is that the shock
wave plays only a passive role and buffet can arise as a global instability that causes
large-scale flow oscillations even in its absence. There are several results from different
studies that suggest this. Similar oscillations at St ≈ 0.2 have been reported for periodic
bubble bursting on aerofoils at incidence angles close to stall in the incompressible regime
which occur simply due to viscous–inviscid interactions and can be accompanied by vortex
shedding at a higher St ≈ 2.2 (Sandham 2008). In addition, it can be inferred from the 2D
simulations performed in Bouhadji & Braza (2003) of a flow over a NACA 0012 aerofoil
at zero incidence (Re = 104) that Type I buffet occurs in the absence of shock waves for
a certain range of freestream Mach numbers (see their figures 4d and 6c). Paladini et al.
(2019b) have concluded using different approaches that the detached BL is the ‘active key
of buffet instability’, whereas the ‘shock is a slave zone but behaves as a stiffness on the
instability phenomenon’. Furthermore, the periodic build up of pressure near the TE seen
here for all cases and the fact that such changes in back pressure can lead to periodic shock
motion (Bruce & Babinsky 2008) also supports this possibility, suggesting that the shock
wave passively responds to back pressure changes.

Alternatively, the shock wave might be crucial only in the part of the buffet cycle where
it moves upstream and leads to a strong shock-induced separation, while playing a passive
role as it moves downstream, merely responding to a pressure recovery of the reattached
BL. This is supported by the strengthening of the shock wave as it moves upstream and the
phase lag between the shock wave position and the separation extent that is present for all
cases. Furthermore, Tijdeman & Seebass (1980) have noted that there are situations where
the shock wave vanishes during its downstream excursion (‘Type B buffet’), suggesting
that it might not be crucial in this part of the cycle. Note that similar features are also
observed here for some cases (see, e.g., figure 16).

The third possibility is that of a coupled interaction between shock wave and BL
separation, with the shock wave’s presence being important throughout the buffet cycle. As
noted previously, the coupling between shock wave position, strength and flow separation
have been physically explained using the wedge, curvature, displacement and dynamic
effects (Tijdeman & Seebass 1980; Iovnovich & Raveh 2012), which suggest that the
interaction between the shock wave and the BL is present throughout the buffet cycle.
Then, the periodic build up of pressure near the TE could simply be a consequence of
these interactions: for example, due to shock wave motion causing BL reattachment and
pressure recovery. Given these possibilities, an aim for future studies could be to find the
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minimal physical model that can distinguish between cause and effect while predicting the
key features seen in the present investigation.

6. Conclusions

In this study, LES of transonic buffet on infinite-wing configurations (or, simply, buffet)
have been performed for free transition conditions based on the Dassault Aviation’s
supercritical laminar V2C profile. The flow parameters varied include the freestream Mach
and Reynolds numbers (M, Re), and the incidence and sweep angles (α, Λ). These were
individually varied from a baseline reference value of M = 0.7, α = 4◦, Re = 5 × 105 and
Λ = 0◦, with the ranges reported being 0.5 � M � 0.9, 3◦ � α � 6◦, 2 × 105 � Re �
1.5 × 106 and 0◦ � Λ � 40◦. For all cases, the flow remained laminar from the leading
edge to approximately the shock foot, and multiple shock wave structures were present
in the flow field. With increasing Mach number, buffet onset and offset were observed at
M = 0.7 and M = 0.9, respectively, and the frequency of buffet increases approximately
monotonically in between. For M � 0.8, shock waves were observed on both surfaces
of the aerofoil, and the BL remained permanently separated, although large-amplitude
excursions of the shock waves could still be observed at M = 0.8. This implies that strong
buffet can persist even when the BL aft of the shock wave remains completely separated
at all times. With increasing incidence angle or Reynolds number, buffet frequency does
not change significantly in the ranges studied. The number of shock wave structures reduce
with increasing Re, implying that further increases in Re would lead to a single shock wave.
Based on the present results on Re variation and that of Szubert et al. (2016), there appears
to be an offset Re beyond which buffet is absent when α and M are fixed. This implies that
the incidence angle for buffet onset increases with an increase in Re. In the limited range
of flow parameters studied, sweep has negligible effect on buffet features and 3D buffet
cells are absent with the results satisfying the independence principle approximately.

Based on the results at high M, a separate case of M = 0.8 at zero incidence was
simulated. Buffet was observed with shock waves present on both aerofoil surfaces which
oscillate with a 180◦ phase difference between each other implying the occurrence of a
Type I buffet (Giannelis et al. 2017), but on a supercritical aerofoil. This case resembles
others where the shock wave appears only on the suction side (Type II), with attributes
such as the frequency and the occurrence of multiple shock wave structures being common
to both. Thus, these two buffet types are suggested to be governed by the same physical
mechanisms. From this, it is proposed that models such as that of Gibb (1988) that are
exclusively proposed to explain one type and not the other could be invalid. In addition,
this result suggests that the incidence angle for buffet onset decreases with an increase in
M.

SPOD was used to extract coherent features of the flow field. In addition to a mode at
the lower buffet frequency (St ≈ 0.1), a bump was observed in the spectrum in the range
1 � St � 4, associated with vortex shedding in the wake. A modal reconstruction of the
flow field based only on a single SPOD mode was implemented to examine the individual
influence of each mode on the flow field. Reconstruction based on the low-frequency
buffet mode showed two features that are common to all cases. The first is a phase lag
between the shock wave position and the streamwise extent of flow separation. The second
is the periodic build up of pressure near the TE when the shock wave is close to its
downstream most position. These aspects require further scrutiny, but it is evident from
the results that the laminar buffet simulated here is related to intermittent flow separation
and reattachment and large-amplitude shock wave motion, implying that it is similar to
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turbulent buffet. By contrast, a reconstruction based only on the wake mode implemented
here resembles the bubble-breathing phenomenon reported in Dandois (2016) for the
OALT25 aerofoil, suggesting that bubble-breathing is not related to laminar buffet as
proposed in that study.

The waves associated with the model proposed in Lee (1990) were identified and the
buffet time period was predicted based on estimates of the time required for these to
move from the shock foot to the TE and back. The predicted time period was found to
be substantially lower as compared with that observed in the LES for all cases studied
indicating that the model is inaccurate. Although such quantitative comparisons have been
provided in previous studies, physical reasons to suspect the model’s validity is provided
here by showing that these waves are primarily associated with vortex shedding (wake
modes) which do not directly influence the buffet mode. This is further bolstered by
evidence from several previous studies which use URANS to simulate buffet in which the
wake modes are not captured accurately. The modified version of Lee’s model proposed
in Hartmann et al. (2013, figure 15, p. 14) is also shown to make erroneous assumptions:
for all cases, it was seen that the vortices reaching the TE are most intense when the shock
wave is most upstream, which is opposite to what is assumed.

The main advantages of the present study are the high-fidelity approach, the wide
range of parameters used and the use of modal decomposition and reconstruction to
isolate individual effects of coherent structures on the global flow field. These allowed
for identifying generic features of buffet and assessing various models and mechanisms
proposed to explain it. Based on these, it is proposed that further understanding of
the physical mechanisms underlying buffet can be achieved by scrutinising the causal
relationship between shock waves and flow separation.

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2022.471.
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Appendix A. Effect of sweep

A.1. Methodology
Similar to varying other parameters, the sweep angle Λ was also varied independently
while maintaining other parametric values as that of the reference case. One important
feature to note here is that the freestream spanwise velocity component is varied as
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Figure 31. Schematic showing the freestream velocity components for a swept case (Λ /= 0◦). Note that the
freestream velocity vector (red arrow, with magnitude U∞ = sec Λ) is no longer aligned with the x-direction.
The curvilinear coordinate directions are also shown for reference (blue arrows).

uz = tan Λ, whereas ux is maintained as unity. Thus, x is no longer associated with the
freestream direction when Λ /= 0◦, but is normal to the spanwise direction and oriented
at an angle Λ with the freestream velocity vector. A schematic of this configuration is
shown in figure 31. This choice of uz allows to examine the validity of the independence
principle (also known as sweep-independence principle), which goes back to Prandtl (see
Selby 1983). This principle can be derived for flows which are spanwise invariant under
assumptions of incompressible laminar flow, by showing that the Navier–Stokes equations
reduce to a set of equations in which the velocity components, ux and uy, pressure and
the spanwise vorticity component are uncoupled from the other velocity and vorticity
components (see Hetsch & Rist 2009, equations (4)–(7), p. 488). Similar expressions have
also been derived for compressible flows (Jones 1946; Struminsky 1951) and form the
basis for sweepback in supersonic aircraft. This implies that irrespective of the sweep
angle, the features in the plane normal to the spanwise direction are the same as that of the
unswept case. Although strictly valid only for laminar flows, this principle has also been
shown to hold for a significant range of sweep angles even if the flow is turbulent (Selby
1983). Note that here the velocity component normal to the aerofoil’s leading edge does
not change with Λ, because the incidence angle is maintained constant (α = 4◦) for these
cases. In addition, the aerodynamic coefficients and Reynolds number are based on the
velocity scale, Ux = 1, and not the freestream speed, U∞. To check for the occurrence of
3D buffet cells which are generally predicted to have spanwise wavelengths of the order
of the aerofoil chord (Iovnovich & Raveh 2015; Crouch et al. 2019; Paladini et al. 2019a),
we used Lz = 1 with the same uniform spanwise grid spacing. This grid is referred to as
a WD and is used only when examining effects of Λ. Due to numerical expense, only two
or three buffet cycles were run for the WD cases for Λ /= 0.

A.2. Results
The temporal variation of the lift coefficient past initial transients is shown in figure 32
for the sweep angles simulated (Λ = 0◦ and 20◦). The values of Λ studied here were
chosen based on the range in which buffet cells (see § 1) were reported in Iovnovich &
Raveh (2015) and similar studies. As these simulations were carried out in the numerically
expensive WD (Lz = 1), only a few buffet cycles were simulated. However, it is evident
from the limited time simulated for that there is no drastic difference between the three
cases, except for a small reduction in the maximum CL(t) attained. Indeed, as shown in
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Figure 32. Temporal variation of CL past initial transients for various sweep angles simulated in the WD:
—— (black), Λ = 0◦; - - - - (green), Λ = 20◦; — · — (blue), Λ = 40◦.
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Figure 33. Contours of density on the aerofoil surface shown at (a,c) high- and (b,d) low-lift phases of the
buffet cycle for swept cases (a,b) Λ = 20◦ and (c,d) Λ = 40◦.

the following, no dominant 3D structures appear in any part of the buffet cycle indicating
the absence of buffet cells. With increasing sweep, the maximum lift achieved is slightly
reduced, but the minimum lift and the frequency remain approximately the same. Thus,
the addition of a strong spanwise velocity component (Uz ≈ 0.36U∞ for Λ = 20◦ and
0.84U∞ for Λ = 40◦) does not have any significant effect on aerofoil buffet. This agrees
with the results reported in Paladini et al. (2019a) and He & Timme (2021), where it was
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shown using global stability analysis that the frequency of the 2D buffet mode remains
approximately a constant with sweep.

The spanwise flow features are highlighted for the swept wing cases in figure 33
using contours of density on the aerofoil surface. Weak 3D features seem to appear in
the supersonic region of 0.5 � x′ � 0.7 in the high-lift phase and 0.4 � x′ � 0.6 in the
low-lift phase, although they remain too weak to affect the shock wave structure or the
transition features. These low-energy structures were found to convect along the spanwise
direction. Thus, we conclude that for the present configuration, buffet is essentially a 2D
phenomenon in the range of sweep angles studied. From a visual examination of the flow
fields and comparisons of the aerofoil coefficients for different Λ, we also conclude that
the independence principle (Selby 1983), which states that the 2D flow features (including
the pressure) are independent of the spanwise velocity component (see § 2), remains a
good approximation in the parametric range examined. However, we also emphasise that
this sweep study at this Re is limited in scope, having been examined only for α = 4◦,
M = 0.7, Lz = 1 and for the limited range of 0◦ � Λ � 40◦, implying that buffet cells
might still appear when these parameters are changed.
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