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Abstract. This paper focuses on planar manipulators built upon stack-
ing a series of tensegrity X-joints. The manipulators are actuated with
four tendons, have different numbers of modules, with or without off-
sets. The objective of this work is to study the influence of offsets and
number of modules on the size of the wrench-feasible workspace (WFW).
The comparison analysis is conducted on the basis of equal manipula-
tor height, width and mass and of equal maximal actuation forces. The
spring constants pf the X-joints are determined so that the configuration
at rest features a C-shape at a given end-effector pose with a minimal
stiffness to ensure stability. We show that the more the number of mod-
ules, the larger the WFW, and that the offsets have little influence.

Keywords: tensegrity · wrench feasible workspace · tendon-driven

1 Introduction

Building modular manipulators brings many benefits. The number of modules
should be decided upon considering several criteria, such as, the minimum num-
ber to accomplish the task, the possibility of having redundancy for a larger
workspace, the cost or the weight. The bird neck can be a source of inspiration
to build new light and efficient manipulators based on tensegrity modules ar-
ranged in series [1]. The tensegrity modules used in this paper have one degree
of freedom (dof) and are operated by tendons as shown in Fig. 1, left. An antag-
onist actuation is chosen to allow modulation of the stiffness of the manipulator
[2]. In this study, we are interested in planar manipulators made of several such
modules arranged in series. An example with two modules and offsets is shown
in Fig. 1, right.

A large amount of research work has been devoted to bio-inspired continuous-
bodied manipulators [3]. Examples of manipulators inspired by animals are
elephant-trunk arms [4,5,6], octopus’ manipulators [7], snake-like manipulators
[8], anguilliform manipulators [9].

The inspiration from musculoskeletal systems such as the bird neck or the
human spine suggests that increasing the number of modules can increase per-
formance. The object of the current study is to verify if this hypothesis is verified
on the modular manipulators at hand.
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Fig. 1. X-joint tensegrity module (left) and manipulator made of two X-joints (right)
.

An important measure to quantify manipulator performance is the workspace
size. Since manipulators under study are driven by tendons that can sustain
only tensile forces, their workspace is further qualified by the condition of static
equilibrium achievable with positive tendon forces. The rest of this paper is
organized as follows. The manipulators studied are described in section 2. The
calculation of the WFW is discussed in section 3. Section 4 compares different
4-tendon, fully actuated or under-actuated manipulators on the basis of their
WFW. Last section concludes this paper.

2 Manipulators studied

The manipulators studied in this paper are planar manipulators with 4 tendons
and n similar modules (n ≥ 3) arranged in series. When n > 3, the manipulators
are kinematically redundant since 3 dofs would be enough to control the end-
effector motion in the plane. Moreover, n > 3 means that the manipulators are
also under-actuated. Indeed, since the cables can only pull, one more cable than
the number of modules should exist to control all the modules [10].

2.1 Tensegrity modules

We want to define a planar tensegrity manipulators inspired by the bird neck
upon stacking several basic mechanisms or modules. These modules play the role
of intervertebral joints. Each module consists of articulated bars and springs and
are operated by cables. Springs and cables play the role of muscles and tendons.
Tendon forces must be positive and are bounded by the actuators maximal
torques. Since only planar motions are involved, the relative movement between
two vertebrae is mainly a rotation. Both revolute joints and anti-parallelogram
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joints (referred to as X-joint) can be used to produce planar motions between two
vertebrae [11]. The former generate a pure rotation about a fixed point while the
latter have a variable center of rotation. An important feature of the X-joint is its
ability to increase stiffness under an increase in the antagonistic tendon forces,
contrary to the revolute joint [12]. We thus decide to use X-joints (Fig. 1, left).
The ratio between the length L of the crossed bar and the length b of the base
or upper bar influences the kinetostatic performance of the X-joint but should
also take into account the maximal and minimal elongation of the springs [13].
Different numbers of modules, with or without offsets will be considered in this
work. Figure 1, right shows a manipulator built with two X-joints and offsets.

2.2 Stack of modules

The manipulators at hand are composed of a stack of modules. The stack can
be build with or without offsets. Offsets can be viewed as the possibility to
adjust the dimension of the vertebrae or, equivalently, the maximal reach of the
manipulator, independently of the X-joints ratio L/b.

Let define the joint configuration of the manipulator by q = [q1, q2, ..., qn],
where n is the number of modules. Let X = [xn, yn, γn] define the pose of the
end-effector (EE), i.e. the coordinates of the center of the upper bar of the last
module n and its orientation angle. We have:

xn = −
∑n

i=1 sin(γi−1 +
qi
2 )

√
L2 − b2 cos2( qi2 )−

∑n
i=1 sin(γi)ho

yn =
∑n

i=1 cos(γi−1 +
qi
2 )

√
L2 − b2 cos2( qi2 )−

∑n
i=1 cos(γi)ho

γn = γ0 +
∑n

i=1 qi

(1)

where ho is the offset height (Fig. 1, right), γ0 is the orientation angle of the
base bar of the first module and γi = γi−1 + qi.

2.3 Tendon routing

For a planar manipulator, three dofs are sufficient to control its EE pose. We
use nf=4 tendons with remote motors on the base, regardless of the number of
modules, in order to reduce inertia, complexity and costs. We also operate our
manipulator with a long tendon connected to all the modules on the left side
and 3 shorter tendons grouping together sub-groups of modules (see Fig. 2).

This choice results from a simplified implementation of the muscle organiza-
tion of the bird neck [1,14]. We will also consider fully actuated manipulators,
namely, manipulators with 3 modules actuated by a long tendon connecting the
3 modules on the left and 3 short tendons on the right. These short tendons
actuate each of the modules independently, like in the prototype analyzed in
[15].

Each tendon can be routed in different ways on each of the modules (Fig. 3):

- tendon j placed on the left or on the right of module i, along the spring (Fig.
3, left): when pulling this tendon, the associated motor modifies the module
orientation so as to reduce the tendon length on this side;
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Fig. 2. Example of cable routing with 6 modules: one long cable on the left and three
shorter cables on the right.

Fig. 3. Tendon routing situations.

- tendon j run along the bars of module i (Fig. 3, right): this routing allows
reaching the modules located above module i while nullifying tendon impact
on this module.

We define an actuation matrix A of size (n× nf ) as follows: each column j
associated with tendon j describes how this tendon passes along module i. Each
entry A(i, j) can take on three possible values: 1 if the tendon passes on the left,
2 if the tendon passes on the right, 3 if the tendon j does not act on module i.

The unwounded length of tendon j is denoted by lj .
The tendon length lj can be expressed as follows [15]:

lj = lcj +

n∑
i=1

l
A(i,j)
j (qi) (2)

where lcj is a constant value. lA(i,j)
j depends on the tendon routing:

l1j =
√
L2 − b2 cos2( qi2 ) + 2h cos( qi2 )− 2r sin( qi2 )

l2j =
√
L2 − b2 cos2( qi2 ) + 2h cos( qi2 ) + 2r sin( qi2 )

l3j = 0

(3)
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3 Wrench-feasible workspace

3.1 Static model

The static model is of primary importance for the study of tensegrity manipu-
lators. For a manipulator built with several modules in series, the static model
allows determining its configuration as functions of the tendon forces. The po-
tential energy U of the manipulator can be written as:

U = Ug + Uk +

4∑
i=1

Fj lj , (4)

where Ug (resp. Uk) is the contribution of gravity (resp. of all springs), lj
are the tendon lengths and Fj are the tendon forces. Each term Fj lj accounts
for the potential energy associated with the work done by the cable forces. The
equilibrium condition of the manipulator is:

dU
dq

= 0 (5)

Let G =
dUg

dq + dUk

dq and Z(q) = − dl
dq , where l = [l1, l2, l3, l4]

T and F =

[F1...F4]
T . The above equation can written as:

G(q) = Z(q)F (6)

The associated linearized model writes:(
dG(q)

dq
− dZ(q)F

dq

)
δq = Z(q)δF (7)

An equilibrium is stable if its stiffness matrix is definite positive:

K =
d2U

dq2
> 0 (8)

3.2 WFW calculation

Tendons impose positive forces and these forces are bounded by the actuators.
The set of poses that satisfy the abovementioned constraints and in which the
robot can balance a bounded set of external wrenches is called the wrench-
feasible workspace (WFW) [16]. In our case, the external wrenches are con-
tributed by the springs and the gravity effects only. In the literature, the WFW
is most often calculated for cable-driven parallel robots, see [16] and references
herein. These methods cannot be adapted easily to serial tendon-driven manip-
ulators. Continuation methods have been employed to compute the WFW of
a 2-dof tensegrity manipulator [17]. The time taken for such computations has
not been presented. A brute-force scanning technique has been followed in [13],
where a 2-dimensional (D) scanning was performed in the joint space of a 2-DoF
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manipulator to determine the WFW. The limitation of such a technique is that
a high scanning resolution is required to obtain the boundary points with suffi-
cient accuracy, which is untractable for manipulators with more than 3 modules.
Interval analysis has been used to compute manipulator workspaces [18] or cable-
driven parallel robots [16] with garanteed results but the high computational cost
limits its practical implementation to manipulators with few dofs.

Joint space scanning A simple approach is to scan the joint space as proposed
in [1]. The linearized model (7) is solved to determine a vector of forces F
satisfying (7). When the number of tendons nf is greater than the number of
modules n, there exist infinitely many solutions and one can select the solution
with minimal norm such that 0 < Fj < Fmax. This method cannot be used in our
case for two major reasons. First, the computational cost increases exponentially
with the number of modules and second, it does not work for under-actuated
manipulators (i.e. when n > nf ). For those latter, indeed, the static model
admits solutions only if rank([G(q) Z(q)]) = rank(Z(q)).

Force space scanning Scanning the force space is more realistic since we have
only 4 forces, whatever the number of modules. For each F, it is then necessary
to solve Eq. (6) to find the equilibrium configuration qe. We then calculate the
EE coordinates via Eq. (1).

As observed in [2,13], several equilibrium solutions qe can be obtained un-
der two conditions: (i) the X-joints can reach a configuration close to their flat
singularities and (ii) the gravity effects are dominant. In our case, the spring
effects are very high as compared to gravity and the joint ranges are limited,
so that there is only one feasible solution to Eq. (6). The equilibrium solution
qe is obtained iteratively, starting from the equilibrium configuration at rest.
For a given set of input forces Fe, we seek for the solution qe that minimizes
||G(qe) − Z(qe)Fe||, using a Newton-Raphson approach. Starting from a con-
figuration qep, this method consists in writing the linearized model (7) in the
neighborhood of this configuration. We compute the variation that tends to nul-
lify ||G(qe)− Z(qe)Fe||. The joint solution is thus updated as follows:

qe = qep −
(

dG(qep)

dq
− dZ(qep)

dq
Fe

)−1

(G(qep)− Z(qep)Fe) (9)

The solution is updated until:

||G(qe)− Z(qe)Fe|| < ϵ (10)

where ϵ is a decision parameter, which we take here as ϵ = 1.e− 6. The matrix
that needs to be inverted in (9) is in fact the stiffness matrix K defined in Eq.
(8). Convergence is thus guaranteed whenever the equilibrium configurations are
stable. On the other hand, the springs are selected such that the equilibrium con-
figuration at rest is stable (see further). We thus expect that a stable equilibrium
solution is always found. In fact, we have been able to verify that it is indeed
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the case in all tested examples. Convergence speed depends on the starting con-
figuration qep, which must be close to qe. We start the force space scanning
at F = 0, namely, at the (stable) equilibrium configuration at rest. Convergence
proves quite fast, after only 2 or 3 iterations in all tested examples. The WFW is
then built in the 3D (xn, yn, γn) space upon calculating the EE pose associated
with each equilibrium configuration.

The force and workspace sampling data used are as follows. The maximal
forces are fixed to 140 N. We limit the number of tested forces to 20 for each
tendon. Nature often relies on frugality. Therefore, bio-inspiration leads us to
minimize energy. Accordingly, our objective is to move with minimum actuation
forces. This goal can be achieved by trying to remain close to the equilibrium con-
figuration at rest. Since we are interested to poses that can be reached with small
forces, we choose a non-regular sampling to explore more values for low forces.
The tested forces are [0, 1, 2, 3, 5, 7, 9, 12, 16, 20, 25, 30, 35, 40, ...125, 130, 135, 140]
for each tendon. To plot the WFW, we define a regular grid along the xn, yn
and γn coordinates. The grid is built in a box defined by ±1.1h along xn and
yn and γ0 ± nqmax along γn, where h is the manipulator height in its vertical
straight configuration, qmax is the maximal bending angle of the X-joints and
γ0 is the orientation of the base bar of the first module. A WFW cell is declared
reachable as soon as one pose of the EE belongs to it.

4 WFW comparative analysis

The goal of this section is to compare manipulators with different numbers of
modules, with or without offsets. For more realistic comparisons, we impose
similar features to all the manipulators studied:

– all modules in a given manipulator are identical with symmetric joint ranges
±qmax;

– all manipulators have the same height h in their straight vertical configura-
tion;

– for all manipulators, the sum of the rotation ranges of all their joints ∆q =
2nqmax is the same;

– all manipulators have the same width b;
– all manipulators have the same mass, assumed equally distributed in all the

modules;
– all manipulators have the same EE pose in their rest configuration;
– stiffness in the rest configuration is greater than a given minimal value to

ensure stability.

A first objective is to study the effect of offsets and module height (defined
by L/b) on the WFW size, for completely actuated manipulators, i.e. with three
modules. The bird neck includes a large number of vertebrae. However, it is not
clear if manipulators with a large number of modules would be a right choice, as
the actuation system of our manipulators is a highly simplified implementation
of the complex muscle organization of the bird neck. A second objective is thus
to study the effect of the number of modules on the WFW size.
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4.1 Manipulator data

Manipulator compared For given module dimensions L and b, the module
height in its zero orientation is hm =

√
b2 + L2. We start with modules similar

to those used in the prototype analyzed in [15]. Their geometric parameters are
b = 0.05 m and L = 0.1 m. The corresponding module height is 0.0866 m. We
fix the manipulator height of all manipulators to 6 times this module height:
h = 0.516m. The joint range decreases with the number of modules in order to
keep the same sum of joint ranges ∆q = 2nqmax (see above).

We consider 7 manipulators, described in table 1. Four of them have 3 mod-
ules with offset of values ho = 0, ho = hm, ho = 2hm, and ho = 3hm, respec-
tively. Besides, we take three offset-free manipulators with different numbers of
modules, namely, 6, 9 and 12.

In all tested cases, the configuration at rest is defined as follows.The orienta-
tion angle of the manipulator base and the one of the EE bar are fixed to π/4 and
−π/4, respectively, and the EE position is fixed at xm = 0 and ym = 0.9h. The
choice of these data allows the manipulators to feature a C-shape equilibrium
configuration at rest. Although the rest configuration of the bird neck features a
S-shape [14], this shape is difficult to reach for manipulators with 3 modules only.
In a C-shape configuration, the manipulator is not in a singularity and it can
thus move more easily in all directions, like in a S-shape configuration. Finally,
the sum of joint ranges is fixed to ∆q = 3pi and, to have a stable configuration,
we impose a minimal stiffness at rest. This stiffness at rest can be obtained with
suitable spring constants (see below).

Spring selection An essential element for the dimensioning of our manipulators
is the choice of springs. The springs make it possible to define the equilibrium
configuration at rest. The stiffer the springs, the higher forces are needed to
move the manipulator and, for the same maximal forces, the more the WFW is
reduced. On the other hand, the role of the springs is to ensure the stability of the
manipulator. It is particularly important that the equilibrium configuration at
rest be stable. This allows the manipulator to remain in this configuration under
small perturbations and without any actuation. The springs are thus chosen on
the basis of the following 2 requirements:

– impose a C-shape configuration at rest in the prescribed EE pose;
– ensure stability at rest. We impose a positive stiffness via the smallest eigen-

value of the stiffness matrix K, which must be greater than a prescribed
minimal value Km = 1 Nm/rad.

We want to limit the spring stiffnesses, while satisfying the above constraints.
The difference in stiffness between the 2 opposite springs in a module will modify
the equilibrium configuration at rest while the average value of the springs will
contribute to the X-joint stiffness.

For those manipulators with 3 modules, the configuration is fully defined
by the EE pose. For the other manipulators, we first determine the equilibrium
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configuration qe which makes it possible to reach the desired EE position xd
n,

ydn, γd
n while minimizing the norm of the joint configuration vector :

qe = minq||q||
s.t.[xn(q), yn(q), γn(q)] = [xd

n, y
d
n, γ

d
n]

(11)

We then calculate the spring constants as follows:

[kl kr] = min||kl + kr||

s.t.

{
G(qe) = 0

min(eig(K(qe) ≥ Km

(12)

The spring constants for the 7 manipulators compared are given in Table 1.

n offset qmax Spring constants [N/m]
3 0 π/2 kl=[1816 1339 874] kr=[3860 3216 1512]
3 hm π/2 kl=[ 1592 1454 593] kr=[4346 3001 2278]
3 2hm π/2 kl=[1283 1563 452] kr=[4979 2821 3303]
3 3hm π/2 kl=[1042 1710 369] kr=[5843 2762 4835]
6 0 π/4 kl=[2859 2780 2401 1825 1190 676] kr=[5258 4692 3851 2832 1813 1027]
9 0 π/6 kl=[3804 3826 3637 3268 2761 2171 1562 1003 593]

kr=[6608 6175 5579 4837 3987 3087 2207 1426 858]
12 0 π/8 kl=[4708 4770 4679 4444 4085 3624 3090 2513 1929 1374 891 547]

kr=[7947 7586 7111 6526 5842 5080 4268 3440 2630 1879 1234 772]
Table 1. Robot data.

4.2 Example: a manipulators with 6 modules

In this section, we describe the case of a 6-X manipulator without offsets in
order to provide some complementary information. Its data are given in Table
1, manipulator 5.

Figure 4 depicts the 3D WFW. Its shape looks like a twisted banana. This
shows that the position and orientation coordinates are highly coupled. More-
over, the banana is rather flat, which shows that the EE orientation range is
limited at every position. Therefore, the manipulator turns out to be more appro-
priate to positioning tasks. For now on, accordingly, the WFW will be analyzed
in terms of point-reachable workspace, namely, as the set of points associated
with at least one feasible EE orientation [19]. Figure 5 shows the resulting 2D
WFW. The WFW was calculated for the minimal forces: the orientation was
then fixed by the minimal forces at each point. Colors indicate the norm of the
force vector.

4.3 Comparison results

Figure 6 shows the WFW of all compared manipulators. The WFW plots are
arranged in a table with two columns and 4 rows. In each of the 4 rows, the
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manipulators have the same module ratio L/h. In the left columns, all the ma-
nipulators have 3 modules. The first one (resp. second, third, fourth) has no
offsets (resp. offsets of height hm, 2hm and 3hm). The presence and height of
offsets is difficult to analyze since the modules ratios L/b have different values
for different offset numbers or heights. The second manipulator has clearly the
largest WFW. This was expected since the module ratio of this manipulator
satisfies the ideal ratio L/b = 2 [13]. Manipulators in the second row have no
offsets. The first WFW of this row is the same as in the previous row for bet-
ter visual comparison. Clearly, the more the number of modules, the larger the
WFW. It is worth noting that it is still the case for the manipulators with 9 and
12 modules, although the module ratio L/b is smaller than the ideal value.

It is also interesting to compare each WFW of the first row with its neighbor
in the second row (starting from the second row as the first row displays the same
WFW), since their joint ratios are similar. The same conclusions as above can
be drawn, namely, the WFW is larger when the number of modules is greater.

5 Conclusion

A family of planar manipulators built upon stacking a series of tensegrity X-
joints has been analyzed in this paper. The manipulators are actuated with four
tendons, regardless of the number of modules. The main goal of this work was
to study the influence of offsets and number of modules on the WFW size. The
comparison analysis was conducted on the basis of equal manipulator height,
width and mass and of equal maximal actuation forces. The manipulators spring
constants were determined so that the configuration at rest features a C-shape
at a given EE pose with a minimal stiffness to ensure stability.

We have shown that the more the number of modules, the larger the WFW.
Besides, the effect of offsets did not prove so significant. In fact, the module ratio
turned out to be of more importance for manipulators with 3 modules. The WFW
was calculated upon scanning the force space. Another possibility could be to
scan the workspace. This will be the object of future work. Moreover, we will also
study the influence of obstacles. Kinematically redundant and under-actuated
manipulators should have a better ability to adapt to cluttered environments by
shaping around obstacles.
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Fig. 6. Influence of the presence of offsets (first column) and of the number of modules
(second column) on the WFW shape and size. The same WFW has been reproduced
in the first row. The presence of offsets tends to reduce the WFW size, while a greater
number of modules tends to increase the WFW size.
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