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Comparison of explicit and implicit numerical
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Nantes Université, Centrale Nantes, CNRS, LS2N, 44000 Nantes
{nicolas.testard, christine.chevallereau, philippe.wenger}@ls2n.fr

Abstract. A tendon-driven robot inspired from the bird neck is studied
in this paper. The objective is to propose numerical integrations for this
robot. The classical explicit and implicit Euler integration schemes can be
used on this robot. When the elasticity in the tendons is not considered,
these schemes are stable and give similar numerical integration results
but the explicit implementation is faster. By considering the dynamics of
the robot joints on one hand and the dynamics of the motors on the other
hand, we propose two Euler integration schemes, explicit and implicit,
that take into account the elasticity in the tendons. These schemes rely
on the dynamics of the robot joints on the one hand, and on the dynamics
of the motors on the other hand and it links them by the tendon elastic
model. We observe that with the tendon elasticity model, the explicit
integration becomes unstable, depending on the time step, while the
implicit one stays stable. The numerical integration that uses this implicit
scheme with tendon elasticity allows one to obtain more precise results,
while the model of the system is more realistic. Moreover, the evolution
of the tendon elongation during a desired motion can be obtained while
they are computed in the integration scheme.

Keywords: Dynamics · Numerical integration · Explicit and Implicit
Euler · Tendon-driven

1 Introduction

Robots are more and more complex in their design and the numerical integrations
of their dynamic model must be more and more efficient and accurate. Two
different methods exist for the numerical integration of the dynamic equations,
namely, explicit and implicit ([6]). A tendon-driven robot inspired from the bird
neck was first proposed in [8]. This paper proposes a study of dynamic numerical
integration for this robot and a similar one. First, we study the model with
no tendon elasticity and we compare the explicit and implicit integration. We
then propose an integration of the dynamic equations in the presence of tendon
elasticity. We show how to compute the explicit and implicit Euler integration
scheme for both models and what results can be expected for these numerical
integrations of our robot models.

As indicated in [10], the stability of the explicit Euler integration can depend
on their time step. Furthermore, they indicate that the higher the highest natural
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frequency of the structure is, the smaller the time step will have to be. In Section
3, in fact, this integration scheme such that it stays stable can be observed
for these robots under study in the absence of tendon elasticity. When tendon
elasticity is ignored, the dynamic equation of these robots can also be integrated
with an implicit Euler method as shown in [4] and [12]. We will show that with
this method, the numerical integration is also always stable.

However, tendon elasticity must be considered to have more realistic results.
Softwares like Matlab® ([13]) or Maple® ([11]) exist that model tendon elas-
ticity and use explicit and implicit integration but these softwares are not free.
Matlab® proposes several explicit integration schemes like Runge-Kutta meth-
ods with different orders or the Heun’s method. It also proposes an implicit Euler
scheme in the Simulink® graphical programming environment. Furthermore, the
tendon model is only present in the Simscape®/Multibody library in Simulink®

which is an additional paying feature. Similarly, Maple® proposes several ex-
plicit Runge-Kutta integrations and the MapleSim® environment can use the
implicit Euler or the Rosenbrock scheme. In contrast, SOFA ([1]) is a free frame-
work that also models tendon elasticity and integrates the dynamic equations
with a explicit and implicit scheme. Explicit Euler and Runge-Kutta 4 solvers
are used among the explicit schemes and the implicit conjugate-gradient based
Euler solver or the Newmark implicit solver are used among the implicit ones.
However, this framework can be difficult to handle for those who are not famil-
iar with it and the implicit integration uses more complicated schemes than the
implicit Euler. Accordingly, section 4 proposes two integration methods, implicit
and explicit, that take into account tendon elasticity. The proposed schemes in-
tegrate both the dynamics of the robot joints and the dynamics of the motors
that pull the tendons, these two dynamics being linked by the tendon model. It
will be observed that the implicit Euler integration scheme is still always stable.
At the opposite, the explicit integration becomes unstable if the time step is not
small enough. This limit time step for the explicit integration decreases with the
complexity of the robot. All the computations presented in this article have been
done with Matlab® and can be done with any other programming software.

2 Robot model

The robot is made of a stack of anti-parallelogramm joints or X-joints [15]. This
joint is actuated through 2 tendons that pull on each side shown in Fig. 1. The
tendons are pulled by motors and springs are added in parallel of the tendons
to obtain a stable configuration at rest.

Different robots can be designed by arranging several X-joints in series. [8]
proposed a robot with Nj= 3 joints and Nt=4 tendons, we also proposed to
study a robot with Nj= 4 joints and Nt=5 tendons. One tendon pulls all the
joints on the left while the Nt-1 other ones pull the different joints on the right
(see Figure 2).

We first present the model with tendon elasticity. Let α = [α1, α2, ..., αNj
]⊤

define the vector of joint configurations of the robot. Let θ = [θ1, θ2, ..., θNt ]
⊤
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Fig. 1. X-joint (left) and motor pulling a tendon (right)
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Fig. 2. Tendon-driven robot with 3 joints (a) and with 4 joints (b)

define the vector of motor positions. The dynamic model with tendon elasticity
can be written as [3], [7]:{

Ms
αα̈+ cs(α̇,α) + g(α) = Ztc − Γ rα(α, α̇)

Mm
θ θ̈ = Γm − Γ rθ(θ, θ̇) +Btc

(1)

where:

– Mm
θ = diag(Iθ) is the inertia matrix of the motors in the motor space (with

Iθ the inertia of the motor around its axis);
– Γm are the motor torques;
– Γ rθ(θ, θ̇) are the friction in the motors;
– B = diag(Rd

rg
) is the link between the tendon lengths and the motor positions

(Rd is the radius of the drum and rg the gears ratio);
– tc are the tension in the tendons;
– Ms

α is the inertia matrix of the structure such that the kinetic energy is
T = 1

2 α̇
⊤Ms

αα̇,
– cs(α̇,α) is the Coriolis effects;
– g(α) corresponds to the forces associated to the potential energy (gravity

and springs);
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– Z = −J⊤
θ B (such that θ̇ = Jθα̇ with no elasticity) ;

– Γ rα(α, α̇) is the friction in the structure.

As shown in [14] and [2], there are different tendon models. We will use the
one proposed in [9]:

tc = kcxc + dcẋc (2)

where xc is the tendon elongation that can be expressed as xc = B(fθ(α)−
θ), where fθ(α) is the vector of the motor positions computed from the joint
angles when there is no elasticity. kc defines the link between the tension and
the elongation in statics and dc is a damping coefficient.

In the absence of tendon elasticity, this system of equations can be written
as:

Mαα̈ = Γ sys(α, α̇) + J⊤
θ Γm (3)

where:

– Γ sys(α, α̇) = −c(α̇,α)− g(α) + Z
(
B−1Γ rθ

)
− Γ rα

– Mα = Ms
α + J⊤

θ M
m
θ Jθ

– c(α̇,α) = cs(α̇,α) + J⊤
θ M

m
θ J̇θα̇

The diagonal and top bars of the X-joints are made with aluminium alloy
with dimensions 0.1 m and 0.05 m, respectively. Their mass is 64 g and 32
g, respectively. The radius of the motor drum is Rd= 0.02 m and the gear
ratio is rg= 25. We consider a dry friction in the motors of the form Γ rθ =

diag
(

2
π arctan

(
csθ̇
))

Γ s as proposed in [9] where Γ s= 0.008 N.m for all motors

and cs= 0.5 . We also consider a viscous friction in the pivots of the X-joints

Γ rα,j = fv

(
2
(
∂ϕj

∂αj

)2
+ 2

(
∂ψj

∂αj

)2)
α̇j with fv = 0.001 N.m/(rad/s). In the

tendon model , we take kc = 105 N/m and dc = 100 N/m/(rad/s). Each X-
joint is equipped with the same springs on each side. On each side, the spring
constants for the 3-modules (resp. 4-modules) robot are [600,600,200] N/m (resp.
[800,600,200,200] N/m,), from bottom to top. The free length is 46 mm for all
springs.

3 Numerical integrations without elasticity

3.1 Explicit numerical integration without elasticity

The simplest way to integrate the system dynamics is to first compute the joint
accelerations at step i with the dynamic equation. The joint velocities are then
integrated at step i + 1 with these accelerations. The joint orientations at step
i+1 are finally integrated with the velocities at step i. The scheme of this simple
explicit numerical integration is represented by the following Eq. (4):
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
α̈i = M−1

α

(
Γ sys(αi, α̇i) + J⊤

θ (αi)Γm

)
α̇i+1 = α̇i + α̈idt

αi+1 = αi + α̇idt

(4)

Where dt is the time step and αi = α(i.dt).

3.2 Implicit numerical integration without elasticity

For the implicit integration, the velocities (resp. orientations) at step i + 1 are
computed with the accelerations (resp. velocities) at step i + 1 and not at step
i, as described by Eq. (5):

Mαα̈i+1 = Γ sys(αi+1, α̇i+1) + J⊤
θ (αi+1)Γm

α̇i+1 = α̇i + α̈i+1dt

αi+1 = αi + α̇i+1dt

(5)

However, the accelerations at step i + 1 also depend on the velocities and
orientations at step i + 1 that we want to compute. Therefore, we linearize the
above equation as in [5].

First, we define dα̇i = α̇i+1 − α̇i = α̈i+1dt and dαi = αi+1 − αi = α̇i+1dt.
The first order linearization gives:

Mαdα̇i = Γ sys(αi, α̇i)dt+Kdαidt+Ddα̇idt+ J⊤
θ (αi)Γmdt (6)

Where K =
∂Γ sys(αi, α̇i)

∂α
+

∂J⊤
θ (αi)Γm

∂α
and D =

∂Γ sys(αi, α̇i)

∂α̇
.

To compute dα̇i from this equation, we express dαi as a function of dα̇i by:

dαi = α̇i+1dt = (α̇i + dα̇i)dt (7)

We then obtain:

(
Mα −Kdt2 −Ddt

)
dα̇i = Γsys(αi, α̇i)dt+Kα̇idt

2 + J⊤
θ (αi)Γmdt (8)

Thus, the implicit integration scheme is defined by:
dα̇i =

(
Mα −Kdt2 −Ddt

)−1 (
Γ sys(αi, α̇i)dt+Kα̇idt

2 + J⊤
θ (αi)Γmdt

)
α̇i+1 = α̇i + dα̇i

αi+1 = αi + α̇i+1dt

(9)
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3.3 Comparison between explicit and implicit numerical integration

For the integration of the equation, the dry friction in the motors will be con-
sidered as constant at step i.

For the robots, we can use a computed torque control on the joints as pre-
sented in [9]. An example of motion for the robot with 3 and 4 joints is observed
in Figure 3 with a time step of dt=2ms. We can observe some difference in the
evolution of the angles that are negligible w.r.t. the amplitude of the motion.
Moreover, the time step can be increased and decreased and the 2 numerical
integrations will remain stable.

3 joints, implicit integration

4 joints, implicit integration

Fig. 3. Numerical integration of the robots (on the left) and comparison between the
implicit and explicit numerical integration results (on the right)

3 joints 4 joints

explicit integration ≈ 4 s ≈ 5 s

implicit integration ≈ 18 s ≈ 30 s
Table 1. Computation time for a motion of 6.3 s with dt=2 ms
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Table 1 presents the computation time for these motions. It can be observed
that the explicit integration is faster than the implicit one and that the compu-
tation time increases with the number of joints.

4 Numerical integrations with tendon elasticity

4.1 Explicit numerical integration with tendon elasticity

We now consider that the tendons are elastic. In this case, the evolution of motor
positions is not defined by the joint angles only. Thus, the motor positions need to
be integrated as well. Accordingly, the explicit integration scheme of the system
with tendon elasticity is defined in the system of equations (10).


θ̈i = (Mm

θ )
−1
(
Γ sys,θ(αi, α̇i,θi, θ̇i) + Γm +Btc,i

)
θ̇i+1 = θ̇i + θ̈idt

θi+1 = θi + θ̇idt
α̈i = (Ms

α)
−1
(
Γ sys,α(αi, α̇i,θi, θ̇i) + Z(αi)(tc,i)

)
α̇i+1 = α̇i + α̈idt

αi+1 = αi + α̇idt
tc,i = kcxc,i + dcẋc,i

xc,i = B(fθ(αi)− θi)

ẋc,i = B(Jθ(αi)α̇i − θ̇i)

(10)

where:

Γ sys,α(α, α̇) = −cs(α̇,α)− g(α)− Γ rα(α, α̇)

Γ sys,θ(θ, θ̇) = −Γ rθ(θ, θ̇)
(11)

4.2 Implicit numerical integration with tendon elasticity

Similarly, the implicit integration of the system with tendon elasticity is defined
by the system of equations (12).


Mm

θ θ̈i+1 = Γ sys,θ(αi+1, α̇i+1,θi+1, θ̇i+1) + Γm +Btc,i+1

θ̇i+1 = θ̇i + θ̈i+1dt

θi+1 = θi + θ̇i+1dt
Ms

αα̈i+1 = Γ sys,α(αi+1, α̇i+1,θi+1, θ̇i+1) + Z(αi+1)(tc,i+1)

α̇i+1 = α̇i + α̈i+1dt

αi+1 = αi + α̇i+1dt
tc,i+1 = kcxc,i+1 + dcẋc,i+1

xc,i+1 = B(fθ(αi+1)− θi+1)

ẋc,i+1 = B(Jθ(αi+1) ˙αi+1 − θ̇i+1)

(12)
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By defining:

dθ̇i = θ̇i+1 − θ̇i = θ̈idt, dθi = θi+1 − θi = θ̇i+1dt = (dθ̇i + θ̇i)dt (13)

we can develop at the first order:

dxc,i = xc,i+1 − xc,i = B(Jθ(αi)dαi − dθi)

dẋc,i = ẋc,i+1 − ẋc,i = B

(
Jθ(αi)dα̇i +

∂Jθ(αi)α̇i
∂α

dαi − dθ̇i

)
(14)

Thus, we can obtain:

tc,i+1 = tc,i +
∂tc
∂α

dαi +
∂tc
∂α̇

dα̇i +
∂tc
∂θ

dθi +
∂tc

∂θ̇
dθ̇i (15)

where:

∂tc
∂α

= kcBJθ(αi) + dcB
∂Jθ(αi)α̇i

∂α
,

∂tc
∂α̇

= dcBJθ(αi)

∂tc
∂θ

= −kcB,
∂tc

∂θ̇
= −dcB

(16)

Therefore, by applying the same computation as in Section 3.2, the lineariza-
tion of the equations leads to:

(
(Mm

θ −Kθθdt
2 −Dθθdt) (−Kθαdt

2 −Dθαdt)
(−Kαθdt

2 −Dαθdt) (Ms
α −Kααdt

2 −Dααdt)

)(
dθ̇i
dα̇i

)
=

(
Γ θ

Γ α

)
(17)

where:

Kθθ =
∂Γ sys,θ

∂θ
(θi, θ̇i) +B

∂tc
∂θ

, Dθθ =
∂Γ sys,θ

∂θ̇
(θi, θ̇i) +B

∂tc

∂θ̇

Kθα = B
∂tc
∂α

, Dθα = B
∂tc
∂α̇

(18)

Kαα =
∂Γ sys,α

∂α
(αi, α̇i) +

∂Z(αi)tc,i
∂α

+ Z(αi)
∂tc
∂α

Dαα =
∂Γ sys,α

∂α̇
(αi, α̇i) + Z(αi)

∂tc
∂α̇

, Kαθ = Z(αi)
∂tc
∂θ

Dαθ = Z(αi)
∂tc

∂θ̇

(19)

Γ θ =
(
Γ sys,θ(θi, θ̇i) + Γm +Btc,i

)
dt+

(
Kθθθ̇i +Kθαα̇i

)
dt2

Γ α = (Γ sys,α(αi, α̇i) + Z(αi)tc,i) dt+
(
Kαθθ̇i +Kααα̇i

)
dt2

(20)
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Thus, the implementation of the implicit integration taking into account
tendon elasticity is:



(
dθ̇i

dα̇i

)
=

(
(Mm

θ −Kθθdt
2 −Dθθdt) (−Kθαdt

2 −Dθαdt)

(−Kαθdt
2 −Dαθdt) (Ms

α −Kααdt
2 −Dααdt)

)−1(
Γ θ

Γ α

)
θ̇i+1 = θ̇i + dθ̇i

θi+1 = θi + θ̇i+1dt

α̇i+1 = α̇i + dα̇i

αi+1 = αi + α̇i+1dt

xc,i+1 = B(fθ(αi+1)− θi+1)

ẋc,i+1 = B(Jθ(αi+1)α̇i+1 − θ̇i+1)

tc,i+1 = kcxc,i+1 + dcẋc,i+1

(21)

4.3 Comparison between the numerical integrations with and
without elasticity

We apply the same control on the robots as in the Section 3.3. We obtain motions
similar to the one obtained with implicit integration without elasticity for the
implicit integration with dt=2 ms (Fig. 3) for the robot with 3 joints and the
one with 4 joints.

For the explicit integration, we observe that if the time step dt is greater
than a certain value, approximately 0.4 ms, the numerical integration does not
converge for the robot with 3 joints. Thus, a condition on the time step for the
stability appears when tendon elasticity is taken into account. For the robot with
4 joints, the numerical integration does not converge even with a time step of
dt=0.025 ms.

The difference between the numerical integration results with and without
elasticity for 3 joints is presented in Fig. 4. We observe that the motion dif-
ferences are similar between implicit and explicit and that these differences are
negligible as compared with the amplitude of the motion. With these numerical
integrations, moreover, it is also possible to compute the tendon elongation as
presented in the Figure 5.

Table 2 presents the comparison of the computation time for the model with
and without elasticity. We observe that the computation time does not increase
significantly for the explicit and implicit integration. Table 3 compares the per-
formance of the 2 numerical integrations. It can be observed that when the
elasticity of the tendons is taken into account, the implicit integration can be-
comes necessary for more complex robots. However, these results can change
depending on the value of stiffness and friction in the robot.
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Fig. 4. Comparison of the numerical integration of the models with or without elasticity
for the robot with 3 joints for the implicit (dt=2ms) and explicit (dt=0.4ms) methods
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Fig. 5. Elongation of the tendons with the implicit (dt=2ms) and explicit (dt=0.4ms)
integration for the robot with 3 joints

without elasticy with elasticity

explicit integration (dt=0.4 ms) ≈ 17 s ≈ 20 s

implicit integration (dt=2 ms) ≈ 18 s ≈ 22 s
Table 2. Comparison of the computation time between models with or without elas-
ticity for a motion of 6.3 s for 3 joints

5 Conclusion

Numerical integration of tendon-driven robots can be made with explicit or
implicit integration. When tendon elasticity is not considered, both approaches
are stable for the numerical integration. However, for a given time step, the
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limit time step computation time for 6.3 s integrated

3 joints
explicit integration ≈ 0.4 ms ≈ 20 s (dt=0.4 ms)
implicit integration none ≈ 22 s (dt=2 ms)

4 joints
explicit integration < 0.025 ms > 700s
implicit integration none ≈ 35 s (dt=2 ms)

Table 3. Comparison of the explicit and implicit integrations with elasticity for a
motion of 6.3 s

explicit integration is faster than the implicit integration. Thus, it is better
to use explicit integration when there is no elasticity of the tendons. We have
proposed an explicit and implicit integration that takes into account tendon
elasticity and that integrates the dynamics of the joints and the dynamics of
the motors. These numerical integrations give similar results on the robot joints
evolution as the numerical integrations without elasticity, while they also allow
computing the tendon elongation without increasing the computation time. We
have observed that the implicit integration is still always stable with tendon
elasticity. However, the explicit integration becomes unstable if the time step is
not small enough. This limit time step becomes smaller when the robot becomes
more complex. Accordingly, the minimal computation time that can be obtained
with the explicit integration becomes much higher than the computation time
that can be obtained with the implicit integration. Thus, when tendon elasticity
is considered, the implicit integration is better for numerical integrations. In
future work, we will take into account external efforts that can be applied on
the robot, such as contacts against obstacles.
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