
HAL Id: hal-04121360
https://hal.science/hal-04121360

Submitted on 7 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hitchhiker’s Guide to the TFHE Scheme
Jakub Klemsa

To cite this version:
Jakub Klemsa. Hitchhiker’s Guide to the TFHE Scheme. Journal of Cryptographic Engineering, In
press, �10.21203/rs.3.rs-2841900/v1�. �hal-04121360�

https://hal.science/hal-04121360
https://hal.archives-ouvertes.fr

Hitchhiker’s Guide to the TFHE Scheme

Jakub Klemsa
1,1*

1CTU in Prague, Prague, Czech Republic.
2EURECOM, Sophia-Antipolis, France.

Corresponding author(s). E-mail(s): jakub.klemsa@eurecom.fr;

Abstract

Also referred to as the holy grail of cryptography, Fully Homomorphic Encryption (FHE) allows for
arbitrary calculations over encrypted data. First proposed as a challenge by Rivest et al. in 1978,
the existence of an FHE scheme has only been shown by Gentry in 2009. However, until these days,
existing general-purpose FHE schemes suffer from a substantial computational overhead, which has
been vastly reduced since the original construction of Gentry, but it still poses an obstacle that
prevents a massive practical deployment of FHE. The TFHE scheme by Chillotti et al. represents the
state-of-the-art among general-purpose FHE schemes. This paper aims to serve as a thorough guide
to the TFHE scheme, with a strong focus on the reliability of computations over encrypted data, and
help researchers and developers understand the internal mechanisms of TFHE in detail. In particular,
it may serve as a baseline for future improvements and/or modifications of TFHE or related schemes.

Keywords: Fully homomorphic encryption, TFHE scheme, Reliable homomorphic evaluation, Correctness

1 Introduction

Fully Homomorphic Encryption (FHE), first dis-
covered by Gentry [1] in 2009, enables the evalu-
ation of an arbitrary (computable) function over
encrypted data. As a basic use-case of FHE, we
outline a secure cloud-aided computation: we des-
cribe how a user (U) may delegate a computation
over her sensitive data to a semi-trusted cloud (C):

• U generates secret keys sk, and (public) evalu-
ation keys ek, which she sends to C;

• U encrypts her sensitive data d with sk, and
sends the encrypted data to C;

• C employs ek to evaluate function f , homomor-
phically, over the encrypted data (i.e., without
ever decrypting it), yielding an encryption of
f(d), which it sends back to U;

• U decrypts the message from C with sk, obtain-
ing the desired result: f(d) in plain.

We illustrate the concept of homomorphic eval-
uation of a function over the plain vs. over the
encrypted data in Figure 1.

Among existing FHE schemes, two main
means of homomorphic evaluation can be iden-
tified: (i) the leveled approach (e.g., [2, 3]), and
(ii) the bootstrapped approach (e.g., [1, 4]), while
a combination of both is also possible [5]. The
leveled approach (i) is particularly useful for func-
tions that are represented by an evaluation circuit
of limited depth which is known in advance.
After evaluating it, no additional operation can
be performed with the result, otherwise, the data
might be corrupted. Based on the circuit’s depth
and other properties, parameters must be chosen
accordingly. On the other hand, for the boot-
strapped approach (ii), there is no limit on the
circuit depth, which also means that the circuit
does not need to be known in advance. The TFHE

1

Plain data d
FHE encryption−−−−−−−−−−→ Encrypted data Encr(d)

↓ ↓
User evaluate f evaluate f homomorphically Cloud

↓ ↓
Plain result f(d)

FHE decryption←−−−−−−−−−− Encrypted result Encr
(
f(d)

)

Fig. 1 Illustration of an evaluation of function f over the plain and over the encrypted data in the User’s and in the
Cloud’s domain, respectively. In both ways, the same result is obtained.

scheme by Chillotti et al. [4] is currently con-
sidered as the state-of-the-art FHE scheme that
follows the bootstrapped approach.

For a basic overview of the evolution of FHE
schemes, we refer to a survey by Acar et al. [6]
(from 2018; in particular for implementations,
much progress has been made since then).

1.1 Basic Overview of TFHE

First, let us provide a high-level overview of TFHE
and its abilities, and let us outline its structure.

Similar to many other FHE schemes, the TFHE
scheme builds upon the Learning With Errors
(LWE) encryption scheme, first introduced by
Regev [7]. There are two important properties of
LWE: additive homomorphism, and the presence of
noise; let us comment on either:

Additive homomorphism: LWE ciphertexts, also
referred to as samples, are represented by vec-
tors of (additive) group elements. By the nature
of LWE encryption, LWE samples are addi-
tively homomorphic, which means that—roughly
speaking—for two samples c1 and c2, which
encrypt respectively µ1 and µ2, it holds that
c1 + c2 encrypts µ1 + µ2.
Noise: To achieve security, LWE samples need
to contain a certain amount of noise. How-
ever, with each homomorphic addition, noises
also add up, which may ultimately destroy the
accuracy/correctness of the plaintext.

Like many other FHE schemes, TFHE deals with
the noise growth by defining a procedure referred
to as bootstrapping. Bootstrapping aims at reset-
ting the noise to an—on average—fixed level.
Otherwise, if the noise exceeded a certain bound,
the probability of correct decryption would drop
rapidly.

To sum up, TFHE offers two operations: (i)
homomorphic addition, and (ii) bootstrapping.

Homomorphic addition (i) is a very cheap oper-
ation, however, the noise accumulates. On the
other hand, bootstrapping (ii) is a costly oper-
ation, but it refreshes the noise and—in case
of TFHE—it is inherently capable of evaluating
homomorphically a custom Look-Up Table (LUT),
which can be moreover encrypted. These two oper-
ations are sufficient for the full homomorphism,
i.e., the possibility to evaluate any computable
function over encrypted data. In Figure 2, we
introduce the TFHE gate, which comprises (i)
homomorphic addition(s), grouped into a homo-
morphic dot-product with integer weights, followed
by (ii) TFHE bootstrapping. For bootstrapping,
we outline its internal structure that consists of
four sub-operations: KeySwitch, ModSwitch, Blind-
Rotate and SampleExtr.

1.2 Aim of this Work

The aim of this work is to provide FHE researchers
and developers with a comprehensive and intel-
ligible guide to the TFHE scheme. In particular,
in this paper, we thoroughly analyze the noise
growth of TFHE’s operations, which is decisive
for the correctness and reliability of homomorphic
evaluations in the wild. Besides that, we com-
ment on the purpose of selected tricks that are
intended to decrease the noise growth. Therefore,
our TFHE guide is supposed to provide useful
insights for any prospective improvements and/or
design modifications to TFHE(-related schemes).

Related Work. The original full paper on TFHE

[4] is followed by other papers that recall or
redefine TFHE in numerous ways [8–11], while
changing the notation as well as the approach to
describe the bootstrapping procedure.

Joye [12] provides a SoK paper on TFHE,
supported by many examples with concrete val-
ues. Our TFHE guide complements their SoK in

2

c1

c2

ck

...

c3
∑

wici

1 KeySwitch

2 ModSwitch
c̃

↑

“highest”

noise

3 BlindRotate

4 SampleExtr
cout

high noise
refreshed

noise

w1

w2

w3

wk

hom. addition
dot-product

hom. LUT eval. + noise refresh
bootstrapping

freshly
encrypted/

/bootstrapped
samples

TFHE Gate: hom. counterpart of LUT
(
∑

wiµi

)

fresh

noise

freshly
bootstrapped

sample

...

µ1

µ2

µn

...

µ3

encr.

encr.

encr.

encr.

c1

c2

cn

...

c3

User

TFHE gate

TFHE gate

TFHE gate

TFHE gate

TFHE gate

Cloud User

cOut

homomoprhic evaluation of function f

decomposed into TFHE gates

decr.
f(µ1, . . . , µn)

Fig. 2 TFHE gate: homomorphic addition(s) and bootstrapping, which comprises four sub-operations. The sample (b′,a′)
may proceed to another TFHE gate, or it may go to the output and decryption.

particular by providing a thorough noise growth
analysis, which is one of its pillars.

1.3 Paper Outline

We introduce building blocks of the TFHE scheme
in Section 2. Next, in Section 3, we describe the
construction of TFHE in detail with a particu-
lar focus on noise propagation. We further focus
on the correctness of homomorphic evaluation in
Section 4. In Section 5, we briefly comment on
implementation aspects of TFHE. We conclude our
paper in Section 6.

2 Building Blocks of TFHE

In this section, we first briefly outline flavors of
LWE, we outline a technical notion, referred to
as the concentrated distribution, and we provide
a list of symbols and notation. Then, we introduce
in detail a generalized variant of LWE, denoted
GLWE, and we comment on its additive homomor-
phism, security and other properties. Finally, we
define the decomposition operation that we use to
build up a compound scheme called GGSW, which
enables multiplicative homomorphism.

The Torus and the Ring Variant of LWE

Internally, TFHE employs two variants of LWE,
originally referred to as TLWE and TRLWE, which
stand for (Ring) LWE over the Torus. In a nut-
shell, let us outline what torus and ring mean in
this context.

The torus is the underlying additive group of
LWE that is used in TFHE, denoted T and defined
as T := R/Z with the addition operation. The
torus can be represented by the interval [0, 1), with
each addition followed by reduction mod 1, e.g.,
0.3+0.8 = 0.1. Since T is an abelian group, we may
perceive T as an algebraic Z-module, i.e., we fur-
ther have scalar multiplication Z×T→ T, defined
as repeated addition.

The ring variant of LWE, introduced by Lyuba-
shevsky et al. [13], extends the module’s ring to
a ring of polynomials with a bounded degree. In
TFHE, we will work with the ring Z[X]/(XN +1),
denoted Z

(N)[X], with N a power of two. Then,
the underlying Z

(N)[X]-module comprises torus
polynomials modulo XN + 1, denoted T

(N)[X].

Concentrated Distribution

Unlike (scalar) multiplication, the division of
a torus element by an integer cannot be defined

3

without ambiguity, the same holds for the expec-
tation of a distribution over the torus. However,
this can be fixed for a concentrated distribution [4],
which is a distribution with support limited to
a ball of radius 1/4, up to a negligible subset. For
further details, we refer to [4].

Symbols & Notation

Throughout the paper, we use the following sym-
bols & notation; we denote:

• B := {0, 1} ⊂ Z the set of binary coefficients,
• T the additive group R/Z, referred to as the
torus (i.e., real numbers modulo 1),

• Zn the quotient ring Z/nZ (or its additive
group),

• ⌊·⌉ : R→ Z the standard rounding function,
• for vector v, vi stands for its i-th coordinate,
• ⟨u,v⟩ the dot product of two vectors u and v,
• M (N)[X] the additive group (or ring) of poly-
nomials modulo XN + 1 with coefficients from
M , where N ∈ N is a power of two,

• for polynomial p(X), p(i) stands for the coeffi-
cient of p at Xi,

• for vector of polynomials w, w
(j)
i stands for the

coefficient at Xj of the i-th coordinate of w,
• ∥p(X)∥22 the square of the l2-norm of polynomial
p(X) (i.e., the sum of squared coefficients),

• a
$← M the uniform draw of random variable a

from M ,
• a

α←M the draw of random variable a from M
with distribution α (for α ∈ R, we consider the
zero-centered /discrete/ Gaussian draw with
standard deviation α),

• E[X], Var[X] the expectation and the variance
of random variable X, respectively.

2.1 Generalized LWE

First, we define a generalized variant of the LWE

scheme, referred to as GLWE, which combines
plain LWE with its ring variant. We define GLWE

solely over the torus, although another underly-
ing structure might be used, e.g., Zq with prime q
that is taken in some other schemes.
Definition 1 (GLWE Sample). Let k ∈ N be the
dimension, N ∈ N, N a power of two, be the
degree, α ∈ R

+
0 be the standard deviation of the

noise, and let the plaintext space P = T
(N)[X],

the ciphertext (sample) space C = T
(N)[X]1+k

and the key space K = Z
(N)[X]k. For µ ∈ P

and z
χ← K, where χ is a key distribution, we

call c̄ = (b,a) =: GLWEz(µ) the GLWE sample of
message µ under key z, if

b = µ− ⟨z,a⟩+ e, (1)

where a
$← T

(N)[X]k and e
α← T

(N)[X].
If a = 0, we call the sample trivial, and if

µ = 0, we call the sample homogeneous. We
denote z̄ := (1, z) ∈ Z

(N)[X]1+k, referred to as the
extended key. For N = 1, we have the (plain) LWE

sample and we usually denote its dimension by n.
We also generalize GLWE sampling to vector mes-
sages, yielding a matrix of 1+k columns, with one
GLWE sample per row.

GLWE sampling is actually encryption: in
TFHE, plaintext data is encrypted using the plain
LWE, while GLWE is used internally. To decrypt,
we apply the GLWE phase function (followed by
rounding if applicable).
Definition 2 (GLWE phase). Let k, N and α be
GLWE parameters as per Definition 1, and let c̄ =
(b,a) be a GLWE sample of µ under GLWE key z.
We call the function φz : T

(N)[X] × T
(N)[X]k →

T
(N)[X],

φz(b,a) = b+ ⟨z,a⟩ = ⟨z̄, c̄⟩, (= µ+ e), (2)

the GLWE phase. We call the sample c̄ valid iff the
distribution of φz(c̄) is concentrated. Finally, for
valid sample c̄, we call msg

z
(c̄) := E

[
φz(c̄)

]
the

message of c̄, which equals µ, since the noise is
zero-centered and concentrated.
Remark 1. GLWE phase returns µ + e, i.e., the
original message with a small amount of noise.
We may define GLWE decryption as either:

1. an erroneous decryption via GLWE phase –
we accept some errors in the decrypted result,
which might be considered harmless or even
useful, e.g., in the context of differential pri-
vacy [14]; or

2. a correctable decryption – for this purpose, we
need to control the amount of noise and follow
GLWE phase by an appropriate rounding step
(relevant for this paper); or

3. an expectation of GLWE phase, i.e., msg
z
(c̄) –

this is useful for formal definitions and proofs.

In the following theorem, we state the additively
homomorphic property of GLWE.

4

Theorem 1 (Additive Homomorphism). Let
c̄1, . . . , c̄n be valid and independent GLWE sam-
ples under GLWE key z and let w1, . . . , wn ∈
Z
(N)[X] be integer polynomials (weights). In case

c̄ =
∑n

i=1 wi · c̄i is a valid GLWE sample, it holds

msg
z

(n∑

i=1

wi · c̄i
)

=

n∑

i=1

wi ·msg
z
(c̄i) (3)

and for the noise variance

Var[c̄] =

n∑

i=1

∥wi∥22 · Var[c̄i]. (4)

If all samples c̄i have the same variance V0, we
have Var[c̄] = V0 ·

∑n
i=1∥wi∥22 and we define

ν2 :=

n∑

i=1

∥wi∥22, (5)

referred to as the quadratic weights. We refer
to the operation (3) as the (homomorphic) dot
product (DP).

2.1.1 Discrete-Valued Plaintext Space

As outlined in Remark 1, item 2, in this paper,
we focus on a variant of GLWE that restricts its
messages to a discrete subspace of the entire torus
plaintext space. Denoted by M, we refer to the
plaintext subspace as the cleartext space, leaving
the term plaintext space for torus polynomials.

In this paper, we only focus on the cleartext
space of the form M = 1

2π Z/Z ⊂ T (a subgroup
of T isomorphic to Z2π), where we refer to the
parameter π as the cleartext precision. In terms of
Definition 2, if it holds for the noise e that |e| <
1/2π+1, then rounding of the value φz(b,a) ∈ T

to the closest element of M leads to the correct
decryption/recovery of µ.

2.1.2 Discretized Torus

For the sake of simplicity of the noise growth anal-
ysis, TFHE is defined over the continuous torus,
whereas in implementation, a discretized finite
representation must be used instead. To cover
the unit interval uniformly, TFHE implementa-
tions use an integral type—usually 32- or 64-bit
(u)int—to represent a torus element, where we
denote the bit-precision by τ . E.g., for τ = 32-bit

uint32 type, t ∈ uint32 represents t/232 ∈ T ∼
[0, 1), where the denominator is usually denoted
by q = 2τ (in this case q = 232). Using such a rep-
resentation, we effectively restrict the torus T to
its submodule Tq := q−1

Z/Z ⊂ T.

2.1.3 Distribution of GLWE Keys

For the coefficients of GLWE keys, a ternary distri-
bution χp : (−1, 0, 1) → (p, 1 − 2p, p), parameter-
ized by p ∈ (0, 1/2), can be used. In particular, uni-
form ternary distribution is suggested by a draft
of the homomorphic encryption standard [15],
and it also is widely adopted by main FHE
libraries like HElib [16], Lattigo [17], SEAL [18],
or HEAAN [19], although they implement other
schemes than TFHE. With a fixed GLWE dimen-
sion and carefully chosen p, the distribution χp

may achieve better security as well as lower noise
growth than uniform binary U2 : (0, 1)→ (1/2, 1/2).
On the other hand, it is worth noting that for
“small” values of p, such keys are also referred to
as sparse keys (in particular with a fixed/limited
Hamming weight), and there exist specially tai-
lored attacks [20, 21]; we discuss security in the
following paragraphs.
Note 1. In TFHE, one instance of LWE and one
of GLWE is employed. For LWE keys, usually,
uniform binary distribution is used for technical
reasons, although attempts to extend the key space
can be found in the literature [22]. For GLWE keys,
a ternary distribution can be used immediately.

2.1.4 Security of (G)LWE

Estimation of the security of (G)LWE encryption
is a complex task: it depends on (i) the size of the
secret key (i.e., the dimension and/or the polyno-
mial degree), (ii) the distribution of its coefficients,
(iii) the distribution of the noise, which is usu-
ally given by its standard deviation, denoted by
α, and (iv) the underlying structure (usually inte-
gers modulo q). As a rule of thumb, it holds that
the longer key, the better security, as well as the
greater noise, the better security.

A state-of-the-art tool that implements an
LWE security assessment is known as lattice-

-estimator – a tool by Albrecht et al. [23, 24].
Authors aim at considering all known relevant
attacks on LWE, including those targeting sparse
keys, as outlined previously. A plot that shows
selected results of lattice-estimator can be

5

found in Figure 3. A code example of the usage
of lattice-estimator as well as raw data that
were used to generate the figure can be found in
our repository1.

2.1.5 Balancing Parameters

The downside of increasing the key size (improves
security) is longer evaluation time (reduces perfor-
mance), similarly increasing the amount of noise
(improves security) leads to an error-prone eval-
uation (reduces correctness). Therefore, the goal
is to find the best balance within the triangle of
somehow orthogonal goals:

security

performance

correctness

The problem of finding such a balance is thor-
oughly studied by Bergerat et al. [25], who pro-
vide concrete results that aim at achieving the
best performance, without sacrificing security, nor
correctness.

2.2 Decomposition

To enable homomorphic multiplication and at the
same time to reduce its noise growth, torus ele-
ments get decomposed into a series of integers.
The operation is parameterized by (i) the decom-
position base (denoted B; we only consider B = 2γ

a power of two), and (ii) by the decomposition
depth (denoted d). We further denote

g := (1/B, 1/B2, . . . , 1/Bd), (6)

referred to as the gadget vector. We define gad-
get decomposition of µ ∈ T ∼ [−1/2, 1/2) ⊂ R,
denoted g−1(µ), as the base-B representation of
µ̃ = ⌊Bd ·µ⌉ ∈ Z (multiplied in R) in the alphabet
[−B/2,B/2) ∩ Z. Note that such decomposition is
unique. For the decomposition error, it holds that

∣
∣µ− ⟨g,g−1(µ)⟩

∣
∣ ≤ 1/2Bd. (7)

We denote

ε2 :=
1

12B2d
and (8)

1https://github.com/fakub/LWE-Estimates

VB :=
B2 + 2

12
(9)

the variance of the decomposition error and the
mean of squares of the alphabet [−B/2,B/2) ∩ Z

(n.b., we assume B is even), respectively; for both
we consider a uniform distribution. Note that with
the alphabet [0, B)∩Z, the respective value of VB

would have been higher, i.e., this is one of the little
tricks to reduce later the noise growth.

For k ∈ N, k ≥ 2, we further denote

Gk := Ik ⊗ g, (10)

where Ik is identity matrix of size k and ⊗ stands
for the tensor product, i.e., we have Gk ∈ T

kd×k,
referred to as the gadget matrix.

We generalize g−1 to torus vectors and torus
polynomials (and their combination) in a natural
way: for vector t ∈ T

n, g−1(t) is the concatena-
tion of respective component-wise decompositions
g−1(ti), for polynomial t ∈ T

(N)[X], g−1(t) pro-
ceeds coefficient-wise, i.e., the output is a vector
of integer polynomials. Finally, for a vector of
torus polynomials, g−1 outputs a concatenation of
respective vectors of integer polynomials.

2.3 GGSW & Homomorphic

Multiplication

Unlike GLWE, which encrypts torus polynomi-
als, GGSW encrypts integer polynomials. The
main aim of GGSW is to allow homomorphic
multiplication of a (GLWE-encrypted) torus poly-
nomial by a (GGSW-encrypted) integer polyno-
mial. The multiplicative homomorphic operation
is referred to as the External Product, denoted by
� : GGSW × GLWE→ GLWE.
Definition 3 (GGSW Sample). Let k, N and α
be the parameters of a GLWE instance with key z.
We call C̄ = Z̄+m ·G1+k, C̄ ∈ T

(N)[X](1+k)d,1+k,
the GGSW sample of m ∈ Z

(N)[X] if rows of Z̄ are
mutually independent, homogeneous GLWE sam-
ples under the key z. We call the sample valid iff
there exists m ∈ Z

(N)[X] such that each row of
C̄−m·G1+k is a valid homogeneous GLWE sample.
Definition 4 (External Product). For GLWE

sample c̄ = (b,a) ∈ T
(N)[X]1+k and GGSW sam-

ple Ā of corresponding dimensions, we define the
External Product, � : GGSW×GLWE→ GLWE, as

g−1(c̄)T · Ā =: Ā � c̄. (11)

6

https://github.com/fakub/LWE-Estimates

Est. bit-security of LWE

0 256 512 768 1024 1280 1536 1792 2048

LWE dimension n

8

16

24

32

40

−
lo
g
(α

)

64

128

192

256

320

384

448

512

576

Fig. 3 Bit-security of LWE as estimated by lattice-estimator by Albrecht et al. [23, 24] (commit ID f9dc7c), using
underlying group size q = 264. Interpolated between grid points. Raw data can be found at https://github.com/fakub/
LWE-Estimates.

In the following theorem, we state the mul-
tiplicative homomorphic property of the external
product and we evaluate its excess noise.
Theorem 2 (Correctness & Noise Growth of �).
Given GLWE sample c̄ of µc ∈ T

(N)[X] under
GLWE key z and noise parameter α, and GGSW

sample Ā of mA ∈ Z
(N)[X] under the same key

and noise parameters, external product returns
GLWE sample c̄′ = Ā� c̄, which holds excess noise
e�, given by

〈
z̄, c̄′

〉
= mA ·

〈
z̄, c̄

〉
+ e�, for which

it holds

Var[e�] ≈ dNVBα
2(1 + k)

amplified GGSW noise

+

+ ∥mA∥22 · ε2(1 + kNVz)

decomp. errors

, (12)

where Vz is the variance of individual coefficients
of the GLWE key z and other parameters are as per
previous definitions. If e� and the noise of c̄ are
“sufficiently small”, c̄′ encrypts msg

z
(c̄′) = mA ·

µc, i.e., external product is indeed multiplicatively
homomorphic.

Proof. Find the proof in Appendix A.1.

3 Constructing the TFHE

Scheme

By far, there are two issues with (G)LWE:

1. As shown in Theorem 1, each additive homo-
morphic operation over (G)LWE samples leads
to noise growth in the resulting aggregate sam-
ple, which limits the number of additions and

which may also lead to incorrect results if the
noise grows “too much”.

2. Besides that, no homomorphic operation other
than addition has been defined yet, which is not
sufficient to achieve the full homomorphism.

The procedure referred to as bootstrapping aims
at resolving them both at the same time: while
refreshing the noise to a certain, constant-on-
average level, bootstrapping also inherently eval-
uates a function, referred to as the bootstrapping
function, represented by a Look-Up Table (LUT).
This makes TFHE fully homomorphic.
Note 2. An approach that clearly achieves the full
homomorphism is presented in the original paper
by Chillotti et al. [4], where authors define several
logical gates, including ¬, ∨, and ∧. We refer to
this variant as the binary TFHE, however, in this
paper we rather focus on the variant of TFHE with
a discrete multi-value cleartext space Z2π , as out-
lined in Section 2.1.1. Binary TFHE might then be
perceived as a special case.

As already outlined in Figure 2, TFHE gate
is a combination of a homomorphic dot-product
(cf. Theorem 1) and the bootstrapping procedure,
which consists of four algorithms: KeySwitch,Mod-

Switch, BlindRotate and SampleExtr; find a more
detailed illustration of bootstrapping in Figure 4.
In the rest of this section, we discuss each algo-
rithm in detail (except ModSwitch, which we cover
together with BlindRotate) and we combine them
into the Bootstrap algorithm.

According to the results of Bergerat et al. [25],
it shows that in most cases, more efficient
TFHE parameters can be found if dot-product is

7

https://github.com/fakub/LWE-Estimates
https://github.com/fakub/LWE-Estimates

SampleExtr

high noise,

high dim.

refreshed

noise

(after dot-
-product)

T-LWE Z2N -LWE
KeySwitch

reduce
dimension

T-LWE
ModSwitch

↑

“highest”

noise

Bootstrapping:

BlindRotate

T-LWE

T-GLWE

scale &
round to
integers

holds LUT
↓

control
blind-rotation

(∼ Z2N -LWE phase)

T-GLWE

extract
constant
term

“rotated” LUT
↓

(desired value
at const. term)

LUT eval. &
noise refresh

Fig. 4 Outline of the internal structure of TFHE’s bootstrapping. The aim of KeySwitch is to improve performance,
whereas BlindRotate (inside the gray box) evaluates the LUT and refreshes the noise.

moved before key-switching (originally proposed
by Bourse et al. [26]), as opposed to the origi-
nal variant of TFHE [4]. I.e., in the new variant,
key-switching appears at the beginning of boot-
strapping, whereas in the original variant, key-
switching is the last step. Authors of [25] also
consider a variant that omits key-switching, but
they do not find it more efficient either. Hence, we
describe solely the new, re-ordered variant with
key-switching in this paper.

3.1 Key-Switching

The first step towards refreshing the noise, which
happens in blind-rotate, is key-switching. Since
blind-rotate is a demanding operation, the aim
of key-switching is to reduce the dimension of
the input sample. Attempts to omit key-switching
were also tested by Bergerat et al. [25], however,
achieving a poorer performance than the variant
with key-switching.

The key-switching operation, denoted Key-

Switch, effectively changes the encryption key of
LWE sample (b′,a′) from LWE key s′ ∈ B

n′

to
LWE key s ∈ B

n. Besides the input LWE sample,
KeySwitch requires a series of key-switching keys,
while the j-th key is defined as

KSj := LWEs(s
′
j g

′), j ∈ [1, n′], (13)

where g′ is a gadget vector given by decomposition
base B′ and depth d′, and where each component
of s′j g

′ produces one LWE sample, independent

from others. I.e., KSj ∈ T
d′,1+n is interpreted as

a matrix, where rows are actual LWE samples. We
denote the set of key-switching keys from s′ to s as
KSs′→s := (KSj)

n′

j=1. Note that key-switching keys
consist of LWE samples and they can therefore be
published as a part of evaluation keys.

Given LWE sample (b′,a′) ∈ T
1+n′

of µ under
s′, key-switching keys KSs′→s, generated with

gadget vector g′, we define key-switching as

KeySwitch
s′→s

(b′,a′) = (b′,0)−
n′

∑

j=1

g′−1(a′j)
T·KSj ,

(14)
which returns an LWE sample of µ under s. Note
that in fact, KeySwitch homomorphically evaluates
the phase function. In the following theorem, we
evaluate the excess noise induced by KeySwitch.
Theorem 3 (Correctness & Noise Growth of
Key-Switching). Given LWE sample c̄′ of µ ∈ T

under LWE key s′ and key-switching keys KSs′→s,
encrypted with noise parameter α′, KeySwitch

s′→s

returns LWE sample c̄, which holds excess noise
eKS, given by

〈
s̄, c̄

〉
=

〈
s̄′, c̄′

〉
+ eKS, for which it

holds

Var[eKS] ≈ n′Vs′ε
′2

decomp. errors

+ n′d′VB′α′2

amplif. KS noise

, (15)

where ε′2 and VB′ are as per (8) and (9), respec-
tively, with B′ and d′, Vs′ is the variance of
individual coefficients of the LWE key s′, and other
parameters are as per previous definitions. If eKS
and the noise of c̄′ are “sufficiently small”, it holds
µ = msg

s
(c̄) = msg

s′
(c̄′), i.e., KeySwitch indeed

changes the key, without modifying the message.

Proof. Find the proof in Appendix A.2.

3.2 Blind-Rotate

The blind-rotate operation, denoted BlindRotate,
is the cornerstone of bootstrapping since this
is where the noise gets refreshed. It combines
two ingredients: the decryption (phase) function
φs(b,a) = µ + e (cf. (2)), and the multiplica-
tive homomorphism of GGSW×GLWE samples (cf.
Theorem 2).

Internally, blind-rotate evaluates a relation
reminiscent of the phase function φs(b,a). How-
ever, as such, the phase function does not get rid of

8

the noise – indeed, the error term remains present
in the original amount; cf. (2). Therefore, a round-
ing step—as outlined in Section 2.1.1—must
be included, too. Blind-rotate achieves rounding
using a staircase LUT, i.e., a LUT that encodes
a staircase function, where the “stairs” are respon-
sible for rounding. Such a LUT is provided in
a form of a (possibly encrypted) polynomial,
which is referred to as the test vector, denoted
by tv(X), whose coefficients represent the LUT

values.
Roughly speaking, we aim at multiplying

tv(X) by X−M , where M holds somehow the erro-
neous phase µ+ e. This “shifts” the coefficients of
tv(X) by M positions towards lower powers of X
(we can think of discarding the coefficients that
underflow for now). Then, evaluating tv(X)·X−M

at X = 0 (i.e., taking the constant term of the
product) yields the originally M -th coefficient of
tv(X).

In the following paragraphs, we outline more
concretely how a LUT can be encoded into a torus
polynomial, which we further reduce modulo
XN + 1, so that it can be taken as a plaintext for
a (possibly trivial) GLWE sample.

3.2.1 Encoding a LUT into
a Polynomial Modulo X

N + 1

The product of degree-N polynomial tv(X) and
monomial Xm (with 0 ≤ m < N) holds the
coefficients of tv shifted by m positions towards
higher degrees. Reducing the product tv(X) ·Xm

modulo XN + 1 brings the coefficients of powers
higher than or equal to N back to lower powers
(namely by N positions) while flipping their sign
(e.g., aXN+k is reduced to −aXk). Hence, multi-
plication of a polynomial by a monomial modulo
XN +1 yields a negacyclic rotation. These are the
consequences for LUT evaluation in blind-rotate:

• multiplying tv(X) by X−m mod XN + 1 with
0 ≤ m < N results in moving the m-th coeffi-
cient of tv(X) to the constant position, which is
then taken as a result of the LUT;

• for N ≤ m < 2N , the result equals to the (m−
N)-th coefficient of tv(X) with a flipped sign,
due to the negacyclic rotation; and

• for greater m, it is worth noting that the period
is 2N .

Since we assume that tv is a torus polynomial, we
have LUT : Z2N → T and it holds

LUT(N +m) = −LUT(m), m ∈ [0, N), (16)

i.e., only the first N values of a LUT need to be
provided explicitly, while the other N values are
given implicitly by the negacyclic extension, and
the rest is periodic with a period of 2N . Encoded
in a test vector tv ∈ T

(N)[X] as

tv(m) = LUT(m), m ∈ [0, N), (17)

the LUT is evaluated at m ∈ Z as

(
X−m · tv(X) mod XN + 1

)(0)
=

= (−1)⌊m/N⌋ · tv(X)(m mod N) =

= LUT(m mod 2N). (18)

We illustrate encoding of a LUT into a polynomial
(test vector) tv(X) in Figure 5. Next, we outline
the overall idea of blind-rotate.

Encoding the Stairs

Let us put forward explicitly the process of encod-
ing the desired (negacyclic) bootstrapping func-
tion f̄ : Z2π → Z2π (which acts on cleartexts) into
the respective LUT : Z2N → T, represented by the
test vector tv(X), including the “stairs”:

LUT(k) = f̄
(⌊

k · 2
π

2N

⌉)

, k ∈ [0, 2N). (19)

We provide an illustration of such an encoding
in Figure 6. We recall that only the LUT values
for k ∈ [0, N) are actually encoded into the test
vector; cf. (17), (18) and Figure 5.

Recall that the “stairs” are supposed to be
responsible for rounding, which in turn refreshes
the noise. From 19, it follows that the width of
such a stair is 1/2π. By Emax, defined as

Emax :=
1

2π+1
, (20)

we denote the maximum of error magnitude that
leads to the correct LUT evaluation; cf. Figure 6.
Note 3. Bootstrapping cannot be applied to only
refreshing the noise, i.e., setting identity as the

9

tv(X) = 0 +1X −1X2 +2X3 (mod X4 + 1)

. . . provided LUT values

. . . negacyclic extension

Rotation by X−m with m = 3

X−3 · tv(X) = 2 +0X −1X2 +1X3 (mod X4 + 1)

Fig. 5 Illustration of encoding of a LUT into a polynomial mod XN + 1 that is used in blind-rotate. We set N = 4 and
we evaluate at m = 3, which means “rotation” by X−3. The desired output value LUT(3) is emphasized in red. N.b., in
this illustration, we omit the “stairs” for simplicity.

bootstrapping function, since identity is not nega-
cyclic. A workaround must be made, with respect
to a particular use case. Specifically, many existing
implementations prepend an extra bit of padding,
which they set to zero and do not use it. Note that
such implementations need to somehow prevent
possible overflows of homomorphic additions.

3.2.2 Idea of Blind-Rotate

First, let us get back to the phase function,
which is responsible for decryption. Originally,
with a LWE sample (b,a) to be bootstrapped,
φs(b,a) is (i) evaluated over the torus, and (ii) it
is using known bits of the key s.

For (i): based on previous observations, we first
rescale & round the sample (b,a) ∈ T

1+n to the
Z2N domain, which preserves periodicity. There-
fore, we calculate the scaled and rounded value of

the phase function as

m̃ = b̃+ ⟨s, ã⟩, (21)

where b̃ = ⌊2Nb⌉ and ãi = ⌊2Nai⌉, which is also
referred to as modulus switching. As outlined pre-
viously, we aim at performing the evaluation of m̃
as per (21) in powers of X; cf. (18).

For (ii): the secret key s is clearly not known
to the evaluator (the cloud). Instead, bits si of the
key are provided in a form of GGSW samples BKi,
encrypted with GLWE key z, and referred to as the
bootstrapping keys, denoted by BKs→z = (BKi)

n
i=1.

From (i) and (ii), it follows that given the
sample (b,a) and the encrypted bits of the key s
(bootstrapping keys), we can apply homomorphic
operations to obtain the (encrypted) monomial
Xm̃ modulo XN + 1, which we employ for LUT

evaluation as per (18). I.e., the test vector gets
blindly rotated.

10

2× Emax = 1
2π

sta
irc.

LU
T pre

c.
1
2N

clea
rte

xt
pre

c.
1
2π

. . . f̄ : Z2π → Z2π

. . . LUT : Z2N → T

Fig. 6 Relation between a negacyclic bootstrapping function f̄ and respective staircase LUT (illustrative). If the evaluated
value does not leave its “stair”, i.e., the input’s error magnitude is lower than Emax, LUT gets evaluated correctly.

In the following paragraphs, we provide a full
technical overview of modulus-switching and
blind-rotate, respectively.

3.2.3 Modulus-Switching

As outlined, blind-rotate is preceded by a tech-
nical step, referred to as modulus-switching and
denoted by ModSwitch, which is parameterized by
N ∈ N. ModSwitchN , which inputs LWE sam-
ple (b,a) ∈ T

1+n under LWE key s and outputs
LWE sample (b̃, ã) ∈ Z

1+n
2N under the same key, is

defined as

ModSwitchN (b,a) =
(
⌊2Nb⌉, ⌊2Nai⌉ni=1

)
=: (b̃, ã),

(22)
where multiplications of type 2N ·ai are performed
in R (using any unit interval for T), then round-
ing brings result back to Z, from where we easily
obtain Z2N .

Due to rounding, additional noise is induced by
ModSwitch; we evaluate it in the following lemma.
Lemma 1 (Noise Growth of Modulus-Switching).
ModSwitchN induces an excess noise, given by
1/2N ·⟨s̄, (b̃, ã)⟩ = ⟨s̄, (b,a)⟩+eMS, for which it holds

Var[eMS] =
1 + n/2

48N2
, (23)

where n is the LWE dimension.

Proof. We write

eMS = ⟨(1, s), (b̃/2N − b, ã/2N − a)⟩ =

= b̃/2N − b

∈(−1/4N,1/4N]

+
∑

si · (ãi/2N − ai)

∈(−1/4N,1/4N]

, (24)

where each underbraced term is assumed to have
a uniform distribution on (−1/4N, 1/4N], i.e., the
variance of 1/48N2. For si, we have E[s2i] = 1/2.
For independent variables with E[Y] = 0, it holds
Var[X · Y] = E[X2] · Var[Y], which is this case for
X = si and Y = ãi/2N−ai. The result follows.

3.2.4 Description of Blind-Rotate

A description of blind-rotate is given in Algo-
rithm 1. In line 3, if BKi encrypts si = 0, the
line evaluates to (encrypted) ACC = X0·ãi · ACC,
if BKi encrypts si = 1, we obtain (encrypted)
X1·ãi ·ACC. I.e., after blind-rotation, we obtain an
encryption of Xm̃ · tv, where m̃ = ⟨s̄, (b̃, ã)⟩. Line
3 also mandates si ∈ B, as outlined in Note 1,
although generalization attempts exist [22].
Remark 2. During blind-rotate, the “old” noise
is refreshed with a fresh noise, which comes from
the bootstrapping keys and from the (possibly
encrypted) test vector – the fresh noise does not
depend on the noise of the input sample. Never-
theless, the “old” noise affects what value from
the test vector is selected (gets rotated to), i.e.,
at which point the (staircase) LUT is evaluated;
cf. Figure 6. We discuss two types of decryption
errors later in Section 4.1.1.
In the following theorem, we evaluate the noise
of the output of BlindRotate – i.e., the refreshed
noise, which we denote V0.

11

Algorithm 1 BlindRotate

Input: LWE sample (b,a) of µ ∈ T under LWE key
s ∈ B

n, modulus-switched to (b̃, ã) ∈ Z
1+n
2N ,

Input: (usually trivial) GLWE sample t̄ ∈
T
(N)[X]1+k of tv ∈ T

(N)[X] (aka. test vector)
under GLWE key z ∈ Z

(N)[X]k,
Input: for i ∈ [1, n], GGSW samples of si
under z, referred to as bootstrapping keys, denoted
BKs→z := (BKi)

n
i=1.

Output: GLWE sample of Xm̃ · tv under z, where
m̃ = ⟨s̄, (b̃, ã)⟩ ≈ 2Nµ.

1: ACC← X b̃ · t̄ ▷ aka. accumulator
2: for i ∈ [1, n] do
3: ACC← ACC+ BKi � (X ãi · ACC− ACC)
4: end for
5: return ACC

Theorem 4 (Correctness & Noise Growth of
Blind-Rotate). Given inputs of Algorithm 1,
where bootstrapping keys are encrypted with noise
parameter α and test vector is (possibly) encrypted
with noise parameter αt (i.e., αt = 0 or α),
BlindRotate returns the last-step ACC with noise
variance given by

Var[⟨z̄,ACC⟩] ≈ α2
t + ndNVBα

2(1 + k) +

+ nε2(1 + kNVz) =: V0, (25)

which we denote by V0, other parameters are
as per previous theorems and definitions. If the
noise of ⟨z̄,ACC⟩ is “sufficiently small”, it holds
msg

z
(ACC) = Xm̃ · tv, where m̃ = ⟨s̄, (b̃, ã)⟩ ≈

2Nµ, i.e., BlindRotate indeed “rotates” the test
vector by the approximate phase of (b,a), scaled to
Z2N .

Proof. Find the proof in Appendix A.3.

3.3 Sample-Extract

By far, BlindRotate outputs a GLWE sample of
a polynomial (blindly-rotated test vector), which
holds the desired value at its constant term and
which is encrypted with a GLWE key. The goal
of SampleExtr is to literally extract a partial LWE

sample, which encrypts the constant term, out of
the GLWE sample, which we denote by (b,a) ∈
T
(N)[X]1+k (the last-step ACC in Algorithm 1).

Note that a similar thing happens with the key:

the new LWE key is also an “extract” of the orig-
inal polynomial GLWE key z ∈ Z

(N)[X]k. Writing
down the constant term of ⟨z̄, (b,a)⟩, which is
a torus polynomial, we obtain

〈
z̄, (b,a)

〉(0)
= b(0) +

k∑

i=1

(
zi(X) · ai(X)

)(0)
=

= b(0) +

k∑

i=1

〈(
z
(0)
i ,−z(N−1)

i , . . . ,−z(1)i

)

i-th partial extr. LWE key z
∗

i

,

(
a
(0)
i , a

(1)
i , . . . , a

(N−1)
i

)

i-th partial extr. LWE sample a
∗

i

〉

, (26)

where we denote the i-th partial extracted LWE

key and sample by z∗i ∈ Z
N and a∗i ∈ T

N , respec-
tively. We obtain the full extracted LWE key and
sample as their concatenations, denoted respec-
tively as z∗ ∈ Z

kN and (b(0),a∗) ∈ T
1+kN , where

b(0) is prepended. Note that a∗ is a simple serial-
ization of polynomial coefficients of a, whereas for
z, a rearranging is needed, together with negative
signs. Finally, we have

〈
z̄, (b,a)

〉(0)
=

〈
z̄∗, (b(0),a∗)

〉
, (27)

while noise preserves. Note that the extracted key
z∗ plays the role of the LWE key s′ that is supposed
to be encrypted in key-switching keys – we com-
pose the four algorithms and we provide further
details in the next section.

3.4 TFHE Bootstrapping

Putting the four algorithms together, we obtain
the TFHE (Programmable) Bootstrapping algo-
rithm; find it as Algorithm 2, previously outlined
in Figure 4. It is worth noting that BlindRotate (on
line 3 of that algorithm) inputs a negative sam-
ple: this is due to the LUT encoding that we use;
cf. (17) and (18), where a negative sign at m is
expected, although by Theorem 4, a positive sign
appears in the power of X.

We provide a summary of parameters in
Table 1. For an exhaustive technical overview
of blind-rotate, preceded by modulus-switching
and followed by sample-extract, we refer to
Appendix B, Figure B1.

Recall that the noise gets refreshed in Blind-

Rotate (cf. Remark 2) and it does not change in

12

Algorithm 2 Bootstrap

Input: LWE sample (b∗,a∗) ∈ T
1+kN of µ = m/2π,

m ∈ Z2π , under LWE key z∗ ∈ Z
kN , extracted

from GLWE key z ∈ Z
(N)[X]k,

Input: (possibly trivial) GLWE sample t̄ ∈
T
(N)[X]1+k of test vector tv ∈ T

(N)[X] under the
key z, where tv encodes negacyclic bootstrapping
function f̄ : Z2π → Z2π as per (17) and (19),
Input: key-switching keys KSz∗→s and bootstrap-
ping keys BKs→z.
Output: LWE sample of f̄(m)/2π under key z∗.

1: (b,a)← KeySwitch
(
(b∗,a∗),KSz∗→s

)

2: (b̃, ã)← ModSwitchN (b,a)
3: (s, r)← BlindRotate

(
(−b̃,−ã), t̄,BKs→z

)

4: return (b′,a′)← SampleExtr
(
(s, r)

)

Table 1 Summary of parameters’ notation.

Parameters ε2, ε′2 and VB , VB′ are derived from
respective decomposition parameters; cf. (8) and (9).

LWE secret key s GLWE secret key z

LWE dimension n GLWE dimension k

GLWE polyn. degree N

LWE noise std-dev α′ GLWE noise std-dev α

KS decomp. base B′ BK decomp. base B

KS decomp. depth d′ BK decomp. depth d

SampleExtr, i.e., the variance of a freshly boot-
strapped sample is given by V0 as per (25). N.b.,
at this point, we do not guarantee the correctness
of the output – details will be given in Section 4,
where we identify bounds that need to be satisfied
so that the bootstrapping function is evaluated at
the correct point.

4 Correctness of LUT

Evaluation

In this section, we combine the noise growth esti-
mates from the previous section and we derive
a condition for the correct evaluation of the
bootstrapping function. As outlined, the noise
propagates throughout various operations, let us
provide an overview first.

Overview of Noise Propagation

The noise, which is present in every encrypted
sample, evolves during the evaluation of a TFHE

gate, which comprises (i) homomorphic dot-
product and (ii) bootstrapping (with its four sub-
operations). Let us comment on either operation:

Dot-product: Provided that the noise of involved
samples is independent, the error variance of
a weighted sum is additive with weights squared
(cf. (4) in Theorem 1).
Bootstrapping: If the noise of the sample-to-be-
bootstrapped is smaller than a certain bound, the
blind-rotate step of bootstrapping evaluates the
bootstrapping function correctly: i.e., the error of
m̃ (as per Theorem 4 and Algorithm 1) is smaller
than the bound Emax; cf. Figure 6. The resulting
sample then carries—on average—a fixed amount
of noise (independent of the original sample),
which solely depends on the TFHE parameters
(cf. (25) in Theorem 4).

In Figure 7, we illustrate the error propagation

throughout a TFHE gate, where e
(i)
0 denotes actual

noise of the i-th, freshly bootstrapped sample.
Note that the overall maximum of relative aver-
age noise is achieved within bootstrapping when
the modulus-switched sample (b̃, ã) enters blind-
rotate, which refreshes the noise; cf. Remark 2.

We denote the maximum error and its variance
by emax and Vmax, respectively, and we have

Vmax ≈ ν2max · V0 + VKS + VMS, (28)

where ν2max is the maximum of sums of squares
of integer weights of dot-products (cf. (5)) across
the entire computation, V0, VKS and VMS are
respectively the variance of a freshly bootstrapped
sample (cf. (25), combined using (4)), the variance
of the excess noise of key-switching (cf. (15)) and
that of modulus-switching (cf. (23)). Note that
emax is the relative, torus-scaled error of m̃ ∈ Z2N

that enters blind-rotate; cf. Algorithm 2. The mag-
nitude of this error is decisive for the correctness
of the bootstrapping function evaluation as per
Figure 6.
Note 4. Let us outline an intuition that justi-
fies the design where key-switching is moved to
the beginning of bootstrapping (proposed in [26],
experimentally shown to be more efficient in [25],
presented in this paper), as opposed to the orig-
inal TFHE design [4], where key-switching is the
last step of bootstrapping. The variance of the

13

e
(1)
0 , e

(2)
0 , . . .

freshly bootstrap-
ped sample(s)

homomorphic−−−−−−−−−→
dot-product

∑

i

e
(i)
0

pre-Bootstrap
(eDP)

Bootstrap
︷ ︸︸ ︷

KeySwitch,−−−−−−−→
ModSwitch

eDP + eKS + eMS

pre-BlindRotate (emax),

|emax|
!
<Emax

BlindRotate,−−−−−−−→
SampleExtr

e′0
bootstrapped

sample

Fig. 7 Noise propagation from a bunch of freshly bootstrapped samples throughout a TFHE gate towards a new, freshly
bootstrapped sample. If |emax| < Emax, the bootstrapping function is evaluated correctly.

maximum error of the original variant writes

Vmax ≈ (VBR + VKS

V
(or.)
0

) · ν2 + VMS, (29)

whereas in the re-ordered variant, we have

Vmax ≈ VBR

V
(re.)
0

·ν2 + VKS + VMS, (30)

where VBR is the variance of the output of Blind-
Rotate. We may notice that the re-ordered variant
is expected to achieve a lower noise growth, in
particular for applications with greater ν2. Also,
note that the re-ordered variant in fact only swaps
key-switching and dot-product; let us outline both,
starting after sample-extract:

orig.: (SE)→ KS
V

(or.)
0−−−→ DP

to bs.−−−→ MS→ . . .

reord.: (SE)
V

(re.)
0−−−→ DP

to bs.−−−→ KS→ MS→ . . .

4.1 Correct Evaluation of the

Bootstrapping Function

Let us define the quantity κ, which aims at quan-
tifying the probability of correct evaluation of the
bootstrapping function (i.e., |emax| < Emax), as

κ :=
Emax√
Vmax

. (31)

The aim of κ is to tell how many times the stan-
dard deviation of the maximum error, denoted
σmax =

√
Vmax, fits into the target interval of

the size of 2Emax around the expected value. The
probability that a normally distributed random
variable falls within the interval of κ times its
standard deviation can be looked-up from stan-
dard normal tables (aka. the Z-tables). Note that

by the Central Limit Theorem, we assume a nor-
mal distribution for the value of m̃. E.g., for κ = 3,
we have Pr[·] ≈ 99.73% ≈ 1/370 (aka. rule of 3σ),
however, we recommend higher values of κ (e.g.,
Bergerat et al. [25] provide their parameters with
κ = 4, which gives error rate ≈ 1/15 787). N.b., also
the size of the evaluated circuit as well as possible
real-world consequences of an incorrect evaluation
shall be taken into account.

From (31) and (20), we obtain the fundamental
condition on the variance of the maximum error as

Vmax ≤
1

κ2 · 22π+2
, (32)

where Vmax can be further broken down by (28)
and other previous equalities. If the fundamental
condition is satisfied, the (erroneous) value of m̃
does not leave its “stair” with high probability
(related to κ), and the bootstrapping function f̄
is evaluated correctly; cf. Figure 6.

4.1.1 Types of Decryption Errors

Correct blind-rotate does not itself guarantee the
correctness of the result after decryption – indeed,
there is a non-zero probability that the freshly
bootstrapped sample (or a dot-product of them)
decrypts incorrectly due to the intrinsic LWE

noise. Therefore, we define two types of decryption
errors that may occur after a dot-product followed
by bootstrapping: one due to LWE noise (as just
outlined), and one due to incorrect blind-rotate.

Fresh Bootstrap Error (Err1)

First, let us assume that blind-rotate rotates the
test vector correctly (i.e., |emax| < Emax) and we
denote the output LWE sample of bootstrapping
as c̄′. Then, if the distance of ⟨s̄, c̄′⟩ from the
expected value is greater than Emax, we refer to
this kind of error as the type-1 error, denoted Err1.

14

12

3 0

OK

Err1

Err1

Err2

Fig. 8 Illustration of type-1 and type-2 errors: LUT eval-
uates correctly and incorrectly to 0 and 3, respectively.

The probability of Err1 relates to the noise
of a correctly blind-rotated, freshly bootstrapped
sample, which can be estimated from V0; see (25).

Blind-Rotate Error (Err2)

Second, we consider the result of a TFHE gate, i.e.,
we take a dot-product of a bunch of independent,
freshly bootstrapped samples, with ν2 ≤ ν2max,
and we bootstrap it. Then, if blind-rotate rotates
the test vector incorrectly (i.e., |emax| > Emax),
we refer to this kind of error as the type-2 error,
denoted Err2. Note that a combination of both
error types may occur2.

The probability of Err2 relates to the error
of modulus-switched sample (b̃, ã) that appears
inside bootstrapping, and it can be estimated from
Vmax; see (28). We outline both error types in
Figure 8.
Corollary 1. For the probabilities of type-1 and
type-2 errors, by (28) we have

Pr[Err1] < Pr[Err2]. (33)

For common choices of parameters, Pr[Err1] can be
neglected. I.e., we may use the fundamental con-
dition (32) to estimate the probability of incorrect
evaluation of a single TFHE gate.

4.2 Parameter Constraints

Previously, we justified the use of the fundamental
condition (32) to make error probability estimates.
Next, we identify four high-level parameters that
aim at characterizing the properties of an instance
of TFHE. Finally, we combine the fundamental
condition to obtain a relation between the four

2The result may combine both kinds of errors and decrypt
correctly at the same time – in such a case, we consider that
both error types occur simultaneously.

high-level parameters and actual TFHE parame-
ters (like LWE dimension or noise amplitude).

4.2.1 Characteristic Parameters

Given a usage scenario, an instance of TFHE can
be characterized by the following four (input)
parameters:

1. cleartext space bit-precision, denoted by π (cf.
Section 2.1.1);

2. quadratic weights, denoted by ν2 (cf.
Theorem 1, we take maximum of computation);

3. bit-security level, denoted by λ; and
4. bootstrapping correctness, denoted by η :=

Pr[Err2] (cf. Corollary 1).

Let us provide more (practical) comments on each
of the input parameters.

Cleartext Bit-Precision: π

Regarding the choice of an appropriate cleart-
ext bit-precision, we point out two things: First,
it shows that the complexity of the TFHE boot-
strapping grows roughly exponentially with the
cleartext bit-precision – reasonable bootstrapping
times can be achieved for up to about π = 8 bits,
then, splitting the cleartext into multiple chunks
comes into play. Second, bootstrapping is capa-
ble of evaluating a custom bootstrapping function
f̄ : Z2π → Z2π , however, such function must be
negacyclic; cf. (16) and (19), unless a workaround
is adopted as per Note 3. Both limitations must
be carefully considered before choosing the right
cleartext space bit-precision π: it might make
sense to decrease the cleartext space size at the
expense of additional, but cheaper bootstrapping.

Quadratic Weights: ν2

As outlined in (28), ν2max := maxg{ν2g} is defined
as the maximum of sums of squares of integer
weights of dot-products across the whole circuit
that comprises TFHE gates g ∈ G (with ν2 defined
in (5)). Note that log(νg) expresses the number of
bits of the standard deviation of the excess noise
introduced by the dot-product in gate g.

Security Level: λ

We discuss LWE/GLWE security in Section 2.1.4.
Recall that the higher λ is requested, the higher
LWE dimension and/or the lower noise must be

15

present, and security also depends on the distri-
bution of keys.

Bootstrapping Correctness: η

Introduced in Section 4.1, the parameter κ char-
acterizes the probability of erroneous blind-rotate.
In Corollary 1, we use this probability to esti-
mate the overall probability of correct evaluation
of a TFHE gate. Hence, to quantify the probabil-
ity of correct evaluation of a single TFHE gate, we
take η, and by standard normal tables, we deduce
the value of κ, which we use for the rest of the
analysis. Recall that κ relates to the correctness
of a single TFHE gate, i.e., for a circuit that con-
sists of multiple TFHE gates, the value of η needs
to be modified accordingly.

4.2.2 Parameter Relations

To make the fundamental condition (32) hold, we
may combine (28) with (25), (15) and (23), and
mandate

Vmax ≈ ν2 · V0 + VKS + VMS ≈
≈ ν2 ·

(
α2
t + ndNVBα

2(1 + k) +

+ nε2(1 + kNVz)
)
+ kNVzε

′2 +

+ kNd′VB′α′2 +
1 + n/2

48N2

!
≤

!
≤ 1

κ2 · 22π+2
, (34)

where the baseline parameters are summarized in
Table 1, ε2 and VB are defined in (8) and (9),
respectively, and Vz stands for the variance of
coefficients of the internal GLWE secret key z.

In terms of the security ↔ correctness ↔
performance triangle given in Section 2.1.5, this
inequality only provides a guarantee of correct-
ness, which is given by η (translated into κ),
for prescribed plaintext precision π and quadratic
weights ν2. In particular, security is not addressed
and it must be resolved separately, e.g., using
lattice-estimator [23]. The combination of con-
straints on TFHE parameters makes it a complex
task to generate a set of parameters, which is
further supposed to achieve a good performance.
Authors of [25] claim to have implemented a gen-
erator of efficient TFHE parameters and they
provide a comprehensive list of TFHE parameters

for many input setups. However, at the time of
writing, the tool is not publicly available yet.

5 Implementation Remarks

In this section, we briefly comment on various
implementation aspects of TFHE, namely

• (negacyclic) polynomial multiplication;
• additional errors (noise) that stem from partic-
ular implementation choices;

• estimated complexity & key sizes; and
• existing implementations of TFHE, including
recent trends and advances.

5.1 Negacyclic Polynomial

Multiplication

For performance reasons, modular polynomial
multiplication in TFHE—which appears, e.g., in
GLWE encryption (1) or in external product
(11)—is implemented using Fast Fourier Trans-
form (FFT). Recall that polynomials modXN +
1 rotate negacyclically when multiplied by Xk,
unlike polynomials mod XN − 1, which rotate
cyclically. Note that in such a case, polynomial
multiplication is equivalent to the standard cyclic
convolution, which can be calculated using Fast
Fourier Transform (FFT). However, for polynomi-
als modXN + 1, other tricks need to be put into
place; find a description of negacyclic polynomial
multiplication, e.g., in [27].

5.2 Implementation Noise

Notably, FFT is the major source of additional
errors (noise) that are not captured by the the-
oretical noise analysis given in Section 4. The
magnitude of FFT errors depends particularly on
the number representation that is used by selected
FFT implementation; find a study on FFT errors
in [27]. Although for commonly used parame-
ters and FFT implementations, FFT errors are
negligible compared to (G)LWE noises, they shall
be kept in mind, in particular in non-standard
constructions or new designs.

In addition, compared to the theoretical results
of Section 4, torus elements are represented
using a finite representation (as outlined in
Section 2.1.2; e.g., with 64-bit integers), which also
changes the errors slightly. However, as long as
the torus precision (e.g., 2−64) is much smaller

16

than the standard deviation of the (G)LWE noise—
which is usually the case for common parameter
choices—this contribution can be neglected.

5.3 Key Sizes & Bootstrapping

Complexity

Below, we provide the sizes of key-switching and
bootstrapping keys, as represented in a TFHE

implementation with a τ -bit representation of
torus elements. The complexity of TFHE boot-
strapping, which is the dominant operation of
TFHE, is roughly proportional to the key sizes.

Size of Key-Switching Keys

Using notation of Table 1, key-switching keys con-
sist of N sub-keys KSj ∈ T

d′,1+n; altogether we
have

∣
∣(KSj)

N
j=1

∣
∣ = Nd′(1 + n)τ [bits]. (35)

Note that a common method to store/transmit
key-switching keys, which can also be applied
to bootstrapping keys, is to keep just a seed
for a pseudo-random number generator (PRNG),
instead of all of the randomness. I.e., for each LWE

sample, just the value of b is kept and the values
of a can be re-generated from the seed.

Size of Bootstrapping Keys

Bootstrapping keys consist of n GGSW samples
BKi ∈ T

(N)[X](1+k)d,1+k; altogether we have

∣
∣(BKi)

n
i=1

∣
∣ = n(1 + k)2dNτ [bits]. (36)

Rough Estimate of Bootstrapping

Complexity

Key-switching is dominated by Nd′(1 + n)
torus multiplications, followed by 1 + n sum-
mations of Nd′ elements, which makes key-
switching O

(
Nd′(1 + n)τ

)
. Blind-rotate is dom-

inated by n(1 + k)2d degree-N polynomial mul-
tiplications, followed by a similar number of
additions/subtractions, which makes blind-rotate
O
(
n(1+k)2dNτ

)
. Note that the entire calculation

of BlindRotate (cf. Algorithm 1) can be performed
in the Fourier domain – thanks to its linearity
and pre-computed bootstrapping keys, i.e., the
O(τN logN) term of FFT can be neglected. In
this rough estimate, we neglect modulus-switching

and sample-extract. Also, we do not distinguish
the bit-length of τ for LWE and GLWE, as some
implementations do [28].

5.4 Existing TFHE Implementations

The original (experimental) TFHE library [29] is
not developed anymore, instead, there are other,
more or less active implementations. Here we list
selected implementations of TFHE:

TFHE-rs [30]: written in Rust, TFHE-rs imple-
ments latest findings by Bergerat et al. [25]
(recently separated from the Concrete Library [31]
that implements higher-level operations and inter-
faces);
FPT [32]: an experimental FPGA accelera-
tor for TFHE bootstrapping (a benchmark
of state-of-the-art implementations in soft-
ware/GPU/FPGA/ASIC can also be found
in [32]);
nuFHE [33]: a GPU implementation of TFHE.

TFHE is also implemented as a part of more
generic libraries like OpenFHE [34], which is a suc-
cessor of PALISADE [35] and which also attempts
to incorporate the capabilities of HElib [16] and
HEAAN [19]. There exist many other implemen-
tations that are not listed here.

6 Conclusion

We believe that our TFHE guide helps many
researchers and developers understand the inner
structure of TFHE, in particular probably the
most mysterious operation – the negacyclic blind-
rotate – thanks to a step-by-step explanation,
which we support with an illustration. Not only
do we provide an intelligible description of each
sub-operation of bootstrapping, but we also high-
light what tweaks can be put in place to limit
the noise growth at little to no additional cost
(e.g., the order of key-switch ↔ dot-product or
the signed decomposition alphabet). Last but not
least, we provide a comprehensive noise analysis,
supported by proofs, where we employ an easy-
to-follow notation of the decomposition operation
using g and g−1. Finally, we list selected imple-
mentation remarks that shall be kept in mind
when attempting to implement TFHE and its
variants or modifications.

17

Declarations

Acknowledgments

We would like to thank Melek Önen for her useful
comments as well as the anonymous referees for
their helpful suggestions.

Availability of Data and Material

The datasets generated during and/or analyzed
during the current study are available in the
following repository: https://github.com/fakub/
LWE-Estimates.

Funding

This work was supported by the MESRI-BMBF
French-German joint project UPCARE (ANR-20-
CYAL-0003-01), and by the Grant Agency of CTU
in Prague, grant No. SGS21/160/OHK3/3T/13.

Conflicts of interest

The authors have no relevant financial or non-
financial interests to disclose.

Ethical approval

This article does not contain any studies with
human participants or animals performed by any
of the authors.

References

[1] Gentry, C.: Fully homomorphic encryption
using ideal lattices. In: Proceedings of the
Forty-first Annual ACM Symposium on The-
ory of Computing, pp. 169–178 (2009)

[2] Brakerski, Z., Gentry, C., Vaikuntanathan,
V.: (Leveled) fully homomorphic encryption
without bootstrapping. ACM Transactions
on Computation Theory (TOCT) 6(3), 13
(2014)

[3] Cheon, J.H., Kim, A., Kim, M., Song, Y.:
Homomorphic encryption for arithmetic of
approximate numbers. In: International Con-
ference on the Theory and Application of
Cryptology and Information Security, pp.
409–437 (2017). Springer

[4] Chillotti, I., Gama, N., Georgieva, M.,
Izabachène, M.: TFHE: fast fully homomor-
phic encryption over the torus. Journal of
Cryptology 33(1), 34–91 (2020)

[5] Cheon, J.H., Han, K., Kim, A., Kim, M.,
Song, Y.: Bootstrapping for approximate
homomorphic encryption. In: Annual Inter-
national Conference on the Theory and
Applications of Cryptographic Techniques,
pp. 360–384 (2018). Springer

[6] Acar, A., Aksu, H., Uluagac, A.S., Conti,
M.: A survey on homomorphic encryp-
tion schemes: Theory and implementation.
ACM Computing Surveys (Csur) 51(4), 1–35
(2018)

[7] Regev, O.: On lattices, learning with errors,
random linear codes, and cryptography. In:
Proceedings of the Thirty-seventh Annual
ACM Symposium on Theory of Computing,
pp. 84–93 (2005)

[8] Guimarães, A., Borin, E., Aranha, D.F.:
Revisiting the functional bootstrap in TFHE.
IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, 229–253
(2021)

[9] Chillotti, I., Ligier, D., Orfila, J.-B., Tap,
S.: Improved Programmable Bootstrapping
with Larger Precision and Efficient Arith-
metic Circuits for TFHE. In: International
Conference on the Theory and Application
of Cryptology and Information Security, pp.
670–699 (2021). Springer

[10] Chen, H., Chillotti, I., Song, Y.: Multi-
key homomorphic encryption from tfhe. In:
International Conference on the Theory and
Application of Cryptology and Information
Security, pp. 446–472 (2019). Springer

[11] Kwak, H., Min, S., Song, Y.: Towards Prac-
tical Multi-key TFHE: Parallelizable, Key-
Compatible, Quasi-linear Complexity. Cryp-
tology ePrint Archive, Paper 2022/1460
(2022). https://ia.cr/2022/1460

[12] Joye, M.: Sok: Fully homomorphic encryption

18

https://github.com/fakub/LWE-Estimates
https://github.com/fakub/LWE-Estimates
https://ia.cr/2022/1460

over the [discretized] torus. IACR Trans-
actions on Cryptographic Hardware and
Embedded Systems, 661–692 (2022)

[13] Lyubashevsky, V., Peikert, C., Regev, O.:
On ideal lattices and learning with errors
over rings. In: Annual International Con-
ference on the Theory and Applications of
Cryptographic Techniques, pp. 1–23 (2010).
Springer

[14] Dwork, C., Roth, A., et al.: The algorithmic
foundations of differential privacy. Founda-
tions and Trends® in Theoretical Computer
Science 9(3–4), 211–407 (2014)

[15] Albrecht, M., Chase, M., Chen, H., Ding,
J., Goldwasser, S., Gorbunov, S., Halevi, S.,
Hoffstein, J., Laine, K., Lauter, K., et al.:
Homomorphic encryption standard. Protect-
ing privacy through homomorphic encryp-
tion, 31–62 (2021)

[16] homenc: HElib. https://github.com/
homenc/HElib (2023)

[17] Mouchet, C.V., Bossuat, J.-P., Troncoso-
Pastoriza, J.R., Hubaux, J.-P.: Lattigo: A
multiparty homomorphic encryption library
in go. In: Proceedings of the 8th Workshop
on Encrypted Computing and Applied Homo-
morphic Cryptography, pp. 64–70 (2020)

[18] Microsoft: SEAL (release 4.1). https://
github.com/Microsoft/SEAL (2023)

[19] SNUCrypto: HEAAN (release 1.1). https://
github.com/snucrypto/HEAAN (2018)

[20] Cheon, J.H., Hhan, M., Hong, S., Son, Y.:
A hybrid of dual and meet-in-the-middle
attack on sparse and ternary secret lwe. IEEE
Access 7, 89497–89506 (2019)

[21] Son, Y., Cheon, J.H.: Revisiting the hybrid
attack on sparse secret lwe and application
to he parameters. In: Proceedings of the 7th
ACM Workshop on Encrypted Computing
& Applied Homomorphic Cryptography, pp.
11–20 (2019)

[22] Joye, M., Paillier, P.: Blind rotation in

fully homomorphic encryption with extended
keys. In: Cyber Security, Cryptology, and
Machine Learning: 6th International Sym-
posium, CSCML 2022, Be’er Sheva, Israel,
June 30–July 1, 2022, Proceedings, pp. 1–18
(2022). Springer

[23] Albrecht, M.R., contributors: Security Esti-
mates for Lattice Problems. https://github.
com/malb/lattice-estimator (2022)

[24] Albrecht, M.R., Player, R., Scott, S.: On
the concrete hardness of learning with errors.
Journal of Mathematical Cryptology 9(3),
169–203 (2015)

[25] Bergerat, L., Boudi, A., Bourgerie, Q.,
Chillotti, I., Ligier, D., Orfila, J.-B., Tap, S.:
Parameter optimization & larger precision for
(t)fhe (2022)

[26] Bourse, F., Minelli, M., Minihold, M., Pail-
lier, P.: Fast homomorphic evaluation of deep
discretized neural networks. In: Annual Inter-
national Cryptology Conference, pp. 483–512
(2018). Springer

[27] Klemsa, J.: Fast and error-free negacyclic
integer convolution using extended fourier
transform. In: Cyber Security Cryptogra-
phy and Machine Learning: 5th International
Symposium, CSCML 2021, Be’er Sheva,
Israel, July 8–9, 2021, Proceedings, pp. 282–
300 (2021). Springer

[28] NuCypher: TFHE.jl. https://github.com/
nucypher/TFHE.jl (2022)

[29] TFHE: Fast Fully Homomorphic Encryption
Library over the Torus. https://github.com/
tfhe/tfhe (2016)

[30] TFHE-rs: Pure Rust implementation of the
TFHE scheme for boolean and integers FHE
arithmetics (v0.1.12). https://docs.zama.ai/
tfhe-rs (2023)

[31] Concrete: State-of-the-art TFHE library for
boolean and integer arithmetics (v0.2). https:
//docs.zama.ai/concrete/ (2022)

19

https://github.com/homenc/HElib
https://github.com/homenc/HElib
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://github.com/snucrypto/HEAAN
https://github.com/snucrypto/HEAAN
https://github.com/malb/lattice-estimator
https://github.com/malb/lattice-estimator
https://github.com/nucypher/TFHE.jl
https://github.com/nucypher/TFHE.jl
https://github.com/tfhe/tfhe
https://github.com/tfhe/tfhe
https://docs.zama.ai/tfhe-rs
https://docs.zama.ai/tfhe-rs
https://docs.zama.ai/concrete/
https://docs.zama.ai/concrete/

[32] Van Beirendonck, M., D’Anvers, J.-P., Ver-
bauwhede, I.: FPT: a Fixed-Point Accelerator
for Torus Fully Homomorphic Encryption.
Cryptology ePrint Archive, Paper 2022/1635
(2022). https://ia.cr/2022/1635

[33] NuCypher: A GPU implementation of fully
homomorphic encryption on torus. https://
github.com/nucypher/nufhe (2022)

[34] Al Badawi, A., Bates, J., Bergamaschi,
F., Cousins, D.B., Erabelli, S., Genise, N.,
Halevi, S., Hunt, H., Kim, A., Lee, Y., et
al.: OpenFHE: Open-source fully homomor-
phic encryption library. In: Proceedings of
the 10th Workshop on Encrypted Computing
& Applied Homomorphic Cryptography, pp.
53–63 (2022)

[35] Palisade: PALISADE Lattice Cryptogra-
phy Library. https://gitlab.com/palisade/
palisade-release (2022)

20

https://ia.cr/2022/1635
https://github.com/nucypher/nufhe
https://github.com/nucypher/nufhe
https://gitlab.com/palisade/palisade-release
https://gitlab.com/palisade/palisade-release

Appendix A Proofs

A.1 Proof of Theorem 2

Theorem 2 (Correctness & Noise Growth of �).
Given GLWE sample c̄ of µc ∈ T

(N)[X] under
GLWE key z and noise parameter α, and GGSW

sample Ā of mA ∈ Z
(N)[X] under the same key

and noise parameters, external product returns
GLWE sample c̄′ = Ā� c̄, which holds excess noise
e�, given by

〈
z̄, c̄′

〉
= mA ·

〈
z̄, c̄

〉
+ e�, for which

it holds

Var[e�] ≈ dNVBα
2(1 + k)

amplified GGSW noise

+

+ ∥mA∥22 · ε2(1 + kNVz)

decomp. errors

, (A1)

where Vz is the variance of individual coefficients
of the GLWE key z and other parameters are as per
previous definitions. If e� and the noise of c̄ are
“sufficiently small”, c̄′ encrypts msg

z
(c̄′) = mA ·

µc, i.e., external product is indeed multiplicatively
homomorphic.

Proof. Let us denote c̄ = (b,a) ∈ T
(N)[X]1+k and

let us unfold the construction of Ā as

Ā =








−A0z+ e
∣
∣ A0

−A1z+ e
∣
∣ A1

...
∣
∣

...
−Akz+ e

∣
∣ Ak








+








mA g 0 . . . 0
0 mA g . . . 0
...

...
. . .

...
0 0 . . . mA g








, (A2)

where Ai ∈ T
(N)[X]d,k with j-th column denoted A

(j)
i . Unfolding the construction of Ā and that of

external product, we obtain

〈
z̄, c̄′

〉

1+k
=

〈
(1, z),g−1(c̄)T · Ā

〉

1+k
=

〈
g−1(b),mA g−A0z

−♦

+e
〉

d
+

k∑

i=1

〈
g−1(ai),−Aiz

−♥

+e
〉

d
+

+

k∑

j=1

zj

(
〈
g−1(b),A

(j)
0

〉

d

+♦

+

k∑

i=1

〈
g−1(ai),A

(j)
i

〉

d

+♥

+
〈
g−1(aj),mA g

〉

d

)

= (A3)

= mA ·
(〈

g−1(b),g
〉

d

≈b

±b
)

+mA

k∑

j=1

zj

(〈
g−1(aj),g

〉

d

≈aj

±aj
)

+
〈
g−1(b), e

〉

d
+

k∑

i=1

〈
g−1(ai), e

〉

d
=

= mA · (b+ ⟨z,a⟩
⟨z̄,c̄⟩

) +mA ·
(

⟨g−1(b),g⟩d − b+

k∑

j=1

zj
(
⟨g−1(aj),g⟩d − aj

))

decomp. errors: ∥mA∥2
2·ε

2(1+kNVz)

− (A4)

+
〈
g−1(b), e

〉

d
+

k∑

i=1

〈
g−1(ai), e

〉

d

amplified GGSW noise: dNVBα2(1+k)

, (A5)

while in (A3), terms denoted ♦ and ♥ cancel out.
Next, in (A4), we assume that each decompo-
sition error term (cf. (7)) has a uniform distri-
bution on [−1/2Bd, 1/2Bd), hence variance of ε2;
cf. (8). Finally, in (A5), we assume that the

decomposition digits have a uniform distribution
on [−B/2,B/2) ∩ Z, hence their mean of squares
equals VB ; cf. (9). Evaluating the variance of each
term, the result follows, while ≈ is due to the
possible statistical dependency of variables across

21

terms. Note that we indicate the length of inner
products in lower indices.

A.2 Proof of Theorem 3

Theorem 3 (Correctness & Noise Growth of
Key-Switching). Given LWE sample c̄′ of µ ∈ T

under LWE key s′ and key-switching keys KSs′→s,
encrypted with noise parameter α′, KeySwitch

s′→s

returns LWE sample c̄, which holds excess noise
eKS, given by

〈
s̄, c̄

〉
=

〈
s̄′, c̄′

〉
+ eKS, for which it

holds

Var[eKS] ≈ n′Vs′ε
′2

decomp. errors

+ n′d′VB′α′2

amplif. KS noise

, (A6)

where ε′2 and VB′ are as per (8) and (9), respec-
tively, with B′ and d′, Vs′ is the variance of
individual coefficients of the LWE key s′, and other
parameters are as per previous definitions. If eKS
and the noise of c̄′ are “sufficiently small”, it holds
µ = msg

s
(c̄) = msg

s′
(c̄′), i.e., KeySwitch indeed

changes the key, without modifying the message.

Proof. Similar to the proof of Theorem 2, we
write

⟨s̄, c̄⟩ =
〈

(1, s), (b′,0)−
n′

∑

j=1

g′−1(a′j)
T · KSj

〉

1+n
= b′ +

n′

∑

j=1

〈
(
1, s

)
,g′−1(a′j)

T ·
[

s′j g
′ −Ajs+ ej

∣
∣
∣ Aj

]

KSj

〉

1+n

=

= b+

n′

∑

j=1

s′j

(〈
g′−1(a′j),g

′
〉

d′
± a′j

)

−♥

−
n′

∑

j=1

〈
g′−1(a′j),Ajs

〉

d′
+

n′

∑

j=1

〈
g′−1(a′j), ej

〉

d′

1 · first element of
∑

g′−1(a′

j)
T·KSj

+

+

n′

∑

j=1

〈
s,g′−1(a′j)

T ·Aj

〉

n

+♥

= b′ + ⟨s′,a′⟩n′

⟨s̄′,c̄′⟩

+

n′

∑

j=1

s′j

(〈
g′−1(a′j),g

′
〉

d′
− a′j

)

decomp. errors: n′V
s
′ε′2

+

n′

∑

j=1

〈
g′−1(a′j), ej

〉

d′

amplified KS noise: n′d′VB′α′2

(A7)

and the result follows.

A.3 Proof of Theorem 4

Theorem 4 (Correctness & Noise Growth of
Blind-Rotate). Given inputs of Algorithm 1,
where bootstrapping keys are encrypted with noise
parameter α and test vector is (possibly) encrypted
with noise parameter αt (i.e., αt = 0 or α),
BlindRotate returns the last-step ACC with noise
variance given by

Var[⟨z̄,ACC⟩] ≈ α2
t + ndNVBα

2(1 + k) +

+ nε2(1 + kNVz) =: V0, (A8)

which we denote by V0, other parameters are
as per previous theorems and definitions. If the
noise of ⟨z̄,ACC⟩ is “sufficiently small”, it holds

msg
z
(ACC) = Xm̃ · tv, where m̃ = ⟨s̄, (b̃, ã)⟩ ≈

2Nµ, i.e., BlindRotate indeed “rotates” the test
vector by the approximate phase of (b,a), scaled to
Z2N .

Proof. The core of BlindRotate consists of the
sample t̄ being gradually externally-multiplied by
BKi’s (plus some other additions/multiplications).
For i-th step with a := ãi ∈ Z2N and BK := BKi

that encrypts s := si ∈ {0, 1}, we write:

〈
z̄,ACC+ BK � (Xa · ACC− ACC)

〉
=

=
〈
z̄,ACC

〉
+ s ·

〈
z̄, Xa · ACC− ACC

〉
+ e�(s) =

(A9)

=
〈
z̄, Xs·a · ACC

〉
+ e�(s), (A10)

where (A9) is by Theorem 2 and the step towards
(A10) holds for s ∈ {0, 1}. Hence, with each such

22

a step, the noise grows by the additive term e�(s).

The first step X b̃ · t̄ retains the noise of t̄, hence
the result follows.

Appendix B Tech. Overview

In Figure B1, we provide an exhaustive technical
overview of blind-rotate, preceded by modulus-
switching and followed by sample-extract.

23

Blind-Rotate of TFHE

0.b

0.a1

...

0.a2

0.an

-switching

⌊2N · 0.ai⌉

b̃

ã1

ã2

ãn

...

∈ T
1+n ∈ Z

1+n
2N

τ bits log(N)+1 bits

IN→

0.u(0)+ 0.u(1)X+ . . .+ 0.u(N−1)XN−1

Encrypted bootstrapping function (aka. test vector; assuming k = 1)

∈ T
(N)[X]1+k

·X
−b̃negacyclic rotation

0.v(b̃)+ 0.v(b̃+1)X+ . . .− 0.v(0)XN−b̃− . . .− 0.v(b̃−1)XN−1

BKi � (X ãi ·�−�) +�

blind-rotate

0.s(0)+ 0.s(1)X+ . . .+ 0.s(N−1)XN−1

sample-extract

0.s(0)

0.r(N−1)

...

0.r(1)
0.r(0)

LWE sample

GLWE sample

External Product � : GGSW × GLWE → GLWE

∈ T
(N)[X]1+k

GLWE sample

τ bits

0.v(0)+ 0.v(1)X+ . . .+ 0.v(N−1)XN−1

0.u(b̃) + . . . (ACC)

0.r(0) + . . .

τ bits

τ bits

→ OUT

∈ T
1+kN

LWE sample

IN2 →

IN1 →

∈ T
(N)[X](1+k)d,1+k

GGSW sample

0.c
′(0)
1 + 0.c

′(1)
1 X+ . . .+ 0.c

′(N−1)
1 XN−1 0.c

′(0)
2 + . . .

∈ T
(N)[X]1+k

GLWE sample
↓

OUT

multiplication

0.c
(0)
2 + 0.c

(1)
2 X+ . . .+ 0.c

(N−1)
2 XN−1

0.c
(0)
1 + 0.c

(1)
1 X+ . . .+ 0.c

(N−1)
1 XN−1

∈ T
(N)[X]1+k

GLWE sample

τ bits

decomp. coeff ’s

⌊

B
d
· 0.c

(j)
i

⌉

c̃
(j)
i

γd bits

= c̃
(j)
i,1 | c̃

(j)
i,2 | . . . | c̃

(j)
i,d

γ bits
reorder to

integer polynomials

c̃
(0)
1,1+ c̃

(1)
1,1X+ . . .+ c̃

(N−1)
1,1 XN−1

∈ Z
(N)[X](1+k)d

γ bits

c̃
(0)
1,2+ c̃

(1)
1,2X+ . . .+ c̃

(N−1)
1,2 XN−1

T

...

c̃
(0)
1,d+ c̃

(1)
1,dX+ . . .+ c̃

(N−1)
1,d XN−1

c̃
(0)
2,1+ c̃

(1)
2,1X+ . . .+ c̃

(N−1)
2,1 XN−1

...

c̃
(0)
2,d+ c̃

(1)
2,dX+ . . .+ c̃

(N−1)
2,d XN−1

0.A
(0)
1,1+ 0.A

(1)
1,1X+ . . .+ 0.A

(N−1)
1,1 XN−1 0.A

(0)
1,2 + . . .

τ bits

...
0.A

(0)
2d,1+ 0.A

(1)
2d,1X+ . . .+ 0.A

(N−1)
2d,1 XN−1 0.A

(0)
2d,2 + . . .

...
-matrix (←)

τ bits

∈ T
(N)[X]1+k

GLWE sample

vector- (→)

for i = 1 . . . n

τ bits
modulus-

surrounded by Modulus-Switching
& Sample-Extract

(B = 2γ)

Fig. B1 Technical overview of TFHE Blind-Rotate, preceded by Modulus-Switching and followed by Sample-Extract, with
a detail on External Product.

24

	Introduction
	Basic Overview of TFHE
	Aim of this Work
	Related Work

	Paper Outline

	Building Blocks of TFHE
	The Torus and the Ring Variant of LWE
	Concentrated Distribution
	Symbols & Notation

	Generalized LWE
	Discrete-Valued Plaintext Space
	Discretized Torus
	Distribution of GLWE Keys
	Security of (G)LWE
	Balancing Parameters

	Decomposition
	GGSW & Homomorphic Multiplication

	Constructing the TFHE Scheme
	Key-Switching
	Blind-Rotate
	Encoding a LUT into a Polynomial Modulo XN + 1
	Encoding the Stairs

	Idea of Blind-Rotate
	Modulus-Switching
	Description of Blind-Rotate

	Sample-Extract
	TFHE Bootstrapping

	Correctness of LUT Evaluation
	Correct Evaluation of the Bootstrapping Function
	Types of Decryption Errors
	Fresh Bootstrap Error (`3́9`42`"̇613A``45`47`"603AErr1)
	Blind-Rotate Error (`3́9`42`"̇613A``45`47`"603AErr2)

	Parameter Constraints
	Characteristic Parameters
	Cleartext Bit-Precision:
	Quadratic Weights: 2
	Security Level:
	Bootstrapping Correctness:

	Parameter Relations

	Implementation Remarks
	Negacyclic Polynomial Multiplication
	Implementation Noise
	Key Sizes & Bootstrapping Complexity
	Size of Key-Switching Keys
	Size of Bootstrapping Keys
	Rough Estimate of Bootstrapping Complexity

	Existing TFHE Implementations

	Conclusion
	Acknowledgments
	Availability of Data and Material
	Funding
	Conflicts of interest
	Ethical approval

	Proofs
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	Tech. Overview

