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On abstract indefinite concave-convex problems and applications to quasilinear elliptic equations

Mabel Cuesta and Liamidi Leadi

Abstract. In this work we study the existence of critical points of an abstract C 1 functional J defined in a reflexive Banach space X. This functional is of the form

J(u) = 1 p E(u) - 1 r A(u) - 1 q B(u),
with E, A, B positive-homogeneous indefinite functional of degree p, q, r respectively and 1 < p < q < r. The critical points are found by minimization along several subsets of the Nehari manifold associated to J.

We apply these results to various quasilinear elliptic problems, as for instance, the following p-laplacian concave-convex problem with Steklov boundary conditions on a bounded regular domain

     -∆pu + V (x)u p-1 = 0 in Ω;
|∇u| p-2 ∂u ∂ν = λa(x)u r-1 + b(x)u q-1 on ∂Ω; u > 0 in Ω, with given functions a, b, V possibly indefinite and 1 < r < p < q. We also apply our abstract result for a concave-convex quasilinear problem associated to the p-bilaplacian.

Introduction

After the celebrated paper of Ambrosetti-Brézis-Cerami [START_REF] Ambrosetti | Combined effect of concave and convex nonlinearities in some elliptic problems[END_REF] on the solvability of the elliptic problem

   -∆u = f λ (u)
in Ω, u = 0 on ∂Ω, u > 0 in Ω, for f λ (u) = λu r-1 + u q-1 and 1 < r < 2 < q, there have been a huge amount of research on this type of equations and the effects on multiplicity of the concave (1 < r < 2)-convex (2 < q) nonlinearity. In [START_REF] Brown | The Nehari manifold for a semilinear elliptic equation involving a sublinear term[END_REF][START_REF] Brown | A fibering map approach to a semilinear elliptic boundary value problem[END_REF][START_REF] Brown | The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function[END_REF] the authors studied the previous equation with a concave-convex forcing term f λ (u) = λa(x)u r-1 + b(x)u q-1 with changing-sign weights a(x), b(x) by using the so called Nehari manifold and the fibering map associated to the problem. This approach has proved to be very useful to deal with this type of problem and have become a subject of research on its own. The results of [START_REF] Ambrosetti | Combined effect of concave and convex nonlinearities in some elliptic problems[END_REF] were partially generalized to the p-laplacian operator under Dirichlet boundary conditions in [START_REF] Ambrosetti | Multiplicity results for some nonlinear elliptic equations[END_REF][START_REF] Garcia-Azorero | Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term[END_REF][START_REF] De Figueiredo | Local superlinearity and sublinearity for the p-Laplacian[END_REF][START_REF] Garcia-Azorero | Some results about the existence of a second positive solution in a quasilinear critical problem[END_REF][START_REF] Wu | Multiplicity of positive solution of p-Laplacian problems with signchanging weight functions[END_REF]. Soon later, other boundary conditions have been considered, as for instance in [START_REF] Sabina De Lis | A concave-convex quasilinear elliptic problem subject to a non linear boundary condition[END_REF]. Simultaneously some attention has been accorded to quasilinear problems that are non coercive. The first work in this direction was the study of the spectrum of the operator -∆ p u + V (x)|u| p-2 u with Dirichlet boundary conditions and V an indefinite bounded weight, see [START_REF] Cuesta | A weighted eigenvalue problem for the p-Laplacian plus a potential[END_REF]. In [START_REF] Ramos-Quoirin | Lack of coercivity in a concave-convex type equation[END_REF] the author studied the concave-convex problem    -∆ p u + V (x)u p-1 = λa(x)u r-1 + b(x)u q-1 in Ω; u = 0 on ∂Ω; u > 0 in Ω, by minimization on the Nehari set and obtained, under various "coerciveness" conditions related to V , a and b, the existence of up to four solutions: two solutions satisfying the condition E V (u) > 0 with

E V (u) := Ω (|∇u| p + V (x)|u| p ) dx,
and two more solutions satisfying E V (u) < 0.

Our goal in this work is to generalize the results of [START_REF] Ramos-Quoirin | Lack of coercivity in a concave-convex type equation[END_REF] for the same quasilinear operator, say -∆ p u + V (x)|u| p-2 u, but with different boundary conditions. Precisely, let Ω be a bounded smooth domain of class C 2,α (0 < α < 1) with outward unit normal ν on the boundary ∂Ω and ∆ p u := div (|∇u| p-2 ∇u) is the well known p-laplacian operator. The functions V ∈ L ∞ (Ω) and (a, b) ∈ (C s (∂Ω))

2 , for some s ∈ (0, 1), are allowed to change sign. The real number λ is a positive parameter. We will ask the exponents r, q to satisfy 1 < r < p < q < p * where p * = p(N -1) (N -p) + is the critical exponent for the trace operator W 1,p (Ω) → L s (∂Ω, dρ), and ρ denotes the restriction to ∂Ω of the (N -1)-Hausdorff measure, which coincides with the usual Lebesgue surface measure as ∂Ω is regular enough. We will consider the following quasilinear elliptic Problem I:

             -∆ p u + V (x)u p-1 = 0 in Ω;
|∇u| p-2 ∂u ∂ν = λa(x)u r-1 +b(x)u q-1 on ∂Ω; u > 0 in Ω, (1.1) and Problem II:

             -∆ p u + V (x)u p-1 = λa(x)u r-1
in Ω;

|∇u| p-2 ∂u ∂ν = b(x)u q-1 on ∂Ω; u > 0 in Ω.

(1.

2)

The search of solutions for these quasilinear problems can be stated in an abstract form as the search of critical points of a functional J defined on a Banach space X, which will take the form

J(u) = 1 p E(u) - 1 r A(u) - 1 q B(u), (1.3) 
where E, A, B are possibly indefinite but positive-homogeneous functional of degree p, r, q respectively, with 1 < r < p < q. We will prove several existence and multiplicity results on critical points of J by minimizing J along several subsets of the Nehari manifold N = {u ∈ X \ {0}; J (u), u = 0} associated to J. These existence results for a general functional E, A, B and X can be applied in many cases, as for instance for the p-bilaplacian operator with Navier boundary conditions, that is the following Problem III:

∆ 2 p u -c|u| p-2 u = λa(x)|u| r-2 u + b(x)u q-2 u in Ω; u = ∆u = 0 on ∂Ω, (1.4) 
with c ∈ IR. The p-bilaplacian operator is defined as ∆ 2 p u := ∆(|∆u| p-2 ∆u) and it has received recently some attention. In the case p = 2 the authors in [START_REF] Yang | On semilinear biharmonic equations with concaveconvex nonlinearities involving weight functions[END_REF] generalize the Ambrosetti-Brézis-Cerami problem in the case c = 0 (coercive case), indefinite weight a and non-negative weight b. See also [START_REF] Liu | Infinitely many solutions for p-biharmonic equation with general potential and concave-convex nonlinearity in IR N[END_REF] for similar results in IR N or [START_REF] Ji | On the p-biharmonic equation involving concave-convex nonlinearities and sign-changing weight function[END_REF] for Dirichlet boundary conditions (u = ∇u = 0) and p = 2. This paper is organized as follows. In section 2 we describe the Nehari set, the fibering map and the different "sign-subsets" of the Nehari set that will be used to find critical points of the C 1 functional J which is defined in (1.3). In sections 3 and 4 we prove four different critical points theorems of the functional J in the Nehari set, c.f. Theorem 3.3, Theorem 3.4, Theorem 4.1 and Theorem 4.2. The hypothesis needed to apply these general theorems concern the coerciveness of E along the sign-subsets of the Nehari set described in section 2. In section 5 we present various conditions in terms of eigenvalues-like numbers that will imply the required coerciveness and then we prove some existence results (see Theorem 5.1. and Theorem 5.7). In section 6 we apply the theorem of the previous section to state some existence and multiplicity results for problems I, II and III.

The Nehari set for a concave-convex functional

Let (X, • ) be a reflexive Banach space and E, A, B ∈ C 1 (X, IR). Let us assume that for some 1 < r < p < q it holds

E(tu) = t p E(u), A(tu) = t r A(u), B(tu) = t q B(u), ∀(t, u) ∈ IR + × X.
(2.1) The following hypothesis will also be assumed:

(H1) ∀(u n ) n∈IN , u n ∈ X, if u n
u for some u ∈ X then there exists a subsequence u n k such that

A(u n k ) → A(u) and B(u n k ) → B(u). (H2) E is bounded on bounded sets (i.e. sup u∈X, u =1 |E(u)| < ∞) and it is weakly lower semi-continuous. (H3) ∀(u n ) n∈IN , u n ∈ X, if u n u for some u ∈ X and E(u n ) → E(u) then u n → u.
By " " we denote the weak convergence in X. Let us consider the functional J defined as

J(u) = 1 p E(u) - 1 r A(u) - 1 q B(u)
and look for solutions of the problem J (u) = 0. Since J may be unbounded from below on the set {u ∈ X ; B(u) > 0}, it is useful to consider the functional J restricted to the so called Nehari set

N := {u ∈ X \ {0} ; N (u) := J (u), u = 0},
where •, • is the usual duality map defined on X × X. Thus u ∈ N if and only if u = 0 and

E(u) = A(u) + B(u).
Let us introduce the fibering maps associated to J. For u ∈ X \{0}, we define the function

J u : (0, ∞) -→ R t -→ J u (t) := J(tu).
Consequently u ∈ N if and only if J u (1) = 0 or yet, tu ∈ N (with t > 0) if and only if J u (t) = 0. The notation J u , J u stands here for

dJ u dt , d 2 J u dt 2 resp.
Furthermore, since J u (u) = 0 for u ∈ N we can write

J u (1) = (p -q)E(u) -(r -q)A(u) = (p -r)E(u) -(q -r)B(u). (2.2)
It is standard to split N into three sets that, roughly speaking, correspond to local minima, local maxima and inflexion points of J u :

N + := u ∈ X ; J u (1) = 0, J u (1) > 0 , N -:= u ∈ X ; J u (1) = 0, J u (1) < 0 , N 0 := u ∈ X ; J u (1) = 0, J u (1) = 0 .
We also introduce the following "sign-subsets":

A ± := {u ∈ X ; A(u) ≷ 0}, A 0 = {u ∈ X ; A(u) = 0}, B ± := {u ∈ X ; B(u) ≷ 0}, B 0 = {u ∈ X ; B(u) = 0}, E ± := {u ∈ X ; E(u) ≷ 0}, E 0 = {u ∈ X ; E(u) = 0}.
Finally we denote A ± 0 = A ± ∪ A 0 and similarly for B ± 0 and E ± 0 . We stress here that, without further assumptions on E, A, B, the previous sets can be void.

Next we state the following property of N that follows straight from hypothesis (H1)-(H3).

Lemma 2.1. Let u n be a sequence in N such that u n 0. Then u n → 0.

Let us give a result on the boundedness of N . We recall that a subset

C of X is called a cone if tx ∈ C, ∀(t, x) ∈ IR + × C. Lemma 2.2. Let C ⊂ X be weakly closed cone such that (C ∩ B 0 ) \ {0} ⊂ E + .
(2.3)

Then (i) the set N + ∩ C is bounded; (ii) if sup C∩N J(u) < ∞ then N ∩ C is bounded.
Proof. (i) Assume by contradiction that there is an unbounded sequence

u n ∈ N + ∩ C. Take v n = un un ∈ C and v 0 ∈ C such that v n v 0 . From the fact that u n ∈ N we have E(v n ) u n q-p = A(v n ) u n q-r + B(v n )
and passing to the limit we conclude that B(v 0 ) = 0. We have used here that E is bounded on bounded sets (i.e. (H2)). From the fact that u n ∈ N + we have

E(v n ) < q -r q -p A(v n ) u n p-r
and passing to the limit it comes that E(v 0 ) ≤ 0. The possibility of v 0 = 0 is ruled out by the fact that, in that case, 0 = E(v 0 ) = lim inf n→∞ E(v n ) and therefore, by (H3), we will have v n → v 0 = 0. This is a contradiction with the property v n = 1. Thus v 0 = 0 and we get a contradiction with the hypothesis (2.3) of the lemma.

(ii) Assume that u n ∈ N ∩ C is a sequence satisfying u n → +∞ and denote v n = un un . Since the sequence v n is bounded, there exists v 0 ∈ X and a subsequence v n k such that v n k v 0 . From the fact that u n k ∈ N we have, as previously, 0 = B(v 0 ). On the other hand

J(u n k ) u n k p = 1 p - 1 q E(v n k ) - 1 r - 1 q A(v n k ) u n k p-r
therefore passing to the limit we get

E(v 0 ) ≤ lim inf k→+∞ E(v n k ) ≤ 0 because J(u n ) is uniformly bounded from above. If v 0 = 0 hence E(v 0 ) = 0 = lim inf k→+∞ E(v n k )
and, from hypothesis (H3), v n k → v 0 = 0. This is impossible because v n k = 1 for all k. Thus v 0 = 0 and we get again a contradiction with the hypothesis (2.3) of the lemma.

We also have the following property:

Lemma 2.3. Let C ⊂ X be weakly closed cone and assume that

C ∩ A 0 \ {0} ⊂ E + . (2.4)
Then N -∩ C has no sequence u n 0.

Proof. Assume by contradiction that there is a sequence u n ∈ N -∩ C such that u n 0 in X. From the fact that u n ∈ N we have 0 = E(0) ≤ lim inf E(u n ) = lim inf A(u n ) + B(u n ) so u n → 0 on X. Take z n := un un ∈ C and assume that for some z 0 ∈ X we have z n z 0 , A(z n ) → A(z 0 ) and B(z n ) → B(z 0 ). By using that u n ∈ N we have

A(z n ) = E(z n ) u n p-r -B(z n ) u n q-r
and passing to the limit it comes A(z 0 ) = 0. Besides by using that u n ∈ N - and (2.2) we have

E(z n ) ≤ q -r p -r B(z n ) u n q-p ,
and passing to the limit

E(z 0 ) ≤ lim inf E(z n ) ≤ 0.
Notice that the possibility z 0 = 0 is excluded because, in that case, we would have 0 = E(z 0 ) = lim inf E(z n ) which will imply that z n → z 0 = 0, a contradiction with the fact that z n = 1. Thus we have proved that z 0 ∈ C ∩ A 0 \ {0}. Then from the hypothesis (2.4) of this lemma it comes that E(z 0 ) > 0, a contradiction.

The fibering map

Let us give a complete description of the behaviour of J u according to the sign of A(u), B(u) and E(u). Let us write

J u (t) = t p-1 E(u) -t r-1 A(u) -t q-1 B(u) = t r-1 [m u (t) -A(u)],
where m u (t) := t p-r E(u) -t q-r B(u).

(2.5) Clearly, for t > 0, tu ∈ N if and only if t is a solution of the equation

m u (t) = A(u).
(2.6)

If for u ∈ X\{0} and t > 0 one has that J u (t) = 0 then J u (t) = t r-1 m u (t).

Consequently tu ∈ N + if and only if m u (t) > 0 (similar results for N -and N 0 ). In order to study the resolvability of (2.6) let us describe the variation of the function t → m u (t) for any u ∈ E 0 ∩ B 0 . Four possible pictures of the graph of m u can be drawn: We shall now describe the nature of the fibering maps for all possible signs of A(u), B(u) and E(u). The following behaviour of the function J u follows from the previous description of the function m u . As above, we will assume that u ∈ E 0 ∩ B 0 . Case 1 : E(u) > 0 and B(u) > 0.

In this case the function m u has graph as shown in Figure 1(a).

Case 1.1 : If A(u) > 0 and A(u) < max t>0 m u (t) then it is clear that there are exactly two solutions 0 < t 1 (u) < t 2 (u) of (2.6) with m u (t 2 (u)) < 0 < m u (t 1 (u)). Thus there are exactly two multiples of u lying in N , namely t 1 (u)u ∈ N + and t 2 (u)u ∈ N -. It follows that J u has exactly two critical points, a local minimum at t 1 (u) and a local maximum at t 2 (u). Moreover J u is decreasing in (0, t 1 (u)) and in (t 2 (u), ∞), increasing in (t 1 , t 2 ), see Figure 2(f). Case 1.2 : If A(u) ≤ 0. Then using the graph of m u in Figure 1(a), we deduce that there exists one positive solution of (2.6). Consequently J u has graph as shown in Figure 2(g) and there is a unique value t(u) > 0 such that t(u)u ∈ N . Moreover m u (t(u)) < 0, so t(u)u ∈ N -and the fibering maps J u has a unique critical point which is a local maximum. Case 2 : E(u) ≥ 0 and B(u) ≤ 0.

In this case the function m u is an increasing function of t (see Figure 1(b)). Case 2.1 : If A(u) > 0, then m u has a graph as in Figure 1(b) and J u has a graph as shown in Figure 2(i). It is clear that there is exactly one solution of (2.6), i.e. there is a unique t(u) > 0 such that t(u)u ∈ N . Moreover m u (t(u)) > 0 (since m u is an increasing function of t) and so t(u)u ∈ N + . Thus the fibering map J u has a unique critical point which is a local minimum, as shown in Figure 2(i). Case 2.2 : If A(u) ≤ 0 then the function J u is increasing functions of t and so has graph as shown in Figure 2(h). Consequently (2.6) has no solution, for all t and thus no multiple of u lies in N . Case 3 : E(u) ≤ 0 and B(u) ≥ 0.

In this case the function m u is a decreasing function of t and has graph as shown in Figure 1(c). Case 3.1 : If A(u) < 0 then (2.6) has a unique solution. Since J u must have graph as shown in Figure 2(g), we conclude again that there is a unique t(u) > 0 such that t(u)u ∈ N and since m u (t(u)) < 0 in this case, we deduce that t(u)u ∈ N -. Hence the fibering map J u has a unique critical point which is a local maximum. Case 3.2 : If A(u) ≥ 0 then (2.6) has no solution. Moreover J u is a decreasing function of t and has graph as shown in Figure 2(e). Thus in this case no multiple of u lies in N . Case 4 : E(u) < 0 and B(u) < 0.

In this case m u has graph as shown in Figure 1(d). Case 4.1 : If A(u) < 0 and A(u) > min t>0 m u (t) then J u has graph as shown in Figure 2(j). In this case there are exactly two solutions t 1 (u) < t 2 (u) of (2.6) with m u (t 1 (u)) < 0 < m u (t 2 (u)). Thus there are exactly two multiples of u which belong to N , namely t 1 (u) ∈ N - and t 2 (u) ∈ N + . It follows that J u has exactly two critical points, a local maximum at t = t 1 (u) and a local minimum at t = t 2 (u). Furthermore J u is increasing in (0, t 1 ), decreasing in (t 1 , t 2 ) and increasing in (t 2 , ∞), as in Figure 2(j). Case 4.2 : If A(u) ≥ 0 then (2.6) has a unique solution and J u has graph as shown in Figure 2(i). Thus there is a unique value t(u) > 0 such that t(u)u ∈ N . Since m u (t(u)) > 0, we deduce that t(u)u ∈ N + and consequently J u has a unique critical point which is a local minimum as shown in Figure 2(i). 

(i) If either A + ∩ B - 0 ∩ E + = ∅ or Λ + := {u ∈ A + ∩ B + ∩ E + ; A(u) < max t>0 m u (t)} = ∅ then N + ∩ E + = ∅. (ii) If either A - 0 ∩ B + ∩ E + = ∅ or Λ + = ∅ then N -∩ E + = ∅. (iii) If Λ -:= {u ∈ A -∩ B -∩ E -; A(u) > min t>0 m u (t)} = ∅ then N + ∩ A -= ∅. (iv) If Λ -= ∅ then N -∩ B -= ∅.
A simple calculation shows that the maximum of m u in case I is

max t>0 m u (t) = q -p q -r p -r q -r p-r q-p E(u) q-r q-p B(u) p-r q-p
and the minimum of m u in case IV is

min t>0 m u (t) = - q -p q -r p -r q -r p-r q-p (-E(u)) q-r q-p (-B(u)) p-r q-p .
The maximum (resp. the minimum) of m u is achieved at the point

t * (u) := (p -r)E(u) (q -r)B(u) 1 q-p .
(2.7)

Let us denote

λ + * := inf u∈A + ∩B + ∩E + max t>0 m u (t) A(u) ≥ 0 (2.8)
in case I and

λ - * := inf u∈A -∩B -∩E - min t>0 m u (t) A(u) ≥ 0 (2.9)
in case IV. From the previous discussion it follows trivially that:

Lemma 2.5. (i) If λ + * > 1 then N 0 ∩ E + = ∅. (ii) If λ - * > 1 then N 0 ∩ E -= ∅.
3. Local minimizers of J restricted to the Nehari set and to E + Our purpose in this section is to prove that, under some suitable assumptions on A ± , B ± and E ± , the functional J is bounded below and achieves its infimum on some of the sign subsets of N described in cases I to IV of section 2. This will provide us critical points for J, as a consequence of the following well known result:

Lemma 3.1. Suppose that u is a local minimiser of J restricted to N . If u ∈ N 0 then u is a critical point of J relative to X.
Proof. Since u is a minimiser of J on N , there exists γ ∈ R (Lagrange multiplier) such that

J (u) = γN (u). (3.1)
Thus in particular we have

J (u), u = γ N (u), u , which implies that γ N (u), u = 0 because 0 = N (u) = J (u), u (since u ∈ N ). Moreover N (u), u = pE(u) -rA(u) -qB(u) = (p -r)E(u) -(q -r)B(u) = J u (1).
Consequently, if u ∈ N 0 , that is J u (1) = 0,then γ = 0 and we conclude from (3.1) that u is a critical point of J.

Let us rewrite the functional J for u ∈ N in two different forms:

J(u) = 1 p - 1 r E(u) + 1 r - 1 q B(u) = 1 p - 1 q E(u) - 1 r - 1 q A(u). (3.2)
We then observe the following

Lemma 3.2. (a) J(u) > 0 for all u ∈ (N -∩ A - 0 ) ∪ (N -∩ B + 0 ) ∪ (N -∩ E - 0 ); (b) J(u) < 0 for all u ∈ (N + ∩ A + 0 ) ∪ (N + ∩ B - 0 ) ∪ (N + ∩ E + 0 ). Proof. From (2.2) we deduce the following inequalities (a) If u ∈ N -then q -r q -p A(u) < E(u) < q -r p -r B(u). (3.3) Hence J(u) > max (q -r)(r -p) prq A(u), (q -p)(r -p) pqr E(u), (q -p)(q -r) pqr B(u) , (b) Similarly, if u ∈ N + then q -r p -r B(u) < E(u) < q -r q -p A(u). (3.4) 
Hence J(u) < min (q -r)(r -p) pqr A(u), (q -p)(r -p) pqr E(u), (q -p)(q -r) pqr B(u) .

Minimizing J along N +

A first critical point of J can be found on N + ∩ E + , provided this set is not empty and some "coerciveness" conditions:

Theorem 3.3. Assume that E + ∩ N + = ∅, λ + * > 1 and (H4) (A + 0 ∩ B 0 ) \ {0} ⊂ E + , (H5) A + ⊂ E + . Then the following local infimum i := inf u∈N + ∩E + J(u)
is achieved. Furthermore i < 0.

Proof. The fact that i < 0 readily follows from Lemma 3.2(b). First we prove that N + ∩ E + is bounded. Indeed N + ∩ E + ⊂ N + ∩ A + because of inequality (3.4) and, since A + 0 is a weakly closed cone, we have that the condition (2.3) of Lemma 2.2 corresponds to hypothesis (H4), thus we conclude that N + ∩E + is bounded. Notice that in particular we have that i > -∞. To prove that the infimum i is achieved take a minimizing sequence u n . Since this sequence is bounded there exists some u 0 ∈ X such that, up to subsequence, u n u 0 . By using (3.2) we can write

J(u n ) = 1 p - 1 q E(u n ) - 1 r - 1 q A(u n ) ≥ - 1 r - 1 q A(u n ).
and letting n → +∞ we get A(u 0 ) ≥ -i( 1 r -1 q ) -1 > 0. Then it comes then from (H5) that E(u 0 ) > 0. We claim that u n converges strongly to u 0 in X. Assume by contradiction that u n → u 0 . We discuss two alternatives : Alt. 1. B(u 0 ) > 0. Using the previous classification of the fibering maps, the graph of J u0 is as the one in Figure 2(f) so there exist 0 < t 1 (u 0 ) < t 2 (u 0 ) such that t 1 (u 0 )u 0 ∈ N + ∩E + , t 2 (u 0 )u 0 ∈ N -∩E + , J u0 is increasing between t 1 (u 0 ) and t 2 (u 0 ) and decreasing elsewhere. Since we are assuming that u n → u 0 hence u 0 ∈ N and therefore t 1 (u 0 ) = 1. Let us distinguish two cases: (a) 1 ≤ t 2 (u 0 ) and (b) 1 > t 2 (u 0 ) . In case (a) we have

J(t 1 (u 0 )u 0 ) = J u0 (t 1 (u 0 )) ≤ J u0 (1) < lim inf J un (1) = lim J(u n ) = i. (3.5)
Moreover Lemma 2.5 and hypothesis (H4) imply that N 0 = {0}. Thus (3.5) leads to a contradiction because t 1 (u 0 )u 0 ∈ N + ∩ E + . In case (b) using that

0 = J u0 (t 2 (u 0 )) < lim inf J un (t 2 (u 0 ))
we conclude that J un (t 2 (u 0 )) > 0 for n large. Since 1 is a local minimum of J un and the graph of J un looks like the one of figure 2(f) then it must be 1 < t 2 (u 0 ), a contradiction. Alt. 2. B(u 0 ) ≤ 0. The graph of J u is as the one in Figure 2(i) so there exists 0 < t(u 0 ) such that t(u 0 )u 0 ∈ N + ∩ E + and J u0 has a global minimum in t(u 0 ). If t(u 0 ) ≥ 1 again we have (3.5), a contradiction. If t(u 0 ) < 1 we use that 0 = J u0 (t(u 0 )) < lim inf J un (t(u 0 )), so then J un (1) > 0 for n large, which is also impossible because u n ∈ N .

Minimizing J along N -

We now look for solutions of

J (u) = 0 in N -∩ E + . Theorem 3.4. Let us assume that N -∩ E + = ∅, λ + * > 1 and (H6) B + 0 \ {0} ⊂ E + , Then the following infimum j := inf u∈N -∩E + J(u) is > 0 and it is achieved.
Proof. We know from Lemma 3.2(a) that j ≥ 0. Observe that any minimizing sequence is bounded because (H6) implies the hypothesis (2.3) of Lemma 2.2 and the result comes from (ii) of the aforementioned lemma. Assume first that j > 0. We claim that there is a strong convergent minimizing sequence for j. Assume by contradiction that we have a minimizing sequence u n u 0 such that A(u n ) → A(u 0 ), B(u n ) → B(u 0 ) but u n → u 0 . If u 0 = 0 then Lemma 2.1 will imply that u n → 0, which is not the case we are assuming now. Thus u 0 = 0. We can also prove that B(u 0 ) > 0 by using the fact that

u n ∈ E + and q -r qr B(u n ) = J(u n ) - 1 p - 1 r E(u u ) ≥ J(u n ).
Then passing to the limit we get B(u 0 ) > 0. Consequently, (H6) implies that E(u 0 ) > 0. Now we distinguish two cases according to the sign of A(u). Alt. 1. A(u 0 ) > 0. In this case J u0 and J un look like Figure 2(f). If u n → u 0 then t 2 (u 0 ) = 1. We also have that t 2 (u 0 )u 0 ∈ N -∩ E + (we use here that λ + * > 1 to assure that t 2 (u 0 )u 0 ∈ N 0 , c.f. Lemma 2.5). Furthermore 0 = J u0 (t 2 (u 0 )) < lim inf J un (t 2 (u 0 )).

Thus J un (t 2 (u 0 )) > 0 for n large. Since t 2 (u n ) = 1 hence t 1 (u n ) < t 2 (u 0 ) < 1 and we will have

j ≤ J u0 (t 2 (u 0 )) < lim inf J un (t 2 (u 0 )) ≤ lim n→+∞ J un (1) = j, (3.6) 
a contradiction. Alt. 2. A(u 0 ) ≤ 0. In this case J u0 and J un look like Figure 2(g). If u n → u 0 then t(u 0 ) = 1. We also have that t(u 0 )u 0 ∈ N -∩ E + . Then again we have

j ≤ J u0 (t(u 0 )) < lim inf J un (t(u 0 )) ≤ lim n→+∞ J un (1) = j, (3.7) 
a contradiction.

Let us finally prove that j > 0. If this were not the case then for any minimizing sequence (which we know that will be bounded) we will have J(u n ) → 0. Then, up to a subsequence, there exists u 0 ∈ X such that u n u 0 , A(u n ) → A(u 0 ) and B(u n ) → B(u 0 ). From Lemma 3.2(a) we know that N -∩ E + ⊂ B + and hence the possibility u 0 = 0 is excluded from Lemma 2.3 and (H6) applied to C = B + 0 , so (2.4) is satisfied. Besides by writing

0 = lim n→+∞ J(u n ) = lim n→+∞ 1 p - 1 r E(u n ) + 1 r - 1 q B(u n ) it comes lim n→+∞ E(u n ) = p(q -r) q(p -r) B(u 0 ). (3.8) Thus, if B(u 0 ) = 0 then E(u 0 ) ≤ lim n→+∞ E(u n ) = 0, a contradiction with (H6). Hence B(u 0 ) > 0. Furthermore, from (3.8) and 0 = lim n→+∞ J(u n ) = lim n→+∞ 1 p - 1 q E(u n ) - 1 r - 1 q A(u n ) it comes A(u 0 ) = r(q -p) q(p -r) B(u 0 ) > 0.
We are going to rule out the following two alternatives: Alt. 1. u n → u 0 . In this case J(u 0 ) = 0 and we will have u 0 ∈ N -∩ E + (the possibility of u 0 ∈ N 0 is ruled by the constraint λ + * > 1). But, according to Lemma 3.2(a), J(u 0 ) > 0, a contradiction. Alt. 2. u n → u 0 . The maps J u0 will look as in Figure 2(f) and repeating the argument of Alt. 1 above we have (3.6) and we reach a contradiction. This conclude the proof of j > 0. We first look for solutions of our problem in

N + ∩ A -⊂ N + ∩ E -. Theorem 4.1. Assume that N + ∩ A -= ∅, λ - * > 1 and (H7) A - 0 ∩ B 0 \ {0} ⊂ E + (H8) A 0 ∩ B -⊂ E + .
Then the following infimum

l := inf u∈N + ∩A -J(u)
is < 0 and it is achieved.

Proof. It comes from (H7) and Lemma 2.2(i) that N + ∩ A -is bounded and by Lemma 3.2(a) that l is negative. Let us prove that this infimum is achieved. Let u n be a minimizing sequence. Since this sequence is bounded, there exists

u 0 such that u n u 0 , A(u n ) → A(u 0 ) and B(u n ) → B(u 0 ). Thus A(u 0 ) ≤ 0, B(u 0 ) ≤ 0 and E(u 0 ) ≤ lim inf E(u n ) ≤ 0. From E(u n ) ≤ 0 and J(u n ) = 1 p - 1 r E(u n ) + 1 r - 1 q B(u n )
we infer that

B(u n ) ≤ rq q -r J(u n )
and passing to the limit it comes that B(u 0 ) < 0. In particular u 0 = 0. Now, if A(u 0 ) = 0, using (H8) we will conclude that E(u 0 ) > 0, a contradiction. Then A(u 0 ) < 0 and J u0 behaves either as in Figure 2(h) if E(u 0 ) = 0 or as in Figure 2(j) if E(u 0 ) < 0. Let us discuss this two alternatives: Alt. 1. E(u 0 ) = 0. In this case E(u 0 ) = 0 = lim inf E(u n ) = 0 so u n → u 0 by ( H3). Hence J(u 0 ) = l and also u 0 ∈ N + 0 ∩ A -. Since be in N 0 implies that E(u 0 ) = q-r q-p A(u 0 ) by (3.4) and we know that A(u 0 ) < 0 = E(u 0 ), then clearly u 0 ∈ N 0 , so have u 0 ∈ N + ∩ A -and we are done. Alt. 2. E(u 0 ) < 0. In this case there exist two values 0 ≤ t 1 (u 0 ) < t 2 (u 0 ) such that t 2 (u 0 ) > 0 is a global minimum value for J u0 , t 2 (u 0 )u 0 ∈ N + ∩ A - and J u0 is decreasing between t 1 (u 0 ) and t 2 (u 0 ), increasing elsewhere. Notice that u 0 ∈ N 0 because of condition λ - * > 1. Let us assume by contradiction that u n → u 0 . Then

l ≤ J(t 2 (u 0 )u 0 ) = J u0 (t 2 (u 0 )) ≤ J u0 (1) < lim inf J un (1) = lim J(u n ) = l, a contradiction. 4.2. Minimizing J along N - Finally we minimize along N -∩ B -⊂ N -∩ E -. Theorem 4.2. Assume that N -∩ B -= ∅, λ - * > 1, (H7) and (H9) A 0 ∩ B - 0 \ {0} ⊂ E + . Then the infimum k := inf u∈N -∩B -J(u)
is achieved and it is positive.

Proof. By Lemma 3.2(a) the value k ≥ 0. Since N -∩ B -⊂ A -, Lemma 2.2(ii) and (H7) imply that any minimizing sequence is bounded. We claim that any minimizing sequence u n possesses a convergence subsequence. Indeed, assume

u n u 0 , A(u n ) → A(u 0 ) ≤ 0 and B(u n ) → B(u 0 ) ≤ 0 and that u n → u 0 . Since u n ∈ N -we have E(u n ) ≤ q-r p-r B(u n ) ≤ 0 so E(u 0 ) ≤ 0.
Let us assume first that k = 0. If u 0 = 0 then from Lemma 2.1 it comes that u n → 0 and therefore 0 = lim J(u n ) = k, a contradiction. Thus u 0 = 0. From hypothesis (H7) and (H9) we must have u 0 ∈ A -∩ B -. Hence J u0 looks like Figure 2(j) if E(u 0 ) < 0 or like Figure 2(h) if E(u 0 ) = 0. Let us to discuss this two alternatives. Alt. 1. E(u 0 ) = 0. As we have E(u 0 ) = 0 = lim inf E(u n ) then u n → u 0 . Hence, using that u n ∈ N and passing to the limit we find 0 = E(u 0 ) = A(u 0 ) + B(u 0 ) ≤ 0 so it must be A(u 0 ) = B(u 0 ) = 0, a contradiction with (H7) or (H9). We have ruled out this alternative. Alt. 2. E(u 0 ) < 0. Thus there exists 0 < t 1 (u 0 ) < t 2 (u 0 ) such that t 1 (u 0 )u 0 ∈ N -and t 1 (u n ) = 1. We have used here that t 1 (u 0 )u 0 ∈ N 0 because of the hypothesis λ - * > 1. Let us assume by contradiction that u n → u 0 . Hence 0 = J u0 (t 1 (u 0 )) < lim inf J un (t 1 (u 0 )) which implies that J un (t 1 (u 0 )) > 0 for n large. Thus t 1 (u 0 ) < 1 or t 1 (u 0 ) > t 2 (u n ) because J un looks line Figure 2(j). In the first case we have

k ≤ J(t 1 (u 0 )u 0 ) = J u0 (t 1 (u 0 )) < lim inf J un (t 1 (u 0 )) < lim inf J un (1) = k,
a contradiction. In the second case let us suppose, up to a subsequence, that t 2 (u n ) converges to some s ∈ [1, t 1 (u 0 )]. We have

J u0 (s)) < lim inf J un (t 2 (u n )) = 0,
which is a contradiction because J u0 > 0 on (0, t 1 (u 0 )). We have just proved that the minimizing sequence converges strongly and consequently the infimum k is achieved.

To finish the proof let us check that k > 0. Assume by contradiction that k = 0 and take u n a minimizing sequence. Since u n is bounded (as above) then we can assume that u n u 0 for some u 0 . We have B(u 0 ) ≤ 0, A(u 0 ) ≤ 0 and u 0 ∈ E - 0 . It follows from Lemma 2.3 and (H9) that u 0 = 0 and from the fact that u n ∈ N -we have

A(u n ) > pqr (q -r)(r -p) J(u n ).
Hence passing to the limit we get A(u 0 ) = 0. Thus u 0 ∈ A 0 ∩ B - 0 ∩ E - 0 which contradicts (H9) if B(u 0 ) = 0 or (H7) if B(u 0 ) = 0.

On various conditions for coerciveness and existence results

5.1. On the coerciveness of E restricted to A ± 0 and B ± 0

We want to give in this section some variational conditions on E, A, B that would imply hypothesis (H4)-(H9). Those conditions will concern the following constants of coerciveness

i ± (A) := inf {E(u) ; A(u) = ±1} , i ± (B) =: inf {E(u) ; B(u) = ±1} , (5.1) 
j 0 (A) := inf {E(u) ; A(u) = 0, u ∈ S} , j 0 (B) := inf {E(u) ; B(u) = 0, u ∈ S} . (5.2)
Recall that S is the unit sphere of X. We give below and existence and multiplicity result for the equation J (u) = 0 in terms of the constants j 0 , i ± .

Theorem 5.1. Let us assume hypothesis (H1) to (H3).

(i) If λ + * > 1, N + ∩ E + = ∅, i + (A)
> 0 and either j 0 (A) > 0 or j 0 (B) > 0 then there exists at least one solution of

J (u) = 0 in N + ∩ E + . (ii) If λ + * > 1, N -∩ E + = ∅, j 0 (B) > 0 and i + (B) > 0 then there exists at least one solution of J (u) = 0 in N -∩ E + . (iii) If λ - * > 1, N + ∩ A -= ∅
and either (1) j 0 (A) > 0 and i -(A) > 0 or (2) j 0 (B) > 0 and j 0 (A) > 0 or (3) j 0 (B) > 0 and i -(B) > 0, then there exists at least one solution of

J (u) = 0 in N + ∩ A -⊂ N + ∩ E -. (iv) If λ - * > 1, N -∩ B -= ∅
and either (4) j 0 (A) > 0 and j 0 (B) > 0 or (5) j 0 (A) > 0 and i -(A) > 0 or (6) j 0 (B) > 0 and i -(B) > 0, then there exists at least one solution of

J (u) = 0 in N -∩ B -⊂ N -∩ E -.
We left the proof to the reader. In the next proposition we give a variational characterization of i ± (A) and i ± (B). Proposition 5.2. Let us assume hypothesis (H1) to (H3). Assume that j 0 (A) > 0 and that i ± (A) ∈ IR. Then there exits ϕ

± ∈ X satisfying A(ϕ ± ) = ±1 such that E (ϕ ± ) = p r i ± (A)A (ϕ ± ).
Similarly, if j 0 (B) > 0 and i ± (B) ∈ IR then there exits φ ± ∈ X satisfying B(φ ± ) = ±1 such that

E (φ ± ) = p q i ± (B)B (φ ± ).
Proof. We only prove the first part. If u n ∈ X with A(u n ) = 1 is a minimizing sequence for, say, i + (A) then the sequence u n is bounded. Indeed, otherwise if we take v n := vn un hence, up to a subsequence, there exists v 0 ∈ X such that v n v 0 , A(v n ) → 0 and E(v n ) → 0. Notice that v 0 = 0 because otherwise it will follows from 0 = E(v 0 ) ≤ lim inf E(v n ) = 0 and (H3) that v n → 0. This is impossible since v n = 1. We then have v 0 = 0, A(v 0 ) = 0 and E(v 0 ) ≤ lim inf E(v n ) = 0, a contradiction with the hypothesis j 0 (A) > 0. We have just proved that u n is bounded. The proof that i + (A) is achieved is standard and we omit it here. Let us denote by ϕ + an element of X where the infimum is achieved. From the Lagrange multipliers rule it follows that there exists λ ∈ IR such that E (ϕ + ) = λA (ϕ + ). By testing this last equation against ϕ + and using the different homogeneities of E and A we get the result.

Remark 5.3. As a matter of fact the constraint A(u) = 1 in the definition of i + (A) := i + (A, 1) can be replaced by, say, A(u) = c, where c in any positive number. In that case, it is trivial to prove that i + (A, c) = c p r i + (A, 1). A similar statement can be formulated for i -(A) and i ± (B).

Remark 5.4. We can easily prove that j 0 (A) and j 0 (B) are achieved provided they are finite and j 0 (A, B) := inf{E(u) ; A(u) = 0, B(u) = 0, u ∈ S} > 0. However we can not give a variational formulation of any of them mainly because, in general, we don't know if the set A -1 ({0}) (resp. B -1 ({0})) is a manifold.

On the coerciveness of E and a principal eigenvalue

In this section we look for sufficient conditions implying (H4) to (H9) in terms of the first eigenvalue of the operator E. Precisely, let us assume the following

(H3) ∃(Y, • Y )a Banach space s.tX is cont. one-to-one embeded onY, X → Y is compact and u → u p Y is Fréchet differentiable. Let us denote χ(u) = u p Y . Then it is straightforward from (H2)-(H3)' that λ 1 := inf{E(u) ; u Y = 1} (5.3) is > -∞ and it is achieved. Moreover, if E(ϕ) = λ 1 and ϕ Y = 1 then, by Lagrange multiplier rule, E (ϕ) = λ 1 χ (ϕ).
We can give now the following sufficient conditions in terms of λ 1 to assure (H4)-(H9). Notice that the following conditions are stronger than the ones in terms of i ± (A), i ± (B) etc. Let us also stress here that λ 1 > 0 is equivalent to E - 0 \ {0} = ∅ and therefore (H4) to (H9) are trivially satisfied. Hereafter we denote

E λ1 := {ϕ ∈ X \ {0} ; E (ϕ) = λ 1 χ (ϕ)}.
We have the sequence v n = un un will satisfy E(v n ) → 0, v n Y → 0, so, up to a subsequence, v n 0, in contradiction with (H3) and the fact that v n = 1). Let u 0 ∈ X be such that u n u 0 . Thus A(u 0 ) ≥ 0, u 0 Y = 1 and consequently d ≤ E(u 0 ) ≤ lim inf E(u n ) = d. We have proved that E(u 0 ) = d and d is achieved. If A(u 0 ) = 0 hence d ≥ j 0 (A) > 0 and we are done. If A(u 0 ) > 0 hence

d = inf{E(u) ; A(u) > 0, u Y = 1}
and d is then a local minima of E under the constrain u Y = 1. By Lagrange multiplier rule, there exists λ ∈ IR such that E (u 0 ) = λχ (u 0 ). By evaluating this equation at u 0 we readily obtain

pd = pE(u 0 ) = E (u 0 ), u 0 = λ χ (u 0 ), u 0 = pλ.
Since E λ1 ⊂ A -then λ = λ 1 and therefore d = λ > 0 by (H3) .

We can now give the first main existence result of this section. This result generalizes Theorem 4.8 and Theorem 5.7 of [START_REF] Ramos-Quoirin | Lack of coercivity in a concave-convex type equation[END_REF]. Theorem 5.7. Let us assume hypotheses (H1) to (H3) .

(i) Assume that N ± ∩ E + = ∅ and λ + * > 1. If either λ 1 > 0 or λ 1 = 0 and E λ1 ⊂ A -∩ B -then there exists at least two solutions of J (u) = 0. (ii) Assume that N + ∩ E + = ∅ and λ + * > 1. If λ 1 = 0 and E λ1 ⊂ A -∩ B + 0
then there exists at least one solution of J (u) = 0. (iii) Assume that N + ∩ A -= ∅, N -∩ B -= ∅ and λ - * > 1. If j 0 (A) > 0 and j 0 (B) > 0 then there exist at least two solutions of J (u) = 0 in E -. (iv) Assume (H3) , N + ∩ E + = ∅, λ + * > 1 and λ 1 < 0. If j 0 (A) > 0 and E λ1 ⊂ A -then there exist at least one solution of 

J (u) = 0 in E + . (v) Assume (H3) , N ± ∩ E + = ∅, λ + * > 1 and λ 1 < 0. If j 0 (A) > 0, j 0 (B) > 0 and E λ1 ⊂ A -∩ B -then
(i) λ 1 > 0 ⇒ j ± 0 (A, B) > 0, (ii) If λ 1 = 0 then (1) E λ1 ∩ A + 0 ∩ B + 0 = ∅ ⇒ j + 0 (A, B) > 0. (2) E λ1 ∩ A - 0 ∩ B - 0 = ∅ ⇒ j - 0 (A, B) > 0.
Let us show that, in a particular case, the variational equation (5.6) is equivalent to the equation J (u) = 0. By equivalent we mean here that a multiple of a solution of (5.6) is a solution of J (u). Let us observe that if ϕ ∈ X \ {0} is a solution of (5.6) and we denote for simplicity

d 1 := (β/α) α (λ + * ) β A(ϕ) , d 2 := (α/β) β (λ + * ) β B(ϕ) (5.7) 
then for any c > 0 the function v = cϕ satisfies

E (v) = d 1 c p-r A (v) + d 2 c p-q B (v).
Thus we have the following result Proposition 5.10. Assume that j + 0 (A, B) > 0 and that

(λ + * ) β = p r β . p q α . (5.8) 
Then there exists a solution of J (u) = 0 satisfying u ∈ A + ∩B + . The constant c pqr := ( p r ) β .( p q ) α is > 1. A similar result can be state for λ + * if j - 0 (A, B) > 0. Proof. Recall that J (u) = 0 if and only if E (u) = p r A (u) + p q B (u). Let ϕ ∈ X be a point where λ * + is achieved. A simple computation shows that we can choose c > 0 such that cϕ is a critical point of J, that is, d 1 c p-r = p r and d 2 c p-q = p q if and only if

p r d 1 β . p q d 2 α = 1
and using the fact that α + β = 1, A(ϕ) β B(ϕ) α = 1 and (5.7) we get (5.8).

Let us write

(c pqr ) q-r r = p r q r -1 . q r 1-p r .
One has q -r r ln(c pqr ) = ( q r -1) ln p r + (1 -p r ) ln q r = (x -1) ln y -(y -1) ln x, where we have put x := q r and y := p r . Using the fact that the function f (z) := ln z z-1 is strictly decreasing for z > 1 we conclude that q-r r . ln(c pqr ) > 0 and therefore the constant c pqr > 1 as claimed.

Remark 5.11. Notice that, if (5.8) holds, we can not distinguish the solution of the problem J (u) = 0 obtained in Proposition 5.10 from the one obtained in Theorem 3.3 or the one in Theorem 3.4.

Existence results for quasilinear problems 6.1. Existence and multiplicity results for Problem I

Let Ω ⊂ IR N be a bounded smooth domain of class C 2,α (0 < α < 1) with outward unit normal ν on the boundary ∂Ω. Let V ∈ L ∞ (Ω) and (a, b) ∈ (C s (∂Ω)) 2 , for some s ∈ (0, 1), and allow them to change sign. The exponents r, q to satisfy 1 < r < p < q < p * where p * = p(N -1) (N -p) + the critical exponent for the trace embedding; ρ denotes the restriction to ∂Ω of the (N -1)-Hausdorff measure, which coincides with the usual Lebesgue surface measure as ∂Ω is regular enough. Finally let the number λ be a positive parameter.

Take X = W 1,p (Ω) with the usual Sobolev norm • 1,p . Solutions of Problem I are understood in the weak sense, that is,

Ω |∇u| p-2 ∇u∇ϕ+V (x)|u| p-2 uϕ = ∂Ω λa|u| r-2 u+b|u| q-2 u ϕ dρ. (6.1) ∀ϕ ∈ W 1,p (Ω). Let us consider E(u) = Ω (|∇u| p + V (x)|u| p ) dx, A(u) = λ ∂Ω a(ρ)|u| r dρ, B(u) = ∂Ω b(ρ)|u| q dρ,
and the energy functional

J(u) = 1 p E(u) - 1 r A(u) - 1 q B(u) = = 1 p Ω (|∇u| p + V (x)|u| p ) dx - λ r ∂Ω a(ρ)|u| r dρ - 1 q ∂Ω b(ρ)|u| q dρ.
It is clear that solutions of Problem I are positive critical points of J. It is also clear that A, B satisfy (2.1) and hypothesis (H1) since the trace operators W 1,p (Ω) → L r (∂Ω, ρ) and W 1,p (Ω) → L q (∂Ω, ρ) are compact (remember that r, q < p * ). Hypotheses (H2) and (H3) are well known properties of the p-laplacian operator, c.f. [START_REF] Struwe | Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems[END_REF].

Let us consider the compact embedding W 1,p (Ω) → Y = L p (Ω) and denote • p the Lebesgue norm of L p (Ω). The eigenvalue λ 1 defined in (5.3) takes the following expression:

λ 1 := inf Ω (|∇u| p + V (x)|u| p ) dx ; u ∈ W 1,p (Ω), u p = 1
and it corresponds to the least eigenvalue µ of the following eigenvalue problem with Newman boundary conditions :

-∆ p u + V (x)|u| p-2 u = µ|u| p-1 u in Ω, |∇u| p-2 ∂u ∂ν = 0 on ∂Ω. (6.2) 
This problem should be understood in the weak sense, that is, for all ϕ ∈ W 1,p (Ω)

Ω (|∇u| p-2 ∇u∇ϕ + V (x)|u| p-2 uϕ) dx = µ Ω |u| p-2 uϕ dx. (6.3)
It is known (c.f. [START_REF] Cuesta | Weighted eigenvalue problems for quasilinear elliptic operators with mixed Robin-Dirichlet boundary conditions[END_REF]) that λ 1 is simple and isolated in the sense that inf{µ > λ 1 ; µ solves (6.3) for some u ∈ W 1,p (Ω) \ {0}} > λ 1 .

We then have that hypothesis (H3)' is satisfied and that E λ1 is of dimension 1. We will denote by ϕ 1 the unique eigenfunction of L p -norm equal to 1 associated to λ 1 . It is also known that ϕ 1 is sign definite and never vanishes in Ω. Furthermore, there is a second eigenvalue λ 2 for problem (6.2) and it can be characterized as

λ 2 = inf{µ > λ 1 ; µ solves (6.
2) for some u ∈ W 1,p (Ω) \ {0}}. (6.4)

In order to apply Theorem 5.7 we are going first to determinate under which conditions on a, b, V the Nehari sign-sets used in theorems 3.3, 3.4, 4.2, 4.1 are non empty. For this purpose we will use Proposition 2.4 of section 2. Let us denote

Γ ± a := {ρ ∈ ∂Ω ; a(ρ) ≷ 0}, Γ ± b := {ρ ∈ ∂Ω ; b(ρ) ≷ 0}, Γ a,0 := {ρ ∈ ∂Ω ; a(ρ) = 0}, Γ b,0 := {ρ ∈ ∂Ω ; b(ρ) = 0}. Lemma 6.1. (1) E + = ∅. (2) If Γ + a = ∅ then N + ∩ E + = ∅. (3) If Γ + b = ∅ then N -∩ E + = ∅. (4) If Γ - a ∩ Γ - b = ∅ then N + ∩ A -= ∅ and N -∩ B -= ∅.
Proof. The proof of ( 1) is trivial and we only prove (2), the proofs of the other cases are similar.

(2) We distinguish two cases: Case

a) Γ + a ∩ (Γ - b ∪ Γ b,0 ) = ∅. In this case we can construct a C ∞ function v in ∂Ω such that A(v) > 0 ≥ B(v). Let u ∈ W 1,p (Ω) having v as its trace. Let ξ be a C ∞ cut function such that 0 ≤ ξ ≤ 1, ξ ≡ 1 in a small ball B(x 0 , r) ⊂ Ω where |u| > c for some c > 0, ξ ≡ 1 in a neighbourhood Ω δ := {x ∈ Ω ; dist (x, ∂Ω) < δ} of ∂Ω, and ξ = 0 in Ω \ B(x, 2r) ∪ Ω 2δ . We can assume that c p B(x0,2r) |∇ξ| p ≥ B(x0,2r) |ξ| p (|∇u| p + V |u| p ) (6.5)
which implies that E(ξu) > 0. Thus ξu ∈ A + ∩B - 0 ∩E + and from Proposition 2.4 (i) we infer that

N + ∩ E + = ∅. Case b) If Γ + a ⊂ Γ +
b the construction of u and ξ runs similarly, starting with v ∈ C ∞ (∂Ω) such that A(v), B(v) > 0. The cut function ξ can be chosen in such a way that (6.5) is satisfied as well as

A(ξu) = A(v) < q -p q -r p -r q -r p-r q-p E(ξu) q-r q-p B(ξu) p-r q-p = max t>0 m ξu (t).
of [START_REF] Lieberman | Boundary regularity for solutions of degenerate elliptic equations[END_REF] gives that they are of class C 1,α (Ω) for some α ∈ (0, 1). Finally the Strong Maximum principle of [START_REF] Vazquez | A strong maximum principle for some quasilinear elliptic equations[END_REF] insures that non negative solutions of the problem are > 0 on Ω.

Remark 6.4. Unfortunately we are not able to replace the conditions j 0 (a) > 0 and j 0 (b) > 0 by, say, a condition related to some suitable eigenvalue. We just remark that both j 0 (a) > 0 and j 0 (b) > 0 imply that λ D 1 > 0, where λ D 1 denotes the first eigenvalue of -∆ p + V |u| p-2 u with Dirichlet boundary conditions. Remark 6.5. In the case a ≥ 0 (resp. b ≥ 0) and a "nice" zero set Γ a,0 one should be able to relate the condition j 0 (a) > 0 (resp j 0 (b) > 0) with the positivity of the first eigenvalue of -∆ p u + V |u| p-2 u over W 1,p (Ω, Γ a,0 ) := {u ∈ W 1,p (Ω) ; u = 0 on ∂Ω \ Γ a,0 }, as was done in [10, Proposition 11].

Existence and multiplicity results for Problem II

Let Ω ⊂ IR N be a bounded smooth domain of class C 2,α (0 < α < 1) with outward unit normal ν on the boundary ∂Ω. Let a, V ∈ L ∞ (Ω) and b ∈ C s (∂Ω) for some s ∈ (0, 1) be possibly indefinite and the exponents r, q to satisfy 1 < r < p < q < p * where p * = p(N -1) (N -p) + and let the number λ be a positive parameter. Take X = W 1,p (Ω) with the usual Sobolev norm • 1,p , the operators

E(u) = Ω (|∇u| p + V (x)|u| p ) dx, A(u) = λ Ω a(x)|u| r dx, B(u) = ∂Ω b(ρ)|u| q dρ,
and the energy functional

J(u) = 1 p E(u) - 1 r A(u) - 1 q B(u) = = 1 p Ω (|∇u| p + V (x)|u| p ) dx - λ r Ω a(x)|u| r dx - 1 q ∂Ω b(ρ)|u| q dρ.
A, B satisfy (2.1) and hypothesis (H1) since the embedding W 1,p (Ω) → L r (Ω) and the trace operator W 1,p (Ω) → L q (∂Ω, ρ) are compact (remember that r, q < p * < p * ). Solutions of Problem II are understood in the weak sense, that is,

Ω |∇u| p-2 ∇u∇ϕ + V (x)|u| p-2 uϕ = Ω λa|u| r-2 uϕ dx + ∂Ω b|u| q-2 uϕ dρ, (6.6 
) for all ϕ ∈ W 1,p (Ω). Similar to the previous case, (H2) to (H3)" are also satisfied with λ 1 defined in (6.2) and λ 2 as in (6.4). Let us consider again the compact embedding W 1,p (Ω) → Y = L p (Ω) so the eigenvalues λ 1 and λ 2 have been already defined for Problem I. Let us denote

Ω ± a := {x ∈ Ω ; a(x) ≷ 0}, Γ ± b := {ρ ∈ ∂Ω ; b(ρ) ≷ 0}.
We study now the sign-sets associated to J. Lemma 6.6. (1) E + = ∅.

(

) If Ω + a = ∅ then N + ∩ E + = ∅. (3) If Γ + b = ∅ then N -∩ E + = ∅. (4) If Ω - a = ∅ and Γ - b = ∅ then N + ∩ A -= ∅ and N -∩ B -= ∅ . Proof. (2) 2 
We can easily construct a C ∞ ∩ W 1,p 0 (Ω) function ξ with support on a small ball where a > 0 such that E(ξ) > 0.

(3) Let v ∈ C ∞ be a function defined in ∂Ω such that B(v) > 0 and let u ∈ W 1,p (Ω) having v as its trace. Let ξ be a C ∞ cut function such that 0 ≤ ξ ≤ 1, ξ ≡ 1 in a small ball B(x 0 , r) ⊂ Ω where |u| > c for some c > 0, ξ ≡ 1 in a neighbourhood Ω δ := {x ∈ Ω ; dist (x, ∂Ω) < δ} of ∂Ω, and ξ = 0 in Ω \ B(x, 2r) ∪ Ω 2δ . We can assume that which implies that E(ξu) > 0. The cut function ξ can be chosen to satisfy also A(ξu) > -q -p q -r p -r q -r p-r q-p (-E(ξu))

q-r q-p (-B(ξu))

p-r q-p = min t>0 m ξu (t).

Thus ξu ∈ Λ -. The proof of the other case is similar.

We keep here the same notation for the different coerciveness constants, although they read now as follows which implies that E(ξv) > 0. Thus ξu ∈ A + ∩B - 0 ∩E + and from Proposition 2.4 (i) we infer that N + ∩ E + = ∅. b) If Ω + a ⊂ Ω + b the construction of v and ξ is analogous to the previous case, starting with v ∈ C ∞ Ω) such that A(v), B(v) > 0 with support in a small ball B(x 0 , 2r) ⊂ Ω + a . The cut function ξ can be chosen in such a way that (6.9) is satisfied as well as A(ξv) < q -p q -r p -r q -r p-r q-p E(ξv)

q-r q-p B(ξv)

p-r q-p = max t>0 m ξv (t).

The proof of the other cases are similar.

The coerciveness constants are now 1 < 0, Ω bϕ q 1 < 0 then there exist at least two solutions for any λ ∈ (0, µ -1 + ). (ii) Assume that Ω + a = ∅. If c = λ 1 and Ω aϕ r 1 < 0 then there exists at least one solution for any λ ∈ (0, µ -1 + ). (iii) Assume that Ω - a ∩ Ω - b = ∅. If j 0 (a) > 0 and j 0 (b) > 0 then there exist at least two solutions in E -for any λ ∈ (0, µ -1 -). (iv) Assume that Ω + a = ∅. If λ 1 < c < λ 2 , j 0 (a) > 0 and Ω aϕ r 1 < 0 then there exists at least one solution in E + for any λ ∈ (0, µ -1 + ) (v) Assume that Ω + a = ∅ and Ω + b = ∅. If λ 1 < c < λ 2 , j 0 (a) > 0, j 0 (b) > 0, Ω aϕ r 1 < 0, and Ω bϕ q 1 < 0 then there exist at least two solutions in E + for any λ ∈ (0, µ -1 + ). Corollary 6.12. Assume that Ω + a = ∅, Ω + b = ∅ and Ω - a ∩ Ω - b = ∅. If λ 1 < c < λ 2 , j 0 (a) > 0, j 0 (b) > 0, Ω aϕ r 1 < 0, and Ω bϕ q 1 < 0 then there exist at least 4 solutions for all λ ∈ (0, min{µ + ) -1 , µ -1 -}). Remark 6.13. Notice that we do not claim in the statement of Theorem 6.11 that the solutions are positive. The reason is that we can not use, for a local minimizer u ∈ W 2,p (Ω), the relation J(u) = J(|u|) to deduce positivity of solution, since it can happen that |u| ∈ W 2,p (Ω) even if u ∈ W 2,p (Ω). The

  Case I : E(u) > 0 and B(u) > 0 in Figure 1(a); Case II : E(u) ≥ 0 and B(u) ≤ 0 in Figure 1(b); Case III: E(u) ≤ 0 and B(u) ≥ 0 in Figure 1(c); Case IV: E(u) < 0 and B(u) < 0 in Figure 1(d).
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 4 there exist at least two solutions of J (u) = 0 in E + . Proof. (i) Clearly we have (H4), (H5) and (H6) from Proposition 5.5. Thus the local minimum of Theorem 3.3 provides us a first solution of J (u) = 0. Since we also have (H6), a second solution comes from Theorem 3.4. (ii) We have (H4) and (H5) from Proposition 5.5 (a)-(b). Thus the local minimum of Theorem 3.3 is a solution of J (u) = 0. (iii) From (a) and (b) of Proposition 5.6 the hypotheses (H7), (H8) and (H9) hold. Then we get two solutions from Theorem 4.1 and Theorem 4.2. (iv) From (c) of Proposition 5.6 the hypotheses (H4) and (H5) hold. Then we get one solution from Theorem 3.3. (v) From (c) and (d) of Proposition 5.6 the hypotheses (H4), (H5), (H6) and (H7) hold. Then we get two solutions from Theorem 3.3 and Theorem 3.Remark 5.9. As in Proposition 5.5 one has

  ,2r) |∇ξ| p ≥ B(x0,2r) |ξ| p (|∇u| p -V |u| p ) which implies that E(ξu) > 0. Thus ξu ∈ B + ∩ E + and from Proposition 2.4 (i) we infer that N + ∩ E + = ∅. (4) We prove that Λ -= ∅. Let 0 ≤ v ∈ C ∞ be a function defined in ∂Ω such that B(v) < 0 and let u ∈ W 1,p (Ω) having v as its trace. We can assume that u ≥ 0 by replacing u by |u| if necessary. If A(u) ≥ 0 let us take a function 0 ≤ w ∈ W 1,p 0 (Ω) with support in Ω - a such that Ω - a aw r < -Ω au r which implies that A(u + w) < 0. Hence replace u by u + w, which also has v as trace. Let ξ be a C ∞ cut function such that 0 ≤ ξ ≤ 1, ξ ≡ 1 in a small ball B(x 0 , r) ⊂ Ω - a where |u| > c for some c > 0, ξ ≡ 1 in a neighbourhood Ω δ := {x ∈ Ω ; dist (x, ∂Ω) < δ} of ∂Ω, and ξ = 0 in Ω \ B(x, 2r) ∪ Ω 2δ . We can assume that c p B(x0,2r) |∇ξ| p ≥ B(x0,2r) |ξ| p (|∇u| p -V |u| p )

2 Ω

 2 j 0 (a) := inf Ω |∇u| p + V (x)|u| p ; Ω a|u| r = 0, u 1,p = 1 , j 0 (b) := inf Ω |∇u| p + V (x)|u| p ; ∂Ω b|u| q = 0, u 1,p = 1 .B(x 0 , r) ⊂ Ω where |v| > for some > 0, ξ ≡ 0 in Ω \ B(x 0 , 2r). We can assume that p B(x0,2r) |∆ξ| p ≥ B(x0,2r) |ξ| p (|∆v| p + c|v| p ) -|∇v| p |∇ξ| p (6.9)

j 0

 0 (a) := inf Ω |∆u| p -c|u| p ; Ω a|u| r = 0, u W = 1 , j 0 (b) := inf Ω |∆u| p -c|u| p ; Ω b|u| q = 0, u W = 1and one also has to rewrite the constants µ ± in terms of the operators E, A, B. By applying Theorem 5.7 we get Theorem 6.11. (i) Assume that Ω + a = ∅ and Ω + b = ∅. If either c < λ 1 or c = λ 1 and Ω aϕ r

Acknowledgments. This work was partilly carried out while the first author was visiting the IMSP of the Université d'Abomey Calavi (Porto-Novo) and also while the second author was visiting the Université du Littoral Côte d'Opale (ULCO) and the Université Libre de Bruxelles (ULB). We would like to express our gratitude to those institutions.

Proposition 5.5. Let us assume (H1) to (H3) and λ 1 = 0. Then (a) E λ1 ∩ A + 0 ∩ B 0 = ∅ ⇒ (H4), (b) E λ1 ⊂ A -⇒ j 0 (A) > 0, i + (A) > 0 ⇒ j 0 (A) > 0 and (H5), (c) E λ1 ⊂ B -⇒ j 0 (B) > 0, i + (B) > 0 ⇒ (H6).

Proof. We only prove (b), the proof of the other cases are similar. Trivially i + (A) ≥ λ 1 = 0 and j 0 (A) ≥ λ 1 = 0. Assume by contradiction that i + (A) = 0 and let u n ∈ X with A(u n ) = 1 be a minimizing sequence for i + (A). If the sequence u n is bounded then, up to a subsequence, u n u 0 for some u 0 ∈ X. Hence A(u 0 ) = 1 (so in particular u 0 ≡ 0) and E(u 0 ) = i + (A) = 0. Hence

is an eigenfunction associated to λ 1 and we have again a contradiction with the assumption of (b). Thus the sequence (u n ) is unbounded. Let us take v n := v n u n ; hence there exists v 0 ∈ X such that, up to a subsequence, v n v 0 , A(v n ) → 0 and E(v n ) → 0. Notice that v 0 = 0 because otherwise it will follows from 0 = E(v 0 ) ≤ lim inf E(v n ) = 0 and (H3) that v n → 0. This is impossible since v n = 1. We then have v 0 = 0, A(v 0 ) = 0 and E(v 0 ) ≤ 0. By using the inequality

we deduce that E(v 0 ) = 0 so v 0 belongs to E λ1 , a contradiction with the assumption of (b). The proof of j 0 (A) > 0 rules similarly.

We can obtain two more solutions of J (u) = 0 in the case λ 1 < 0, that is, when E -= ∅. To do so, let us assume in this case that

We have

Proposition 5.6. Let us assume hypothesis (H1) to (H3). Then (a) j 0 (A) > 0 ⇒ (H8) and (H9), (b) j 0 (B) > 0 ⇒ (H4) and (H7).

Let us assume also hypothesis (H3) and (H3) . Then (c) j 0 (A) > 0 and E λ1 ⊂ A -⇒ (H4) and i + (A) > 0 ⇒ (H4) and (H5), (d) j 0 (B) > 0 and E λ1 ⊂ B -⇒ (H4) and i + (B) > 0 ⇒ (H4) and (H6).

Proof. (a), (b) are trivial. We only prove (c) as the proof of (d) is similar. Let us denote d := inf{E(u) ; A(u) ≥ 0, u Y = 1} and prove that d > 0. Clearly d > 0 ⇒ (H4). Since for all u ∈ X satisfying A(u) = 1 we have E( u u Y ) ≥ d, the conclusion i + (A) > 0 will follow, and also (H5). First we claim that d is achieved. Indeed, if u n is an admissible sequence with E(u n ) → d then we can prove that the sequence is bounded (otherwise

A variational characterization of λ ± *

We have proved in the previous section the existence of four solutions of the equation J (u) = 0 provided λ ± * > 1, where λ ± * has been defined in (2.8) and (2.9). Let us here give some variational characterization of these values. For the sake of simplicity let us denote α := p -r q -r , β := q -p q -r ,

Observe that

Proposition 5.8. Let us define

If j + 0 (A, B) > 0 then λ + * is achieved. Furthermore, for any u ∈ X where λ + * is achieved we have

A similar result holds for λ - * under the constraint j - 0 (A, B) > 0.

Proof.

is a minimizing sequence for λ + * and (u n ) is bounded then, up to a subsequence, u n u 0 for some u 0 ∈ X that will satisfy A(u 0 ) β B(u 0 ) α = 1, so u 0 will be admissible in the infimum and then it is achieved. If u n goes to +∞ then for v n = un un we will have, up to a subsequence,

un p = 0. We can rule out the possibility

Testing this identity at u we have

that is pE(u) = µ(rβ + qα) = µp and the identity (5.6) follows after a simple computation.

Thus ξu ∈ Λ + and the conclusion follows from (i) of Proposition 2.4.

We remember here the coerciveness values defined in (5.1), that in our case will be j 0 (a) := inf

Finally let us recall the definitions (2.8) and (2.9) and write for sake of simplicity

and

which do not depend on λ.

We can now reformulate Theorem 5.7 as the following existence and multiplicity result for Problem I. Theorem 6.2. (i) Assume that Γ + a = ∅ and Γ + b = ∅. If either λ 1 > 0 or λ 1 = 0 and ∂Ω aϕ r 1 < 0, ∂Ω bϕ q 1 < 0 then there exists at least two solutions for any λ ∈ (0, µ -1 + ). (ii) Assume that Γ + a = ∅. If λ 1 = 0 and ∂Ω aϕ r 1 < 0 then there exists at least one solution for any λ ∈ (0, µ -1 + ). (iii) Assume that Γ - a ∩ Γ - b = ∅. If j 0 (a) > 0 and j 0 (b) > 0 then there exist at least two solutions in E -for any λ ∈ (0, µ -1 -). (iv) Assume that Γ + a = ∅. If λ 1 < 0 < λ 2 , j 0 (a) > 0 and ∂Ω aϕ r 1 < 0 then there exist at least one solution in E + for any λ ∈ (0, µ -1

1 < 0, and ∂Ω bϕ q 1 < 0 then there exist at least two solutions in E + for any λ ∈ (0, µ -1 + ). In particular we have from cases (iii) and (v) that

1 < 0, and ∂Ω bϕ q 1 < 0 then Problem I possesses at least 4 solutions for any λ ∈ (0, min{µ -1 + , µ -1 -}). Proof. Proof of Theorem 6.2. The existence of weak solutions in each of the 4 cases have already be done in Theorem 5.7. Since each solution comes as a local minimizer of J along the sign subsets of the Nehari set and all of these subsets are invariant by taking the absolute value of a function u, we can assume that all these critical points are ≥ 0. Besides the result of [START_REF] Cuesta | Weighted eigenvalue problems for quasilinear elliptic operators with mixed Robin-Dirichlet boundary conditions[END_REF]Theorem A.1] implies that all solutions are bounded and the regularity result We left to the reader the expressions of µ ± in terms of the operators E, A, B. We can now formulate an existence and multiplicity result for Problem II. We generalize some results of [START_REF] Garcia-Azorero | A convex-concave problem with a nonlinear boundary condition[END_REF][START_REF] Sabina De Lis | A concave-convex quasilinear elliptic problem subject to a non linear boundary condition[END_REF] where this problem was studied for V ≡ 0, a ≡ b ≡ 1. Theorem 6.7. (i) Assume that Ω + a = ∅ and Γ + b = ∅. If either λ 1 > 0 or λ 1 = 0 and Ω aϕ r 1 < 0, ∂Ω bϕ q 1 < 0 then there exists at least two solutions for any λ ∈ (0, µ -1 + ). (ii) Assume that Ω + a = ∅. If λ 1 = 0 and Ω aϕ r 1 < 0 then there exists at least one solution for any λ ∈ (0, µ -1 + ). (iii) Assume that Ω - a = ∅ and Γ - b = ∅. If j 0 (a) > 0 and j 0 (b) > 0 then there exist at least two solutions in E -for any λ ∈ (0, µ -1 -). (iv) Assume that Ω + a = ∅. If λ 1 < 0 < λ 2 , j 0 (a) > 0 and Ω aϕ r 1 < 0 then there exist at least one solution in E + for any λ ∈ (0, µ -1

1 < 0, and ∂Ω bϕ q 1 < 0 then there exist at least two solutions in E + for any λ ∈ (0, µ -1 + ). The proof of this theorem comes from Theorem 5.7 and the regularity results quoted in the proof of Theorem 6.2.

1 < 0, and ∂Ω bϕ q 1 < 0 then there exists at least 4 solutions of Problem II for any λ ∈ (0, min{µ + ) -1 , µ -1 -}). Remark 6.9. In [START_REF] Garcia-Azorero | A convex-concave problem with a nonlinear boundary condition[END_REF][START_REF] Sabina De Lis | A concave-convex quasilinear elliptic problem subject to a non linear boundary condition[END_REF] the authors also proved non-existence of solutions for large values of λ. To our knowledge this is an open problem in the non coercive case.

Existence and multiplicity results for Problem III

Let us now discuss the solvability of

The open bounded set Ω ⊂ IR N is assumed here to have a Lipschitz boundary and a, b, ∈ L ∞ (Ω) and c ∈ IR. By a solution of this problem we mean a function u ∈ W 2,p (Ω) ∩ W 1,p 0 (Ω) such that

holds for all ϕ ∈ W 2,p (Ω) ∩ W 1,p 0 (Ω). Here V, a, b ∈ L ∞ (Ω) and 1 < r < p < q < p * * , where

is the critical Sobolev exponent for W 2,p (Ω). The space W (Ω) := W 2,p (Ω) ∩ W 1,p 0 (Ω) endowed with the equivalent norm u W := ∆u p is reflexive uniformly convex Banach space. Take X = W (Ω),

and the energy functional

It is clear that A, B satisfy (2.1) and hypothesis (H1) since the embedding W (Ω) → L r (Ω) and W (Ω) → L q (Ω) are compact (because r, q < p * * ). Thus (H1), (H2) and (H3) hold.

The coerciveness of E depends on the position of c with respect to the first eigenvalue of the following p-bilaplacian problem

with weak formulation

According to [START_REF] Drabek | Global bifurcation result for the p-biharmonic operator[END_REF] there exists λ 1 > 0 a least eigenvalue of (6.8), and this eigenvalue is principal, isolated and simple. Furthermore it holds

Let ϕ 1 > 0 with ϕ 1 p = 1 be an eigenfunction associated to λ 1 . Denote by λ 2 = inf{λ > λ 1 ; λ solves (6.8)}.

The fact that λ 2 ∈ IR is an eigenvalue of the Dirichlet p-bilaplacian and the existence of a sequence of eigenvalues is proved for instance in [START_REF] Talbi | On the Spectrum of the Weighted p-Biharmonic Operator with Weight[END_REF].