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Abstract 22 

Human membrane drug transporters are recognized as major actors of pharmacokinetics; they 23 

also handle endogenous compounds, including hormones and metabolites.  Chemical additives 24 

present in plastics interact with human drug transporters, which may have consequences for the 25 

toxicokinetics and toxicity of these widely-distributed environmental and/or dietary pollutants, 26 

to which humans are highly exposed. The present review summarizes key findings about this 27 

topic. In vitro assays have demonstrated that various plastic additives, including bisphenols, 28 

phthalates, brominated flame retardants, poly-alkyl phenols and per- and poly-fluoroalkyl 29 

substances, can inhibit the activities of solute carrier uptake transporters and/or ATP-binding 30 

cassette efflux pumps. Some are substrates for transporters or can regulate their expression. The 31 

relatively low human concentration of plastic additives from environmental or dietary exposure 32 

is a key parameter to consider to appreciate the in vivo relevance of plasticizer-transporter 33 

interactions and their consequences for human toxicokinetics and toxicity of plastic additives, 34 

although even low concentrations of pollutants (in the nM range) may have clinical effects. 35 

Existing data about interactions of plastic additives with drug transporters remain somewhat 36 

sparse and incomplete. A more systematic characterization of plasticizer-transporter 37 

relationships is needed. The potential effects of chemical additive mixtures towards transporter 38 

activities and the identification of transporter substrates among plasticizers, as well as their 39 

interactions with transporters of emerging relevance deserve particular attention. A better 40 

understanding of the human toxicokinetics of plastic additives may help to fully integrate the 41 

possible contribution of transporters to the absorption, distribution, metabolism and excretion 42 

of plastics-related chemicals, as well as to their deleterious effects towards human health.  43 

Key-words 44 

Drug transporters, plastic additives, pollutants, toxicity, toxicokinetics. 45 

46 
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1. Introduction 47 

Human drug transporters are membrane proteins, implicated in the uptake or secretion 48 

of drugs at the plasma membrane (Petzinger and Geyer, 2006). They segregate into ATP-49 

binding cassette (ABC) transporter and solute carrier (SLC) superfamilies (Roberts, 2021). 50 

Drug transporters are located in main organs/tissues implicated in drug absorption, disposition 51 

and/or elimination, such as the intestine, the liver, the kidney and blood-tissue barriers, 52 

including the blood-brain barrier, the blood-testis barrier and the placental barrier (Giacomini 53 

and Huang, 2013). Drug transporters thus play a key role in pharmacokinetics, and are notably 54 

involved in the phases of absorption, distribution and excretion of drugs (Liu, 2019). Moreover, 55 

drugs are not only substrates for transporters, but can also act as potential inhibitors, which can 56 

lead to drug-drug interactions (DDIs) when the pharmacokinetics features of a drug, i.e., the 57 

“victim”, are impaired, due to inhibition of its membrane transport by a co-administrated drug, 58 

i.e., the “perpetrator” (König et al., 2013). Blockage of transporter activity can additionally 59 

result in altered transport of endogenous substrates, thereby triggering adverse drug effects 60 

(Zolk and Fromm, 2011). Endogenous substrates for transporters include hormones, signalling 61 

molecules, nutrients, neuromediators, metabolites, nucleosides, and bile acids (Nigam, 2015). 62 

Some of them have been proposed as clinical biomarkers for transporters-related DDI 63 

evaluation (Chu et al., 2018). It is noteworthy that inhibition of hormone transport may 64 

represent a contributing mechanism to endocrine disruption, an adverse effect of various 65 

chemical pollutants (Lisco et al., 2022). In addition to inhibition of their activity, changes in the 66 

expression of drug transporters, caused by drug treatment or pathophysiological situations such 67 

as inflammation, can impair pharmacokinetics and be the source of DDIs or toxicity (Brouwer 68 

et al., 2022; Cressman et al., 2012). Genetic polymorphisms of certain transporters can also 69 

cause pharmacokinetics variability among human populations (Yee et al., 2018). For all these 70 

reasons, transporters are now fully recognized by the pharmacology community and by 71 

regulatory agencies, as major actors of drug disposition in the body (Giacomini et al., 2010). 72 
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Consequently, from a regulatory standpoint, interactions of novel small drugs with main drug 73 

transporters have to be studied and characterized during their pharmaceutical development (Lee 74 

et al., 2017). This has to be performed using human, and not animal, transporter models, owing 75 

to the known interspecies differences in drug transporter activity and expression (Hammer et 76 

al., 2021; Morse et al., 2021; Wang et al., 2015). 77 

In addition to drugs, other chemicals, especially pollutants of public health concern, are 78 

likely to interact with human drug transporters (Clerbaux et al., 2019; Nicklisch and Hamdoun, 79 

2020), which may have important consequences for chemical risk assessment (Clerbaux et al., 80 

2018; Darney et al., 2020). In contrast to drugs, the handling of pollutants by human drug 81 

transporters and their potential inhibitory effects remain rather poorly studied (Fardel et al., 82 

2012). The exact implications of these potential interactions for pollutant toxicokinetics or 83 

toxicity are consequently poorly understood (Abu-Qare et al., 2003). The proof of concept for 84 

the interaction of environmental chemicals with human drug transporters was, however, 85 

provided more than twenty five years ago, through the demonstration that various pesticides 86 

belonging to different chemical classes can inhibit the ABC transporter P-glycoprotein (P-gp, 87 

ABCB1) (Bain and LeBlanc, 1996). Pesticides have since been shown to interact with other 88 

ABC transporters and with SLCs, as recently reviewed (Chedik et al., 2018; Guéniche et al., 89 

2020). Transporters notably contribute to the pharmacokinetics, and moreover to the toxicity of 90 

certain pesticides, such as those of the herbicide paraquat (Wang et al., 2021). Besides 91 

pesticides, chemicals belonging to various classes of environment, food or drinking water 92 

contaminants also interfere with human transporters (Nicklisch and Hamdoun, 2020). This is 93 

notably the case for chemical additives present in plastics (Bruyere et al., 2017; Kim et al., 94 

2007), known to also interact with xenobiotic transporters of aquatic organisms (Anselmo et 95 

al., 2012; Horion et al., 2015; Keiter et al., 2016; Nicklisch et al., 2021; Popovic et al., 2014). 96 

More than 400 of these plastics-related chemicals, basically used for enhancing polymer 97 

Jo
urn

al 
Pre-

pro
of



5 
 

properties and prolonging their life, are in use (Gunaalan et al., 2020). The most common plastic 98 

additives are phthalates (used as plasticizers), bisphenols (used as 99 

monomers/plasticizers/antioxidants), brominated flame retardants (BFRs) such as 100 

polybrominated diphenyls ethers (PBDE) or tetrabromobisphenol A (TBBPA, 4,4′-(propane-101 

2,2-diyl)bis(2,6-dibromophenol)), alkylphenols (used as antioxidants/plasticizers), and per- and 102 

poly-fluoroalkyl substances (PFASs) (used as coating agents) (Barhoumi et al., 2022; Groh et 103 

al., 2019; Hahladakis et al., 2018; Hermabessiere et al., 2017; Wiesinger et al., 2021). Because 104 

these additives are usually not chemically bound to plastics, they can migrate out of them and 105 

are consequently widely released in the environment, notably when plastics degrade 106 

(Hermabessiere et al., 2017). They are, in particular, found in food and drinking water, where 107 

they can originate from plastic packaging or bottling, and are also closely associated with 108 

nanoplastics and microplastics, which are now recognized as major emerging environmental 109 

pollutants (Sangkham et al., 2022). Humans are thus highly exposed to these plastic additives 110 

through ingestion, inhalation and dermal contact. This is problematic because of the established 111 

deleterious effects of many of these additives; for example, bisphenols, phthalates and BFRs 112 

cause endocrine disruption, fertility problems, metabolic diseases and cancers (Benjamin et al., 113 

2017; Campanale et al., 2020; Feiteiro et al., 2021; Ma et al., 2019; Tarafdar et al., 2022). Plastic 114 

additives are therefore chemicals of considerable concern with respect to the human exposome 115 

and the public health. This led us to survey the interactions of plastic additives with human drug 116 

transporters in the present review, with a special emphasis on possible consequences for human 117 

exposure, toxicokinetics and health. The plastic additives considered are mainly those for which 118 

interactions with at least one human drug transporter are documented in the literature, according 119 

to a search of the PubMed database (https://pubmed.ncbi.nlm.nih.gov/), as of 08/31/2022; these 120 

plastic additives are listed in Table 1.   121 

2. Brief overview of drug transporters 122 
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2.1. ABC transporters 123 

Plasma membrane drug transporters belonging to the ABC protein family mediate 124 

primary active efflux of drugs, through hydrolysis of ATP via their intrinsic ATPase activity 125 

(Schinkel and Jonker, 2003). They comprise P-gp, encoded by the multidrug resistance gene 1 126 

(MDR1), multidrug resistance-associated proteins (MRPs) such as MRP1 (ABCC1), MRP2 127 

(ABCC2), MRP3 (ABCC3) and MRP4 (ABCC4), breast cancer resistance protein 128 

(BCRP/ABCG2), as well as the hepatic bile salt export pump (BSEP/ABCB11). The main types 129 

of substrates for these efflux pumps are given in Table 2. It is noteworthy that most of these 130 

transporters, particularly P-gp, MRP1, MRP2 and BCRP, usually exhibit broad and sometimes 131 

overlapping substrate specificity. Several of them, especially P-gp, have been historically 132 

implicated in multidrug resistance of cancer cells (Amawi et al., 2019), thus illustrating the 133 

protective effect of these efflux pumps towards xenobiotics (Leslie et al., 2005). 134 

The tissue location of ABC transporters is shown in Fig. 1. P-gp and BCRP are notably 135 

found at the brush-border membrane of enterocytes, where they actively expel their substrates 136 

into the digestive lumen, thereby preventing or limiting their intestinal absorption (Müller et 137 

al., 2017). These pumps are also present at the luminal pole of brain microvessel endothelial 138 

cells, at the apical pole of syncytiotrophoblasts and at the basolateral pole of Sertoli cells, where 139 

they contribute to the blood–brain, blood-placenta and blood-testis barriers, respectively (Liu 140 

and Liu, 2019; Miller, 2015; Mruk et al., 2011). P-gp and BCRP, as well as MRP2 and BSEP, 141 

are additionally found at the canalicular pole of hepatocytes, where they secrete their substrates 142 

into the bile canaliculus lumen (Jetter and Kullak-Ublick, 2020); in this context, drug-mediated 143 

inhibition of BSEP transport has been associated with cholestasis (Chatterjee and Annaert, 144 

2018). In the kidney, P-gp, BCRP and MRP2 are located at the apical pole of proximal tubular 145 

cells, where they contribute to tubular secretion of drugs (Lee and Kim, 2004). 146 

2.2. SLC transporters  147 
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SLCs mediate secondary active transport or facilitated diffusion of drugs (Zhou and Shu, 148 

2022). They belong mainly to the SLCO, SLC22, and SLC47 transporter subfamilies. The list 149 

of these transporters and their main types of substrates are indicated in Table 150 

2.  SLCO transporters, also known as organic anion transporting polypeptides (OATPs), include 151 

three members recognized as important drug transporters, i.e., OATP1B1 (SLCO1B1), 152 

OATP1B3 (SLCO1B3) and OATP2B1 (SLCO2B1) (Roth et al., 2012). SLC22 drug transporters 153 

correspond to organic cation transporters (OCTs) such as OCT1 (SLC22A1) and OCT2 154 

(SLC22A2), and organic anion transporters (OATs) like OAT1 (SLC22A6), OAT2 (SLC22A7), 155 

OAT3 (SLC22A8) and OAT4 (SLC22A11) (Ciarimboli, 2008; Koepsell, 2020; Roth et al., 156 

2012). SLC47 transporters are multidrug and toxin extrusion (MATE) proteins and comprise 157 

two members, i.e., MATE1 (SLC47A1) and MATE2 (SLC47A2) (Nies et al., 2016). Similarly 158 

to ABC transporters, there is a high degree of overlapping substrates between SLC transporters, 159 

notably between OCTs and MATEs and between OATPs and OATs (Table 2). 160 

OATPs, OCTs and OATs are notably expressed at the basolateral side of hepatocytes 161 

and kidney proximal tubular cells (Fig. 1) and primarily act as uptake drug transporters enabling 162 

the entry of drugs from blood into cells (Ciarimboli, 2008; Roth et al., 2012). By contrast, 163 

MATE1 and MATE2-K, the functional splice variant of MATE2, function as pH-dependent 164 

efflux transporters, at the apical surface of hepatocytes or proximal tubular cells (Koepsell, 165 

2020) (Fig. 1). OAT4 is implicated in drug reabsorption from the primitive urine at the apical 166 

pole of proximal tubular cells and also in compound uptake into the placenta from the foetus 167 

blood at the basal pole of syncytiotrophoblasts (Rizwan and Burckhardt, 2007). SLC 168 

transporters also include the proton-coupled peptide transporter (PEPT) 1 (SLC15A1), involved 169 

in absorption of peptidomimetic drugs at the apical pole of enterocytes (Inui et al., 2000), the 170 

sodium-taurocholate cotransporting polypeptide (NTCP/SLC10A1) and the apical sodium-171 

dependent bile acid transporter (ASBT/SLC10A2), implicated in bile acid uptake at the 172 
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basolateral pole of hepatocytes and the apical pole of enterocytes, respectively (Meier and 173 

Stieger, 2002), and the human organic solute transporter (OST) α/β (SLC51A/SLC51B), 174 

implicated in the efflux of bile acids at the basolateral pole of enterocytes and hepatocytes 175 

(Beaudoin et al., 2020). 176 

3. Modulation of transporter activities by plastic additives 177 

Direct modulation of human transporter activities by plastic additives have been studied 178 

using conventional in vitro methods, based on vesicular or cellular assays (Brouwer et al., 179 

2013). Vesicular transport assays, used mainly for ABC transporters, rely upon the ATP-180 

dependent translocation of reference substrates into the vesicular compartment of inside-out 181 

plasma membrane vesicles prepared from cells expressing the transporter of interest (Volpe, 182 

2016); the inhibition or stimulation of transporter activity is visualized by the decreased or 183 

increased accumulation of the reference substrate into the vesicular compartment in response 184 

to the chemical tested for its transporter activity modulating potential. Cellular assays, used for 185 

ABC and SLC transporters, correspond to uptake or efflux of reference substrates in, or from, 186 

recombinant cells overexpressing the transporter of interest, or to bidirectional transport of 187 

reference substrates across transporter-expressing polarized cells (Jani and Krajcsi, 2014); the 188 

potential transporter modulating activity of compounds is demonstrated by the alteration of 189 

reference substrate uptake, efflux or transcellular passage.   190 

Modulations of ABC transporter activities by plastic additives are summarized in Table 191 

3. Plastic additives usually act as inhibitors of ABC transporter activities or fail to interfere with 192 

them. Only bisphenol A (BPA, 4,4′-(propane-2,2-diyl)diphenol) was reported to stimulate the 193 

activity of an ABC transporter, i.e., that of P-gp (Table 3), which is consistent with the fact that 194 

most ABC transporter modulators behave as inhibitors (Cui et al., 2015). It is, however, 195 

noteworthy that the stimulating effect of BPA towards P-gp activity observed in cellular assays 196 

(Jin and Audus, 2005) has not been confirmed in vesicular assays (Dankers et al., 2013), which 197 
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may reflect differential sensitivities of cellular and vesicular assays to modulators. Other 198 

discrepancies have been observed between cellular and vesicular assays notably with 199 

diethylhexylphthalate (DEHP, bis(2-ethylhexyl) benzene-1,2-dicarboxylate) which acts as a P-200 

gp inhibitor in cellular assays (Kim et al., 2007) but not in vesicular assays (Dankers et al., 201 

2013), and the BFR 2,2',4,4'-tetrabromodiphenyl ether (BDE-47, 3,5-dibromo-2-(2,4-202 

dibromophenoxy)phenol), which inhibits BCRP in vesicular assays but not in cellular assays 203 

(Marchitti et al., 2017). Overall, among plastic additives, phthalates like DEHP and its 204 

metabolite monoethylhexylphthalate (MEHP, 2-(2-ethylhexoxycarbonyl)benzoate) interact 205 

poorly with ABC transporter activity; they notably fail to inhibit MRP1, MRP4 or BCRP 206 

activity (Table 3). By contrast, the BFR TBBPA, as well as the PFASs perfluorooctanoic acid 207 

(PFOA, 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctanoic acid) and perfluorooctane 208 

sulfonate (PFOS, 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctane-1-sulfonic acid), 209 

appear to be potent inhibitors of ABC transporters as they block P-gp, MRP1, MRP4 and BCRP 210 

activities (Table 3); PFOS additionally inhibits BSEP and MRP2. Among ABC transporters, 211 

BCRP is the most sensitive to plastic additives, as it is inhibited by BPA, BFRs and PFASs 212 

(Table 3). It is noteworthy that the concentrations of plastic additives required to inhibit ABC 213 

transporters are usually in the 10-100 µM range (Table 3); only the alkylphenol 4-nonylphenol 214 

(NP) blocks P-gp activity when used at low concentrations in the 0.1-1 µM range (Doo et al., 215 

2005).  216 

Modulations of SLC drug transporter activities by plastic additives are summarized in 217 

Table 4. Some additives, e.g., bisphenols used at 100 µM, stimulate the activity of SLCs; this 218 

is the case for bisphenol F (BPF, 4-[(4-hydroxyphenyl)methyl]phenol), proposed as a substitute 219 

for BPA, which increases the activity of OCT2, OATP1B3, and OAT1, whereas BPA stimulates 220 

only that of OAT1 (Table 4). Inhibition of SLC activities by plastic additives is nevertheless a 221 

more common situation (Table 4). It occurs notably for TBBPA which blocks OCT1, OCT2, 222 
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OATP1B1, OATP1B3, MATE1, OAT3 and NTCP activities, but fails to alter MATE2-K and 223 

OAT1 activities. Other BFRs like BDE-47 and PFASs target OATPs and/or OATs (Table 4), 224 

whereas effects of phthalates towards SLC transporters have not yet been investigated. The 225 

concentrations of bisphenols, BFRs or PFAS acting on SLC transporter activities are often in 226 

the 10-100 µM range (Table 4), as reported above for those acting on ABC transporters. Low 227 

concentrations of TBBPA (in the 0.5-5 µM range), however, inhibit OAT3 and NTCP activity, 228 

whereas inhibition of OATP activities is caused by much lower concentrations of BDE (in the 229 

100 pM-100 nM range) (Table 4). 230 

The mechanisms by which plastic additives modulate transporter activities remain to be 231 

clarified. Competitive or non-competitive interactions with drug binding sites on transporter 232 

proteins are likely involved, as proposed for drugs inhibiting transporters (Wigler and Patterson, 233 

1993). The fact that BPA has been demonstrated to inhibit OAT3-mediated transport of estrone 234 

3-sulfate in a competitive manner (Bruyere et al., 2017) and that PFOA, perfluorononanoic acid 235 

(PFNA, 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-heptadecafluorononanoic acid) and perfluorodecanoic 236 

acid (PFDA, 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-nonadecafluorodecanoic acid) 237 

competitively block OATP2B1-mediated uptake of sulfobromophthalein in Caco-2 cells 238 

(Kimura et al., 2020) fully supports this conclusion. BDEs probably also inhibit OATPs by 239 

competitive mechanisms because they are high affinity ligands for these SLCs (Pacyniak et al., 240 

2010) (Table 5).  241 

4. Plastic additives as substrates for transporters 242 

Handling of plastic additives by human drug transporters has mainly been investigated 243 

using conventional in vitro methods addressing whether a compound is a substrate for a plasma 244 

membrane transporter (Jani and Krajcsi, 2014). Such methods correspond to (i) cellular assays 245 

based on the uptake, efflux or transcellular passage of the chemicals in, from or across 246 

transporter-expressing cells, in the presence or absence of reference inhibitors for the 247 
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considered transporter, (ii) vesicular assays, based on the transport of the compounds into the 248 

intravesicular compartment of transporter-expressing inside-outside membrane vesicles and 249 

(iii) ATPase assays, which indirectly measure ABC drug transporter activity through 250 

quantifying the stimulation of ATPase activity by substrates in plasma membrane preparations 251 

from ABC transporter-expressing cells. Additionally, the perfused human placenta model has 252 

been used to demonstrate that bisphenol S (BPS, 4-(4-hydroxyphenyl)sulfonylphenol) is 253 

transported by P-gp (Grandin et al., 2019). 254 

The plastic additives which are either substrates or non substrates for human ABC and 255 

SLC transporters are listed in Table 5. With respect to P-gp, DEHP and alkyphenols such as 256 

nonyphenol ethoxylate (NPE, 2-(4-nonylphenoxy)ethanol), but not its metabolite NP, are 257 

substrates. For BPA, conflicting results have been obtained with respect to P-gp. BPA has thus 258 

been shown to be transported by P-gp across human intestinal Caco-2 cells (Yoshikawa et al., 259 

2002), but not across P-gp-overexpressing MDCK cells (Dankers et al., 2013); moreover, BPA 260 

failed to stimulate ATPase activity of P-gp (Mazur et al., 2012). Further studies are therefore 261 

required to more precisely determine whether BPA is a substrate for P-gp. With respect to other 262 

ABC transporters, MRP2, MRP3 and BCRP transport BPA, whereas PFOA is a substrate for 263 

BCRP (Table 5). Various BDEs, including BDE-47, have been demonstrated to be transported 264 

by OATP1B1, OATP1B3 and OATP2B1, with rather low Km values (around 0.3-1.9 µM) 265 

(Table 5), indicating that they are high affinity substrates for OATPs. Whereas OATs transport 266 

PFOA with Km values in the 50-310 µM range. Other PFASs such as PFOS have additionally 267 

been found to be substrates for the bile salt transporters NTCP, ASBT and OSTα/β (Table 5). 268 

Finally, the trans-epithelial transport of various BDEs across Caco-2 cells has been shown to 269 

be altered by various transporter inhibitors, suggesting that several transporters, i.e., P-gp, 270 

MRPs, BCRP and OCTs, may participate in the transcellular passage of these chemicals, even 271 
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if passive diffusion may predominate (Yu et al., 2017). Further studies are required to confirm 272 

whether BDEs are substrates for these transporters in intestinal cells.   273 

5. Regulation of human drug transporter expression by plastic additives 274 

Regulations of human drug transporter expression by plastic additives have been mostly 275 

studied using cellular in vitro models and are listed in Table 6. These regulations, either 276 

induction or repression of transporter expression, depend on the nature of both the transporter 277 

and the plastic additive. For P-gp, chronic exposure (48 h) of placental BeWo cells to 10 µM 278 

BPA results in enhanced expression of the efflux pump, but in a rather modest manner (55% 279 

increase) (Jin and Audus, 2005). By contrast, BPA exposure at 80 µM for 24 h fails to induce 280 

P-gp expression in human hepatic HepG2 cells, despite an increase in MDR1 mRNA levels 281 

(Hanet et al., 2008). These contradicting results may reflect a cell type-dependent regulation of 282 

P-gp by BPA. This chemical also increases the activity of the MDR1 gene promoter in an 283 

haplotype-dependent manner (Speidel et al., 2018). Phthalates such as DEHP used at 10 µM 284 

for 24 h-72 h enhance P-gp expression in colon cancer and sarcoma cells (Angelini et al., 2011; 285 

Chen et al., 2018; Takeshita et al., 2006), which is associated with increased resistance to 286 

chemotherapeutics drugs (Chen et al., 2018). P-gp induction and multidrug resistance also occur 287 

in response to chronic exposure to 100 nM DEHP for three months in breast cancer MDA-MB-288 

231 cells (Jadhao et al., 2021). P-gp expression has additionally been shown to be induced in a 289 

rat epididymal epithelial cell line in response to treatment by NP (20 µM) for 24 h (Jones and 290 

Cyr, 2011). Effects of PFASs towards P-gp expression remain to be characterized, whereas the 291 

bile salt efflux pump BSEP has been shown to be repressed by both PFOA and PFOS in human 292 

hepatic HepaRG cells (Table 6).  293 

With respect to MRPs, MRP1, MRP2 and MRP3, but not MRP4, have been 294 

demonstrated to be up-regulated by BPA (80 µM) in human hepatic HepG2 cells (Hanet et al., 295 

2008) (Table 6). By contrast, DEHP tends to decrease Mrp2 protein levels in rat liver (Johnson 296 
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and Klaassen, 2002), whereas it induces expression of Mdr2 (Abcb4), involved in canalicular 297 

secretion of phospholipids, in the mouse liver (Miranda et al., 1997). MRP3 mRNA expression 298 

is repressed by the PFASs PFOA and PFOS, but is increased by the PFASs PFNA and PFDA 299 

in HepaRG cells, thus highlighting that regulation of this ABC transporter depends on the nature 300 

of the PFAS. BCRP is repressed in human term placental explant cultures exposed to 1 nM 301 

BPA; NP has a similar effect. BPA also reduces BCRP expression in placental BeWo cells, 302 

when used, however, at very high concentration (100 mM) (Table 6). PFNA and PFDA also 303 

repress BCRP expression in human hepatic HepaRG cells. On the other hand, PFOA enhances 304 

expression of Bcrp in the liver, but not in the kidney, of mice (Eldasher et al., 2013); this 305 

suggests that regulation of hepatic BCRP by PFAS may be complex and species-dependent.   306 

Regarding the regulation of SLC transporter expression, PFASs are the only plastic 307 

additives that have been shown to play a role. They notably decrease mRNA expression of 308 

hepatic OATP1B1, OATP2B1 and NTCP, whereas they increase that of OSTβ (Table 6). 309 

The mechanisms of transporter expression regulation by plastic additives remain to be 310 

fully characterized. Drug-sensing receptors, such as the pregnane-X-receptor (PXR), the aryl 311 

hydrocarbon receptor (AhR) or the constitutive androstane receptor (CAR), may be implicated 312 

because (i) such receptors regulate expression of various transporters, including P-gp, MRP2 313 

and BCRP (Tirona, 2011), and (ii) plastic additives can activate them, notably CAR is activated 314 

by PFASs and BDE-47 and PXR is activated by BDE-47 and BPA (Abe et al., 2017; Grimaldi 315 

et al., 2019; Sueyoshi et al., 2014). Plastic additives-related oxidative stress and subsequent 316 

activation of the antioxidant nuclear factor erythroid-derived 2-like 2 (Nrf2) pathway may also 317 

be contributing factors, notably for BDEs (Dunnick et al., 2018). Additionally, repression of 318 

BCRP protein expression in human term placenta explant cultures and BeWo cells by BPA 319 

likely involves the estrogenic-like effects of this chemical (Cao et al., 2022; Sieppi et al., 2016). 320 

6. Consequences for toxicokinetics and human health 321 
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6.1 Consequences for plastic additives altering transporter activity and/or expression 322 

The possible consequences of the alteration of drug transporter activity and/or 323 

expression by plastic additives may be drawn from what is now well-established regarding 324 

drug-mediated modulation of transporters (Giacomini and Huang, 2013). Plastic additives 325 

acting as transporter modulators, considered as “perpetrators”, are likely to impair membrane 326 

passage of transporter substrates, consideted as “victims”, and thus possibly impair their 327 

pharmacokinetics features, i.e., intestinal absorption, distribution and liver or kidney 328 

elimination. For drugs or pollutants as “victims”, this may ultimately result in toxicity (if plasma 329 

victim concentrations/ area under the curve (AUC) of plasma victim concentration versus time 330 

are increased) or lack of effect (if plasma victim concentration/AUC of victims are decreased) 331 

(Fig. 2). This may theroretically result in drug-pollutant or pollutant-pollutant interactions. On 332 

the other hand, if the victim substrates are endogenous substrates such as, for example, bile 333 

acids, toxicity, such as cholestasis due to inhibition of bile acid transport, may develop 334 

(Chatterjee and Annaert, 2018). Altered transport of hormones as substrates may also contribute 335 

to endocrine disruptive effects, as already suggested for inhibition of testosterone precursor 336 

secretion by TBBPA in Leydig cells (Dankers et al., 2013). 337 

The potential drug-pollutant or pollutant-pollutant interactions as well as pollutant 338 

toxicity due to an abrogation of endogenous substrate transport have not yet been reported for 339 

plastic additives, even for those inhibiting transporter activity or expression. This may likely be 340 

due to the fact that human plasma concentrations of plastic additives, such as BPA, phthalates, 341 

alkylphenols, BDEs, TBBPA and PFASs, due to environmental exposure or food intake, are 342 

usually low, i.e., in the nM or pM range (Asimakopoulos et al., 2012; Huang et al., 2014; Li et 343 

al., 2020; Teeguarden et al., 2013; Wang et al., 2012; Wang et al., 2019). Their unbound 344 

fraction, which is the one pharmacologically active towards transporters according to the free 345 

drug theory (Summerfield et al., 2022), may even be much lower, but it is not commonly 346 
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considered in studies investigating serum pollutant concentrations. By contrast, the 347 

concentrations of plastic additives required to modulate transporter activity and/or expression 348 

are mostly in the 10-100 µM range according to in vitro studies (Table 3, Table 4 and Table 6). 349 

In vivo inhibition of most drug transporters might therefore be unlikely to occur in response to 350 

environmental exposure or food intake of plastic additives. This conclusion notably applies to 351 

inhibition of SLC activities by BPA. Indeed, when applying the criterion initially defined by 352 

the International Transporter Consortium for predicting in vivo inhibition of SLC transporters, 353 

based on the ratio between the unbound maximum plasma concentration (Cmax) of the drug 354 

perpetrator and its IC50 value (which has to be ≥ 0.1 to consider in vivo inhibition of SLCs) 355 

(Giacomini et al., 2010), human plasma concentrations of BPA (less than 50 nM) are very 356 

unlikely to block the activity of OCT1, MATE1, OATP1B1, OATP1B3 or OAT3, as previously 357 

reported (Bruyere et al., 2017). However, this general lack of in vivo modulation of SLCs by 358 

plastic additives may be challenged for those exhibiting potent in vitro inhibitory effects 359 

towards transporters or those regulating transporter expression when used at low 360 

concentrations. Thus, BDE-47 at 100 pM inhibits OATP1B1 activity in vitro by approximately 361 

50% (Pacyniak et al., 2010), thus suggesting that the IC50 value of this BDE towards this OATP 362 

is around 100 pM. With total BDE-47 concentrations observed in human plasma in the 500-363 

1000 pM range (Wang et al., 2012), the Cmax/IC50 ratio is in the 5-10 range, indicating that 364 

OATP1B1 activity may be inhibited in humans by circulating BDE-47 and that BDE-47 may 365 

consequently potentially interfere with OATP1B1 substrates like statins. Nevertheless, this 366 

conclusion can be questionned by considering what is the unbound maximum plasma 367 

concentration of BDE-47, or even the unbound maximum plasma concentration of BDE-47 at 368 

the liver inlet, instead of the total plasma concentration of BDE-47, if taking into account the 369 

hepatic location of OATP1B1. With respect to regulation of transporter expression, repression 370 

of BCRP by 1 nM of BPA in placenta explants (Sieppi et al., 2016) may be hypothesized to 371 
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occur in vivo, because human plasma concentration of BPA in pregnant women is around 28.5 372 

nM (Yang et al., 2021), even though the limit of the free concentration of BPA has to be 373 

considered. Through repressing placental BCRP expression, BPA may alter the function of the 374 

blood placenta barrier and may thereby decrease the protection of the fetus against toxicant 375 

substrates of BCRP, such as carcinogenic heterocyclic aromatic amines (Myllynen et al., 2008), 376 

thus indicating a possible pollutant-pollutant interaction.  377 

  For P-gp and BCRP, it is noteworthy that their intestinal inhibition is predicted to 378 

potentially occur if the ratio between the perpetrator maximal gastrointestinal concentration 379 

(calculated as the ingested dose of perpetrator in a volume of 250 mL) and the IC50 value is ≥ 380 

10 (Giacomini et al., 2010). The daily dieterary intake of plastic additives has therefore to be 381 

considered when calculating theoretical concentrations to evaluate inhibitory effects towards 382 

P-gp and/or BCRP. With respect to BPA, TBBPA and BDEs, they can be estimated to be 383 

approximately 2.38 µg, 70 ng and 75.4 ng, respectively, for a standard adult male weighing 70 384 

kg (Colnot et al., 2014; Domingo et al., 2008; Huang et al., 2017), leading to gut concentrations 385 

in the 1-100 nM range, which is lower than the concentrations needed to inhibit P-gp or BCRP 386 

in vitro (in the 500 nM-100 µM range) (Table 3). Similarly, and despite daily DEHP intakes 387 

being higher, i.e., up to 840 µg (Cheng et al., 2016), the DEHP concentrations in the gut lumen, 388 

up to 8.6 µM, remain much lower than the 30.1 mM DEHP concentration active on P-gp in 389 

vitro. Overall, these data suggest that inhibition of intestinal P-gp or BCRP by plastic additives 390 

in response to common contamination by the diet is rather unlikely. The risk of inhibition 391 

remains to be considered, however, for highly-exposed subjects, notably in the case of exposure 392 

to a mixture of polluants, including plastic additives, whose inhibitory effects towards P-gp 393 

and/or BCRP may be additive or synergic, as already demonstrated for inhibition of P-gp by 394 

mixtures of marine pollutants (Nicklisch et al., 2016).  395 

6.2 Consequences for plastic additives that are transporter substrates  396 
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 Handling of plastic additives by transporters is likely to contribute to the various steps 397 

of their toxicokinetics. In particular, transport by P-gp or BCRP at the apical pole of enterocytes 398 

may limit their intestinal absorption, especially since saturation of these intestinal pumps is 399 

unlikely to occur, owing to the relative low concentrations of plastic additives in the gut lumen, 400 

as already discussed above. Transport of plastic additives by P-gp and/or BCRP at the blood-401 

brain barrier may contribute to limit their entry into the brain and prevent any neurotoxicity. A 402 

similar conclusion also applies to handling by P-gp and/or BCRP at the blood-placenta barrier 403 

and protection of the fetus. Globally, transport of plastic additives by ABC efflux pumps can 404 

be considered as a general protective mechanism against the potential toxicity of these 405 

compounds.  406 

SLC transporters may play a key-role in liver and kidney uptake of their plastic additive 407 

substrates. This is notably the case for BDE-47, BDE-99 and BDE-153, recognized as high 408 

affinity substrates for OATPs, which probably explains their liver-specific accumulation 409 

(Pacyniak et al., 2010). For PFOA, its transport by OAT1 and OAT3 likely contributes to its 410 

renal secretion (Nakagawa et al., 2008) whereas its transport by OAT4 probably mediates its 411 

tubular reabsorption, thus resulting in the final detection of only a small amount of PFOA in 412 

urine in humans (Nakagawa et al., 2009). PFOS has additionally been demonstrated to be a 413 

substrate for intestinal and hepatic uptake transporters of bile salts, i.e., ASBT and NTCP, 414 

which likely participate to its enterohepatic circulation and, furthermore, to its long half-life 415 

and its hepatic accumulation (Zhao et al., 2015).  416 

In the case of plastic additive substrates of transporters, especially for those with a 417 

marked lipophilic nature, it is noteworthy that passive diffusion probably also contributes to 418 

their passage across the plasma membrane. The net transport is therefore the sum of active and 419 

passive transport, as already suggested for drugs (Sugano et al., 2010). For SLC transporters, 420 

the uptake velocity is consequently the addition of transporter-mediated saturable transport and 421 
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of transporter-independent non-saturable passage. As illustrated in Fig. 3, for low 422 

concentrations of plastic additives, relevant to those occurring in response to environmental 423 

exposures, the fraction of saturable transporter-dependent passage across the plasma membrane 424 

may be preponderant, thus highlighting the theoretical importance of transporters for the 425 

toxicokinetics of these environmental contaminants.   426 

7. Conclusion and perspectives 427 

The studies summarized in this review clearly indicate that various plastic additives can 428 

interact with drug transporters, as inhibitors of their activity, as their substrates or as modulators 429 

of their expression. However, these regulatory effects have been mostly demonstrated in vitro 430 

and their in vivo relevance remains a crucial point to determine. The rather low concentrations 431 

of plastic additives in humans in response to environmental exposure (when compared to those 432 

of drugs administrated to patients) probably limits the in vivo effects of plastic additives as 433 

single agents towards the activity or expression of transporters. However, a caveat to this 434 

conclusion is the fact that humans are commonly exposed to mixtures of pollutants, including 435 

plastic additives, whose inhibitory effects towards transporters may add up or synergise, as 436 

already discussed above for marine pollutants inhibiting P-gp (Nicklisch et al., 2016), or as 437 

demonstrated for a binary mixture of heterocyclic amines blocking OAT3 (Sayyed et al., 2017) 438 

or for the inhibitory effects of pesticides towards P-gp activity (Pivčević and Zaja, 2006). The 439 

study of potential inhibitory effects of mixtures of pollutants, such as mixtures of plastic 440 

additives or mixtures of plastic additives and other pollutants, towards drug transporters is 441 

therefore warranted. In this context, the recently described inhibitory effects of microplastics 442 

towards ABC transporters (Koepsell, 2020) is particularly noteworthy because they are likely 443 

to add up with those of plasticizers that are commonly released from plastic microparticles or 444 

nanoparticles (Gulizia et al., 2023). Moreover, although plastic additive concentrations are 445 

usually rather low in plasma of exposed humans, the specific accumulation of some of them in 446 
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certain tissues cannot be ruled out (Cimmino et al., 2020), potentially resulting in intra-tissular 447 

concentrations of plastic additives reaching levels active on transporter activity or expression. 448 

A better characterization of the human toxicokinetics of plastic additives, including predictions 449 

of their intra-tissular concentrations and evaluation of their unbound form, in response to 450 

environmental exposure, may therefore be useful to apprehend the possible in vivo relevance of 451 

their effects on drug transporter activity and/or expression and their putative toxicity. This may 452 

be done through physiologically-based toxicokinetic (PBTK) approaches, already developped 453 

for plasticizers (Jeong et al., 2020; Sarigiannis et al., 2016). Other in silico methods, including 454 

those based on quantitative structure-activity relationships (QSAR) or molecular docking (Ai 455 

et al., 2015), may also be useful for predicting interactions of plastic additives with drug 456 

transporters, especially for emerging plastic additives such as organophosphate flame retardants 457 

for which data are currently lacking. The recent use of molecular docking to determine the 458 

binding affinities of various chemicals, including PFASs, to P-gp, BCRP and MRP1, fully 459 

supports this methodology (Barhoumi et al., 2022). New approaches to study clinical inhibition 460 

of transporter activities by measuring altered pharmacokinetics of endogenous substrates, 461 

reported notably for OATP1B1 and OAT inhibition by drugs (Neuvonen et al., 2021; Willemin 462 

et al., 2021), may additionnally be effective to study putative inhibitory effects of plasticizers 463 

in humans.  464 

The handling of plastic additives by transporters and their pharmacokinetics 465 

consequences have been determined for some additives, such as BDEs and PFOA. This fully 466 

validates the concept that transporters can participate in the pharmacokinetics of plastic 467 

additives. However, data about the nature of plastic additives, and of chemical pollutants 468 

overall, as substrates of drug transporters, remain rather scarce. An extensive analysis of the 469 

potential handling of plastic additives, including emergent ones, by drug transporters is 470 

therefore warranted. It is noteworthy that the traditionnal approach for such analyses, i.e., 471 
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comparing the uptake of putative substrates in cellular or vesicular models overexpressing or 472 

not the transporter of interest and in the absence or presence of specific transporter inhibitors, 473 

requires the precise quantification of cellular or vesicular accumulation of plastic additives 474 

through sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS). This 475 

method can, however, be extremely consuming in time and/or money, and may be difficult to 476 

integrate into high throughput processes. Experimental approaches such as trans-stimulation or 477 

competitive counterflow assays (Schäfer et al., 2018; Severance et al., 2017) may be interesting 478 

alternatives. Indeed, these assays, based on the ability of candidate substrates to trans-stimulate 479 

uptake or efflux of a reference tracer substrate, do not require measurement of intracellular 480 

levels of candidate substrates such as plastic additives and may be applied to large series of 481 

chemicals when using a fluorescent dye as a tracer substrate; this is noteworthy for plastic 482 

additives, of which there are more than 400. The relatively low sensitivity of the trans-483 

stimulation assay can, nevertheless, be limiting (Lefèvre et al., 2021). In addition to identifying 484 

the plastic additives that are substrates for transporters, the possible effect of transporter 485 

polymorphisms towards plasticizer toxicokinetics, as was reported for drugs (Yee et al., 2018), 486 

will need to be investigated. This implication of transporter polymorphism could apply for 487 

environmental chemicals overall (Darney et al., 2020), and it may help to identify individual 488 

susceptibility factors to pollutants, including plastic additives.  489 

Finally, it is noteworthy that the list of membrane transporters of interest for drug 490 

pharmacokinetics and toxicity is rather evolutive and emerging transporters of clinical 491 

significance, including plasma membrane transporters of vitamins or lysosomal and 492 

mitochondrial transporters, likely merit attention for drug candidates (Chu et al., 2018; 493 

Giacomini et al., 2022; Yee and Giacomini, 2021). These emerging transporters are also 494 

potentially targeted by pollutants and may therefore be considered in the future for plastic 495 

additives. Amino-acid transporters, such as aspartate transporters (SLC1A2 and SLC1A3) 496 
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regulated by BPA in human hepatic HepG2 cells (Jiménez-Torres et al., 2020), as well as 497 

glucose transporters, norepinephrine transporter (SLC6A2) and thyroid hormone transporters, 498 

impacted by BPA or phthalates (Bereketoglu and Pradhan, 2022; Li et al., 2016; Quesnot et al., 499 

2014; Sakurai et al., 2004; Toyohira et al., 2003), may additionally be of interest. 500 
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Table 1. Plastic additives considered in this review. 947 

Chemical class Function Name 

Phthalates Plasticizers 

Di(2-ethylhexyl) phthalate (DEHP) 

Mono(2-ethylhexyl) phthalate (MEHP) (metabolite of DEHP) 

Butylbenzyl phthalate (BBP) 

Diethyl phthalate (DEP) 

Dibutyl phthalate (DBP) 

Bisphenols 
Monomers/ plasticizers/ 

antioxidants 

Bisphenol A (BPA) 

BPA glucuronide (metabolite of BPA) 

Bisphenol F (BPF) 

Bisphenol S (BPS) 

Brominated flame 

retardants (BFRs) 
Flame retardants 

Polybrominated diphenyl ethers (PBDE): BDE-47, BDE-99, 

BDE-100, BDE-153, 6-hydroxy-BDE-47 (metabolite of 

BDE-47) 

Tetrabromobisphenol A (TBBPA) 

Alkylphenols Plasticizers/antioxidants 

tert-Butylphenol (tBP) 

tert-Octylphenol (tOP) 

Nonylphenol ethoxylate (NPE)  

Nonylphenol (NP) (metabolite of NPE) 

Per- and poly-

fluorinated alkyl 

substances (PFASs) 

Coating agents 

Perfluorobutane sulfonate (PFBS) 

Perfluorooctanoic acid (PFOA) 

Perfluorononanoic acid (PFNA) 

Perfluorodecanoic acid (PFDA) 

Perfluorohexane sulfonate (PFHxS) 

Perfluorooctane sulfonate (PFOS) 
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Table 2. Main types of substrates for human drug transporters.  954 

Subfamily Transporter Type of substrates Reference 

ABCB 

P-gp 

(MDR1/ABCB1) 

Neutral or positively charged hydrophobic drugs 

(Example: etoposide, digoxin, doxorubicin, 

fexofenadine, paclitaxel, vinblastine) 

(Gottesman and Pastan, 

1993) 

BSEP (ABCB11) 
Bile acids 

(Example: taurocholate) 

(Jetter and Kullak-Ublick, 

2020) 

ABCC 

MRP1 (ABCC1) 

Hydrophobic and anionic drugs; glucuronide and 

glutathione conjugates; leukotriene C4 

(Example: ciprofloxacin, doxorubicin, etoposide, 

irinotecan, ritonavir, saquinavir, vincristine) 

(Choi and Yu, 2014) 

MRP2 (ABCC2) 

Anionic drugs; glucuronide, glutathione and sulfate 

conjugates; sulphated bile salts; leukotriene C4 

(Example: adefovir, ampicillin, bilirubin 

glucuronides, ritonavir, sequinavir) 

(Nies and Keppler, 2007) 

MRP3 (ABCC3) 

 Anionic drugs; glucuronide conjugates; bile salts 

(Example: morphine-3-glucuronide, estradiol-17β-

glucuronide, taurocholate) 

(van der Schoor et al., 

2015) 

MRP4 (ABCC4) 

Anionic drugs; antiviral nucleoside analogues; 

signalling molecules  

(Example: adefovir, cAMP, cGMP, furosemide, 

tenofovir) 

(Russel et al., 2008) 

ABCG BCRP (ABCG2) 

Hydrophobic drugs; hydrophilic conjugated organic 

anions  

(Example: cimetidine, doxorubicin, estrone 3-sulfate, 

mitoxantrone, prazosine, rosuvastatin, uric acid) 

(Mao and Unadkat, 2015) 

SLC10 
NTCP (SLC10A1) 

ASBT (SLC10A2) 

Bile acids  

(Example: taurocholate) 
(Meier and Stieger, 2002) 

SLC15 
PEPT1  

(SLC15A1)  

Peptidomimetic drugs 

(Example: β-lactam antibiotics) 
(Inui et al., 2000) 

SLCO 

OATP1B1 

(SLCO1B1) 

Anionic drugs; bile acids; bilirubin; steroid and 

thyroid hormones 

(Example: bromosulfophthalein, estrone 3-sulfate, 

statins, valsartan) 
(Kalliokoski and Niemi, 

2009) OATP1B3  

(SLCO1B3) 

Anionic drugs; bile acids; bilirubin; steroid and 

thyroid hormones 

(Example: cholecystokinin, estrone 3 sulfate, statins) 

OATP2B1 

(SLCO2B1) 

 Anionic drugs; bile acids; steroid hormones 

(Example: estrone 3-sulfate, fexofenadine, statins) 

SLC22 

OCT1 (SLC22A1) 

OCT2 (SLC22A2) 

Cationic drugs;  

monoamine neurotransmitters 

(Example: acyclovir, cimetidine, cisplatin, metformin, 

oxaliplatin, choline, dopamine) 

(Koepsell, 2020) 

OAT1 (SLC22A6) 

OAT3 (SLC22A8) 

Anionic drugs; cyclic nucleotides; dicarboxylic acids 

(Example : adefovir, zidovudine, ciprofloxacin, 

cephaloridin, methotrexate, para-aminohippurate, 

pravastatin) 

(Burckhardt, 2012) 

OAT2 (SLC22A8) 

Anionic drugs; cyclic nucleotides; prostaglandins; 

steroid hormones 

(Example: bumetanide, cGMP, creatinine, diclofenac, 

erythromycin, estrone 3-sulfate, uric acid) 

(Shen et al., 2017) 

SLC47 

MATE1 (SLC47A1) 

MATE2-K 

(SLC47A2) 

Cationic drugs 

(Example: cimetidine, creatinine, ganciclovir, 

metformin, oxaliplatin) 

(Koepsell, 2020) 

SLC51 
OSTα (SLC51A) 

OSTβ (SLC51B) 

Bile acids; conjugated steroids 

(Example: taurocholate, estrone 3-sulfate, digoxin) 
(Beaudoin et al., 2020) 

Note: P-gp - P-glycoprotein; MDR - multidrug resistance gene; BSEP - bile salt export pump; MRP - multidrug 955 
resistance-associated protein; BCRP - breast cancer resistance protein; NTCP - sodium-taurocholate 956 
cotransporting polypeptide; ASBT - apical sodium-dependent bile acid transporter; PEPT - peptide transporter; 957 
OATP - organic anion transporting polypeptide; OCT - organic cation transporter; OAT - organic anion 958 
transporter; MATE - multidrug and toxin extrusion protein; OST - organic solute transporter. 959 

 960 

Jo
urn

al 
Pre-

pro
of



35 
 

 961 

Table 3. Modulation of human ABC drug transporter activities by plastic additives. 962 

Transporter 
Chemical 

class 

Transporter activity 

Stimulation Inhibition Lack of effect 

P-gp 

Bisphenols 

BPA (100 nMCA) 

(Jin and Audus, 

2005) 

 

 

BPA (100 µMVA) (Dankers et al., 2013) 

 

Phthalates 

 DEHP (30.1 mMCA) (Kim et al., 2007) 

DEP (16.1 mMCA) (Kim et al., 2007) 

DBP (32.1 mMCA) (Kim et al., 2007) 

DEHP (100 µMVA) (Dankers et al., 2013) 

MEHP (100 µMVA) (Dankers et al., 2013) 

BFRs 

 BDE-47 (50 µMVA) (Nicklisch et al., 2016) 

6-OH-BDE-47 (IC50=11.4 µMVA, 50 µMCA) 
(Marchitti et al., 2017) 

TBBPA (IC50=22.9 µMVA) (Dankers et al., 2013) 

PBDE-47 (300 µMVA, 100 µMCA) (Marchitti 

et al., 2017) 

PBDE-100 (50 µMVA) (Nicklisch et al., 

2016) 

Alkylphenols  NPE (0.1-1 µMCA) (Doo et al., 2005)  

PFASs 
 PFOA (100 µMVA) (Dankers et al., 2013) 

PFOS (100 µMVA) (Dankers et al., 2013) 
 

BSEP PFASs 
 

PFOS (100 µMVA) (Zhao et al., 2015) 
PFBS (100 µMVA) (Zhao et al., 2015) 

PFHxS (100 µMVA) (Zhao et al., 2015) 

MRP1 

Bisphenols   BPA (100 µMVA) (Dankers et al., 2013) 

Phthalates 
 

 
DEHP (100 µMVA) (Dankers et al., 2013) 

MEHP (100 µMVA) (Dankers et al., 2013) 

BFRs  TBBPA (100 µMVA) (Dankers et al., 2013)  

PFASs 
 PFOA (100 µMVA) (Dankers et al., 2013) 

PFOS (100 µMVA) (Dankers et al., 2013) 
 

MRP2 PFASs 
 PFHxS (100 µMVA) (Zhao et al., 2015) 

PFOS (100 µMVA) (Zhao et al., 2015) 
PFBS (100 µMVA) (Zhao et al., 2015) 

MRP4 

Bisphenols   BPA (100 µMVA) (Dankers et al., 2013) 

Phthalates 
 

 
DEHP (100 µMVA) (Dankers et al., 2013) 

MEHP (100 µMVA) (Dankers et al., 2013) 

BFRs  TBBPA (IC50=24.0 µMVA) (Dankers et al., 2013)  

PFASs 
 PFOA (100 µMVA) (Dankers et al., 2013) 

PFOS (100 µMVA) (Dankers et al., 2013) 
 

BCRP 

Bisphenols 
 BPA (500 nMCA, 100 µMVA) (Dankers et al., 2013; 

Engdahl et al., 2021) 
 

Phthalates 
 

 
DEHP (100 µMVA) (Dankers et al., 2013) 

MEHP (100 µMVA) (Dankers et al., 2013) 

BFRs 

 BDE-47 (IC50=45.7 µMVA) (Marchitti et al., 

2017) 

6-hydroxy-BDE-47 (IC50=9.4 µMVA, 50 µMCA) 
(Marchitti et al., 2017) 

TBBPA (100 µMVA) (Dankers et al., 2013) 

BDE-47 (100 µMCA) (Marchitti et al., 2017) 

PFASs 

 PFOA (5-100 µMVA) (Dankers et al., 2013; 

Eldasher et al., 2013) 

PFOS (100 µMVA) (Dankers et al., 2013) 

PFHxS (100 µMVA) (Zhao et al., 2015) 

 

Note: Abbreviations for plastic additives and transporters are those defined in Table 1 and Table 2, respectively; CA - cellular 963 
assay; VA - vesicular assay; IC50 - half maximal inhibitory concentration.  964 
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Table 4. Modulation of human SLC drug transporter activities by plastic additives. 975 

Transporter 
Chemical 

class 

Transporter activity 

Stimulation Inhibition Lack of effect 

OCT1 

Bisphenols 
BPS (100 µM) (Bruyere et al., 

2017) 

BPA (IC50=39.0 µM) (Bruyere et al., 2017) 

BPF (100 µM) (Bruyere et al., 2017) 

 

BFRs 
 TBBPA (IC50=37.5 µM) (Bruyere et al., 

2017) 

 

OCT2 
Bisphenols 

BPF (100 µM) (Bruyere et al., 

2017) 

BPS (100 µM) (Bruyere et al., 

2017) 

 BPA (100 µM) (Bruyere et al., 2017) 

BFRs  TBBPA (100 µM) (Bruyere et al., 2017)  

MATE1 

Bisphenols 

 BPA (IC50=73.5 µM) (Bruyere et al., 2017) 

BPF (100 µM) (Bruyere et al., 2017) 

BPS (100 µM) (Bruyere et al., 2017) 

 

BFRs 
 TBBPA (IC50=23.1 µM) (Bruyere et al., 

2017) 

 

MATE2-K 

Bisphenols 

  BPA (100 µM) (Bruyere et al., 2017) 

BPF (100 µM) (Bruyere et al., 2017) 

BPS (100 µM) (Bruyere et al., 2017) 

BFRs 
  TBBPA (100 µM) (Bruyere et al., 

2017) 

OATP1B1 

Bisphenols 
 BPA (IC50=18.7 µM) (Bruyere et al., 2017) 

BPF (IC50=13.4 µM) (Bruyere et al., 2017) 

BPS (100 µM) (Bruyere et al., 2017) 

BFRs 

 TBBPA (IC50=0.6 µM) (Bruyere et al., 

2017) 

BDE-47 (100 pM) (Pacyniak et al., 2010) 

BDE-99 (100 nM) (Pacyniak et al., 2010) 

BDE-153 (100 nM) (Pacyniak et al., 2010) 

 

OATP1B3 

Bisphenols 
BPF (100 µM) (Bruyere et al., 

2017) 

BPA (100 µM) (Bruyere et al., 2017) BPS (100 µM) (Bruyere et al., 2017) 

BFRs 

 TBBPA (IC50=12.3 µM) (Bruyere et al., 

2017) 

BDE-47 (100 pM) (Pacyniak et al., 2010) 

BDE-99 (100 nM) (Pacyniak et al., 2010) 

BDE-153 (100 nM) (Pacyniak et al., 2010) 

 

OATP2B1 

BFRs 

 BDE-47 (100 pM) (Pacyniak et al., 2010) 

BDE-99 (100 nM) (Pacyniak et al., 2010) 

BDE-153 (100 nM) (Pacyniak et al., 2010) 

 

PFASs 

 PFOA (Ki=62.2 µM) (Kimura et al., 2020) 

PFNA (Ki=35.3 µM) (Kimura et al., 2020) 

PFDA (Ki=43.2 µM) (Kimura et al., 2020) 

 

OAT1 

Bisphenols 

BPA (100 µM) (Bruyere et al., 

2017) 

BPF (100 µM) (Bruyere et al., 

2017) 

BPS (100 µM) (Bruyere et al., 2017) 

 

 

BFRs 
  TBBPA (100 µM) (Bruyere et al., 

2017) 

PFASs  PFOA (10 µM) (Nakagawa et al., 2008)  

OAT2 PFASs  PFOA (10 µM) (Nakagawa et al., 2008)  

OAT3 

Bisphenols 

 BPA (IC50=9.2 µM) (Bruyere et al., 2017) 

BPF (IC50=26.8 µM) (Bruyere et al., 2017) 

BPS (IC50=23.3 µM) (Bruyere et al., 2017) 

 

BFRs 
 TBBPA (IC50=0.5 µM) (Bruyere et al., 

2017) 

 

PFASs  PFOA (10 µM) (Nakagawa et al., 2008)  

NTCP 

Bisphenols 
 BPA (100 µM) (Bruyere et al., 2017) 

BPF (100 µM) (Bruyere et al., 2017) 

BPS (100 µM) (Bruyere et al., 2017) 

 

BFRs 

 TBBPA (IC50=4.5 µM) (Bruyere et al., 

2017) 

PFBS (10 µM) (Zhao et al., 2015) 

PFHxS (10 µM) (Zhao et al., 2015) 

PFOS (10 µM) (Zhao et al., 2015) 

 

Note: Abbreviations for plastic additives and transporters are those defined in Table 1 and Table 2, respectively; IC50 - half 976 
maximal inhibitory concentration; Ki - inhibition constant. 977 
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Table 5. Plastic additives as substrates for human ABC and SLC drug transporters. 981 

Transporter 

Plastic additive 

Chemical 

class 
Substrate Not substrate 

P-gp 

Bisphenols 

BPACA (Yoshikawa et al., 2002) BPAATA, CA (Dankers et al., 2013; Mazur et al., 2012) 

BPA-GlucuronideATA (Mazur et al., 2012) 

BPSPerfused human placenta (Grandin et al., 2019) 

Phthalates 

DEHPCA, ATA (Kim et al., 2007; Yoshikawa et al., 

2002) 

 

BBPCA (Yoshikawa et al., 2002) 

DBPCA, ATA (Kim et al., 2007; Yoshikawa et al., 

2002) 

DEPCA, ATA (Kim et al., 2007) 

BFRs  TBBPACA (Dankers et al., 2013) 

Alkylphenols 

tBPCA (Yoshikawa et al., 2002) 

tOPCA (Yoshikawa et al., 2002) 

NPEATA, CA (Charuk et al., 1998; Loo and Clarke, 

1998) 

NPCA (Loo and Clarke, 1998) 

 

PFASs  PFOACA, ATA (Dankers et al., 2013) 

MRP2 Bisphenols BPAATA (Mazur et al., 2012) BPA-GlucuronideATA (Mazur et al., 2012) 

MRP3 
Bisphenols BPAATA (Mazur et al., 2012)  

BPA-GlucuronideATA (Mazur et al., 2012) 

 

BCRP 

Bisphenols 

BPAATA, CA (Dankers et al., 2013; Mazur et al., 

2012)  
 

BPA-GlucuronideATA (Mazur et al., 2012) 

TBBPACA (Dankers et al., 2013) 

BFRs  TBBPACA (Dankers et al., 2013) 

PFASs PFOACA (Dankers et al., 2013)  

OATP1B1 BFRs 

BDE-47 (Km=0.31 µMCA) (Pacyniak et al., 2010) 

BDE-99 (Km=0.91 µMCA) (Pacyniak et al., 2010) 

BDE-153 (Km=1.91 µMCA) (Pacyniak et al., 2010) 

 

OATP2B1 
BFRs 

BDE-47 (Km=0.41 µMCA) (Pacyniak et al., 2010) 

BDE-99 (Km=0.70 µMCA) (Pacyniak et al., 2010) 

BDE-153 (Km=1.66 µMCA) (Pacyniak et al., 2010) 

 

PFASs PFOA (Km=8.3 µMCA) (Kimura et al., 2017)  

OATP1B3 BFRs 

BDE-47 (Km=0.81 µMCA) (Pacyniak et al., 2010) 

BDE-99 (Km=0.87 µMCA) (Pacyniak et al., 2010) 

BDE-153 (Km=0.65 µMCA) (Pacyniak et al., 2010) 

 

OAT1 PFASs PFOA (Km=48.0 µMCA) (Nakagawa et al., 2008)  

OAT3 
Bisphenols  BPACA (Bruyere et al., 2017) 

PFASs PFOA (Km=49.1 µMCA) (Nakagawa et al., 2008)  

OAT4 PFASs 
PFOA (Km=310.3 µMCA) (Nakagawa et al., 2009; 

Yang et al., 2010) 
 

NTCP PFASs 

PFBS (Km=39.6 µMCA) (Zhao et al., 2015) 

PFHxS (Km=112 µMCA) (Zhao et al., 2015) 

PFOS (Km=130 µMCA) (Zhao et al., 2015) 

 

ASBT PFASs 
PFOSCA (Zhao et al., 2015) PFBSCA (Zhao et al., 2015) 

PFHxSCA (Zhao et al., 2015) 

OSTα/β PFASs 

PFBSCA (Zhao et al., 2015) 

PFHxSCA (Zhao et al., 2015) 

PFOSCA (Zhao et al., 2015) 

 

Note: Abbreviations for plastic additives and transporters are those defined in Table 1 and Table 2, respectively; CA - cellular 982 
assay; ATA - vesicular ATPase assay; Km - Michaelis constant. 983 
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Table 6. Regulation of human drug transporter expression by plastic additives. 986 

Transporter 
Chemical class 

(Plastic additive) 
Regulation Reference 

P-gp/MDR1 

Bisphenols 

Induction of MDR1 promoter activity by BPA (50 nM/acute 

exposure/15 min or 3 nM/chronic exposure/12 days), BPS (0.3 

nM/chronic exposure/12 days) or a mixture BPA/BPS (5 nM 

BPA/1.5 nM BPS/chronic exposure/12 days) in an haplotype-

dependent manner. 

Repression of MDR1 promoter activity by BPS (0.5 nM/acute 

exposure/15 min) in an haplotype-dependent manner. 

(Speidel et al., 2018) 

Induction of MDR1 mRNA expression, but not that of P-gp, by 

BPA (80 µM/24 h) in human hepatic HepG2 cells. 
(Hanet et al., 2008) 

Modest induction of P-gp expression by BPA (10 µM/48 h) in 

placental BeWo cells. 
(Jin and Audus, 2005) 

Phthalates 

Induction of P-gp expression by DEHP (10 µM/24-72 h) and 

MEHP (10 µM/24-72 h) in cancer colon cell lines.  
(Chen et al., 2018) 

Induction of P-gp expression by DEHP (6 and 12 µM/24 h) in 

sarcoma cells. 
(Angelini et al., 2011) 

Induction of MDR1 mRNA expression by DEHP (1-10 µM/24 

h) in human cancer colon cells.  
(Takeshita et al., 2006) 

Induction of MDR1 mRNA and P-gp expression in breast 

cancer MDA-MB-231 cells by chronic exposure to DEHP (100 

nM/three months). 

(Jadhao et al., 2021) 

Alkylphenols 
No apparent induction of P-gp expression in human intestinal 

Caco-2 cells exposed to NPE (up to 1 µM/72 h). 
(Doo et al., 2005) 

BSEP PFASs 

Repression of BSEP mRNA expression by PFOA (250 and 500 

µM/24 h) and PFOS (25-100 µM/24 h) in human hepatic 

HepaRG cells. 

(Behr et al., 2020) 

MRP1 Bisphenols 
Induction of MRP1 mRNA expression by BPA (80 µM/24 h) 

in HepG2 cells. 
(Hanet et al., 2008) 

MRP2 Bisphenols 
Induction of MRP2 mRNA and protein expression by BPA (80 

µM/24 h) in HepG2 cells. 
(Hanet et al., 2008) 

 PFASs 
Repression of MRP2 mRNA expression by PFOA (250 and 

500 µM/24 h) and PFOS (25 µM/24 h) in HepaRG cells. 
(Behr et al., 2020) 

MRP3 

Bisphenols 
Induction of MRP3 mRNA and protein expression by BPA (80 

µM/24 h) in HepG2 cells. 
(Hanet et al., 2008) 

PFASs 

Induction of MRP3 mRNA expression by PFNA (45 µM/24 h) 

and PFDA (45 µM/24 h), but repression by PFOA (500 µM/24 

h) and PFOS (100 µM/24 h) in HepaRG cells.  

(Behr et al., 2020; Lim 

et al., 2021) 

MRP4 Bisphenols 
Lack of effects of BPA (80 µM/24 h) towards MRP4 mRNA 

expression in human hepatic HepG2 cells. 
(Hanet et al., 2008) 

BCRP 

Bisphenols 

Repression of BCRP protein expression by BPA (1 nM/48 h) 

in human term placental explant cultures.  
(Sieppi et al., 2016) 

Repression of BCRP mRNA and protein expression by BPA 

(100 mM/48 h) in BeWo cells. 
(Cao et al., 2022) 

Alkylphenols 
Repression of BCRP protein expression by NP (1 nM/48 h) in 

human term placental explant cultures. 
(Sieppi et al., 2016) 

PFASs 
Induction of BCRP mRNA expression by PFNA (45 µM/24 h) 

and PFDA (45 µM/24 h) in HepaRG cells. 
(Lim et al., 2021) 

OATP1B1 PFASs 
Repression of OATP1B1 mRNA expression by PFOA (250 

and 500 µM/24 h) and PFOS (100 µM/24 h) in HepaRG cells. 
(Behr et al., 2020) 

OATP2B1 PFASs 
Repression of OATP2B1 mRNA expression by PFDA (45 

µM/24 h) in HepaRG cells. 
(Lim et al., 2021) 

MATE2-K PFASs 
Induction of MATE2-K mRNA expression by PFDA (45 

µM/24 h) in HepaRG cells. 
(Lim et al., 2021) 

NTCP PFASs 

Repression of NTCP mRNA expression by PFDA (45 µM/24 

h), PFOA (10-500 µM/24 h) and PFOS (10-100 µM/24 h) in 

HepaRG cells.  

(Behr et al., 2020; Lim 

et al., 2021) 

OSTβ PFAS 
Induction of OSTβ mRNA expression by PFOA (50-250 

µM/24 h) and PFOS (25-100 µM/24 h) in HepaRG cells. 
(Behr et al., 2020) 

Note: Abbreviations for plastic additives and transporters are those defined in Table 1 and Table 2, respectively. 987 

 988 

Jo
urn

al 
Pre-

pro
of



39 
 

 989 

 990 

Fig. 1. Schematic representation of human drug transporter expression. Red and green arrows 991 

correspond to ATP-binding cassette (ABC) and solute carrier (SLC) transporters, respectively. 992 
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 995 

 996 

Fig. 2. Schematic representation of the possible deleterious consequences of drug transporter 997 

inhibition by a plastic additive, considered here as a perpetrator.  998 
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 1004 

 1005 

Fig. 3. Relative contribution of SLC transporter-mediated uptake and transporter-unrelated 1006 

passive diffusion across the plasma membrane for plastic additives. At low plastic additive 1007 

concentrations (usually the case for these pollutants in response to environmental or dietary 1008 

exposure), the relative contribution of transporter-mediated uptake velocity to total uptake 1009 

velocity is maximal.  1010 
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Highlights 

 

- Human drug transporters are key actors of pharmacokinetics for drugs and pollutants 

- Various plastic additives inhibit in vitro activities of human drug transporters 

- Some plasticizers regulate human drug transporter expression in cellular systems 

- Plastic additives can behave as substrates for human drug transporters 

- In vivo relevance of plasticizers-transporters interactions remains to elucidate 
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