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Abstract

In this work we study the existence of positive solutions and nodal solutions
for the following p-laplacian problem with Steklov boundary conditions on a
bounded regular domain Ω ⊂ RN ,{

−∆pu+ V (x)|u|p−2u = 0 in Ω;
|∇u|p−2 ∂u

∂ν
= λa(x)|u|p−2u+ b(x)|u|p∗−2u on ∂Ω;

with given numbers p,N satisfying 1 < p < N , p∗ := p(N−1)
N−p the critical

exponent for the Sobolev trace map W 1,p(Ω)→ Lq(∂Ω) and functions b > 0
and a, V possibly indefinite. By minimization on subsets of the associated
Nehari manifold, we prove the existence of positive solutions ifN ≥ max{2p−
1, 3} and the parameter λ close to the principal eigenvalues of the operator
−∆p + V with weighted-Steklov boundary conditions. We also prove the
existence on nodal solutions for a definite and N > max{p2, 2p, p

p−1
, 2}. Our

results show striking differences between the cases p > 2, p = 2 and p < 2.
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1. Introduction

Consider the following problem of parameter λ{
−∆pu+ V (x)|u|p−2u = 0 in Ω;
|∇u|p−2 ∂u

∂ν
= λa(x)|u|p−2u+ b(x)|u|p∗−2u on ∂Ω;

(1.1)

for 1 < p < N , a, b two given functions in Cγ(∂Ω) for some γ > 0, a 6≡ 0

with b ≥ 0, V ∈ L∞(Ω) and p∗ := p(N−1)
N−p . The domain Ω is a bounded subset

of RN of class C2,α for some 0 < α < 1 and N ≥ 3. Our aim is to prove
the existence of solutions for λ close to the principal eigenvalues of (1.5) (see
below).

In the case a ≡ 0, V ≡ 1, b ≡ 1, the quasilinear problem (1.1) arises, for
instance, when searching for functions u ∈ W 1,p(Ω) for which the norm of
the Sobolev’s trace immersion ip∗,Ω : W 1,p(Ω) ↪→ Lp∗(∂Ω) is achieved:

S0 := ‖ip∗,Ω‖−p = inf
u∈W 1,p(Ω)\W 1,p

0 (Ω)

∫
Ω

(|∇u|p + |u|p) dx( ∫
∂Ω
|u|p∗ dσ

)p/p∗ , (1.2)

where σ is the restriction to ∂Ω of the the (N −1)-Hausdorff measure, which
coincides with the usual Lebesgue surface measure as ∂Ω is regular enough.
Due to the lack of compactness of ip∗,Ω, the existence of minimizers for (1.2)
does not follows by standards methods. Following the ideas of [2], [8]and [5],
Fernandez-Bonder and Rossi proved in [7] that a sufficient condition for the
existence of minimizers for (1.2) is that S0 < K−1

N,p where

K−1
N,p

def
= inf

{∫
RN+
|∇u|p dx; |∇u| ∈ Lp(RN

+ ) and

∫
RN−1

|u|p∗ dy = 1

}
. (1.3)

In the linear case, i.e. p = 2, with b ≡ 1 and V ≡ 0, namely, for the problem

(Y )


∆u = 0 in Ω
u > 0 in Ω
∂u
∂ν

+ N−2
2
βu = u2∗−1 on ∂Ω,

which is related to the Yamabé problem when β = cte = mean curvature
of ∂Ω, Adimurthi-Yadava [1] proved that problem (Y ) has solution when
β ∈ C1(∂Ω), N ≥ 3 and there exists a point x0 ∈ ∂Ω such that

β(x0) < h(x0) :=
1

N − 1

N−1∑
i=1

νi, (1.4)
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where the νi are the principal curvatures at x0 ∈ ∂Ω with respect to the unit
outward normal. Finally, problem (1.1) in case p = 2 and V = 0 can also be
related to well known λ- parameter problem of the Brézis-Nirenberg [4] with
Dirichlet boundary condition{

−∆u = λu+ |u|2∗−2u in Ω,
u = 0 on ∂Ω.

Among the huge amount of improvements and generalization of this pio-
neering work we quote the work of Cerami-Solimini-Struwe [6] where they
stated the existence of sign changing solutions of the Dirichlet problem for
λ ∈ (0, λ1) and N ≥ 6. We have adapted here their approach to our quasi-
linear problem with nonlinear boundary conditions.

Quasilinear elliptic problems with an indefinite potential V have attracted
a lot of attention the last decade. After the work concerning the eigenvalue
problem with Dirichlet boundary condition with an indefinite weights in [9]
and the one for the eigenvalue problem with Steklov boundary conditions
in [13], some others quasilinear problems with weights have been considered
with sublinear, superlinear or concave-convex nonlinear terms. In the present
work we would like to explore the effect of sign-changing weights a and V
on the multiplicity of solutions for a rather simple critical-exponent quasi-
linear problem with a parameter λ. From the variational point of view, the
geometry of the related functional associated, for example, to the eigenvalue
problem {

−∆pu+ V |u|p−2u = 0 in Ω,
|∇u|p−2 ∂u

∂ν
= λa(x)|u|p−2u on ∂Ω

(1.5)

may take in consideration the disjoint subsets∫
∂Ω

a|u|p dσ > 0 and

∫
∂Ω

a|u|p dσ < 0.

It is well known (see [13]) that, if a changes sign, there are two principal
eigenvalues λ−1 < λ1 for the above eigenvalue problem. We will prove in this
work that positive and sign-changing solutions of problem (1.1) can also be
found by minimizing the energy functional on the subset of the Nehari man-

ifolds where

∫
∂Ω

a|u|p dσ ≷ 0. By considering indefinite weights, we improve

and complete several existing results for similar problems.
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This paper is organised as follows. In section 1 we study under which
conditions the infimum of the associated energy functional along the Nehari
manifold is achieved. We prove in Proposition 2.7 that this is the case where
this infimum is less than(

1

p
− 1

p∗

)
K
− p∗
p∗−p

0 where K0
def
= ‖b‖

p
p∗
∞,∂ΩK

−1
N,p.

In order to assure this inequality we use the well known technique of mass
concentration for the fundamental solutions, i.e. functions defined in RN

+

realizing the infimum in (1.3). In section 2 we analyse the different Lebesgue
norms of these functions and in section 3 we state our main existence result
in Theorem .4.2. In section 4 we study the infimum of the associated energy
Φλ along the so called nodal subsets of the Nehari manifold. Finally Theorem
6.2 state an existence result for positive weights a.

2. Minimization on the Nehari manifold

Let us define the following C1-functional on W 1,p(Ω) by

EV (u)
def
=

∫
Ω

(|∇u|p + V (x)|u|p) dx, A(u)
def
=

∫
∂Ω

a |u|pdσ,

B(u)
def
=

∫
∂Ω

b|u|p∗ dσ, Φλ(u)
def
= EV (u)− λA(u).

The natural norm of W 1,p(Ω) will be denoted by ‖ · ‖, i.e.,

∀u ∈ W 1,p(Ω), ‖u‖ =

(∫
Ω

|∇u|pdx+

∫
Ω

|u|pdx
)1/p

.

The Lebesgue norm of Lq(Ω) will be denoted by ‖·‖q and the Lebesgue norm
of Lq(∂Ω, ρ) by ‖ · ‖q,∂Ω, for any q ∈ [q,+∞[. Solutions of problem (1.1) will
be understood in the weak sense.

As in [6] we will make use of the Nehari manifold associated to our prob-
lem. For this end, we define the energy functional

Iλ(u) =
1

p
Φλ(u)− 1

p∗
B(u)
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and the Nehari manifold associated to Iλ

N = {u ∈ W 1,p(Ω)\{0}; 〈I ′λ(u), u〉 = 0} = {u ∈ W 1,p(Ω) \ {0}; Φλ(u) = B(u)}

that we split into three sets

A+ = {u ∈ N ;A(u) > 0}, A− = {u ∈ N ;A(u) < 0}, A0 = {u ∈ N ;A(u) = 0}.

It is well known that critical points of Iλ are solutions of problem (1.1) and
belong to N . Notice that Iλ restricted to N is equal to

Iλ(u) =

(
1

p
− 1

p∗

)
B(u) =

(
1

p
− 1

p∗

)
Φλ(u).

Minimizing the functional Iλ along A± provided us with positive solutions
of our problem (1.1). Precisely, let us set

C±λ = inf
u∈A±

Iλ(u) (2.1)

The following result is well known, we give the proof for the sake of
completeness.

Lemma 2.1. If C±λ is achieved and C±λ > 0 then C±λ is a critical value of Iλ
associated to a positive solution of (1.1).

Proof. Let u ∈ A+ such that C+
λ = Iλ(u) = infv∈A+ Iλ(v). By taking |u|

instead of u we can assume that the infimum is achieve at some u ≥ 0 in A+.
Furthermore, if we set Jλ = Φλ − B, we have that u ∈ N =⇒ Jλ(u) = 0,
u 6≡ 0 and

〈J ′λ(u), u〉 = pΦλ(u)− p∗B(u) = (p− p∗)B(u).

Observe that, since 0 < C+
λ = Iλ(u) =

(
1
p
− 1

p∗

)
B(u) then B(u) 6= 0 and

therefore 〈J ′λ(u), u〉 6= 0. By Lagrange’s Multipliers theorem there exists
α ∈ R such that I ′λ(u) = αJ ′λ(u). Hence

0 = Jλ(u) = 〈I ′λ(u), u〉 = α(p− p∗)B(u) =⇒ α = 0.

Thus I ′λ(u) = 0.

The aim of this section is to prove that the previous infima are achieved
and that they are strictly positive. The positivity of Iλ depend on whenever
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λ < λ1 or λ > λ−1, where λ1 and λ−1 are defined as follows. Let us recall the
following results on the eigenvalue problem (1.5) associated to our problem
(see [13]). By a principal eigenvalue we mean an eigenvalue having a positive
eigenfunction.

Proposition 2.2 ([13]). Let

αa
def
= inf{EV (u); ‖u‖p = 1, A(u) = 0}. (2.2)

Then problem (1.5) possesses a principal eigenvalue if and only if αa > 0.
Precisely,

1. if αa > 0 and a changes sign then (1.5) admits exactly two principal
eigenvalues λ−1 < λ1, with

λ1 := min
M+

EV , (2.3)

where M+ := {u ∈ W 1,p(Ω); A(u) = 1} and

λ−1 = −min
M−

EV , (2.4)

where M− := {u ∈ W 1,p(Ω); A(u) = −1};

2. if αa > 0 and a is of definite sign then (1.5) admits exactly one principal
eigenvalue, which are either λ1 or λ−1;

3. if αa = 0 then (1.5) has a unique principal eigenvalue λ∗ given by

λ∗ = inf
M+

= − inf
M−

EV .

Moreover a function u ∈ S is an eigenfunction associated to λ∗ if and
only if A(u) = 0 and EV (u) = αa = 0.

Remark 2.3. Actually, the hypothesis of Theorem 3.3 of [13] are that both
λDV =first eigenvalue of u → −∆pu + V |u|p−2u with Dirichlet boundary con-
dition and

β(V, a) = inf{EV (u); A(u) = 0, ‖u‖p,∂Ω = 1}

are > 0. These two hypothesis are equivalent to αa > 0.

As a straightforward consequence of the above proposition we have
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Corollary 2.4. Assume αa > 0. For any λ < λ1 (resp. for any λ > λ−1)
there exists c > 0 such that, for all u ∈ W 1,p(Ω) satisfying A(u) ≥ 0 (resp.
A(u) ≤ 0) it holds

EV (u)− λA(u) ≥ c‖u‖p. (2.5)

Remark 2.5. Weak solutions of problem (1.1) and (1.5) belong to L∞(Ω)∩
L∞(∂Ω) according to [10]. Consequently weak solutions are of class C1,µ(Ω)
for some 0 < µ < 1 (see [14]).

Throughout the paper we will always assume αa > 0.

Let us now study the geometry of the fibering maps and the Nehari
manifold.

Lemma 2.6.

1. Assume either λ < λ1 or λ > λ−1. Then for any u ∈ W 1,p(Ω) such
that B(u) 6= 0, the function t 7→ Iλ(tu) has a local maximum at

0 < tu :=

(
Φλ(u)

B(u)

) 1
p∗−p

, (2.6)

tuu ∈ N and

Iλ(tuu) =

(
1

p
− 1

p∗

)(
Φλ(u)

B(u)p/p∗

) p∗
p∗−p

.

2. If λ < λ1 then there exists a constant c > 0 such that

∀u ∈ A+ ∪ A0 =⇒ ‖u‖ ≥ c and B(u) ≥ c. (2.7)

3. If λ > λ−1 then there exists a constant c′ > 0 such that

∀u ∈ A− ∪ A0 =⇒ ‖u‖ ≥ c′ and B(u) ≥ c′.

4. All minimizing sequences for C±λ are bounded.

5. C±λ > 0.
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Proof. (1) For any u ∈ W 1,p(Ω) such that B(u) > 0 one easily proved that

gu(t) = tp−1Φλ(u)− tp∗−1B(u)

for t > 0, vanished at tu and that the function t → Iλ(tu) has a global
maximum at tu. Clearly, gu(t) = 0⇔ tu ∈ N .
(2) We know from equation (2.5) that there exists a constant c1 > 0 such
that Φλ(u) ≥ c1‖u‖p. Moreover using Sobolev’s embedding from the trace
we have, for some constant c2 > 0,

B(u) ≤ c2‖b‖∞‖u‖p∗

and the conclusion follows using that Φλ(u) = B(u) because u ∈ N . One
can prove (3) in a similar way.
(4) Assume by contradiction that a minimizing un ∈ A+ is unbounded and
take vn = un

‖un‖ . Thus, for a subsequence, there exists v0 ∈ W 1,p(Ω) such that

vn ⇀ v0, strongly in Lp(Ω) and Lp(∂Ω). Since(
1

p
− 1

p∗

)
Φλ(vn) =

Iλ(un)

‖un‖p
→ 0 as n→ +∞,

then
EV (v0)− λA(v0) ≤ 0. (2.8)

If v0 ≡ 0 then

0 = EV (v0)− λA(v0) = lim
n→∞

Φλ(vn) =⇒ vn → 0 strongly in W 1,p(Ω),

what is in a contradiction with the fact that ‖vn‖ = 1. Thus v0 6≡ 0. Also
we have A(v0) > 0 because the possibility A(v0) = 0 is ruled out from the
condition αa > 0 and (2.8). If λ < λ1 we then have a contradiction between
(2.5) and (2.8)
(5) If for instance C+

λ = 0 and (un)n is a bounded minimizing sequence
converging to some u0 weakly in W 1,p(Ω), strongly in Lp(Ω) and also strongly
in Lp(∂Ω) hence A(u0) ≥ 0 and(

1

p
− 1

p∗

)
Φλ(u0) ≤ lim

n→∞
Iλ(un) = C+

λ = 0. (2.9)

If u0 ≡ 0 then we will get from the last inequality that un → 0 strongly in
W 1,p(Ω), in contradiction with (2.7). Thus, u0 6≡ 0 but now (2.9) contradicts
(2.5).
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In the next proposition we will prove that the values C±λ are achieved
whenever they are smaller than a certain value involving KN,pif λ is close
to λ1. This second constraint follows from the necessity to assure that the
infimum is achieved at some point lying in the open set A+. Precisely, let us
consider

γa,b
def
= inf{EV (u); A(u) = 0, B(u) = 1}. (2.10)

Proposition 2.7. One has

1. 0 < γa,b and

C±λ ≤
(

1

p
− 1

p∗

)
γ

p∗
p∗−p
a,b . (2.11)

2. There exists δ1 > 0 (resp. δ2 > 0) such that

C+
λ <

(
1

p
− 1

p∗

)
γ

p∗
p∗−p
a,b ∀λ ∈ (λ1 − δ1, λ1),

( resp. C−λ <

(
1

p
− 1

p∗

)
γ

p∗
p∗−p
a,b ∀λ ∈ (λ−1, λ−1 + δ2)).

Proof. (1) It follows directly from αa > 0 that γa,b ≥ 0. Assume by contra-
diction that γa,b = 0 and let (un)n be a minimizing sequence for γa,b. Assume
furthermore that (un)n is an unbounded sequence and take vn = un

‖un‖ . Thus
there exists a subsequence, still denoted vn, and a function v0 such that
vn ⇀ v0, strongly in Lp(Ω), in Lp(∂Ω) and a.e. We have in one hand

Φλ(v0) ≤ lim inf
n→+∞

Φλ(vn) ≤ 0, (2.12)

and in other hand A(v0) = 0. Besides v0 6≡ 0 otherwise we will deduce from
(2.12) that vn → 0 strongly in W 1,p(Ω), which is in contradiction with the
fact that ‖vn‖ = 1. Thus

αa‖v0‖pp ≤ EV (v0) = Φλ(v0) ≤ 0,

which contradicts the hypothesis αa > 0. We conclude that the sequence
(un)n is bounded. Hence, up to a subsequence, it converges weakly to some
u0 in W 1,p(Ω), strongly in Lp(Ω) and in Lp(∂Ω). Hence EV (u0) ≤ 0 and
A(u0) = 0. If u0 6≡ 0 we have a contradiction with the hypothesis αa > 0. If
u0 ≡ 0 hence un converges strongly to 0, in contradiction with B(un) = 1.
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Next, to prove for instance that C+
λ ≤

(
1
p
− 1

p∗

)
γ

p∗
p∗−p
a,b , let un be a se-

quence in W 1,p(Ω) such that A(un) = 0, B(un) = 1 and EV (un) → γa,b.
We can assume also that un ≥ 0 by taking |un| instead of un if necessary
and, using the same argument as above, the sequence (un)n is bounded in
W 1,p(Ω). Let ψ ∈ C1(Ω) be any positive function such that suppψ ∩ ∂Ω ⊂
{x ∈ ∂Ω; a(x) > 0}. Let us take vn = un + ψ

n
. Clearly ‖vn − un‖ → 0.

Moreover

A(vn) =

∫
∂Ω

avpn =

∫
∂Ω

a+(un +
ψ

n
)p −

∫
∂Ω

a−upn > A(un) = 0,

and clearly B(vn) ≥ B(un) = 1. Furthermore, using the following inequality

||x+ y|q − |x|q − |y|q| ≤ C|xy|
(
|x|q−2 + |y|q−2

)
, (2.13)

valid for any q ≥ 1 and any x, y ∈ RN and using also that the sequence un is
bounded we have

Φλ(vn) = EV (un) + o(1) = γa,b + o(1).

Finally, if we consider zn := tvnvn ∈ A+, with tun defined in Proposition
(2.6), it comes

C+
λ ≤

(
1

p
− 1

p∗

)(
Φλ(vn)

B(vn)p/p∗

) p∗
p∗−p

→
(

1

p
− 1

p∗

)
γ

p∗
p∗−p
a,b .

(2) We only prove the estimate for C+
λ . By taking tϕ1ϕ1, where ϕ1 is the

unique positive eigenfunction associated to λ1 such that A(ϕ1) = 1 and tϕ1

has been defined in (2.6), by definition of C+
λ one has((

1

p
− 1

p∗

)−1

C+
λ

) p∗−p
p∗

6
λ1 − λ

(B(ϕ1))p/p∗

Thus, if λ ∈ R is such that λ1−λ
(B(ϕ1))p/p∗

< γa,b, i.e.,

λ > λ1 − (B(ϕ1))p/p∗ γa,b

then

((
1
p
− 1

p∗

)−1

C+
λ

) p∗−p
p∗

< γa,b as stated in (2.15).
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Consequently, let us define

λ±∗
def
= inf

{
λ ∈ R; C±λ <

(
1

p
− 1

p∗

)
γ

p∗
p∗−p
a,b

}
(2.14)

As a consequence of (2) in Proposition 2.7 we have λ+
∗ < λ1 and λ−∗ > λ−1

and therefore

λ±∗ = sup

{
λ ∈ R; C±λ =

(
1

p
− 1

p∗

)
γ

p∗
p∗−p
a,b

}
.

Proposition 2.8. Let λ ∈ R.

1. If λ < λ1 and

C+
λ <

(
1

p
− 1

p∗

)
K
− p∗
p∗−p

0 (2.15)

then there exists u ∈ A+ ∪ A0 such that Iλ(u) = C+
λ .

Similarly, if λ > λ−1 and

C−λ <

(
1

p
− 1

p∗

)
K
− p∗
p∗−p

0 (2.16)

then there exists u ∈ A− ∪ A0 such that Iλ(u) = C−λ .

2. If furthermore λ+
∗ < λ < λ1 and (2.15) holds then problem (1.1) with

parameter λ possesses a positive solution u satisfying A(u) > 0 and
Iλu) = C+

λ .
Similarly if λ−1 < λ < λ−∗ and (2.16) holds then problem (1.1) with
parameter λ possesses a positive solution u satisfying A(u) < 0 and
Iλu) = C−λ .

Proof. We will only give the proof concerning C+
λ since the argument is

similar for C−λ . Let (un)n be a minimizing sequence. By (4) of Lemma 2.6
the sequence (un)n is bounded so assume that un ∈ A+ converges weakly to
some u0, strongly in Lp(Ω) and in Lp(∂Ω). Clearly A(u0) ≥ 0.
Claim: We have

Φλ(u0) ≤
(

(
1

p
− 1

p∗
)−1C+

λ

) p∗−p
p∗

B(u0)
p
p∗ . (2.17)

11



Indeed, in one hand, using that (un)n is a minimizing sequence we have(
1

p
− 1

p∗

)−1

C+
λ = B(un) + o(1). (2.18)

Besides, we also have by the Brézis-Lieb lemma ([3])(
1

p
− 1

p∗

)−1

C+
λ = Φλ(u0) + ‖∇(un − u0)‖pp + o(1) (2.19)

In other hand, let us choose ε > 0 such that(
1

p
− 1

p∗

)−1

C+
λ < (K0 + ε)

−p∗
p∗−p .

Using again Brézis-Lieb lemma and the fact that p/p∗ < 1, we get

B(un)p/p∗ ≤ B(u0)
p
p∗ +B(un − u)

p
p∗ + o(1),

and hence it comes from (2.18) and Lemma 2.10 (see below) gives(
(
1

p
− 1

p∗
)−1C+

λ

)p/p∗
≤ B(u0)

p
p∗ + (K0 + ε)‖∇(un − u0)‖pp + o(1). (2.20)

Combining (2.20) with (2.19) and using that(
1

p
− 1

p∗

)−1

C+
λ < (K0 + ε)

−p
p∗−p ,

we obtain(
(
1

p
− 1

p∗
)−1C+

λ

)p/p∗
≤ B(u0)

p
p∗ +

((
1

p
− 1

p∗

)−1

C+
λ

) p
p∗

−Φλ(u0)

((
1

p
− 1

p∗

)−1

C+
λ

) p−p∗
p∗

and the proof of the claim follows. Notice that u0 6≡ 0 since, otherwise,
un → 0 strongly in W 1,p(Ω) which contradicts (3) of Lemma 2.6. As a
consequence of (2.17) and that Φλ(u0) > 0 we have B(u0) > 0. Finally let
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us prove that C+
λ is achieved at tu0u0 ∈ N . Indeed, again by (1) of Lemma

2.6 we have (
1

p
− 1

p∗

)−1

C+
λ ≤

Φλ(u0)
p∗
p∗−p

B(u0)
p

p∗−p

while by the claim

Φλ(u0)
p∗
p∗−p

B(u0)
p

p∗−p
≤
(

1

p
− 1

p∗

)−1

C+
λ

and the equality follows.

(2) Since λ > λ+
∗ we get C+

λ <
(

1
p
− 1

p∗

)
γ

p∗
p∗−p
a,b and therefore C+

λ is achieved

at some u ∈ A+. By replacing u by |u| if necessary, we can assume that
u ≥ 0. The result then comes from Lemma 2.1. By the reularity results
(see Remark 2.9) andth strong maximum principle of [16], the solution u is
strictly positive up to the boundary.

Remark 2.9. Notice the if λ+
∗ < λ−∗ then, under the hypothesis of Proposi-

tion 2.8, we will obtain two positive solutions of problem (1.1) for any pa-
rameter λ ∈ (λ+

∗ , λ
−
∗ )∩ (λ−1, λ1): one in A+ and the other in A−. However,

that λ+
∗ < λ−∗ is not clear for general weights a, b and V .

We have used in the previous proposition the following Cherrier’s-type
inequality that has been proved by [5] in the case b ≡ 1 and can be trivially
generalizes for any positive bounded weight b:

Lemma 2.10. [5] For any ε > 0 there exists Cε > 0 such that for all u ∈
W 1,p(Ω) it holds(∫

∂Ω

b|u|p∗ dσ
)p/p∗

≤ (K0 + ε)

∫
Ω

|∇u|p dx+ Cε

∫
Ω

|u|p dx

where
K0 := KN,p‖b‖p/p

∗

∞ (2.21)

and KNp is defined in (1.3).

13



3. Estimates of the Lp-norms of fundamental solutions

We turn now our attention to the problem of finding the values λ for
which we have S±λ < K−1

0 , where we denote here, for simplicity,

S±λ =

((
1

p
− 1

p∗

)−1

C+
λ

) p∗−p
p∗

. (3.1)

It is well known (see [12]), that the value K−1
N,p defined in (1.3) is achieved at

functions of the form

Uε,y0(y, t) = ε−
N−p
p U

(
y − y0

ε
,
t

ε

)
,

with y0 ∈ RN−1 arbitrary and ε ∈]0 +∞[, where

U(y, t) =
1

((t+ 1)2 + |y|2)
N−p

2(p−1)

.

The functions Uε,y0 are usually called fundamental solutions. The constant
K−1
N,p can be computed explicitly (see [8, 12]) and it is equal to

K−1
N,p =

(
N − p
p− 1

)p−1

π
p−1
2

 Γ
(

N−1
2(p−1)

)
Γ
(
p(N−1)
2(p−1)

)


p−1
N−1

.

Let us assume for convenience that

x0 = 0 ∈ ∂Ω and |Ω+
a ∩Bs(0)| > 0 ∀0 < s < r (3.2)

for some r > 0, where Ω+
a = {x ∈ ∂Ω; a(x) > 0}. Let φ be a smooth radial

function with compact support in the ball Br/2(0) satisfying φ ≡ 1 in Br/4(0).
For any ε > 0 let us choose the following test functions:

uε(y, t) = Uε(y, t)φ(y, t) =
ε
N−p
p(p−1)φ(y, t)

((t+ ε)2 + |y|2)
N−p

2(p−1)

. (3.3)

Notice that A(uε) > 0. In order to give the asymptotic development with

respect to the parameter ε of the quotient Φ(uε)

B(uε)p/p∗
, we will compute each of
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integrals involved. Much of the work have been done by [8] and we refer the
reader to this paper for full details. To make the computations simpler, we
will choose a special parametrization of the boundary ∂Ω around 0 ∈ ∂Ω.
Since we are assuming that ∂Ω is of class C2, there exists c > 0 and a C2-
function ρ : {y ∈ RN−1, |y| ≤ c} → R such that

Ω ∩Br(0) = {(y, t) ∈ Qc ; t > ρ(y)}
∂Ω ∩Br(0) = {(y, t) ∈ Qc, ; t = ρ(y)}, (3.4)

where Qc := {(y, t), |y| ≤ c, 0 ≤ t ≤ c} and

ρ(y) =
1

2

N−1∑
i=1

νiy
2
i +O(|y|3) (3.5)

for some νi, i = 1, · · · , N − 1. We set hereafter

h0 =
1

N − 1

N−1∑
i=1

νi. (3.6)

The value h0 is known as the mean curvature of ∂Ω at 0 with respect to the
outward normal ν.

Proposition 3.1. Let N ≥ 2p− 1. Assume for convenience the hypothesis
(3.2) and let uε be as in (3.3). Then

1.

∫
Ω

|∇uε|p dx = A1 + f1(ε), where

f1(ε) :=

{
A2ε+O(ε

N−p
p−1 ) if p < N+1

2

−h0
2
ωN−2 ε ln(1/ε) +O(ε) if p = N+1

2

and

A1 =
1

2

(
N − p
p− 1

)p−1

β

(
N − 1

2
,
N − 1

2(p− 1)

)
ωN−2;

A2 = −h0

4

(
N − p
p− 1

)p
β

(
N + 1

2
,
N − 2p+ 1

2(p− 1)

)
ωN−2.
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2.

∫
Ω

V (x)|uε|p dx = f2(ε),

f2(ε) :=


O(εp) if p2 < N
O(εp ln(1

ε
)) if p2 = N

O(ε
N−p
p−1 ) if p2 > N

3. Assume that b(0) = ‖b‖∞ and

b(y, ρ(y))− b(0) = O(|y|γ+1) ∀ |y| ≤ c

for some γ > 0. Then∫
∂Ω

b|uε|p∗ dσ = B1 +B2ε+ o(ε)

where

B1 =
1

2
‖b‖∞β

(
N − 1

2
,
N − 1

2(p− 1)

)
ωN−2,

B2 = −1

2
‖b‖∞(N − 1)h0β

(
N − 1

2
,
N − 1

2(p− 1)

)
ωN−2.

4. Assume that a ∈ Cγ close to 0 for some γ > 0. Then∫
∂Ω

a(x)|uε|pdσ = f3(ε)

where

f3(ε) =


C1ε

p−1 + o(εp−1) if N > p2 − p+ 1

a(0)ωN−2ε
p−1 ln(1/ε) +O(εp−1) if N = p2 − p+ 1,

O(ε
N−p
p−1 ) if N < p2 − p+ 1,

(3.7)
and

C1 =
1

2
a(0)β

(
N − 1

2
,
N − p2 + p− 1

2(p− 1)

)
ωN−2.

16



We recall that

ωN−1 = measure of the unit sphere SN−1 of RN =
2π

N
2

Γ
(
N
2

)
and

β(x, y) :=

∫ ∞
0

tx−1 dt

(1 + t)x+y
=

∫ 1

0

tx−1(1− t)y−1dt =
Γ(x)Γ(y)

Γ(x+ y)

for x, y > 0.

Proof. (1) -(2) These estimates can be found in [8].

(3) To estimate

∫
∂Ω

b(x)|uε|p∗ dσ we write∫
∂Ω

b(x)|uε|p∗ dσ = b(0)

∫
∂Ω∩Br(0)

|uε|p∗ dσ

+O

(∫
∂Ω∩Br(0)

|y|γ+1|uε|p∗ dσ
)

+ ε
N−1
p−1 O(1).

From basic integration, we deduce for any a > −1 and b > 0 that

∫ c/ε

0

ta

(1 + t2)b
dt =


1
2
β
(
a+1

2
, 2b−a−1

2

)
+O(ε2b−a−1) if 2b− a− 1 > 0,

ln(1/ε) +O(1) if 2b− a− 1 = 0,

O(ε2b−a−1) if 2b− a− 1 < 0.
(3.8)

Thus for any a, b, ε ∈ R+ we have∫
|y|≤c

|y|a

(ε2 + |y|2)b
dy

=


ωN−2

1
2
εN−1+a−2bβ

(
a+N−1

2
, 2b−a−N+1

2

)
+O(1) if 2b− a−N + 1 > 0,

ωN−2 ln(1/ε) +O(1) if 2b− a−N + 1 = 0,

O(1) if 2b− a−N + 1 < 0.
(3.9)
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By expanding ((ε+ ρ(y))2 and using Taylor’s theorem we find

ε
N−1
p−1

∫
∂Ω∩Br(0)

|y|γ+1|uε|p∗ dσ =

∫
|y|≤c

|y|γ+1
√

1 + |∇ρ(y)|2dy

((ε+ ρ(y))2 + |y|2)
p(N−1)
2(p−1)

=

∫
|y|≤c

|y|γ+1dy

(ε2 + |y|2)
p(N−1)
2(p−1)

+O

(∫
|y|≤c

|y|γ+3dy

(ε2 + |y|2)
p(N−1)
2(p−1)

)

=

 O(εγ+N− p
p−1

(N−1)) if N > p(γ + 1)− γ
O(ln(1/ε)) if N = p(γ + 1)− γ
O(1) if N < p(γ + 1)− γ.

Since N−1
p−1

+N + γ − p
p−1

(N − 1) = γ + 1 then∫
∂Ω∩Br(0)

|y|γ+1|uε|p∗ dσ = o(ε)

and the result follows.
(4) First of all we use the fact that a ∈ Cγ(∂Ω) and write

a(y, ρ(y)) = a(0) +O(|y|γ); |y| ≤ c

so ∫
∂Ω

a(x)|uε|p dσ = a(0)

∫
∂Ω∩Br(0)

|uε|p dσ

+O

(∫
∂Ω∩Br(0)

|y|γ|uε|p dσ
)

+ ε
N−p
p−1 O(1).

Let us then compute separately

I :=

∫
∂Ω∩Br(0)

|uε|p dσ and II :=

∫
∂Ω∩Br(0)

|y|γ|uε|p dσ.
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ε−
N−p
p−1 I =

∫
|y|6c

1 + 1
2
|∇ρ(y)|2 +O(|y|4)

(ε2 + ρ(y)2 + 2ερ(y) + |y|2)
p(N−p)
2(p−1)

dy

=

∫
|y|6c

dy

(ε2 + |y|2)
p(N−p)
2(p−1)

−p(N−p)
p−1

ε

∫
|y|6c

ρ(y)dy

(ε2 + |y|2)
p(N−p)
2(p−1)

+1

+ O

(∫
|y|6c

|y|2

(ε2 + |y|2)
p(N−p)
2(p−1)

)

= I1 − p(N−p)
p−1

εI2 +O(I3)

where

I1 = ωN−2 ×



1
2
εp−

N−1
p−1 β

(
N−1

2
, N−p

2+p−1
2(p−1)

)
+O(1) if N > p2 − p+ 1

ln(1/ε) +O(1) if N = p2 − p+ 1

C2 if N < p2 − p+ 1

and C2 = 1
p2−p+1−N |c|

p2−p+1−NωN−2 > 0. Clearly I2 = O(I1) and I3 =

ε2O(I1). Consequently

I =



1
2
ωN−2ε

p−1β
(
N−1

2
, N−p

2+p−1
2(p−1)

)
+O(N−p

p−1
) if N > p2 − p+ 1,

O(ε
N−p
p−1 ln(1/ε)) if N = p2 − p+ 1;

O(ε
N−p
p−1 ) if N < p2 − p+ 1.
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Similar computations for II give

II = ε
N−p
p−1

∫
|y|≤c

|y|γdy

(ε2 + |y|2)
p(N−p)
2(p−1)

=



O(εp−1+γ) if N > p2 − (p− 1)(1− γ);

O
(
ε
N−p
p−1 ln(1/ε)

)
if N = p2 − (p− 1)(1− γ);

O(ε
N−p
p−1 ) if N < p2 − (p− 1)(1− γ).

Since by hypothesis γ > 0 then II = I + o(I) and we conclude.

In section 5 we will need the ε-asymptotic of several Lq-norm of the fun-
damental solution uε defined in (3.3).

Proposition 3.2.

1. ‖∇uε‖1 = f4(ε), where

f4(ε) =


O
(
ε
N−p
p(p−1)

)
if p > 2N−1

N
,

O
(
ε
N−p
p(p−1) ln(1

ε
)
)

if p = 2N−1
N

,

O(εN−
N
p ) if p ≤ 2N−1

N
.

2. ‖∇uε‖p−1
p−1 = O(ε

N
p
−1).

3. ‖uε‖1 = f5(ε), where

f5(ε) =


O
(
ε
N−p
p(p−1)

)
if p > 2N

N+1
,

O
(
ε
N−p
p(p−1) ln(1

ε
)
)

if p = 2N
N+1

,

O(εN+1−N
p ) if p < 2N

N+1
.

4. ‖uε‖p−1
p−1 = O(ε

N
p
−1).

5. ‖uε‖1,∂Ω = f4(ε).

6. ‖uε‖p−1
p−1,∂Ω = O(ε

N
p
−1).
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7. ‖uε‖p∗−1
p∗−1,∂Ω = O(ε

N
p
−1).

Proof. Let us denote by α = N−p
p(p−1)

.

(1) We have

|∇uε| =
N − p
p− 1

εα
[
(t+ ε)2 + |y|2

]− N−1
2(p−1) in Br/4(0).

so

ε−α
∫

Ω

|∇uε| dx =
N − p
p− 1

∫
Ω∩Br/4(0)

[
(t+ ε)2 + |y|2

]−γ
dydt+O(1),

where γ = N−1
2(p−1)

. Notice that the integral on the right hand side goes to

a constant as ε goes to 0 if 2γ − N < 0, that is, if p > 2N−1
N

. In the case
1 < p ≤ 2N−1

N
let us compute this integral as follows. We write∫

Ω∩Br/4(0)

[
(t+ ε)2 + |y|2

]−γ
dydt =

∫
Qc

dtdy

[(t+ ε)2 + |y|2]γ

−
∫
Qc\Ω

dtdy

[(t+ ε)2 + |y|2]γ

= I1 − I2 +O(1)

After firstly changing the variables t and y by tε and ε.y respectively and
secondly changing y by (t+ 1).z, one gets

I1 = CεN−2γ

(∫ +∞

0

(1 + t)N−1−2γ dt

)(∫ +∞

0

rN−2

(1 + r2)γ
dt

)
+O(1)

= O
(
εN−2γ

)
since N − 2γ = Np−2N+1

p−1
< 0 in the case 1 < p < 2N−1

N
. When p = 2N−1

N
we

have

I1 = C ln

(
1

ε

)
+O(1) = −C ln (ε) +O(1).
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For I2 we have

I2 =

∫
|y|6c

dy

∫ ρ(y)

0

dt

((t+ ε)2 + |y|2)γ

=

∫
|y|≤c

ρ(y)dy

(ε2 + |y|2)γ
+ εO

(∫
|y|6c

|y|4dy
(ε2 + |y|2)γ+1

)
= O

(∫
|y|6c

|y|2dy
(ε2 + |y|2)γ

)
+ εO

(∫
|y|6c

|y|4dy
(ε2 + |y|2)γ+1

)
= o

(
εN−2γ

)
.

Thus ∫
Ω

|∇uε| dx = εα


O(1) if p > 2N−1

N
,

C ln(1
ε
) +O(1) if p = 2N−1

N
,

O(εN−2γ) if p < 2N−1
N

,

and the conclusion follows.
(2) We have

ε−α(p−1)

∫
Ω

|∇uε|p−1 dx

=

(
N − p
p− 1

)p−1 ∫
Br/4(0)

[
(t+ ε)2 + |y|2

]−γ(p−1)
dydt+O(1).

Since in this case 2γ(p− 1)−N = −1 < 0 the integral on the right handside
converges to a constant as ε→ 0 and the result follows.
(3) Set now γ1 = N−p

2(p−1)
. We have, by letting ε→ 0 in the integral below,

ε−α
∫

Ω

uε(y, t)dtdy =

∫
Ω∩Br/4(0)

dydt

[(t+ ε)2 + |y|2]γ1
= O(1)

if N − 2γ1 > 0. Notice that N − 2γ1 > 0⇐⇒ p > 2N
N+1

. If p ≤ 2N
N+1

we write

ε−α
∫

Ω

uε(y, t)dtdy = I1 − I2 +O(1)

with

I1 =

∫
Qc

dydt

[(t+ ε)2 + |y|2]γ1
and I2 =

∫
Qc\Ω

dydt

[(t+ ε)2 + |y|2]γ1
.

22



Following the computations of (1) (with γ1 instead of γ) we will have

I1 =

{
C ln(1/ε) +O(1) if p = 2N

N+1
,

O(εN−2γ1) if p < 2N
N+1

,

and besides
I2 = O(εN−2γ1).

Thus ∫
Ω

|uε| dx = εα


O(1) if p > 2N

N+1
,

C ln(1
ε
) +O(1) if p = 2N

N+1
,

O(εN−2γ1) if p < 2N
N+1,

and the conclusion follows.
(4) We have

ε−α(p−1)

∫
Ω

|uε|p−1 dx =

∫
Ω∩Br/4(0)

[
(t+ ε)2 + |y|2

]−γ1(p−1)
dydt+O(1).

In this case 2γ1(p− 1)−N = −p < 0 the the integral on the right converges
to a constant as ε→ 0 and the result follows.
(5) In this case we have

ε−α
∫
∂Ω

|uε| dσ =

∫
|y|≤c

√
1 + |∇ρ(y)|2 dy

((ε+ ρ(y))2 + |y|2)γ1
+O(1) = I1 +O(1)

and

I1 =

∫
|y|≤c

dy

((ε+ ρ(y))2 + |y|2)γ1
+O

(∫
|y|≤c

|y|2 dy
((ε+ ρ(y))2 + |y|2)γ1

)
= I2 + I3.

By expanding (ε+ ρ(y))2 and using Taylor’s theorem we have

I2 =

∫
|y|≤c

dy

(ε2 + |y|2)γ1
− 2γ1ε

∫
|y|≤c

ρ(y) dy

(ε2 + |y|2)γ1+1

+O

(∫
|y|≤c

|y|4 dy
(ε2 + |y|2)γ1+1

)
= I1

2 + I2
2
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If 2γ1−N + 1 < 0, i.e., if p > 2N−1
N

then I1
2 converges to a constant as ε goes

to 0 and I1
2 is O(ln(1

ε
)) if p = 2N−1

N
. In the case p < 2N−1

N
we have

I1
2 = εN−1−2γ1

∫ c/ε

0

rN−2

(1 + r2)γ1
dt = O(εN−1−2γ1).

Finally one can easily check that the remaining terms can be neglected when
compared with I1

2 and the result follows.
(6) By expanding (ε+ ρ(y))2 and using Taylor’s theorem as above we have

ε−α(p−1)‖uε‖p−1
p−1,∂Ω =

∫
|y|≤c

√
1 + |∇ρ(y)|2 dy

((ε+ ρ(y))2 + |y|2)γ1(p−1
+O(1)

=

∫
|y|≤c

dy

(ε2 + |y|2)
N−p

2

−2(N − p)ε
∫
|y|≤c

ρ(y) dy

(ε2 + |y|2)
N−p

2

+O

(∫
|y|≤c

|y|2 dy
(ε2 + |y|2)

N−p
2

)

and, since (N − p) − N + 1 = −p + 1 < 0, the first integral on the right
converges as ε goes to 0 and we get the result.
(7) As previously and, using that 2γ1(p∗ − 1) = N ,

ε−α(p∗−1)

∫
∂Ω

|uε|p∗−1 dσ =

∫
|y|≤c

√
1 + |∇ρ(y)|2 dy

((ε+ ρ(y))2 + |y|2)γ1(p∗−1)
+O(1)

=

∫
|y|≤c

dy

((ε+ ρ(y))2 + |y|2)N/2

+O

(∫
|y|≤c

|y|2 dy
((ε+ ρ(y))2 + |y|2)N/2

)
.

By expanding (ε+ρ(y))2 and using Taylor’s theorem the first integral is now

I1 = ε−1

∫ c/ε

0

rN−2

(1 + r2)N/2
dt = O(ε−1)

and all the other integral are negligible when compared with I1. Finally,
since α(p∗ − 1) = N

p
the result follows.
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4. Existence of positive solutions

We can give now sufficient conditions on V, a, b et λ to fulfil the condition
S±λ < K−1

0 . By taking −a instead of a, one can prove similar results in
order to have the inequality S−λ < K−1

0 . We will assume here the following
hypothesis (B): there exists a point x0 ∈ ∂Ω such that

(B)



‖b‖∞ is achieved at x0,

b(x0)− b(x) = O(|x− x0|γ+1) for some γ > 0,

a ∈ Cγ close to x0 for some γ > 0,

a(x0) > 0.

(4.1)

Proposition 4.1. Let N ≥ 2p−1. Assume that there exists a point x0 ∈ ∂Ω
satisfying hypothesis (B) in (4.1). Then

C+
λ <

(
1

p
− 1

p

)
K
− p∗
p∗−p

0

holds in the following cases:

1. for any λ ∈ R if p > 2 and the mean curvature h0 at x0 is positive;

2. for λ, a(x0) and h0 satisfying

N − 2

2
h0 + λa(x0) > 0 (4.2)

if p = 2;

3. for any λ > 0 if 1 < p < 2.

Proof. By definition of S±λ in (3.1) we have

S+
λ ≤

Φλ(uε)

B(uε)p/p∗
.
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Notice that A(uε) > 0 if ε and r are small enough as a consequence of the
estimate (4) in Proposition 3.1. We are going to prove that there exists a
positive constant Λ such that

K0
Φλ(uε)

B(uε)p/p∗
= 1− Λg(ε) (4.3)

with

g(ε)
def
=


ε if p ≥ 2, N > 2p− 1;
ε ln(1

ε
) if p ≥ 2, N = 2p− 1;

εp−1 if 1 < p < 2.
(4.4)

First case: If p > 2 and N > 2p − 1 then the integrals (c) and (d) in
Proposition 3.1 are o(ε) and therefore

Φλ(uε)

B(uε)p/p∗
=

A1 + A2ε+ o(ε)

(B1 +B2ε+ o(ε))p/p∗

=
A1

B
p/p∗
1

(
1 +

(
A2

A1

− p

p∗

B2

B1

)
ε

)
+ o(ε).

We have

A2

A1

= −1

2

N − p
N − 2p+ 1

(N − 1)h0,
B2

B1

= −1

2
(N − 1)h0,

and hence we define Λ as

Λ := −
(
A2

A1

− p

p∗

B2

B1

)
=

(N − p)(p− 1)

N − 2p+ 1
h0 > 0.

Notice that
A1

B
p/p∗
1

= K−1
0 .

Second case: If p > 2 and N = 2p− 1 then

Φλ(uε)

B(uε)p/p∗
=

A1 − h0ωN−2

2
ε ln(1/ε) +O(ε)

(B1 +O(ε))p/p∗

=
A1

B
p/p∗
1

(
1−

(
h0ωN−2

2A1

)
ε ln(1/ε)

)
+O(ε)

Here we define

Λ :=
h0ωN−2

2A1

> 0.
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Third case: If 1 < p < 2 then

K0
Φλ(uε)

B(uε)p/p∗
=
A1 − λC1ε

p−1 + o(εp−1)

(B1 + o(εp−1))p/p∗
=

A1

B
p/p∗
1

− λ C1

B
p/p∗
1

εp−1 + o(εp−1)

Notice that if 1 < p < 2 one has ε ln(1/ε) = o(εp−1). Here

Λ := λ
C1

A1

> 0

in the case λ > 0 and a(x0) > 0.
Fourth case: If p = 2 and N > 2p− 1 = 3 then

Φλ(uε)

B(uε)p/p∗
=

A1 + (A2 − λC1) ε+ o(ε)

(B1 +B2ε+ o(ε))p/p∗

=
A1

B
p/p∗
1

(
1 +

(
A2 − λC1

A1

− p

p∗

B2

B1

)
ε

)
+ o(ε).

Now we have (in this case)

−Λ :=
A2 − λC1

A1

− p

p∗

B2

B1

= −N − 2

N − 3
h0 − λ

2

N − 3
a(x0)

and therefore, if (4.2) holds, Λ > 0.

Fifth case: If p = 2 and N = 2p− 1 = 3 then

Φλ(uε)

B(uε)p/p∗
=
A1 +

(
−h0ω1

2
− λa(x0)ω1

)
ε ln(1ε) +O(ε)

(B1 +O(ε))p/p∗
=

=
A1

B
p/p∗
1

(
1 +

(
−h0

2
− λa(x0)

A1

)
ω1ε ln(1/ε)

)
+O(ε).

Here we have

Λ :=

(
h0
2

+ λa(x0)

A1

)
ω1.

Thus, if (4.2) holds, Λ > 0.

As a direct consequence of Proposition 4.1 and Proposition 2.8 we can
now formulate the main result of this section.

27



Theorem 4.2. Let N ≥ 2p − 1. Assume that there exists a point x0 ∈ ∂Ω
such that hypothesis (B) of (4.1) are satisfied. Let λ ∈ R satisfying

λ+
∗ < λ < λ1 (4.5)

with λ+
∗ defined in (2.14). Then problem (1.1) possesses a positive solution

u satisfying A(u) > 0 in the following cases:

1. if p > 2 and the mean curvature at x0 satisfies h0 > 0,

2. if 1 < p < 2, λ > 0,

3. if p = 2 and a(x0), h0 satisfy (4.2).

We also have the analogous result when considering −a instead of a:

Theorem 4.3. Let N ≥ 2p−1 and assume that there exists a point x0 ∈ ∂Ω
such that hypothesis (B) of (4.1) are satisfied for b and −a. Let λ ∈ R
satisfying

λ−1 < λ < λ−∗ (4.6)

with λ−∗ defined in (2.14) Then the problem (1.1) possesses a positive solution
u satisfying A(u) < 0 in the following cases:

1. if p > 2 and the mean curvature at x0 satisfies h0 > 0,

2. if 1 < p < 2, λ < 0 and a(x0) < 0,

3. if p = 2 and a(x0), h0 satisfy (4.2).

Remark 4.4.

1. Notice that if p = 2, V ≡ 0,a = β then λ1 = 0, λ+
∗ = −∞. Condition

(4.2) for λ = 1 is condition (1.4) of [1] for the Yamabe problem (Y ).

2. In order to have λ > 0 in the case 1 < p < 2, one can required that
λ1 > 0 (resp. λ−1 < 0). Thus, it will be enough to ask for instance that

inf{EV (u); ‖u‖p = 1} > 0,

a condition weaker than αa > 0.
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5. Minimisation along nodal subsets of the Nehari manifold

In order to find nodal solutions we introduce the following nodal subsets
of the Nehari manifold:

N+ = {u ∈ W 1,p(Ω); u± ∈ A+}, N− = {u ∈ W 1,p(Ω); u± ∈ A−} (5.1)

and let us define
D±λ = inf

u∈N±
Iλ(u). (5.2)

Clearly 2C±λ ≤ D±λ for any λ ∈ R since Iλ(u) = Iλ(u
+) + Iλ(u

−) ≥ C+
λ +C+

λ .

In what follows we are going to show, under certain conditions on λ, p,
a and b, similar to those of the first section, that both D±λ are achieved,
providing us with a pair of nodal solutions of problem (1.1). Our intention
is to prove now that the Palais-Smale condition is satisfied. For any u ∈ N+

we denote

TN+(u) = {v ∈ W 1,p(Ω); 〈Φ′λ(u±), v〉 = 〈B′(u±), v〉}

the tangent subspace to N+ at u. If L ∈ W−1,p′(Ω), by ‖L‖TN+ (u) we mean
the norm of the restriction of L to the subspace TN+(u).

Proposition 5.1. Let λ < λ1 and c ∈ R satisfy c < C+
λ +

(
1
p
− 1

p∗

)
K
− p∗
p∗−p

0 .

Then Iλ satisfies the Palais-Smale condition at level c on N+ , i.e., any
sequence (un) ∈ A+ satisfying

(PS1) Iλ(un)→ c,
(PS2) ‖I ′λ(un)‖TN+(un)

= o(1)
(5.3)

possesses a convergent subsequence.

Similarly, if λ > λ−1 and c < C−λ +
(

1
p
− 1

p∗

)
K
− p∗
p∗−p

0 then Iλ satisfies the

Palais-Smale condition at level c on N−.

Proof. We only prove the first case. Let (un)n be a sequence in N+ satisfying
(5.3). Using that Iλ(un) = (1

p
− 1

p∗
)Φλ(un), we can prove as in ((4) of Lemma

2.6 that the sequence is bounded. Let u be such that, up to a subsequence,
un ⇀ u, strongly in Lp(Ω), in Lp(∂Ω) and a.e. Then we also have u±n ⇀ u±,
strongly in Lp(Ω) and in Lp(∂Ω). Let us assume by contradiction that, for
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instance, u+
n 6→ u+ strongly in W 1,p(Ω). Let us denote, for each v ∈ W 1,p(Ω)

and each u ∈ N , the real number

su(v) =
〈Φ′λ(u), v〉 − 〈B′(u), v〉

(p− p∗)B(u)

that satisfies v−su(v)u ∈ TN (u). Let us choose v = u+
n−u+ and apply (PS2)

to w = v − su+n (v)u+
n − su−n (v)u−n ∈ TN+(un). We have I ′λ(un)(w) = o(1)‖w‖,

that is

〈I ′λ(un), u+
n − u+〉 = o(1)

∥∥u+
n − u+ − su+n (u+

n − u+)u+
n − su−n (u+

n − u+)u−n
∥∥ .

Using estimate (2.7) we have that the sequence B(u±n ) is bounded away from
0 and therefore su±n (u+

n −u+) is bounded. Hence 〈I ′λ(u), u+
n −u+〉 = o(1) and,

because we also have that u+
n ⇀ u+, it comes also that

〈I ′λ(un)− I ′λ(u), u+
n − u+〉 = o(1).

Using Brézis-Lieb identity we deduce

〈I ′λ(un)− I ′λ(u), u+
n − u+〉 = ‖∇u+

n −∇u+‖pp −
∫
∂Ω

b|u+
n − u+|p∗ + o(1).

Thus

‖∇u+
n −∇u+‖pp =

∫
∂Ω

b|u+
n − u+|p∗ + o(1). (5.4)

Using the fact that Φλ(u
+
n ) = B(u+

n ) and Brézis-Lieb Lemma we get

(
1

p
− 1

p∗
)B(u+) + (

1

p
− 1

p∗
)

∫
∂Ω

b|u+
n − u+|p∗ + o(1) = Iλ(u

+
n )

= (
1

p
− 1

p∗
)Φλ(u

+) + (
1

p
− 1

p∗
)‖∇u+

n −∇u+‖pp + o(1)

and letting n → ∞ we see that Φλ(u
+) = B(u+). In particular Iλ(u

+) ≥ 0.
Let now ε > 0. We have, by using Lemma 2.10 and (5.4),

‖∇u+
n −∇u+‖pp −

∫
∂Ω

b|u+
n − u+|p∗ > ‖∇u+

n −∇u+‖pp + o(1)

−(K0 + ε)p∗/p‖∇u+
n −∇u+‖p∗p
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and, since we are assuming that ‖∇u+
n −∇u+‖p 9 0 , then

‖∇u+
n −∇u+‖p ≥ (K0 + ε)−

p∗
p(p∗−p) + o(1). (5.5)

Besides, using again Brézis-Lieb Lemma and (5.5) we have

Iλ(u
+
n ) = Iλ(u

+
n − u+) + Iλ(u

+) + o(1)

= (
1

p
− 1

p∗
)‖∇u+

n −∇u+‖pp + Iλ(u
+) + o(1)

≥ (
1

p
− 1

p∗
)(K0 + ε)−

p∗
p∗−p + o(1),

since Iλ(u
+) ≥ 0. Also one has Iλ(u

−
n ) ≥ C+

λ . Finally we have the estimate

Iλ(un) = Iλ(u
+
n ) + Iλ(u

−
n )

≥ (
1

p
− 1

p∗
)(K0 + ε)−

p∗
p∗−p + Iλ(u

−
n ) + o(1)

≥ (
1

p
− 1

p∗
)(K0 + ε)−

p∗
p∗−p + C+

λ + o(1).

Since by hypothesis (PS1) we have Iλ(un) → c < C+
λ + (1

p
− 1

p∗
)K
− p∗
p∗−p

0 , we
get a contradiction by choosing ε > 0 small enough.

As in the previous section, we need to assure that the infima D±λ are not
achieved for any u ∈ N± satisfying either A(u+) = 0 or A(u−) = 0. Let us
introduce the values

η+
λ

def
= inf{Iλ(u); u ∈ N+, A(u+) = 0, A(u−) ≥ 0};

η−λ
def
= inf{Iλ(u); u ∈ N−, A(u+) = 0, A(u−) ≤ 0}.

(5.6)

Clearly D±λ ≤ η±λ . Now, we prove that the infima D±λ are achieved pro-
vided they are sufficiently smaller.

Proposition 5.2. Let λ < λ1 and assume that

D+
λ < min

{
η+
λ , C

+
λ +

(
1

p
− 1

p∗

)
K
− p∗
p∗−p

0

}
.

Then there exists u ∈ N+ solution of problem (1.1) satisfying Iλ(u) = D+
λ .

Similarly, if λ > λ−1 and

D−λ < min

{
η−λ , C

−
λ +

(
1

p
− 1

p∗

)
K
− p∗
p∗−p

0

}
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then exists v ∈ N− solution of the problem (1.1) satisfying Iλ(v) = D−λ .

Proof. First we are going to prove that we can find a minimizing sequence
for the infimun D+

λ that satisfies the hypothesis (PS1) and (PS2) of the
previous proposition. The idea is to apply Ekeland’s variational principle to
the complete metric space X = N+ inherited with the distance of W 1,p(Ω).
Notice that

N+ = {u ∈ W 1,p(Ω); u± ∈ N , A(u±) ≥ 0} ∩ {‖u±‖ ≥ c and B(u±) ≥ c}

according to the estimates (2.7). For any ε > 0 let uε ∈ N+ such that
Iλ(uε) ≤ D+

λ + ε2. We can assume that ε > 0 such that 0 < ε2 < η+
λ − D

+
λ .

By Ekeland’s variational principle (see [11]) there exists vε ∈ X such that

(E1) Iλ(vε) < Iλ(uε),
(E2) dist (vε, uε) < ε,
(E3) Iλ(vε) ≤ Iλ(w) + ε‖vε − w‖ ∀w ∈ X,w 6= vε.

Using the fact that D+
λ < η+

λ , we can assume that A(v±ε ) > 0 otherwise
we will have D+

λ + ε2 ≥ Iλ(vε) ≥ η+
λ , which is a contradiction. For any

w ∈ W 1,p(Ω) consider wt = vε + tw for t small enough to have B(w±t ) > 0
and A(w±t ) > 0. Put

s1(t) =

(
Φλ(w

+
t )

B(w+
t )

) 1
p∗−p

; s2(t) =

(
Φλ(w

−
t )

B(w−t )

) 1
p∗−p

so s1(t)w+
t − s2(t)w−t ∈ N+. Hence, using (E3),(

Iλ(vε)− Iλ(s1(t)w+
t − s2(t)w−t )

t

)(
t

‖vε − s1(t)w+
t − s2(t)w−t ‖

)
≤ ε. (5.7)

If we write h(t) = Iλ(s1(t)w+
t −s2(t)w−t ) then h(0) = Iλ(vε) and by elementary

computations

h′(0) = 〈I ′λ(vε), s′1(0)v+
ε − s′2(0)v−ε + w〉 = 〈I ′λ(vε), w〉,

lim
t→0

‖vε − s1(t)(vε + tw)+ + s2(t)(vε + tw)−‖
t

= ‖ − v+
ε s
′
1(0) + v−ε s

′
2(0)− w‖,

s′1(0) =
1

p∗ − p

(
〈Φ′λ(v+

ε ), w〉 − 〈B′(v+
ε ), w〉

B(v+
ε )

) 1
p∗−p

−1

,
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s′2(0) =
1

p∗ − p

(
〈Φ′λ(v−ε ), w〉 − 〈B′(v−ε ), w〉

B(v−ε )

) 1
p∗−p

−1

and therefore s′1(0) = s′2(0) = 0 if w ∈ T+
N (vε). Letting t→ 0 in (5.7) we get

〈Iλ(vε), w〉 ≤ ε‖w‖ ∀w ∈ TN+(vε).

Choosing ε = 1/n we have that vn = v1/n provides a minimizing sequence in
N+ that satisfies both (PS1) and (PS2) of the previous proposition. Then
there exists a converging subsequence and we will conclude from (E1) that
D+
λ is achieved at some u ∈ N+. Since the possibility that A(u±) = 0 is

excluded from the hypothesis D+
λ < η+

λ the conclusion comes finally from
Lemma 2.1.

Remark 5.3. The condition D+
λ < η+

λ is needed here to avoid the minimizing
sequences to converge to some u satisfying A(u+) = 0 or A(u−) = 0 . Notice

that we required the similar condition (i.e. C−λ <
(

1
p
− 1

p∗

)
γ

p∗
p∗−p
a,b ) in order to

prove that C+
λ is achieved and we have given in Proposition 2.7 a condition

on λ to assure that C+
λ <

(
1
p
− 1

p∗

)
γ

p∗
p∗−p
a,b . We speculate that also D+

λ < η+
λ

for λ close to λ1, but we have been unable to prove it. Notice that if a > 0
(or a < 0) then

γa,b = η±λ = +∞.

6. Existence of nodal solutions

Proposition 6.1. Assume hypothesis (B) in (4.1), condition (4.6) and the
additional constraint

N > max{p2, 2p,
p

p− 1
, 2}. (6.1)

Then

D+
λ < C+

λ +

(
1

p
− 1

p∗

)
K
− p∗
p∗−p

0

for λ as in cases (1),(2) and (3) of Proposition 4.1.

Proof. Let u0 > 0 be a critical point of Iλ with critical value C+
λ . By hy-

pothesis we assume that a > 0 on ∂Ω ∩ Br/4(x0) for some r > 0 satisfying
furthermore ∫

∂Ω\Br/4(x0)

a|u0|p > 0.
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Let uε be defined as in (3.3) and define the map σ : [0, 1]2 → W 1,p(Ω) by

σ(s, t) = Kt(su0 − (1− s)uε)

for some K > 0 to be fixed later.
First we claim that

D+
λ ≤ max

(s,t)∈[0,1]2
Iλ(σ(s, t)). (6.2)

To see that, consider the map % : R2 → R2 defined as

%(s, t) =
(
fλ(σ(s, t)+)− fλ(σ(s, t)−), fλ(σ(s, t)+) + fλ(σ(s, t)−)− 2

)
,

where

fλ(u) =

{
0 if u = 0,
B(u)
Φλ(u)

if u 6= 0.

Notice that the estimate (2.5) implies that fλ is a continuous map. Moreover
we have

fλ(σ(0, t)+)− fλ(σ(0, t)−) ≤ 0

fλ(σ(1, t)+)− fλ(σ(1, t)−) ≥ 0

fλ(σ(s, 0)+) + fλ(σ(s, 0)−)− 2 ≤ 0

and we choose K > 0 big enough to have

fλ(σ(s, 1)+) + fλ(σ(s, 1)−)− 2 ≥ 0.

We can apply Miranda’s theorem [15] to get the existence of some (s, t) ∈
[0, 1]2 such that %(s, t) = (0, 0), i.e.,

fλ(σ(s, t)+) = fλ(σ(s, t)−) = 1. (6.3)

Thus u = σ(s, t) is such that u± ∈ N . It remains to proof that A(u±) > 0
to conclude (6.2). We have

A(u+) = Kpt
p
∫
∂Ω

a|(su0 − (1− s)uε)+|p =

= Kpt
p

(∫
∂Ω\Br/4(x0)

a|su0|p +

∫
∂Ω∩Br/4(x0)

a+|u+|p
)
> 0;
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and also

A(u−) = Kpt
p
∫
∂Ω∩Br/4(x0)

a+|u−|p > 0,

otherwise u ≥ 0 on ∂Ω and therefore B(u−) = 0, in contradiction with (6.3).
(2) Next we prove that

max
(s,t)∈[0,1]2

Iλ(σ(s, t)) < C+
λ + (

1

p
− 1

p∗
)K
− p∗
p∗−p

0 . (6.4)

We write for simplicity the functions u ∈ σ([0, 1]2) as u = αu0 + βuε, with
|α|, |β| ≤ K. Then using the inequality (2.13) we have for some positive
constants K1, K2, K3

Iλ(αu0 + βuε)− Iλ(|α|u0)− Iλ(|β|vε) ≤
+K1

(
‖∇αu0‖p−1

L∞(Br(0))‖∇βvε‖1 + ‖∇αu0‖L∞(Br(0))‖∇βvε‖p−1
p−1

)
+K2

(
‖αu0‖L∞(Br(0))‖βvε‖p−1

p−1 + ‖αu0‖p−1
L∞(Br(0))‖βvε‖1

)
+K3

(
‖αu0‖L∞(∂ΩBr(0))‖βvε‖p−1

p−1,∂Ω + ‖αu0‖p−1
L∞(∂ΩBr(0))‖βvε‖1,∂Ω

)
+K4

(
‖αu0‖L∞(∂Ω∩Br(0))‖βvε‖p∗−1

p∗−1,∂Ω + ‖αu0‖p∗−1
L∞(∂Ω∩Br(0))‖βvε‖1,∂Ω

)
.

(6.5)
Using (1) of Lemma 2.6 and (4.3) in the proof of Proposition 4.1 we have

Iλ(|α|u0) ≤ Iλ(u0) = C+
λ ;

Iλ(|β|vε) ≤
(

1

p
− 1

p∗

)(
Φλ(vε)

B(vε)p/p∗

) p∗
p∗−p

= o(ε) +

(
1

p
− 1

p∗

)
K
−p∗
p∗−p
0 − pK

−p∗
p∗−p
0 Λg(ε)

with g(ε) defined in (4.4). Besides, the remaining terms in (6.5) are o(ε) if
(6.1) is satisfied. Indeed, notice that in the estimate of the norm ‖∇uε‖1,
all the powers of ε are > 1 if either p ≥ 2 and N > p2 or 1 < p < 2 and
N > max{2p, p

p−1
}. The other terms (‖∇uε‖p−1

p−1, ‖uε‖1, · · · ) the power of ε is

> 1 if p < N
2

.

As a corollary of Proposition 5.2 and Proposition 6.1 we have the following
existence result. In order to assure that the condition D±λ < η±λ is satisfied,
we only consider now weights a with definite sign.
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Theorem 6.2. Assume hypothesis (B) and that the conditions of Theorem
4.2 hold. Let N and p satisfy (6.1).

1. If a > 0 then there exists a nodal solution u ∈ W 1,p(Ω) to the problem
(1.1) for any λ < λ1.

2. If a < 0 then there exists a nodal solution u ∈ W 1,p(Ω) to the problem
(1.1) for any λ > λ−1.
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