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Abstract

In this work we study the existence of positive solutions and nodal solutions
for the following p-laplacian problem with Steklov boundary conditions on a
bounded regular domain 0 C R,

—Apu+ V(z)|ulP~2u =0 in Q;
Vulr 282 = Aa(a) u2u + b@)al - on 0%

PIN=D the critical

with given numbers p, N satisfying 1 < p < N, p, = N

exponent for the Sobolev trace map W'?(Q2) — L(9Q) and functions b > 0
and a,V possibly indefinite. By minimization on subsets of the associated
Nehari manifold, we prove the existence of positive solutions if N > max{2p—
1,3} and the parameter X close to the principal eigenvalues of the operator
—A, + V with weighted-Steklov boundary conditions. We also prove the
existence on nodal solutions for a definite and N > max{p?, 2p, ]%, 2}. Our

results show striking differences between the cases p > 2,p =2 and p < 2.
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1. Introduction

Consider the following problem of parameter A

—Apu+ V(@) |ulP?u =0 in € (1.1)
[Vu|P228 = Na(x)[ulP~2u + b(z)[ufP*2u  on O :

for 1 < p < N, a,b two given functions in C7(92) for some v > 0, a #Z 0
with b > 0, V € L*(Q) and p, := &=1. The domain Q is a bounded subset
of RY of class C** for some 0 < a < 1 and N > 3. Our aim is to prove
the existence of solutions for A close to the principal eigenvalues of (1.5) (see
below).

In the case a =0, V =1, b = 1, the quasilinear problem (1.1) arises, for
instance, when searching for functions u € W'?(Q) for which the norm of
the Sobolev’s trace immersion i,, o : W'?(Q) < LP*(99) is achieved:

fQ(|Vu|p + |ul?) dx

So = |lip.all ™ = inf ; 1.2
. weWbr@\Wo ") ([ ulP- do)p/p* (1.2)

where o is the restriction to 02 of the the (N — 1)-Hausdorff measure, which
coincides with the usual Lebesgue surface measure as 0f) is regular enough.
Due to the lack of compactness of i, o, the existence of minimizers for (1.2)
does not follows by standards methods. Following the ideas of [2], [8]and [5],
Fernandez-Bonder and Rossi proved in [7] that a sufficient condition for the
existence of minimizers for (1.2) is that Sy < K&}p where

KNlpdéfinf{/ \Vul d; |Vu| € LP(RY) and/ !u\p*dyzl} (1.3)
s Rﬁ RN-1

In the linear case, i.e. p =2, with b =1 and V = 0, namely, for the problem
Au =10 in (2
(Y) u>0 in Q
Gu + N28u = w1 on 09,
which is related to the Yamabé problem when S = cte = mean curvature

of 09, Adimurthi-Yadava [1] proved that problem (Y) has solution when
€ CHIN), N > 3 and there exists a point zy € I such that

B(xo) < h(xg) :== N1 Z vi, (1.4)



where the v; are the principal curvatures at xg € 02 with respect to the unit
outward normal. Finally, problem (1.1) in case p =2 and V' = 0 can also be
related to well known \- parameter problem of the Brézis-Nirenberg [4] with
Dirichlet boundary condition

—Au = u+ [ul* 2u in Q,
u=0 on 0f).

Among the huge amount of improvements and generalization of this pio-
neering work we quote the work of Cerami-Solimini-Struwe [6] where they
stated the existence of sign changing solutions of the Dirichlet problem for
A€ (0,\) and N > 6. We have adapted here their approach to our quasi-
linear problem with nonlinear boundary conditions.
Quasilinear elliptic problems with an indefinite potential V' have attracted
a lot of attention the last decade. After the work concerning the eigenvalue
problem with Dirichlet boundary condition with an indefinite weights in [9]
and the one for the eigenvalue problem with Steklov boundary conditions
in [13], some others quasilinear problems with weights have been considered
with sublinear, superlinear or concave-convex nonlinear terms. In the present
work we would like to explore the effect of sign-changing weights a and V'
on the multiplicity of solutions for a rather simple critical-exponent quasi-
linear problem with a parameter A\. From the variational point of view, the
geometry of the related functional associated, for example, to the eigenvalue
problem
—Apu+ Vi§uP?u=0 in Q, 15
[VulP~28% = Xa(z)|ulP~2u  on O (1.5)

may take in consideration the disjoint subsets

/ alul? do > 0 and / alulP do < 0.
o0 o9

It is well known (see [13]) that, if a changes sign, there are two principal
eigenvalues A_; < \; for the above eigenvalue problem. We will prove in this
work that positive and sign-changing solutions of problem (1.1) can also be
found by minimizing the energy functional on the subset of the Nehari man-

ifolds where alu|? do 2 0. By considering indefinite weights, we improve

Q
and complete several existing results for similar problems.



This paper is organised as follows. In section 1 we study under which
conditions the infimum of the associated energy functional along the Nehari
manifold is achieved. We prove in Proposition 2.7 that this is the case where
this infimum is less than

P
P -1
oo,@QKN,p'

I .
<— — —) K, "™ where K, o |b
2 2

In order to assure this inequality we use the well known technique of mass
concentration for the fundamental solutions, i.e. functions defined in Rf
realizing the infimum in (1.3). In section 2 we analyse the different Lebesgue
norms of these functions and in section 3 we state our main existence result
in Theorem .4.2. In section 4 we study the infimum of the associated energy
®, along the so called nodal subsets of the Nehari manifold. Finally Theorem
6.2 state an existence result for positive weights a.

2. Minimization on the Nehari manifold

Let us define the following C'-functional on W'?(Q) by

Be() ™ [(VaP + V@luP)dz, A Y [ alurds
Q o0

B(u) déf/ blu
o0

The natural norm of W'?(Q) will be denoted by || - ||, i.e.,

1/p
Vu e WH(Q), lul| = (/ \Vulpdrlr—F/ ]u\pdx) :
0 Q

The Lebesgue norm of L4(2) will be denoted by || - ||, and the Lebesgue norm
of L0, p) by || - ||q.00, for any ¢ € [¢, +oo[. Solutions of problem (1.1) will
be understood in the weak sense.

As in [6] we will make use of the Nehari manifold associated to our prob-
lem. For this end, we define the energy functional

P do, ®y(u) € Ey(u) — A(u).

By(u) — - Bu)

1
I,\u:—
(@) p Px«



and the Nehari manifold associated to I,

N = {u e WHPQ\{0}; (I} (u),u) = 0} = {u € WHP(Q)\ {0}; ®x(u) = B(u)}
that we split into three sets

A ={ueN;Aw) > 0}, A = {u € N; A(u) < 0}, Ay = {u € N; A(u) = 0}.

It is well known that critical points of I, are solutions of problem (1.1) and
belong to N. Notice that Iy restricted to A is equal to

= (3230 (- oo

Minimizing the functional I along A provided us with positive solutions
of our problem (1.1). Precisely, let us set

CF = inf Iy(u) (2.1)

uEAL

The following result is well known, we give the proof for the sake of
completeness.

Lemma 2.1. If C’/j\E s achieved and C’f > 0 then Cic is a critical value of I
associated to a positive solution of (1.1).

Proof. Let u € Ay such that Cf = I(u) = inf,ca, I\(v). By taking |u]
instead of u we can assume that the infimum is achieve at some v > 0 in A,
Furthermore, if we set Jy = ®, — B, we have that u € N' = Jy(u) = 0,
u# 0 and

(J3(w), u) = p@x(u) = p.B(u) = (p — p.) B(u).
Observe that, since 0 < Cf = I\(u) = (l - i) B(u) then B(u) # 0 and

p P«
therefore (J}(u),u) # 0. By Lagrange’s Multipliers theorem there exists
a € R such that I} (u) = aJ(u). Hence
0= J\(u) = (I}(u),u) = a(p — ps)B(u) = a = 0.
Thus I{(u) = 0. O

The aim of this section is to prove that the previous infima are achieved
and that they are strictly positive. The positivity of I, depend on whenever
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A< Apor A > A_1, where \; and A_; are defined as follows. Let us recall the
following results on the eigenvalue problem (1.5) associated to our problem
(see [13]). By a principal eigenvalue we mean an eigenvalue having a positive
eigenfunction.

Proposition 2.2 ([13]). Let
ag L inf{Ey(u); |ull, =1, A(u) = 0}. (2.2)

Then problem (1.5) possesses a principal eigenvalue if and only if a > 0.
Precisely,

1. if ag > 0 and a changes sign then (1.5) admits exactly two principal
ergenvalues \_1 < Ay, with

A1 :=min Ey, (2.3)
M+

where M = {u € W'(Q); A(u) =1} and

A1 = —min By, (2.4)
e

where M~ :={u € W'(Q); A(u) = —1};

2. if a, > 0 and a is of definite sign then (1.5) admits exactly one principal
ergenvalue, which are either \y or \_q;

3. if ag = 0 then (1.5) has a unique principal eigenvalue A, given by

Ay = Inf = —inf By,
M+ M-

Moreover a function u € S is an eigenfunction associated to A, if and

only if A(u) =0 and Ev(u) = a, = 0.

Remark 2.3. Actually, the hypothesis of Theorem 3.3 of [13] are that both
AP =first eigenvalue of u — —Ayu + V|ulP~>u with Dirichlet boundary con-
dition and

B(V,a) = inf{Ey (u); A(u) =0, ||u||pe0 =1}
are > 0. These two hypothesis are equivalent to a, > 0.

As a straightforward consequence of the above proposition we have

6



Corollary 2.4. Assume o, > 0. For any A < \; (resp. for any A > \_1)
there exists ¢ > 0 such that, for all u € WYP(Q) satisfying A(u) > 0 (resp.
A(u) <0) it holds

~—~

Ey(u) — MA(u) > cl|lu|. 2.5)
Remark 2.5. Weak solutions of problem (1.1) and (1.5) belong to L>(2) N

L>(09) according to [10]. Consequently weak solutions are of class C'*(Q)
for some 0 < p <1 (see [14]).

Throughout the paper we will always assume «, > 0.
Let us now study the geometry of the fibering maps and the Nehari
manifold.

Lemma 2.6.

1. Assume either X < Ay or A\ > A_;. Then for any u € W'P(Q) such
that B(u) # 0, the function t «— I\(tu) has a local mazimum at

0<t,:= (%8) - : (2.6)

tuu € N and

e = (-3 (stae)

2. If X < Ay then there exists a constant ¢ > 0 such that

Vue Ay UAy = ||ul]| > ¢ and B(u) > c. (2.7)

3. If X > \_y then there exists a constant ¢ > 0 such that

Vu e A UAy = ||ul| > and B(u) > .

4. All minimizing sequences for Cf\[ are bounded.

5 Cy > 0.



Proof. (1) For any u € WP(Q) such that B(u) > 0 one easily proved that
Gu(t) = P71 dy (u) — tP* 1 B(u)

for t > 0, vanished at t, and that the function t — I,(tu) has a global
maximum at ¢,. Clearly, g,(t) =0 < tu € N.

(2) We know from equation (2.5) that there exists a constant ¢; > 0 such
that ®(u) > c1||u/’. Moreover using Sobolev’s embedding from the trace
we have, for some constant ¢y > 0,

B(u) < ca|bllool|ul[™

and the conclusion follows using that ®,(u) = B(u) because u € N. One
can prove (3) in a similar way.

(4) Assume by contradiction that a minimizing u, € A, is unbounded and
take v, = ”Z—Z” Thus, for a subsequence, there exists vy € W1?(Q) such that

U, — g, strongly in LP(Q) and LP(02). Since

1 1 I
(———) @,\(vn):M%Oasn%—f-oo,
P oD [ 7
then
Ev(Uo) - )\A(Uo) S 0. (28)

If v9 = 0 then
0= Ev(vg) — AM(v) = lim ®,(v,) = v, — 0 strongly in Wl’p(Q),

n—oo
what is in a contradiction with the fact that ||v,|| = 1. Thus vy # 0. Also
we have A(vg) > 0 because the possibility A(vg) = 0 is ruled out from the
condition ¢, > 0 and (2.8). If A < A\; we then have a contradiction between
(2.5) and (2.8)
(5) If for instance Cyf = 0 and (u,), is a bounded minimizing sequence
converging to some ug weakly in W1P(Q), strongly in LP(€2) and also strongly
in LP(0N2) hence A(ug) > 0 and

1 1
- — < ] pum + p—
(p p*> Dy (ug) < 711;120 I(u,) = Cy =0. (2.9)
If up = 0 then we will get from the last inequality that w,, — 0 strongly in
WhP(Q), in contradiction with (2.7). Thus, ug # 0 but now (2.9) contradicts
(2.5). O



In the next proposition we will prove that the values C’/j\E are achieved
whenever they are smaller than a certain value involving Ky ,if A is close
to A;. This second constraint follows from the necessity to assure that the
infimum is achieved at some point lying in the open set A, . Precisely, let us
consider

Yo = inf{By (u); A(u) =0, B(u) = 1}. (2.10)
Proposition 2.7. One has

1. 0 < 74 and

CF < (1 _ i) N (2.11)
A= P Ds a,b

2. There exists 61 > 0 (resp. 9y > 0) such that

1 1 Px
C;: < (— — —) ’)/;*_p Ve ()\1 — 51,)\1),
P D« ’

11\ e
(resp. C} < (]; — p_> Yap L YA E (A, At + d9)).

Proof. (1) It follows directly from «, > 0 that v,; > 0. Assume by contra-
diction that v,, = 0 and let (u,), be a minimizing sequence for 7, ;. Assume
furthermore that (u,), is an unbounded sequence and take v,, = HZ:H‘ Thus

there exists a subsequence, still denoted v,, and a function vy such that
v, — v, strongly in LP(Q2), in LP(99) and a.e. We have in one hand

D, (vg) < liminf )\ (vy,) <0, (2.12)
n—-+00
and in other hand A(vy) = 0. Besides vy # 0 otherwise we will deduce from
(2.12) that v, — 0 strongly in WP(Q), which is in contradiction with the
fact that ||v,|| = 1. Thus

allvollh < Ev(vg) = ®a(vo) <0

— )

which contradicts the hypothesis a, > 0. We conclude that the sequence
(un)n is bounded. Hence, up to a subsequence, it converges weakly to some
ug in WHP(Q), strongly in LP(Q) and in LP(99)). Hence Fy(ug) < 0 and
A(ug) = 0. If ug # 0 we have a contradiction with the hypothesis o, > 0. If
uo = 0 hence u,, converges strongly to 0, in contradiction with B(u,) = 1.

9



Dx
Next, to prove for instance that Cy < (1 — pi> ~P=7P  let u, be a se-

p a,
quence in W'?(Q) such that A(u,) = 0,B(u,) = 1 and Ey(u,) — Yap-
We can assume also that w, > 0 by taking |u,| instead of w, if necessary
and, using the same argument as above, the sequence (u,), is bounded in
W'r(Q). Let ¢ € C*(Q) be any positive function such that supptp N OQ C

{z € 0Q; a(x) > 0}. Let us take v, = u, + % Clearly ||v, — u,|| — 0.
Moreover

A(v,) = /89 avl = /69 at(u, + %)p - /89 a ub > A(u,) =0,

and clearly B(v,) > B(u,) = 1. Furthermore, using the following inequality
[l +y|” = |2|” = |y|*] < Clay| (|| + [y|"~), (2.13)

valid for any ¢ > 1 and any z,y € RY and using also that the sequence u,, is
bounded we have

Py(vn) = Bv(un) +o(1) = vap + 0(1).

Finally, if we consider z, := t, v, € Ay, with ¢, defined in Proposition
(2.6), it comes

11 Dy(v,) \ 77 1 1Y) .2
(-2 (R) ™ (-1
p o ps) \B(vy)r/r P D

(2) We only prove the estimate for Cy. By taking t,,¢1, where ¢; is the
unique positive eigenfunction associated to A such that A(¢;) = 1 and t,,
has been defined in (2.6), by definition of C{ one has

1 1\ ! e A — A
(‘ - —) S e
P D (B(e1))

Thus, if A € R is such that W < Yap, 1€,

A > A1 — (B Yap

bx—p

-1 Px
then ((% - i) Cj{) < Yaup as stated in (2.15). O

DPx

10



Consequently, let us define
+ def + L1 55
Ay =inf ¢ A eR; CF < P Varb (2.14)
As a consequence of (2) in Proposition 2.7 we have A\J < A\; and A\; > A ;4

and therefore
1 1 Px
AE :sup{)\ eR; Cf = (— — —) 7;’;)"}.
b D« ’

Proposition 2.8. Let A € R.

1. If A < Ay and

T -
CY < (— — —) K, ™" 2.15
v (o) s (215)

then there exists u € Ay U Ay such that I(u) = CY.
Simalarly, if A > A_y and

T
Cy<|-——— K, "™ 2.16
<o) 2.16)

then there exists u € A_ U Ag such that I\(u) = Cy .

2. If furthermore A} < X\ < A1 and (2.15) holds then problem (1.1) with
parameter \ possesses a positive solution u satisfying A(u) > 0 and
Similarly if Ay < A < A\, and (2.16) holds then problem (1.1) with
parameter \ possesses a positive solution u satisfying A(u) < 0 and

Proof. We will only give the proof concerning Cy since the argument is
similar for C . Let (u,), be a minimizing sequence. By (4) of Lemma 2.6
the sequence (uy,), is bounded so assume that u, € A, converges weakly to
some uy, strongly in LP(Q) and in LP(052). Clearly A(ug) > 0.

Claim: We have

Py (ug) < ((}9 - i)1(7;) o Blug) - . (2.17)

*

11



Indeed, in one hand, using that (u,), is a minimizing sequence we have

11\
- = — CY = B(u,) + o(1). 2.18
(3-2) e =B +o 215)
Besides, we also have by the Brézis-Lieb lemma ([3])
o1\ )
5 o) O = Balwe) IV = wo); + of1) (2.19)

In other hand, let us choose € > 0 such that

—Px

o1\,
5—1)— C)\ < (K0+6)P*—P.

Using again Brézis-Lieb lemma and the fact that p/p. < 1, we get
B(un)P/** < B(ug)r= + Blu, — u)i= + o(1),
and hence it comes from (2.18) and Lemma 2.10 (see below) gives
11 /- p
((— — —)10;’) < B(ug)r + (Ko + €)[|V(un — uo)[[5 +o(1).  (2.20)

Combining (2.20) with (2.19) and using that

1 1\ ! .
(- 2) o5 <vass,

we obtain

(-2 )’

and the proof of the claim follows. Notice that uy # 0 since, otherwise,
u, — 0 strongly in W'?(Q) which contradicts (3) of Lemma 2.6. As a
consequence of (2.17) and that ®,(ug) > 0 we have B(ug) > 0. Finally let

12



us prove that CY is achieved at t,,up € N. Indeed, again by (1) of Lemma

2.6 we have o

1 ]. -1 @)\(UO)P**P
G- s

PP B(ug) 77

while by the claim

Px

P (ug)7<» < (1 — l) B C+
_p  — A
B(uo)p*fp

and the equality follows.

D

(2) Since A > \f we get Cy < (% — p%) 75,*7”] and therefore Cyis achieved
at some u € A,. By replacing u by |u| if necessary, we can assume that
u > 0. The result then comes from Lemma 2.1. By the reularity results
(see Remark 2.9) andth strong maximum principle of [16], the solution w is

strictly positive up to the boundary. O

Remark 2.9. Notice the if \} < A\ then, under the hypothesis of Proposi-
tion 2.8, we will obtain two positive solutions of problem (1.1) for any pa-
rameter A € (NS, A7) N (A_1, A1) one in Ay and the other in A_. However,
that X} < X\, is not clear for general weights a, b and V.

We have used in the previous proposition the following Cherrier’s-type
inequality that has been proved by [5] in the case b = 1 and can be trivially
generalizes for any positive bounded weight b:

Lemma 2.10. /5] For any € > 0 there exists C. > 0 such that for all u €
WhP(Q) it holds

(/.

P/ps
P da) < (Ko—i-e)/ ]Vu|pdx+06/ |ul? dx
Q Q
where
Ko = Kp||b||2F" (2.21)
and Ky, is defined in (1.3).

13



3. Estimates of the LP-norms of fundamental solutions

We turn now our attention to the problem of finding the values A\ for
which we have S;\—L < K, ! where we denote here, for simplicity,

Px—p

ST = <(§) — pi) h (Jj) o (3.1)

It is well known (see [12]), that the value K » defined in (1.3) is achieved at
functions of the form

t
Usyoyt) =€ 7 U (y & >

€ 6

with yo € RY~1 arbitrary and e €]0 + oo[, where
1

Uly,t) = )
((t+ 1)2 + y2) D

The functions U, ,, are usually called fundamental solutions. The constant
K}, can be computed explicitly (see [8, 12]) and it is equal to

N-1 N1
N-_p\?! (T <—,>
Ky = ( p> o5t 2(r-1) .

p—1 p(N-1)
I ( 2(p—1) )

Let us assume for convenience that
7o=0€0Q and [ NB,0)]>0 VOo<s<r (3.2)

for some r > 0, where Qf = {z € 09Q; a(z) > 0}. Let ¢ be a smooth radial
function with compact support in the ball B, 5(0) satisfying ¢ = 1 in B, 4(0).
For any € > 0 let us choose the following test functions:

D 3(y., 1) _
((t+ €2+ lyl2)2eD

uc(y,t) = Uy, t)o(y, t) = (3.3)

Notice that A(u.) > 0. In order to give the asymptotic development with

respect to the parameter € of the quotient Bl ()p)p* ,

we will compute each of

14



integrals involved. Much of the work have been done by [8] and we refer the
reader to this paper for full details. To make the computations simpler, we
will choose a special parametrization of the boundary 9€) around 0 € 09f).
Since we are assuming that 02 is of class C?, there exists ¢ > 0 and a C?-
function p : {y € R¥! |y| < ¢} — R such that

QN B,.(0)={(y,t) € Qc; t>p(y)} (3.4)
90N B,(0) = {(y,t) € Qer; t=p(y)}, '

where Q. == {(y,t), |y| <¢,0 <t <c}and

N-1
1 2 3
py) =5 ; viy? + O(ly[) (3.5)
for some v;,i =1,--- , N — 1. We set hereafter
.

=1

The value hg is known as the mean curvature of OS2 at 0 with respect to the
outward normal v.

Proposition 3.1. Let N > 2p — 1. Assume for convenience the hypothesis
(3.2) and let u, be as in (3.3). Then

1. /|Vue|pdx:A1+f1(6), where
0

fite) o= | Aze+ O ) o<y
—Moun_seln(l/e) + O(e) if p=2H

and

1/N—-p\*'" /(N-1 N-1
A = — _— o
1 2(19—1) 5( 2 ’2(p—1))wN B

A — _ho (N —p pﬂ N+1 N—-2p+1
27 Ta\pa > 21 )N

15



2 [ Vil ds = o),

O(eP) ifp? < N
ﬁ©:{me®)ﬁﬁN
O(er=

s|2

b ) if p* > N
3. Assume that b(0) = [|b||c and

b(y, p(y)) —b(0) = O(Jy|"*') V |yl <c

for some v > 0. Then
/ bluc|P* do = By + Bae + o(e)
o0

where

1 N—-1 N-1
B = - -

1 N-1 N-1
By = —=|bllo(N = 1)h , N
s = gl = Dt (5 v

4. Assume that a € C7 close to 0 for some v > 0. Then

| a@ludo = e

where

CreP™ +o(eP™ ) if N >p* —p+1

fa(e) = a(O)wy2e In(1/e) + O(eP™") if N = p* —p+ 1,

O(er1) if N<p>—p+1,
(3.7)
and 1 N—1N-p 1
_ - — —ptp-
Cr=50007 < 2 7 2p-1) > N
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We recall that
N

wy—_1 = measure of the unit sphere SV~ of RY = F—N)
2

and
. > tx_l dt _ ' r—1 y—1 _ F(x)r(y>

for z,y > 0.

Proof. (1) -(2) These estimates can be found in [8].

Px do we write

(3) To estimate b(x)|u,
o0N

/ b@)|ulr do = b(0) / i,
o9 80N B,.(0)

10 ( [l
80NB.(0)

From basic integration, we deduce for any a > —1 and b > 0 that
ﬁ(aJrl 2ba 1)+O( 2b— a—l) 1f2b_a_1>0’

P do

N-1

P do) +e-1O(1).

c/e ta .
/0 (1+t2)bdt: In(1/€) + O(1) if2b—a—1=0,
O(e?=) if 2 —a—1<0.

(3.8)

Thus for any a,b,e € RT we have

ly|”
/|y<c (e + [y[?)’
a+N12baN+1)+O<) 1f2b—a—N—|—1>0,

N—14a— QbB( ,

WN— 25 6

=< wy_2In(1l/e) +0(1) if2b —a—N+1=0,
O(1) if2b—a—-N+1<0.
(3.9)
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By expanding ((e + p(y))? and using Taylor’s theorem we find

/ /14 [Vo(y |2dy
ly|<c (

(e + p())? + Jy[2) o)

_ / !yl”“dy
lyl<c (€2 + |y|? )2(p 1>

7+3d
L0 (/ ly| v ))
ly|<c ( —+ |y| )2(10 Sy

N-1

> / ™ P do
89N B, (0)

O(EVJ“N_P%(N_D) ifN>py+1)—~v
-7
O(1) ifN<py+1)—~

— < O(In(1/e)) if N =p(y+1)

Since%—l—N—l—’y—p%l(N—l):”y—l—lthen

Lo,
9QNB,-(0)
and the result follows.

(4) First of all we use the fact that a € C7(02) and write

Prdo = o(e)

a(y, p(y)) = a(0) + O(Jy]"); |yl <c

SO

/ a(z)|ufPdo = a(O)/ [ue|? do
o0 20N B, (0)
+0 (/ |y|7|u€|pda) +ertO(1).
20N B, (0)

Let us then compute separately

I::/ |ue|Pdo and II ::/ ly|”|ue|? do.
80N B. (0) 80N B, (0)

18



N / 1+ 5/Vo(y)> + O(yl*)
p(N—p)
wi<e (€2 4 p(y)? + 2ep(y) + |y|2) 2D

(p—1)

_ / dy
l<e (2 + |y[2) 5D
p(N—p) p(y>dy

_fe —
P e (€2 + Jyl2) B D

2
+ o0 / |y‘ p(N—p)
i< (e + y[2) 505

= ' - 2R O(1)

where

4 N—-1
=y (% %) FOM N> —p+1

D=

I' = wy_s ¥ In(1/e)+ O(1)if N=p* —p+1

Cyif N<p?—p+1

\

and Cy = mwwtpﬂ_l\’w]v,g > 0. Clearly I? = O(I') and I? =

e?0(I"). Consequently

(
S 216 (N5, ML) + O(XR) N > 9P —p+ 1,

I — O(e%ln(l/e)) if N=p*—p+1;

N—p

O(e»)if N<p?—p+1.
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Similar computations for I give

_ ¥
7 - A= || dy -
lyl<e (€2 + |y|?) 2(p =

((O( ) if N >p® — (p—1)(1 —);

_ o(e%lnu/e)) N =p*— (p—1)(1—n);

N-—p

[ O(er1)if N <p®—(p—1)(1—).

Since by hypothesis v > 0 then I = I 4 o(I) and we conclude. O

In section 5 we will need the e-asymptotic of several L9-norm of the fun-
damental solution u. defined in (3.3).

Proposition 3.2.
L Vuclh = fule), where

O e%) if p> 2]\11\[—1’
fale) =1 O e% ln(%)) if p = 2]\1/\7 L
O(EN_%) ifp < 21\1[\7_1'
N_

2 Hvu’ﬁ|p 1—O(€p 1).

3. Nuellh = fs(€), where
O ep(l\z,)i:]i)) if p > 1\27_51’
f5(e) = O E%IDl ifp:ﬂy
€ N+l

N

O(ENJrl*?) pr < 13_11

N_
4. Jluclly=y = Oer ™).
5. |ucllo0 = fa(e)-

6. ||u€| 189—0( 771)-

20



N_y

7 Nuelp: 2100 = O(er ™).
Proof. Let us denote by a = p](\;[):?)'
(1) We have
N — __N-1
|Vu| = o fea [(t +e)? + |y|2} 20=0 in B,/4(0).

SO
N — _
e_a/ |Vu,| do = _p/ [(t+ €)%+ [y[’] 7 dydt + O(1),
Q p—1 QNB,./4(0)

where v = %. Notice that the integral on the right hand side goes to
2N—1

a constant as € goes to 0 if 2y — N < 0, that is, if p > =%
1<p< 2]\][\,_1 let us compute this integral as follows. We write

. In the case

_ dtdy
t+e)2+ y|?] 7 dydt = /
/mm (e ol o [E+ 2+ 9T

_/ dtdy
ona [E+e)2+ [yl
= L —1,+0(1)

After firstly changing the variables ¢t and y by te and e.y respectively and
secondly changing y by (t + 1).z, one gets

I, = C&N (/0+oo(1 + )N dt> (/O+OO % dt) +O(1)
— o)

Np—2N+1 . 2N—1 _ 2N-1
. < 0 in the case 1 < p < =5—. When p = =5

since N — 2y =
have

we

I =Cln (1) +O0(1) = —Cln(e) + O(1).

€
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For I, we have

I, =

\

/ dt
((t+e)* + [y[*)
ly|*dy )
o]
/<c wl<e (€2 + [y[2) T

_ (/ |y\2dy )+eo( lyl*dy )
wi<e (€ + [y?) l<e (€ [y[?)7+!

= o).
Thus
O(1) it p > ,
/ V| de = Cln(%) +0(1) ifp= 21\]/\[—1’
@ O(eN=27) i

and the conclusion follows.
(2) We have

e [y P do
Q

N -p\"" —y(p—1)
= (ﬁ) / o [(t+€)?+ |y?] dydt + O(1).
- B,./4(0

Since in this case 27(p—1) — N = —1 < 0 the integral on the right handside
converges to a constant as € — 0 and the result follows.
(3) Set now v, = ( . We have, by letting € — 0 in the integral below,

dydt
e * | u(y,t)dtdy :/ =0(1
l;() a0 (G 2 + g~ O

if N —2v; > 0. Notice that N — 2y, > 0 <= p > 2

If p < == we write

N+1 N+1

eﬂ/m@ﬁw@:h—b+mn
Q

with

[ / dydt and I — / dydt
P o [T o + [y 27 Jona [E+ 2+ [y
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Following the computations of (1) (with 7 instead of v) we will have

- Cln(1/e) +O(1) ifp= ]\?Nl,
1= O(eN=21)  if p < 2

N+1
and besides
IQ = O(EN 271)
Thus
O(1) if p > N}tjl’
/ lue| de =€*{ Cln(2)+0(1) ifp= 3 Ep
Q O(eN=2m) if p < T

and the conclusion follows.

(4) We have
6aool)/ [P da _/ [(t+ e+ 2] " dydt + 0(1).
Q QNB,./4(0)

In this case 27 (p — 1) — N = —p < 0 the the integral on the right converges
to a constant as € — 0 and the result follows.
(5) In this case we have

V1 2 d
a{/|mma:/m FWVeWPdy o4y 1, 4 0
oN ly|<e

< ((e+p(y)? + |y)m

and

_ dy ly|* dy
h= /|ygc ((e+ ) + WP ¢ (/y|§c ((e+ p(y))* + !yP)”l)

= L+ 1.

By expanding (¢ + p(y))? and using Taylor’s theorem we have

I :/ L_M/ _ rlydy
wi<e (€ + |y yl<e (€2 + [y[2)nHt

ly|* dy )
+0 / _ Wiy
< ly|<c (62 + |y|2)71+1

= L+1
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If2vy —N+1<0,ie.,ifp> 2%_1 then I} converges to a constant as € goes

to 0 and I3 is O(In(1)) if p = 251, In the case p < 25— we have

g [ g
? o (I4+rHm

Finally one can easily check that the remaining terms can be neglected when
compared with IJ and the result follows.
(6) By expanding (€ + p(y))? and using Taylor’s theorem as above we have

Caln _ V1I+|Vp(y)? dy
a(p—1) p—1 — / O(1
€ Ue||,,—
H Hp 1,0Q l<e ((e+p(y))2 + |y|2)71(p—1 ( )
/ "
= Y _N-p
i<e (2 + [y[?) =

(N — D) py) dy
AN /wsC(ewyP)Nf

0 ( [ )
i<e (€2 + [y|2) =

and, since (N —p) — N+ 1 = —p+ 1 < 0, the first integral on the right
converges as € goes to 0 and we get the result.
(7) As previously and, using that 2y;(p, — 1) = N,

V1+[Voy)Pd
€a<p*1>/ |l do = / + IVowlPdy o)
092 ly|<c

((6 + p(y))2 + ’y|2)71(p*—1)

= / dy
wi<e (e +p(y))? + |y[>)N/2

o </.| (o p<5|>d+y |y|2>N/2) |

By expanding (¢ + p(y))? and using Taylor’s theorem the first integral is now

~1 e N ~1
_[1 = € ; W dt = O(E )

and all the other integral are negligible when compared with ;. Finally,
since a(p, — 1) = % the result follows. O
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4. Existence of positive solutions

We can give now sufficient conditions on V, a, b et A to fulfil the condition
Sf < K,'. By taking —a instead of a, one can prove similar results in
order to have the inequality S, < K ' We will assume here the following
hypothesis (B): there exists a point zy € 02 such that

[ ||b]|o is achieved at o,

b(zg) — b(x) = O(|x — zo|7) for some v > 0,
(B) (4.1)

a € C7 close to z( for some v > 0,

a(xg) > 0.

\

Proposition 4.1. Let N > 2p—1. Assume that there exists a point xoq € OS2
satisfying hypothesis (B) in (4.1). Then

SR R —
CS\F < (_ - _> KO px=p

p p
holds in the following cases:
1. for any A € R if p > 2 and the mean curvature hg at xq is positive;
2. for \,a(xo) and ho satisfying

N -2
2

ho + )\a(l'()) >0 (42)

ifp=2;
3. forany A>0if 1 <p<?2.

Proof. By definition of Sy in (3.1) we have

(I))\(Ue)
+ _TANTES
Sy = B(ue)p/p*'
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Notice that A(u¢) > 0 if € and r are small enough as a consequence of the
estimate (4) in Proposition 3.1. We are going to prove that there exists a
positive constant A such that

D (uc) o
KOB(ue)p/p* =1-Ag(e) (4.3)
with
€ ifp>2,N>2p—1,;
g@) = eln(l) ifp>2 N=2p—1 (4.4)
et ifl<p<2.

First case: If p > 2 and N > 2p — 1 then the integrals (c¢) and (d) in
Proposition 3.1 are o(e) and therefore

D)\ (ue) . A; + Agze + o(e)
B(ue)p/p* - (Bl + BQE + 0(6))17/?*

Ay Ay p Bs
1 = - )
Br/P ( + (A1 o B1> e) + o(e)
We have

A4, 1 N-
2o - P (N—1)hy, 22 = (N = hy,
2

A B N — -1
AN _[(Z2_PD2 :( p)(p )h0>0.
A pe By N—-2p+1
Notice that
Ay
Bf/P o 0
Second case: If p > 2 and N = 2p — 1 then
B(u) A MoeN=2 ¢ 1n(1/€) + Ofe)
Blur (By + O(e)/r
Ay hown—2
= G <1 — < A )eln(l/e)) + O(e)
Here we define y
A= 0WN—2 0.
24,
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Third case: If 1 < p < 2 then

N A — M\Cyer? Pl A C
KOB A(1;/)17* == B = pjlr Op(/i* ) p/lp* —A p/lp* & +o(e™)
(ue) (Bi + o(er1)) B B
Notice that if 1 < p < 2 one has eln(1/¢) = o(e?~!). Here
Ch
Ai=A—>0
A~

in the case A > 0 and a(zg) > 0.
Fourth case: If p=2and N > 2p — 1 = 3 then

Dr(ue) AL+ (A — ACh) e+ o(e)
B(u)p/P= (B + Bae + ofe) )P/

Al A2 — )\Cl P BQ
pu— 1 D ——— e —— .
i (1 (B R ) o

Now we have (in this case)

Ay — O p Bo N —2 2
= == = — 0— A

Ay p.Bi N-3 N -3
and therefore, if (4.2) holds, A > 0.

—A:

Fifth case: If p=2and N =2p—1 =3 then

Dy(us) A+ (L2t — Na(zo)wr) €In(1e) + Ofe) _
B(u)p/re (B1 4 O(e))p/p- -

—ho _ a(xo
— B?/lp* <1 + (%) w1€1H(1/6)> + O(e).

Here we have ,
20 1+ Aa(x
e ().,

Thus, if (4.2) holds, A > 0. O

As a direct consequence of Proposition 4.1 and Proposition 2.8 we can
now formulate the main result of this section.
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Theorem 4.2. Let N > 2p — 1. Assume that there exists a point xq € OS2
such that hypothesis (B) of (4.1) are satisfied. Let A € R satisfying

AF <A<\ (4.5)

with X defined in (2.14). Then problem (1.1) possesses a positive solution
u satisfying A(u) > 0 in the following cases:

1. if p > 2 and the mean curvature at xo satisfies hg > 0,
2.if1<p<2, A>0,
3. if p=2 and a(xy), ho satisfy (4.2).

We also have the analogous result when considering —a instead of a:

Theorem 4.3. Let N > 2p—1 and assume that there exists a point o € 0S)
such that hypothesis (B) of (4.1) are satisfied for b and —a. Let A € R
satisfying

A< A< A, (4.6)

with A, defined in (2.14) Then the problem (1.1) possesses a positive solution
u satisfying A(u) < 0 in the following cases:

1. if p > 2 and the mean curvature at xo satisfies hg > 0,
2. if1<p<2, A<0 and a(zy) <0,
3. if p=2 and a(xg), hy satisfy (4.2).

Remark 4.4.

1. Notice that if p =2, V = 0,a = 8 then \y = 0, \} = —oo. Condition
(4.2) for A =1 is condition (1.4) of [1] for the Yamabe problem (V).

2. In order to have A > 0 in the case 1 < p < 2, one can required that
A1 >0 (resp. Ay < 0). Thus, it will be enough to ask for instance that

inf{Ey (u); ||u|, =1} >0,

a condition weaker than o, > 0.
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5. Minimisation along nodal subsets of the Nehari manifold

In order to find nodal solutions we introduce the following nodal subsets
of the Nehari manifold:

NT={ueW?Q); v*c A}, N ={ueW(Q); vFec A} (51)

and let us define
Di = inf I)(u). (5.2)

ueN*

Clearly 205 < D for any A € R since I (u) = I\ (ut) + Iy(u™) > Cf +Cf.

In what follows we are going to show, under certain conditions on A, p,
a and b, similar to those of the first section, that both Di are achieved,
providing us with a pair of nodal solutions of problem (1.1). Our intention
is to prove now that the Palais-Smale condition is satisfied. For any v € N'*
we denote

T+ () = {v € WP (Q); (@)(u®),v) = (B'(u*),v)}

the tangent subspace to N at u. If L € W1 (Q), by | L7, () we mean
the norm of the restriction of L to the subspace T+ ().

—_Px
Proposition 5.1. Let A < \; and ¢ € R satisfy ¢ < C + (l _ L) K, 7.

p Y
Then Iy satisfies the Palais-Smale condition at level ¢ on N | i.e., any

sequence (u,) € A" satisfying

(PS1) In(u,) —c,

(PS2) [ I4(wn)lz,,,., = ol1) (5.3)

possesses a convergent subsequence.
Similarly, if \ > A_y and ¢ < C + (}l} -1

Palais-Smale condition at level ¢ on N~

) K, ™77 then I satisfies the

Proof. We only prove the first case. Let (uy,), be a sequence in N'* satisfying
(5.3). Using that I)(u,) = (£ — £)®,(u,), we can prove as in ((4) of Lemma

p Px
2.6 that the sequence is bounded. Let u be such that, up to a subsequence,
u, — u, strongly in LP(Q), in LP(9N2) and a.e. Then we also have u® — u*,

strongly in LP(§2) and in LP(0S2). Let us assume by contradiction that, for
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instance, u,” /4 u™ strongly in W'P(Q2). Let us denote, for each v € W?()
and each u € N, the real number

<(I),)\<u>7 U> — <B/(u)7 U>
that satisfies v—s,(v)u € Th(u). Let us choose v = u;f —u™ and apply (PS2)

tow = v — s+ (V)uy —s,-(v)u, € T+ (up). We have I (u,)(w) = o(1)|lwl],
that is

su(v) =

+

(I3 (un )y — ) = o(1) [|uy —u® = s, (uf — wb)uy — s, (uy —u®)u, ||

Using estimate (2.7) we have that the sequence B(u) is bounded away from
0 and therefore s+ (u;; —u™) is bounded. Hence (I} (u), u;) —u™) = o(1) and,
because we also have that u — u™, it comes also that

(I3 (un) = Iy (u), uy = u™) = o(1).

n

Using Brézis-Lieb identity we deduce

(T4 () — Ty() i — ) = [V — Yt — / bt — ut P+ ofL).
o0

Thus

|Vu,, — Vu©|p = /m blut — ut|P* + o(1). (5.4)

Using the fact that ®,(u;") = B(u;) and Brézis-Lieb Lemma we get

n

1 1 1 1
- — —)Bw") + (- - — / blut —u*
G- B+ =) [ b
= (= () + (5~ )|V = Vurlg + of1)
pop P ! 8

Pt o(1) = I(u)

and letting n — oo we see that ®,(u™) = B(u™). In particular I(u™) > 0.
Let now € > 0. We have, by using Lemma 2.10 and (5.4),

IVl — Vut|E — /mb\u; WP > |Vl — Va2 o(1)

— (Ko + e)P/?|| V| — Vut|er
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and, since we are assuming that [|[Vu, — Vu™|, - 0, then
IV — Vut|, > (Ko +€) 79 +o(1). (5.5)
Besides, using again Brézis-Lieb Lemma and (5.5) we have

In(uy) = I(uy —u®) + Iy(u") +o(1)

1 1

= A D) vut - vt + Lt +o(1)
p 2

> Ao Dy o5 o)
- — — € Px—p 0] s

[l p p* 0

since I)(u™) > 0. Also one has I)(u, ) > Cy. Finally we have the estimate

D(un) = I(u))+ Ix(u,)

1 1 __Px
> (]; — —)(Eo+€) 7 + Iy(u,) +o(1)
1 1 _ _DPx +
> (5= )(Ey+ T + O+ o(L).
P D«
Since by hypothesis (PS1) we have I)(u,) = ¢ < Cy + (% — p%)K(;”*i”, we
get a contradiction by choosing € > 0 small enough. O

As in the previous section, we need to assure that the infima Df\[ are not
achieved for any v € N'* satisfying either A(u™) = 0 or A(u™) = 0. Let us
introduce the values

i S inf{1 () w € NF, A@?) =0,A(u”) > 0}, (5.6)
i ) w €N AW =04 <0)

Clearly Df < nf. Now, we prove that the infima D)jf are achieved pro-
vided they are sufficiently smaller.
Proposition 5.2. Let A < A\; and assume that
+ - + o 1 1 “eep
Dy <minq{ny, CY + | - —— | K, .
P D«

Then there exists u € N'* solution of problem (1.1) satisfying I, (u) = Dy .
Stmilarly, if A > A_1 and

1 1 -
Dy < min {7)_, Cy + (— = —) K, "*"}
A PRI e 0
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then exists v € N~ solution of the problem (1.1) satisfying I (v) = Dy .

Proof. First we are going to prove that we can find a minimizing sequence
for the infimun D that satisfies the hypothesis (PS1) and (PS2) of the
previous proposition. The idea is to apply Ekeland’s variational principle to
the complete metric space X = N+ inherited with the distance of W1?(Q).
Notice that

NT = {u € WH(Q); ut e N,A(ui) >0}nN {HuiH > ¢ and B(ui) > c}

according to the estimates (2.7). For any € > 0 let u. € Nt such that
I(u.) < DY + €. We can assume that ¢ > 0 such that 0 < € < n)” — DY.
By Ekeland’s variational principle (see [11]) there exists v, € X such that

(E1) In(ve) < In(ue),
(E2) dist (ve,ue) < €,
(E3) I(ve) < I(w) + €¢|lve —w] Yw € X,w # v..

Using the fact that Dy < 5y, we can assume that A(vY) > 0 otherwise
we will have Dy + €* > I,(v.) > n), which is a contradiction. For any
w € WHP(Q) consider w;, = v, + tw for ¢ small enough to have B(w¥) > 0
and A(wi) > 0. Put

ﬁ@:(igg)ﬁa @@:<%£Q>LP

so s1(t)w; — sa(t)w; € N, Hence, using (E3),

(IA(UG) — L(s1(w] — sa(t)w, )> < ¢ > <e (57)

t lve = sy (t)w;” = sa(t)wy ||

If we write h(t) = I\(s1(t)w;” —s2(t)w; ) then h(0) = I,(v.) and by elementary
computations

R(0) = (I3 (ve), s (0)v — 85(0)v, +w) = (I5(ve), w),

o = sy B+ )+ ) o+ )|
t—0 t

s1(0) = 1 (@IA(UJ),UJ)—(B’(vj),u;))p*p—17

= || = v551(0) + v 55(0) — w,

€




con L (@4 (vD), w) = (B'(vD),w) \
s5(0) —
pp B(r)
and therefore 1 (0) = s5(0) =0 if w € TX}(UE). Letting ¢ — 0 in (5.7) we get

(In(ve),w) < ellw| Yw € Thr+(ve).

Choosing € = 1/n we have that v,, = vy, provides a minimizing sequence in
N that satisfies both (PS1) and (PS2) of the previous proposition. Then
there exists a converging subsequence and we will conclude from (F1) that
Dy is achieved at some u € N'". Since the possibility that A(u*) = 0 is
excluded from the hypothesis DY < 7y the conclusion comes finally from
Lemma 2.1. [l

Remark 5.3. The condition DY < 1y is needed here to avoid the minimizing
sequences to converge to some u satisfying A(u™) =0 or A(u”) =0 . Notice

_Px
that we required the similar condition (i.e. C < (;1) — pi> Yoy ) in order to

prove that C is achieved and we have given in Proposition 2.7 a condition
D
1

o p%) Y. We speculate that also Dy < ny

on X to assure that C <
for X\ close to Ay, but we have been unable to prove it. Notice that if a > 0
(ora < 0) then

Yab =1y = +00.

6. Existence of nodal solutions

Proposition 6.1. Assume hypothesis (B) in (4.1), condition (4.6) and the
additional constraint

N > max{p?, 2p, Ll’ 2}. (6.1)
p —
Then

D+<C++(1—1)K p
A\ o)

for X as in cases (1),(2) and (3) of Proposition 4.1.

Proof. Let ug > 0 be a critical point of I, with critical value Cy". By hy-
pothesis we assume that a > 0 on 0Q N B, /4(zg) for some r > 0 satisfying

furthermore
/ alupl? > 0.
OO\ B,./4(z0)
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Let u, be defined as in (3.3) and define the map o : [0,1]*> — W1?(Q) by
o(s,t) = Kt(sug — (1 — s)ue)

for some K > 0 to be fixed later.
First we claim that

Dy < I t 6.2
r S max D(o(s,1)). (6.2)

To see that, consider the map o : R? — R? defined as
Q(Sat) = (f)\(CT(S,t)-’_) - f)\(U(S,t)_), fA(U(S’t)+) + fA(G(S7t)_) - 2) 5

where

5 (u)

0 if u=20,
D=9 B g, 4
Notice that the estimate (2.5) implies that fy is a continuous map. Moreover
we have

fale(0,8)7) = fa(e(0,4)7) <
falo(L,4)7) = falo(1,4)” )
falo(s,0)7) + falo(s,0)7) —

and we choose K > 0 big enough to have

f(o(s, 1)) + filo(s,1)7) —2 > 0.

We can apply Miranda’s theorem [15] to get the existence of some (5,¢) €
[0, 1]% such that o(5, ) = (0,0), i.e

H(eGEHT) = faloE0)7) = 1. (6.3)

Thus @ = o(5,1) is such that v= € N. It remains to proof that A(u*) > 0
to conclude (6.2). We have

I/\OO

AT = KPP /m al(Bup — (1 — 5)u) P =

= KP¢" / a!§u0|p+/ atlat P > 0;
OB, /4(w0) 9QNB,./4(x0)
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and also

Alu~) = Kf’%”/ atlu=|P >0,
00N B, /4(z0)

otherwise @ > 0 on 02 and therefore B(u~) = 0, in contradiction with (6.3).
(2) Next we prove that

max I (o(s,t)) < CF + (

1
S K (6.4)
(s,t)€[0,1]2 P

1
P«
We write for simplicity the functions u € o([0,1]?) as u = aug + Bu., with
lal, || < K. Then using the inequality (2.13) we have for some positive
constants K, Ko, K3

In(oug + Bue) — Ii(Jalug) — In(|Blve) <
+K1 (Vw7 5, o) [V Bvel L + HVCWOHLOO(BT 0) HvﬁveHij)

+ K2 (ool e, op | Bue 53 + llawoll 5, ol 8ol
+Ks ( [lawol| 2= 00m, o) |1 Bvellp 1 aq + llauoll, 8QBT(O))HﬁU€H1ﬁQ)

i*j,aﬂ + [Jaug

1
]Z"O(BQQBT(O))Hﬁveul,89> .
(6.5)
Using (1) of Lemma 2.6 and (4.3) in the proof of Proposition 4.1 we have

D(|aluo) < In(uo) = CY;

+K, HCYUOHLOO(BQOBT(O))HBUe

DPx

L(IBv) < (]lj_pi) ( % )

—Px —Px

1 1
= ole + o KP*—P _pKP*—PAg €
@+ (5= 2 ) KF7 = pF gl

with g(e) defined in (4.4). Besides, the remaining terms in (6.5) are o(e) if
(6.1) is satisfied. Indeed, notice that in the estimate of the norm [|Vu,l1,
all the powers of € are > 1 if either p > 2 and N >p?>orl<p<2and
N > max{2p, .25 }. The other terms (|| Vue|[;- 1 luell1, - - - ) the power of € is

>11fp<— O

As a corollary of Proposition 5.2 and Proposition 6.1 we have the following
existence result. In order to assure that the condition Df < i is satisfied,
we only consider now weights a with definite sign.
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Theorem 6.2. Assume hypothesis (B) and that the conditions of Theorem
4.2 hold. Let N and p satisfy (6.1).

1.

2.

If a > 0 then there exists a nodal solution u € W1P(Q) to the problem
(1.1) for any A < A1.

If a < 0 then there exists a nodal solution u € W1P(Q) to the problem
(1.1) for any A > \_;.
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