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In this work we study the existence of positive solutions and nodal solutions for the following p-laplacian problem with Steklov boundary conditions on a bounded regular domain Ω ⊂ R N ,

with given numbers p, N satisfying 1 < p < N , p * := p(N -1) N -p the critical exponent for the Sobolev trace map W 1,p (Ω) → L q (∂Ω) and functions b 0 and a, V possibly indefinite. By minimization on subsets of the associated Nehari manifold, we prove the existence of positive solutions if N ≥ max{2p-1, 3} and the parameter λ close to the principal eigenvalues of the operator -∆ p + V with weighted-Steklov boundary conditions. We also prove the existence on nodal solutions for a definite and N > max{p 2 , 2p, p p-1 , 2}. Our results show striking differences between the cases p > 2, p = 2 and p < 2.

Introduction

Consider the following problem of parameter λ -∆ p u + V (x)|u| p-2 u = 0 in Ω; |∇u| p-2 ∂u ∂ν = λa(x)|u| p-2 u + b(x)|u| p * -2 u on ∂Ω;

(1.1) for 1 < p < N , a, b two given functions in C γ (∂Ω) for some γ > 0, a ≡ 0 with b ≥ 0, V ∈ L ∞ (Ω) and p * := p(N -1) N -p . The domain Ω is a bounded subset of R N of class C 2,α for some 0 < α < 1 and N ≥ 3. Our aim is to prove the existence of solutions for λ close to the principal eigenvalues of (1.5) (see below).

In the case a ≡ 0, V ≡ 1, b ≡ 1, the quasilinear problem (1.1) arises, for instance, when searching for functions u ∈ W 1,p (Ω) for which the norm of the Sobolev's trace immersion i p * ,Ω : W 1,p (Ω) → L p * (∂Ω) is achieved:

S 0 := i p * ,Ω -p = inf u∈W 1,p (Ω)\W 1,p 0 (Ω) Ω (|∇u| p + |u| p ) dx ∂Ω |u| p * dσ p/p * , (1.2) 
where σ is the restriction to ∂Ω of the the (N -1)-Hausdorff measure, which coincides with the usual Lebesgue surface measure as ∂Ω is regular enough. Due to the lack of compactness of i p * ,Ω , the existence of minimizers for (1.2) does not follows by standards methods. Following the ideas of [2], [START_REF] Bonder | Estimates for the Sobolev trace constant with critical exponent and applications[END_REF]and [START_REF] Biezuner | Best constants in Sobolev trace inequalities[END_REF], Fernandez-Bonder and Rossi proved in [START_REF] Bonder | On the existence of extremals for the Sobolev trace embedding theorem with critical exponent[END_REF] that a sufficient condition for the existence of minimizers for (1.2) is that S 0 < K -1 N,p where

K -1 N,p def = inf R N + |∇u| p dx; |∇u| ∈ L p (R N + ) and R N -1 |u| p * dy = 1 . (1.3)
In the linear case, i.e. p = 2, with b ≡ 1 and V ≡ 0, namely, for the problem (Y )

   ∆u = 0 in Ω u > 0 in Ω ∂u ∂ν + N -2 2 βu = u 2 * -1
on ∂Ω, which is related to the Yamabé problem when β = cte = mean curvature of ∂Ω, Adimurthi-Yadava [START_REF] Adimurthi | Positive solution for Neumann problem with critical non linearity on boundary[END_REF] proved that problem (Y ) has solution when β ∈ C 1 (∂Ω), N ≥ 3 and there exists a point x 0 ∈ ∂Ω such that

β(x 0 ) < h(x 0 ) := 1 N -1 N -1 i=1 ν i , (1.4) 
where the ν i are the principal curvatures at x 0 ∈ ∂Ω with respect to the unit outward normal. Finally, problem (1.1) in case p = 2 and V = 0 can also be related to well known λ-parameter problem of the Brézis-Nirenberg [START_REF] Brézis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF] with Dirichlet boundary condition

-∆u = λu + |u| 2 * -2 u in Ω, u = 0 on ∂Ω.
Among the huge amount of improvements and generalization of this pioneering work we quote the work of Cerami-Solimini-Struwe [START_REF] Cerami | Some existence results for superlinear elliptic boundary value problems involving critical exponents[END_REF] where they stated the existence of sign changing solutions of the Dirichlet problem for λ ∈ (0, λ 1 ) and N ≥ 6. We have adapted here their approach to our quasilinear problem with nonlinear boundary conditions. Quasilinear elliptic problems with an indefinite potential V have attracted a lot of attention the last decade. After the work concerning the eigenvalue problem with Dirichlet boundary condition with an indefinite weights in [START_REF] Cuesta | A weighted eigenvalue problem for the p-Laplacian plus a potential[END_REF] and the one for the eigenvalue problem with Steklov boundary conditions in [START_REF] Leadi | A weighted eigencurve for steklov problems with a potential[END_REF], some others quasilinear problems with weights have been considered with sublinear, superlinear or concave-convex nonlinear terms. In the present work we would like to explore the effect of sign-changing weights a and V on the multiplicity of solutions for a rather simple critical-exponent quasilinear problem with a parameter λ. From the variational point of view, the geometry of the related functional associated, for example, to the eigenvalue problem -∆ p u + V |u| p-2 u = 0 in Ω, |∇u| p-2 ∂u ∂ν = λa(x)|u| p-2 u on ∂Ω

(1.5) may take in consideration the disjoint subsets ∂Ω a|u| p dσ > 0 and ∂Ω a|u| p dσ < 0.

It is well known (see [START_REF] Leadi | A weighted eigencurve for steklov problems with a potential[END_REF]) that, if a changes sign, there are two principal eigenvalues λ -1 < λ 1 for the above eigenvalue problem. We will prove in this work that positive and sign-changing solutions of problem (1.1) can also be found by minimizing the energy functional on the subset of the Nehari manifolds where ∂Ω a|u| p dσ ≷ 0. By considering indefinite weights, we improve and complete several existing results for similar problems.

This paper is organised as follows. In section 1 we study under which conditions the infimum of the associated energy functional along the Nehari manifold is achieved. We prove in Proposition 2.7 that this is the case where this infimum is less than

1 p - 1 p * K -p * p * -p 0 where K 0 def = b p p * ∞,∂Ω K -1 N,p .
In order to assure this inequality we use the well known technique of mass concentration for the fundamental solutions, i.e. functions defined in R N + realizing the infimum in (1.3). In section 2 we analyse the different Lebesgue norms of these functions and in section 3 we state our main existence result in Theorem .4.2. In section 4 we study the infimum of the associated energy Φ λ along the so called nodal subsets of the Nehari manifold. Finally Theorem 6.2 state an existence result for positive weights a.

Minimization on the Nehari manifold

Let us define the following C 1 -functional on W 1,p (Ω) by

E V (u) def = Ω (|∇u| p + V (x)|u| p ) dx, A(u) def = ∂Ω a |u| p dσ, B(u) def = ∂Ω b|u| p * dσ, Φ λ (u) def = E V (u) -λA(u).
The natural norm of W 1,p (Ω) will be denoted by

• , i.e., ∀u ∈ W 1,p (Ω), u = Ω |∇u| p dx + Ω |u| p dx 1/p .
The Lebesgue norm of L q (Ω) will be denoted by • q and the Lebesgue norm of L q (∂Ω, ρ) by • q,∂Ω , for any q ∈ [q, +∞[. Solutions of problem (1.1) will be understood in the weak sense.

As in [START_REF] Cerami | Some existence results for superlinear elliptic boundary value problems involving critical exponents[END_REF] we will make use of the Nehari manifold associated to our problem. For this end, we define the energy functional

I λ (u) = 1 p Φ λ (u) - 1 p * B(u)
and the Nehari manifold associated to

I λ N = {u ∈ W 1,p (Ω)\{0}; I λ (u), u = 0} = {u ∈ W 1,p (Ω) \ {0}; Φ λ (u) = B(u)}
that we split into three sets

A + = {u ∈ N ; A(u) > 0}, A -= {u ∈ N ; A(u) < 0}, A 0 = {u ∈ N ; A(u) = 0}.
It is well known that critical points of I λ are solutions of problem (1.1) and belong to N . Notice that I λ restricted to N is equal to

I λ (u) = 1 p - 1 p * B(u) = 1 p - 1 p * Φ λ (u).
Minimizing the functional I λ along A ± provided us with positive solutions of our problem (1.1). Precisely, let us set

C ± λ = inf u∈A ± I λ (u) (2.1)
The following result is well known, we give the proof for the sake of completeness.

Lemma 2.1. If C ± λ is achieved and C ± λ > 0 then C ± λ is a critical value of I λ associated to a positive solution of (1.1).

Proof. Let

u ∈ A + such that C + λ = I λ (u) = inf v∈A + I λ (v)
. By taking |u| instead of u we can assume that the infimum is achieve at some u ≥ 0 in A + . Furthermore, if we set

J λ = Φ λ -B, we have that u ∈ N =⇒ J λ (u) = 0, u ≡ 0 and J λ (u), u = pΦ λ (u) -p * B(u) = (p -p * )B(u).
Observe that, since 0

< C + λ = I λ (u) = 1 p -1 p * B(u) then B(u) = 0 and therefore J λ (u), u = 0. By Lagrange's Multipliers theorem there exists α ∈ R such that I λ (u) = αJ λ (u). Hence 0 = J λ (u) = I λ (u), u = α(p -p * )B(u) =⇒ α = 0. Thus I λ (u) = 0.
The aim of this section is to prove that the previous infima are achieved and that they are strictly positive. The positivity of I λ depend on whenever λ < λ 1 or λ > λ -1 , where λ 1 and λ -1 are defined as follows. Let us recall the following results on the eigenvalue problem (1.5) associated to our problem (see [START_REF] Leadi | A weighted eigencurve for steklov problems with a potential[END_REF]). By a principal eigenvalue we mean an eigenvalue having a positive eigenfunction.

Proposition 2.2 ( [START_REF] Leadi | A weighted eigencurve for steklov problems with a potential[END_REF]). Let

α a def = inf{E V (u); u p = 1, A(u) = 0}.
(2.2)

Then problem (1.5) possesses a principal eigenvalue if and only if α a > 0.

Precisely, 1. if α a > 0 and a changes sign then (1.5) admits exactly two principal eigenvalues λ -1 < λ 1 , with

λ 1 := min M + E V , (2.3) 
where

M + := {u ∈ W 1,p (Ω); A(u) = 1} and λ -1 = -min M -E V , (2.4) 
where M -:= {u ∈ W 1,p (Ω); A(u) = -1};

2. if α a > 0 and a is of definite sign then (1.5) admits exactly one principal eigenvalue, which are either λ 1 or λ -1 ;

3. if α a = 0 then (1.5) has a unique principal eigenvalue λ * given by

λ * = inf M + = -inf M -E V .
Moreover a function u ∈ S is an eigenfunction associated to λ * if and only if A(u) = 0 and E V (u) = α a = 0.

Remark 2.3. Actually, the hypothesis of Theorem 3.3 of [START_REF] Leadi | A weighted eigencurve for steklov problems with a potential[END_REF] are that both λ D V =first eigenvalue of u → -∆ p u + V |u| p-2 u with Dirichlet boundary condition and β(V, a) = inf{E V (u); A(u) = 0, u p,∂Ω = 1} are > 0. These two hypothesis are equivalent to α a > 0.

As a straightforward consequence of the above proposition we have Corollary 2.4. Assume α a > 0. For any λ < λ 1 (resp. for any λ > λ -1 ) there exists c > 0 such that, for all u ∈ W 1,p (Ω) satisfying A(u) ≥ 0 (resp.

A(u) ≤ 0) it holds E V (u) -λA(u) ≥ c u p . (2.5)
Remark 2.5. Weak solutions of problem (1.1) and (1.5) belong to L ∞ (Ω) ∩ L ∞ (∂Ω) according to [START_REF] Cuesta | Weighted eigenvalue problems for quasilinear elliptic operators with mixed RobinDirichlet boundary conditions[END_REF]. Consequently weak solutions are of class C 1,µ (Ω) for some 0 < µ < 1 (see [START_REF] Lieberman | Boundary regularity for solutions of degenerate elliptic equations[END_REF]).

Throughout the paper we will always assume α a > 0.

Let us now study the geometry of the fibering maps and the Nehari manifold.

Lemma 2.6.

1. Assume either λ < λ 1 or λ > λ -1 . Then for any u ∈ W 1,p (Ω) such that B(u) = 0, the function t → I λ (tu) has a local maximum at

0 < t u := Φ λ (u) B(u) 1 p * -p , (2.6) 
t u u ∈ N and

I λ (t u u) = 1 p - 1 p * Φ λ (u) B(u) p/p * p * p * -p . 2. If λ < λ 1 then there exists a constant c > 0 such that ∀u ∈ A + ∪ A 0 =⇒ u ≥ c and B(u) ≥ c.
(2.7)

3. If λ > λ -1 then there exists a constant c > 0 such that ∀u ∈ A -∪ A 0 =⇒ u ≥ c and B(u) ≥ c .
4. All minimizing sequences for C ± λ are bounded.

5. C ± λ > 0.

Proof. (1) For any u ∈ W 1,p (Ω) such that B(u) > 0 one easily proved that

g u (t) = t p-1 Φ λ (u) -t p * -1 B(u)
for t > 0, vanished at t u and that the function t → I λ (tu) has a global maximum at t u . Clearly, g u (t) = 0 ⇔ tu ∈ N .

(2) We know from equation (2.5) that there exists a constant c 1 > 0 such that Φ λ (u) ≥ c 1 u p . Moreover using Sobolev's embedding from the trace we have, for some constant c 2 > 0,

B(u) ≤ c 2 b ∞ u p *
and the conclusion follows using that Φ λ (u) = B(u) because u ∈ N . One can prove (3) in a similar way. (4) Assume by contradiction that a minimizing u n ∈ A + is unbounded and take v n = un un . Thus, for a subsequence, there exists v 0 ∈ W 1,p (Ω) such that v n v 0 , strongly in L p (Ω) and L p (∂Ω). Since

1 p - 1 p * Φ λ (v n ) = I λ (u n ) u n p → 0 as n → +∞, then E V (v 0 ) -λA(v 0 ) ≤ 0. (2.8) If v 0 ≡ 0 then 0 = E V (v 0 ) -λA(v 0 ) = lim n→∞ Φ λ (v n ) =⇒ v n → 0 strongly in W 1,p (Ω),
what is in a contradiction with the fact that v n = 1. Thus v 0 ≡ 0. Also we have A(v 0 ) > 0 because the possibility A(v 0 ) = 0 is ruled out from the condition α a > 0 and (2.8). If λ < λ 1 we then have a contradiction between (2.5) and (2.8) (5) If for instance C + λ = 0 and (u n ) n is a bounded minimizing sequence converging to some u 0 weakly in W 1,p (Ω), strongly in L p (Ω) and also strongly in L p (∂Ω) hence A(u 0 ) ≥ 0 and

1 p - 1 p * Φ λ (u 0 ) ≤ lim n→∞ I λ (u n ) = C + λ = 0. (2.9)
If u 0 ≡ 0 then we will get from the last inequality that u n → 0 strongly in W 1,p (Ω), in contradiction with (2.7). Thus, u 0 ≡ 0 but now (2.9) contradicts (2.5).

In the next proposition we will prove that the values C ± λ are achieved whenever they are smaller than a certain value involving K N,p if λ is close to λ 1 . This second constraint follows from the necessity to assure that the infimum is achieved at some point lying in the open set

A + . Precisely, let us consider γ a,b def = inf{E V (u); A(u) = 0, B(u) = 1}. (2.10) Proposition 2.7. One has 1. 0 < γ a,b and 
C ± λ ≤ 1 p - 1 p * γ p * p * -p a,b .
(2.11)

2. There exists δ 1 > 0 (resp. δ 2 > 0) such that

C + λ < 1 p - 1 p * γ p * p * -p a,b ∀λ ∈ (λ 1 -δ 1 , λ 1 ), ( resp. C - λ < 1 p - 1 p * γ p * p * -p a,b ∀λ ∈ (λ -1 , λ -1 + δ 2 )).
Proof. (1) It follows directly from α a > 0 that γ a,b ≥ 0. Assume by contradiction that γ a,b = 0 and let (u n ) n be a minimizing sequence for γ a,b . Assume furthermore that (u n ) n is an unbounded sequence and take v n = un un . Thus there exists a subsequence, still denoted v n , and a function v 0 such that v n v 0 , strongly in L p (Ω), in L p (∂Ω) and a.e. We have in one hand

Φ λ (v 0 ) ≤ lim inf n→+∞ Φ λ (v n ) ≤ 0, (2.12) 
and in other hand A(v 0 ) = 0. Besides v 0 ≡ 0 otherwise we will deduce from (2.12) that v n → 0 strongly in W 1,p (Ω), which is in contradiction with the fact that v n = 1. Thus

α a v 0 p p ≤ E V (v 0 ) = Φ λ (v 0 ) ≤ 0,
which contradicts the hypothesis α a > 0. We conclude that the sequence (u n ) n is bounded. Hence, up to a subsequence, it converges weakly to some u 0 in W 1,p (Ω), strongly in L p (Ω) and in L p (∂Ω). Hence E V (u 0 ) ≤ 0 and A(u 0 ) = 0. If u 0 ≡ 0 we have a contradiction with the hypothesis α a > 0. If u 0 ≡ 0 hence u n converges strongly to 0, in contradiction with B(u n ) = 1.

Next, to prove for instance that

C + λ ≤ 1 p -1 p * γ p * p * -p a,b , let u n be a se- quence in W 1,p (Ω) such that A(u n ) = 0, B(u n ) = 1 and E V (u n ) → γ a,b .
We can assume also that u n ≥ 0 by taking |u n | instead of u n if necessary and, using the same argument as above, the sequence (u

n ) n is bounded in W 1,p (Ω). Let ψ ∈ C 1 (Ω) be any positive function such that supp ψ ∩ ∂Ω ⊂ {x ∈ ∂Ω; a(x) > 0}. Let us take v n = u n + ψ n . Clearly v n -u n → 0. Moreover A(v n ) = ∂Ω av p n = ∂Ω a + (u n + ψ n ) p - ∂Ω a -u p n > A(u n ) = 0, and clearly B(v n ) ≥ B(u n ) = 1.
Furthermore, using the following inequality

||x + y| q -|x| q -|y| q | ≤ C|xy| |x| q-2 + |y| q-2 , (2.13) 
valid for any q ≥ 1 and any x, y ∈ R N and using also that the sequence u n is bounded we have

Φ λ (v n ) = E V (u n ) + o(1) = γ a,b + o(1).
Finally, if we consider z n := t vn v n ∈ A + , with t un defined in Proposition (2.6), it comes

C + λ ≤ 1 p - 1 p * Φ λ (v n ) B(v n ) p/p * p * p * -p → 1 p - 1 p * γ p * p * -p a,b .
(2) We only prove the estimate for C + λ . By taking t ϕ 1 ϕ 1 , where ϕ 1 is the unique positive eigenfunction associated to λ 1 such that A(ϕ 1 ) = 1 and t ϕ 1 has been defined in (2.6), by definition of C + λ one has

1 p - 1 p * -1 C + λ p * -p p * λ 1 -λ (B(ϕ 1 )) p/p * Thus, if λ ∈ R is such that λ 1 -λ (B(ϕ 1 )) p/p * < γ a,b , i.e., λ > λ 1 -(B(ϕ 1 )) p/p * γ a,b then 1 p -1 p * -1 C + λ p * -p p * < γ a,b as stated in (2.15).
Consequently, let us define

λ ± * def = inf λ ∈ R; C ± λ < 1 p - 1 p * γ p * p * -p a,b (2.14)
As a consequence of (2) in Proposition 2.7 we have λ + * < λ 1 and λ - * > λ -1 and therefore

λ ± * = sup λ ∈ R; C ± λ = 1 p - 1 p * γ p * p * -p a,b . Proposition 2.8. Let λ ∈ R. 1. If λ < λ 1 and C + λ < 1 p - 1 p * K -p * p * -p 0 (2.15) then there exists u ∈ A + ∪ A 0 such that I λ (u) = C + λ . Similarly, if λ > λ -1 and C - λ < 1 p - 1 p * K -p * p * -p 0 (2.16)
then there exists u ∈ A -∪ A 0 such that I λ (u) = C - λ .

2. If furthermore λ + * < λ < λ 1 and (2.15) holds then problem (1.1) with parameter λ possesses a positive solution u satisfying A(u) > 0 and

I λ u) = C + λ . Similarly if λ -1 < λ < λ -
* and (2.16) holds then problem (1.1) with parameter λ possesses a positive solution u satisfying A(u) < 0 and

I λ u) = C - λ .
Proof. We will only give the proof concerning C + λ since the argument is similar for C - λ . Let (u n ) n be a minimizing sequence. By (4) of Lemma 2.6 the sequence (u n ) n is bounded so assume that u n ∈ A + converges weakly to some u 0 , strongly in L p (Ω) and in L p (∂Ω). Clearly A(u 0 ) ≥ 0. Claim: We have

Φ λ (u 0 ) ≤ ( 1 p - 1 p * ) -1 C + λ p * -p p * B(u 0 ) p p * .
(2.17) Indeed, in one hand, using that (u n ) n is a minimizing sequence we have

1 p - 1 p * -1 C + λ = B(u n ) + o(1). (2.18)
Besides, we also have by the Brézis-Lieb lemma ( [START_REF] Brézis | A relation between pointwise convergence of functions and convergence of functionals[END_REF])

1 p - 1 p * -1 C + λ = Φ λ (u 0 ) + ∇(u n -u 0 ) p p + o(1) (2.19)
In other hand, let us choose > 0 such that

1 p - 1 p * -1 C + λ < (K 0 + ) -p * p * -p .
Using again Brézis-Lieb lemma and the fact that p/p * < 1, we get

B(u n ) p/p * ≤ B(u 0 ) p p * + B(u n -u) p p * + o(1),
and hence it comes from (2.18) and Lemma 2.10 (see below) gives 

( 1 p - 1 p * ) -1 C + λ p/p * ≤ B(u 0 ) p p * + (K 0 + ) ∇(u n -u 0 ) p p + o(1
C + λ < (K 0 + ) -p p * -p , we obtain ( 1 p - 1 p * ) -1 C + λ p/p * ≤ B(u 0 ) p p * + 1 p - 1 p * -1 C + λ p p * -Φ λ (u 0 ) 1 p - 1 p * -1 C + λ p-p * p *
and the proof of the claim follows. Notice that u 0 ≡ 0 since, otherwise, u n → 0 strongly in W 1,p (Ω) which contradicts (3) of Lemma 2.6. As a consequence of (2.17) and that Φ λ (u 0 ) > 0 we have B(u 0 ) > 0. Finally let us prove that C + λ is achieved at t u 0 u 0 ∈ N . Indeed, again by (1) of Lemma 2.6 we have

1 p - 1 p * -1 C + λ ≤ Φ λ (u 0 ) p * p * -p B(u 0 ) p p * -p while by the claim Φ λ (u 0 ) p * p * -p B(u 0 ) p p * -p ≤ 1 p - 1 p * -1 C + λ
and the equality follows.

(

) Since λ > λ + * we get C + λ < 1 p -1 p * γ p * p * -p a,b 2 
and therefore C + λ is achieved at some u ∈ A + . By replacing u by |u| if necessary, we can assume that u ≥ 0. The result then comes from Lemma 2.1. By the reularity results (see Remark 2.9) andth strong maximum principle of [START_REF] Vazquez | A strong maximum principle for some quasilinear elliptic equations[END_REF], the solution u is strictly positive up to the boundary. Remark 2.9. Notice the if λ + * < λ - * then, under the hypothesis of Proposition 2.8, we will obtain two positive solutions of problem (1.1) for any parameter λ ∈ (λ + * , λ - * ) ∩ (λ -1 , λ 1 ): one in A + and the other in A -. However, that λ + * < λ - * is not clear for general weights a, b and V . We have used in the previous proposition the following Cherrier's-type inequality that has been proved by [START_REF] Biezuner | Best constants in Sobolev trace inequalities[END_REF] in the case b ≡ 1 and can be trivially generalizes for any positive bounded weight b: Lemma 2.10. [START_REF] Biezuner | Best constants in Sobolev trace inequalities[END_REF] For any > 0 there exists C > 0 such that for all u ∈ W 1,p (Ω) it holds

∂Ω b|u| p * dσ p/p * ≤ (K 0 + ) Ω |∇u| p dx + C Ω |u| p dx where K 0 := K N,p b p/p * ∞ (2.21)
and K N p is defined in (1.3).

Estimates of the L p -norms of fundamental solutions

We turn now our attention to the problem of finding the values λ for which we have S ± λ < K -1 0 , where we denote here, for simplicity,

S ± λ = 1 p - 1 p * -1 C + λ p * -p p * . (3.1)
It is well known (see [START_REF] Nazaret | Best constants in Sobolev trace inequalities on the halfspace[END_REF]), that the value K -1 N,p defined in (1.3) is achieved at functions of the form

U ,y 0 (y, t) = -N -p p U y -y 0 , t , with y 0 ∈ R N -1 arbitrary and ∈]0 + ∞[, where 
U (y, t) = 1 ((t + 1) 2 + |y| 2 ) N -p 2(p-1)
.

The functions U ,y 0 are usually called fundamental solutions. The constant K -1 N,p can be computed explicitly (see [START_REF] Bonder | Estimates for the Sobolev trace constant with critical exponent and applications[END_REF][START_REF] Nazaret | Best constants in Sobolev trace inequalities on the halfspace[END_REF]) and it is equal to

K -1 N,p = N -p p -1 p-1 π p-1 2   Γ N -1 2(p-1)
Γ p(N -1)

2(p-1)   p-1 N -1
.

Let us assume for convenience that

x 0 = 0 ∈ ∂Ω and |Ω + a ∩ B s (0)| > 0 ∀0 < s < r (3.2)
for some r > 0, where Ω + a = {x ∈ ∂Ω; a(x) > 0}. Let φ be a smooth radial function with compact support in the ball B r/2 (0) satisfying φ ≡ 1 in B r/4 (0). For any > 0 let us choose the following test functions:

u (y, t) = U (y, t)φ(y, t) = N -p p(p-1) φ(y, t) ((t + ) 2 + |y| 2 ) N -p 2(p-1)
.

(3.3)

Notice that A(u ) > 0. In order to give the asymptotic development with respect to the parameter of the quotient Φ(u ) B(u ) p/p * , we will compute each of integrals involved. Much of the work have been done by [START_REF] Bonder | Estimates for the Sobolev trace constant with critical exponent and applications[END_REF] and we refer the reader to this paper for full details. To make the computations simpler, we will choose a special parametrization of the boundary ∂Ω around 0 ∈ ∂Ω.

Since we are assuming that ∂Ω is of class C 2 , there exists c > 0 and a C 2function ρ :

{y ∈ R N -1 , |y| ≤ c} → R such that Ω ∩ B r (0) = {(y, t) ∈ Q c ; t > ρ(y)} ∂Ω ∩ B r (0) = {(y, t) ∈ Q c , ; t = ρ(y)}, (3.4) 
where

Q c := {(y, t), |y| ≤ c, 0 ≤ t ≤ c} and ρ(y) = 1 2 N -1 i=1 ν i y 2 i + O(|y| 3 ) (3.5) for some ν i , i = 1, • • • , N -1.
We set hereafter

h 0 = 1 N -1 N -1 i=1 ν i . (3.6) 
The value h 0 is known as the mean curvature of ∂Ω at 0 with respect to the outward normal ν. 

Ω |∇u | p dx = A 1 + f 1 ( ),
where

f 1 ( ) := A 2 + O( N -p p-1 ) if p < N +1 2 -h 0 2 ω N -2 ln(1/ ) + O( ) if p = N +1 2
and

A 1 = 1 2 N -p p -1 p-1 β N -1 2 , N -1 2(p -1) ω N -2 ; A 2 = - h 0 4 N -p p -1 p β N + 1 2 , N -2p + 1 2(p -1) ω N -2 .
2.

Ω V (x)|u | p dx = f 2 ( ), f 2 ( ) :=    O( p ) if p 2 < N O( p ln( 1 )) if p 2 = N O( N -p p-1 ) if p 2 > N 3. Assume that b(0) = b ∞ and b(y, ρ(y)) -b(0) = O(|y| γ+1 ) ∀ |y| ≤ c
for some γ > 0.

Then ∂Ω b|u | p * dσ = B 1 + B 2 + o( )
where

B 1 = 1 2 b ∞ β N -1 2 , N -1 2(p -1) ω N -2 , B 2 = - 1 2 b ∞ (N -1)h 0 β N -1 2 , N -1 2(p -1) ω N -2 .
4. Assume that a ∈ C γ close to 0 for some γ > 0.

Then ∂Ω a(x)|u | p dσ = f 3 ( )
where

f 3 ( ) =            C 1 p-1 + o( p-1 ) if N > p 2 -p + 1 a(0)ω N -2 p-1 ln(1/ ) + O( p-1 ) if N = p 2 -p + 1, O( N -p p-1 ) if N < p 2 -p + 1, (3.7 
) and

C 1 = 1 2 a(0)β N -1 2 , N -p 2 + p -1 2(p -1) ω N -2 .
We recall that

ω N -1 = measure of the unit sphere S N -1 of R N = 2π N 2 Γ N 2 and β(x, y) := ∞ 0 t x-1 dt (1 + t) x+y = 1 0 t x-1 (1 -t) y-1 dt = Γ(x)Γ(y) Γ(x + y)
for x, y > 0.

Proof. (1) -( 2) These estimates can be found in [START_REF] Bonder | Estimates for the Sobolev trace constant with critical exponent and applications[END_REF].

( From basic integration, we deduce for any a > -1 and b > 0 that

c/ 0 t a (1 + t 2 ) b dt =            1 2 β a+1 2 , 2b-a-1 2 + O( 2b-a-1 ) if 2b -a -1 > 0, ln(1/ ) + O(1) if 2b -a -1 = 0, O( 2b-a-1 ) if 2b -a -1 < 0. (3.8) Thus for any a, b, ∈ R + we have |y|≤c |y| a ( 2 + |y| 2 ) b dy =            ω N -2 1 2 N -1+a-2b β a+N -1 2 , 2b-a-N +1 2 + O(1) if 2b -a -N + 1 > 0, ω N -2 ln(1/ ) + O(1) if 2b -a -N + 1 = 0, O(1) if 2b -a -N + 1 < 0. ( 3.9) 
By expanding (( + ρ(y)) 2 and using Taylor's theorem we find -N -p

N -1 p-1 ∂Ω∩Br(0) |y| γ+1 |u | p * dσ = |y|≤c |y| γ+1 1 + |∇ρ(y)| 2 dy (( + ρ(y)) 2 + |y| 2 ) p(N -1) 2(p-1) = |y|≤c |y| γ+1 dy ( 2 + |y| 2 ) p(N -1) 2(p-1) +O |y|≤c |y| γ+3 dy ( 2 + |y| 2 ) p(N -1) 2(p-1) =    O( γ+N -p p-1 (N -1) ) if N > p(γ + 1) -γ O(ln(1/ )) if N = p(γ + 1) -γ O(1) if N < p(γ + 1) -γ. Since N -1 p-1 + N + γ -p p-1 (N -1) = γ + 1 then
p-1 I = |y| c 1 + 1 2 |∇ρ(y)| 2 + O(|y| 4 ) ( 2 + ρ(y) 2 + 2 ρ(y) + |y| 2 ) p(N -p) 2(p-1) dy = |y| c dy ( 2 + |y| 2 ) p(N -p) 2(p-1) -p(N -p) p-1 |y| c
ρ(y)dy

( 2 + |y| 2 ) p(N -p) 2(p-1) +1 + O |y| c |y| 2 ( 2 + |y| 2 ) p(N -p) 2(p-1) = I 1 -p(N -p)
p-1

I 2 + O(I 3 )
where

I 1 = ω N -2 ×              1 2 p-N -1 p-1 β N -1 2 , N -p 2 +p-1 2(p-1) + O(1) if N > p 2 -p + 1 ln(1/ ) + O(1) if N = p 2 -p + 1 C 2 if N < p 2 -p + 1 and C 2 = 1 p 2 -p+1-N |c| p 2 -p+1-N ω N -2 > 0. Clearly I 2 = O(I 1 ) and I 3 = 2 O(I 1 ). Consequently I =                    1 2 ω N -2 p-1 β N -1 2 , N -p 2 +p-1 2(p-1) + O( N -p p-1 ) if N > p 2 -p + 1, O( N -p p-1 ln(1/ )) if N = p 2 -p + 1; O( N -p p-1 ) if N < p 2 -p + 1.
Similar computations for II give

II = N -p p-1 |y|≤c |y| γ dy ( 2 + |y| 2 ) p(N -p) 2(p-1) =              O( p-1+γ ) if N > p 2 -(p -1)(1 -γ); O N -p p-1 ln(1/ ) if N = p 2 -(p -1)(1 -γ); O( N -p p-1 ) if N < p 2 -(p -1)(1 -γ).
Since by hypothesis γ > 0 then II = I + o(I) and we conclude.

In section 5 we will need the -asymptotic of several L q -norm of the fundamental solution u defined in (3.3). Proposition 3.2.

1. ∇u 1 = f 4 ( ), where

f 4 ( ) =        O N -p p(p-1) if p > 2N -1 N , O N -p p(p-1) ln( 1 ) if p = 2N -1 N , O( N -N p ) if p ≤ 2N -1 N . 2. ∇u p-1 p-1 = O( N p -1 ).
3. u 1 = f 5 ( ), where

f 5 ( ) =        O N -p p(p-1) if p > 2N N +1 , O N -p p(p-1) ln( 1 ) if p = 2N N +1 , O( N +1-N p ) if p < 2N N +1 . 4. u p-1 p-1 = O( N p -1 ).
5. u 1,∂Ω = f 4 ( ). Proof. Let us denote by α = N -p p(p-1) . ( 1) We have

|∇u | = N -p p -1 α (t + ) 2 + |y| 2 -N -1 2(p-1) in B r/4 (0). so -α Ω |∇u | dx = N -p p -1 Ω∩B r/4 (0) (t + ) 2 + |y| 2 -γ dydt + O(1)
,

where γ = N -1 2(p-1)
. Notice that the integral on the right hand side goes to a constant as goes to 0 if 2γ -N < 0, that is, if p > 2N -1 N . In the case 1 < p ≤ 2N -1 N let us compute this integral as follows. We write Ω∩B r/4 (0)

(t + ) 2 + |y| 2 -γ dydt = Qc dtdy [(t + ) 2 + |y| 2 ] γ - Qc\Ω dtdy [(t + ) 2 + |y| 2 ] γ = I 1 -I 2 + O(1)
After firstly changing the variables t and y by t and .y respectively and secondly changing y by (t + 1).z, one gets

I 1 = C N -2γ +∞ 0 (1 + t) N -1-2γ dt +∞ 0 r N -2 (1 + r 2 ) γ dt + O(1) = O N -2γ since N -2γ = N p-2N +1 p-1 < 0 in the case 1 < p < 2N -1 N . When p = 2N -1 N
we have

I 1 = C ln 1 + O(1) = -C ln ( ) + O(1)
.

For I 2 we have

I 2 = |y| c dy ρ(y) 0 dt ((t + ) 2 + |y| 2 ) γ = |y|≤c ρ(y)dy ( 2 + |y| 2 ) γ + O |y| c |y| 4 dy ( 2 + |y| 2 ) γ+1 = O |y| c |y| 2 dy ( 2 + |y| 2 ) γ + O |y| c |y| 4 dy ( 2 + |y| 2 ) γ+1 = o N -2γ . Thus Ω |∇u | dx = α    O(1) if p > 2N -1 N , C ln( 1 ) + O(1) if p = 2N -1 N , O( N -2γ ) if p < 2N -1
N , and the conclusion follows.

(2) We have

-α(p-1) Ω |∇u | p-1 dx = N -p p -1 p-1 B r/4 (0) (t + ) 2 + |y| 2 -γ(p-1) dydt + O(1).
Since in this case 2γ(p -1) -N = -1 < 0 the integral on the right handside converges to a constant as → 0 and the result follows.

(3) Set now γ 1 = N -p 2(p-1) . We have, by letting → 0 in the integral below,

-α Ω u (y, t)dtdy = Ω∩B r/4 (0) dydt [(t + ) 2 + |y| 2 ] γ 1 = O(1) if N -2γ 1 > 0. Notice that N -2γ 1 > 0 ⇐⇒ p > 2N N +1 . If p ≤ 2N N +1 we write -α Ω u (y, t)dtdy = I 1 -I 2 + O(1)
with

I 1 = Qc dydt [(t + ) 2 + |y| 2 ] γ 1 and I 2 = Qc\Ω dydt [(t + ) 2 + |y| 2 ] γ 1 .
Following the computations of (1) (with γ 1 instead of γ) we will have

I 1 = C ln(1/ ) + O(1) if p = 2N N +1 , O( N -2γ 1 ) if p < 2N N +1 ,
and besides

I 2 = O( N -2γ 1 ).
Thus

Ω |u | dx = α    O(1) if p > 2N N +1 , C ln( 1 ) + O(1) if p = 2N N +1 , O( N -2γ 1 ) if p < 2N N +1,
and the conclusion follows.

(4) We have

-α(p-1) Ω |u | p-1 dx = Ω∩B r/4 (0) (t + ) 2 + |y| 2 -γ 1 (p-1) dydt + O(1).
In this case 2γ 1 (p -1) -N = -p < 0 the the integral on the right converges to a constant as → 0 and the result follows.

(5) In this case we have

-α ∂Ω |u | dσ = |y|≤c 1 + |∇ρ(y)| 2 dy (( + ρ(y)) 2 + |y| 2 ) γ 1 + O(1) = I 1 + O(1)
and

I 1 = |y|≤c dy (( + ρ(y)) 2 + |y| 2 ) γ 1 + O |y|≤c |y| 2 dy (( + ρ(y)) 2 + |y| 2 ) γ 1 = I 2 + I 3 .
By expanding ( + ρ(y)) 2 and using Taylor's theorem we have

I 2 = |y|≤c dy ( 2 + |y| 2 ) γ 1 -2γ 1 |y|≤c ρ(y) dy ( 2 + |y| 2 ) γ 1 +1 +O |y|≤c |y| 4 dy ( 2 + |y| 2 ) γ 1 +1 = I 1 2 + I 2 2 If 2γ 1 -N + 1 < 0, i.e., if p > 2N -1 N
then I 1 2 converges to a constant as goes to 0 and I 1 2 is O(ln( 1)) if p = 2N -1 N . In the case p < 2N -1

N

we have

I 1 2 = N -1-2γ 1 c/ 0 r N -2 (1 + r 2 ) γ 1 dt = O( N -1-2γ 1 ).
Finally one can easily check that the remaining terms can be neglected when compared with I 1 2 and the result follows. ( 6) By expanding ( + ρ(y)) 2 and using Taylor's theorem as above we have

-α(p-1) u p-1 p-1,∂Ω = |y|≤c 1 + |∇ρ(y)| 2 dy (( + ρ(y)) 2 + |y| 2 ) γ 1 (p-1 + O(1) = |y|≤c dy ( 2 + |y| 2 ) N -p 2 -2(N -p) |y|≤c ρ(y) dy ( 2 + |y| 2 ) N -p 2 +O |y|≤c |y| 2 dy ( 2 + |y| 2 ) N -p 2 
and, since (N -p) -N + 1 = -p + 1 < 0, the first integral on the right converges as goes to 0 and we get the result. [START_REF] Bonder | On the existence of extremals for the Sobolev trace embedding theorem with critical exponent[END_REF] As previously and, using that 2γ

1 (p * -1) = N , -α(p * -1) ∂Ω |u | p * -1 dσ = |y|≤c 1 + |∇ρ(y)| 2 dy (( + ρ(y)) 2 + |y| 2 ) γ 1 (p * -1) + O(1) = |y|≤c dy (( + ρ(y)) 2 + |y| 2 ) N/2 +O |y|≤c |y| 2 dy (( + ρ(y)) 2 + |y| 2 ) N/2 .
By expanding ( + ρ(y)) 2 and using Taylor's theorem the first integral is now

I 1 = -1 c/ 0 r N -2 (1 + r 2 ) N/2 dt = O( -1 )
and all the other integral are negligible when compared with I 1 . Finally, since α(p * -1) = N p the result follows.

Existence of positive solutions

We can give now sufficient conditions on V, a, b et λ to fulfil the condition S ± λ < K -1 0 . By taking -a instead of a, one can prove similar results in order to have the inequality S - λ < K -1 0 . We will assume here the following hypothesis (B): there exists a point x 0 ∈ ∂Ω such that (B)

                   b ∞ is achieved at x 0 , b(x 0 ) -b(x) = O(|x -x 0 | γ+1 ) for some γ > 0, a ∈ C γ close to x 0 for some γ > 0, a(x 0 ) > 0. (4.1) Proposition 4.1. Let N ≥ 2p -1.
Assume that there exists a point x 0 ∈ ∂Ω satisfying hypothesis (B) in (4.1). Then

C + λ < 1 p - 1 p K -p * p * -p 0
holds in the following cases:

1. for any λ ∈ R if p > 2 and the mean curvature h 0 at x 0 is positive;

2. for λ, a(x 0 ) and h 0 satisfying

N -2 2 h 0 + λa(x 0 ) > 0 (4.2) if p = 2; 3. for any λ > 0 if 1 < p < 2.
Proof. By definition of S ± λ in (3.1) we have

S + λ ≤ Φ λ (u ) B(u ) p/p * .
Notice that A(u ) > 0 if and r are small enough as a consequence of the estimate (4) in Proposition 3.1. We are going to prove that there exists a positive constant Λ such that 

K 0 Φ λ (u ) B(u ) p/p * = 1 -Λg( ) (4.3) with g( ) def =    if p ≥ 2, N > 2p -1; ln( 1 ) if p ≥ 2, N = 2p -1; p-1 if 1 < p < 2.
Φ λ (u ) B(u ) p/p * = A 1 + A 2 + o( ) (B 1 + B 2 + o( )) p/p * = A 1 B p/p * 1 1 + A 2 A 1 - p p * B 2 B 1 + o( ).
We have

A 2 A 1 = - 1 2 N -p N -2p + 1 (N -1)h 0 , B 2 B 1 = - 1 2 (N -1)h 0 ,
and hence we define Λ as

Λ := - A 2 A 1 - p p * B 2 B 1 = (N -p)(p -1) N -2p + 1 h 0 > 0. Notice that A 1 B p/p * 1 = K -1 0 . Second case: If p > 2 and N = 2p -1 then Φ λ (u ) B(u ) p/p * = A 1 -h 0 ω N -2 2 ln(1/ ) + O( ) (B 1 + O( )) p/p * = A 1 B p/p * 1 1 - h 0 ω N -2 2A 1 ln(1/ ) + O( )
Here we define

Λ := h 0 ω N -2 2A 1 > 0.
Third case: If 1 < p < 2 then

K 0 Φ λ (u ) B(u ) p/p * = A 1 -λC 1 p-1 + o( p-1 ) (B 1 + o( p-1 )) p/p * = A 1 B p/p * 1 -λ C 1 B p/p * 1 p-1 + o( p-1 )
Notice that if 1 < p < 2 one has ln(1/ ) = o( p-1 ). Here

Λ := λ C 1 A 1 > 0
in the case λ > 0 and a(x 0 ) > 0.

Fourth case:

If p = 2 and N > 2p -1 = 3 then Φ λ (u ) B(u ) p/p * = A 1 + (A 2 -λC 1 ) + o( ) (B 1 + B 2 + o( )) p/p * = A 1 B p/p * 1 1 + A 2 -λC 1 A 1 - p p * B 2 B 1 + o( ).
Now we have (in this case)

-Λ := A 2 -λC 1 A 1 - p p * B 2 B 1 = - N -2 N -3 h 0 -λ 2 N -3 a(x 0 )
and therefore, if (4.2) holds, Λ > 0.

Fifth case:

If p = 2 and N = 2p -1 = 3 then Φ λ (u ) B(u ) p/p * = A 1 + -h 0 ω 1 2 -λa(x 0 )ω 1 ln(1 ) + O( ) (B 1 + O( )) p/p * = = A 1 B p/p * 1 1 + -h 0 2 -λa(x 0 ) A 1 ω 1 ln(1/ ) + O( ).
Here we have

Λ := h 0 2 + λa(x 0 ) A 1 ω 1 .
Thus, if (4.2) holds, Λ > 0.

As a direct consequence of Proposition 4.1 and Proposition 2.8 we can now formulate the main result of this section. with λ + * defined in (2.14). Then problem (1.1) possesses a positive solution u satisfying A(u) > 0 in the following cases:

1. if p > 2 and the mean curvature at x 0 satisfies h 0 > 0, 2. if 1 < p < 2, λ > 0, 3. if p = 2 and a(x 0 ), h 0 satisfy (4.2).

We also have the analogous result when considering -a instead of a: Theorem 4.3. Let N ≥ 2p -1 and assume that there exists a point x 0 ∈ ∂Ω such that hypothesis (B) of (4.1) are satisfied for b and -a.

Let λ ∈ R satisfying λ -1 < λ < λ - * (4.6) 
with λ - * defined in (2.14) Then the problem (1.1) possesses a positive solution u satisfying A(u) < 0 in the following cases:

1. if p > 2 and the mean curvature at x 0 satisfies h 0 > 0, 2. if 1 < p < 2, λ < 0 and a(x 0 ) < 0, 3. if p = 2 and a(x 0 ), h 0 satisfy (4.2). Remark 4.4. [START_REF] Adimurthi | Positive solution for Neumann problem with critical non linearity on boundary[END_REF] for the Yamabe problem (Y ).

Notice that if

p = 2, V ≡ 0,a = β then λ 1 = 0, λ + * = -∞. Condition (4.2) for λ = 1 is condition (1.4) of
2. In order to have λ > 0 in the case 1 < p < 2, one can required that λ 1 > 0 (resp. λ -1 < 0). Thus, it will be enough to ask for instance that inf{E V (u); u p = 1} > 0, a condition weaker than α a > 0.

Minimisation along nodal subsets of the Nehari manifold

In order to find nodal solutions we introduce the following nodal subsets of the Nehari manifold:

N + = {u ∈ W 1,p (Ω); u ± ∈ A + }, N -= {u ∈ W 1,p (Ω); u ± ∈ A -} (5.1)
and let us define

D ± λ = inf u∈N ± I λ (u).
(5.2)

Clearly 2C ± λ ≤ D ± λ for any λ ∈ R since I λ (u) = I λ (u + ) + I λ (u -) ≥ C + λ + C + λ .
In what follows we are going to show, under certain conditions on λ, p, a and b, similar to those of the first section, that both D ± λ are achieved, providing us with a pair of nodal solutions of problem (1.1). Our intention is to prove now that the Palais-Smale condition is satisfied. For any u ∈ N + we denote Proof. We only prove the first case. Let (u n ) n be a sequence in N + satisfying (5.3). Using that I λ (u n ) = ( 1p -1 p * )Φ λ (u n ), we can prove as in ((4) of Lemma 2.6 that the sequence is bounded. Let u be such that, up to a subsequence, u n u, strongly in L p (Ω), in L p (∂Ω) and a.e. Then we also have u ± n u ± , strongly in L p (Ω) and in L p (∂Ω). Let us assume by contradiction that, for and, since we are assuming that ∇u + n -∇u + p 0 , then ∇u + n -∇u + p ≥ (K 0 + ) -p * p(p * -p) + o(1).

T N + (u) = {v ∈ W 1,p (Ω); Φ λ (u ± ), v = B (u ± ), v }
(5.5)

Besides, using again Brézis-Lieb Lemma and (5.5) we have

I λ (u + n ) = I λ (u + n -u + ) + I λ (u + ) + o(1) = ( 1 p - 1 p * ) ∇u + n -∇u + p p + I λ (u + ) + o(1) ≥ ( 1 p - 1 p * )(K 0 + ) -p * p * -p + o(1), since I λ (u + ) ≥ 0. Also one has I λ (u - n ) ≥ C + λ . Finally we have the estimate I λ (u n ) = I λ (u + n ) + I λ (u - n ) ≥ ( 1 p - 1 p * )(K 0 + ) -p * p * -p + I λ (u - n ) + o(1) ≥ ( 1 p - 1 p * )(K 0 + ) -p * p * -p + C + λ + o(1).
Since by hypothesis (PS1) we have

I λ (u n ) → c < C + λ + ( 1 p -1 p * )K -p * p * -p 0 
, we get a contradiction by choosing > 0 small enough.

As in the previous section, we need to assure that the infima D ± λ are not achieved for any u ∈ N ± satisfying either A(u + ) = 0 or A(u -) = 0. Let us introduce the values

η + λ def = inf{I λ (u); u ∈ N + , A(u + ) = 0, A(u -) ≥ 0}; η - λ def = inf{I λ (u); u ∈ N -, A(u + ) = 0, A(u -) ≤ 0}.
(5.6)

Clearly D ± λ ≤ η ± λ . Now, we prove that the infima D ± λ are achieved provided they are sufficiently smaller. Proposition 5.2. Let λ < λ 1 and assume that

D + λ < min η + λ , C + λ + 1 p - 1 p * K -p * p * -p 0 .
Then there exists u ∈ N + solution of problem (1.1) satisfying

I λ (u) = D + λ . Similarly, if λ > λ -1 and D - λ < min η - λ , C - λ + 1 p - 1 p * K -p * p * -p 0 then exists v ∈ N -solution of the problem (1.1) satisfying I λ (v) = D - λ .
Proof. First we are going to prove that we can find a minimizing sequence for the infimun D + λ that satisfies the hypothesis (P S1) and (P S2) of the previous proposition. The idea is to apply Ekeland's variational principle to the complete metric space X = N + inherited with the distance of W 1,p (Ω). Notice that

N + = {u ∈ W 1,p (Ω); u ± ∈ N , A(u ± ) ≥ 0} ∩ { u ± ≥ c and B(u ± ) ≥ c}
according to the estimates (2.7). For any > 0 let u ∈ N + such that I λ (u ) ≤ D + λ + 2 . We can assume that > 0 such that 0 < 2 < η + λ -D + λ . By Ekeland's variational principle (see [START_REF] Ekeland | On the variational principle[END_REF]) there exists v ∈ X such that

(E1) I λ (v ) < I λ (u ), (E2) dist (v , u ) < , (E3) I λ (v ) ≤ I λ (w) + v -w ∀w ∈ X, w = v .
Using the fact that D + λ < η + λ , we can assume that A(v ± ) > 0 otherwise we will have

D + λ + 2 ≥ I λ (v ) ≥ η + λ ,
which is a contradiction. For any w ∈ W 1,p (Ω) consider w t = v + tw for t small enough to have B(w ± t ) > 0 and A(w ± t ) > 0. Put

s 1 (t) = Φ λ (w + t ) B(w + t ) 1 p * -p ; s 2 (t) = Φ λ (w - t ) B(w - t ) 1 p * -p so s 1 (t)w + t -s 2 (t)w - t ∈ N + . Hence, using (E3), I λ (v ) -I λ (s 1 (t)w + t -s 2 (t)w - t ) t t v -s 1 (t)w + t -s 2 (t)w - t ≤ . (5.7) If we write h(t) = I λ (s 1 (t)w + t -s 2 (t)w - t ) then h(0) = I λ (v )

and by elementary computations

h (0) = I λ (v ), s 1 (0)v + -s 2 (0)v -+ w = I λ (v ), w , lim t→0 v -s 1 (t)(v + tw) + + s 2 (t)(v + tw) - t = -v + s 1 (0) + v -s 2 (0) -w , s 1 (0) = 1 p * -p Φ λ (v + ), w -B (v + ), w B(v + ) 1 p * -p -1 , s 2 (0) = 1 p * -p Φ λ (v -), w -B (v -), w B(v -) 1 p * -p -1 and therefore s 1 (0) = s 2 (0) = 0 if w ∈ T + N (v ). Letting t → 0 in (5.7) we get I λ (v ), w ≤ w ∀w ∈ T N + (v ).
Choosing = 1/n we have that v n = v 1/n provides a minimizing sequence in N + that satisfies both (P S1) and (P S2) of the previous proposition. Then there exists a converging subsequence and we will conclude from (E1) that D + λ is achieved at some u ∈ N + . Since the possibility that A(u ± ) = 0 is excluded from the hypothesis D + λ < η + λ the conclusion comes finally from Lemma 2.1. Proof. Let u 0 > 0 be a critical point of I λ with critical value C + λ . By hypothesis we assume that a > 0 on ∂Ω ∩ B r/4 (x 0 ) for some r > 0 satisfying furthermore ∂Ω\B r/4 (x 0 ) a|u 0 | p > 0.

Let u be defined as in (3.3) and define the map σ : [0, 1] 2 → W 1,p (Ω) by σ(s, t) = Kt(su 0 -(1 -s)u ) for some K > 0 to be fixed later.

First we claim that

D + λ ≤ max (s,t)∈[0,1] 2 I λ (σ(s, t)). (6.2) 
To see that, consider the map : R 2 → R 2 defined as (s, t) = f λ (σ(s, t) + ) -f λ (σ(s, t) -), f λ (σ(s, t) + ) + f λ (σ(s, t) -) -2 , where

f λ (u) = 0 if u = 0, B(u) Φ λ (u) if u = 0.
Notice that the estimate (2.5) implies that f λ is a continuous map. Moreover we have f λ (σ(0, t) + ) -f λ (σ(0, t) -) ≤ 0 f λ (σ(1, t) + ) -f λ (σ(1, t) -) ≥ 0 f λ (σ(s, 0) + ) + f λ (σ(s, 0) -) -2 ≤ 0 and we choose K > 0 big enough to have f λ (σ(s, 1) + ) + f λ (σ(s, 1) -) -2 ≥ 0.

We can apply Miranda's theorem [START_REF] Miranda | Un'osservazione sur un teorema di Brouwer[END_REF] to get the existence of some (s, t) ∈ [0, 1] 2 such that (s, t) = (0, 0), i.e., f λ (σ(s, t) + ) = f λ (σ(s, t) -) = 1. (6.3)

Thus u = σ(s, t) is such that u ± ∈ N . It remains to proof that A(u ± ) > 0 to conclude (6.2). We have As a corollary of Proposition 5.2 and Proposition 6.1 we have the following existence result. In order to assure that the condition D ± λ < η ± λ is satisfied, we only consider now weights a with definite sign.

Proposition 3 . 1 .

 31 Let N ≥ 2p -1. Assume for convenience the hypothesis (3.2) and let u be as in (3.3). Then 1.

  ) To estimate ∂Ω b(x)|u | p * dσ we write ∂Ω b(x)|u | p * dσ = b(0)

∂Ω∩Br( 0 )

 0 |y| γ+1 |u | p * dσ = o( ) and the result follows. (4) First of all we use the fact that a ∈ C γ (∂Ω) and write a(y, ρ(y)) = a(0) + O(|y| γ ); |y| ≤ c so ∂Ω a(x)|u | p dσ = a(0) |u | p dσ and II := ∂Ω∩Br(0) |y| γ |u | p dσ.

6 .

 6 u p-1 p-1,∂Ω = O( N p -1 ).

(4. 4 )

 4 First case: If p > 2 and N > 2p -1 then the integrals (c) and (d) in Proposition 3.1 are o( ) and therefore

Theorem 4 . 2 .

 42 Let N ≥ 2p -1. Assume that there exists a point x 0 ∈ ∂Ω such that hypothesis (B) of (4.1) are satisfied. Let λ ∈ R satisfying λ + * < λ < λ 1 (4.5)

Proposition 5 . 1 ..

 51 the tangent subspace to N + at u. If L ∈ W -1,p (Ω), by L T N + (u) we mean the norm of the restriction of L to the subspace T N + (u) . Let λ < λ 1 and c ∈ R satisfy c < C + λ Then I λ satisfies the Palais-Smale condition at level c on N + , i.e., any sequence (u n ) ∈ A + satisfying(P S1) I λ (u n ) → c, (P S2) I λ (u n ) T N + (un) = o(1)(5.3)possesses a convergent subsequence.Similarly, if λ > λ -1 and c < C - satisfies the Palais-Smale condition at level c on N -.

Remark 5 . 3 . 6 .

 536 The condition D + λ < η + λ is needed here to avoid the minimizing sequences to converge to some u satisfying A(u + ) = 0 or A(u -) = 0 . Notice that we required the similar condition (i.e.C - λ < 1 p -1 p * γ p * p * -p a,b ) inorder to prove that C + λ is achieved and we have given in Proposition 2.7 a condition on λ to assure that C + λ < 1 p -1 p * γ p * p * -p a,b . We speculate that also D + λ < η + λ for λ close to λ 1 , but we have been unable to prove it. Notice that if a > 0 (or a < 0) then γ a,b = η ± λ = +∞. Existence of nodal solutions Proposition 6.1. Assume hypothesis (B) in (4.1), condition (4.6) and the additional constraint N > max{p 2 , 2p, in cases (1),(2) and (3) of Proposition 4.1.

A 4 ) 1 L 1 +K 2 1 L 1 Lp * - 1 L

 4112111 (u + ) = K p t p ∂Ω a|(su 0 -(1 -s)u ) + | p = = K p t p ∂Ω\B r/4 (x 0 ) a|su 0 | p + ∂Ω∩B r/4 (x 0 ) a + |u + | p > 0;and alsoA(u -) = K p t p ∂Ω∩B r/4 (x 0 ) a + |u -| p > 0,otherwise u ≥ 0 on ∂Ω and therefore B(u -) = 0, in contradiction with (6.3).(2) Next we prove thatmax (s,t)∈[0,1] 2 I λ (σ(s, t)) < C + λWe write for simplicity the functions u ∈ σ([0, 1] 2 ) as u = αu 0 + βu , with |α|, |β| ≤ K. Then using the inequality (2.13) we have for some positive constantsK 1 , K 2 , K 3 I λ (αu 0 + βu ) -I λ (|α|u 0 ) -I λ (|β|v ) ≤ +K 1 ∇αu 0 p-∞ (Br(0)) ∇βv 1 + ∇αu 0 L ∞ (Br(0)) ∇βv p-1 pαu 0 L ∞ (Br(0)) βv p-1 p-1 + αu 0 p-∞ (Br(0)) βv 1 +K 3 αu 0 L ∞ (∂ΩBr(0)) βv p-1 p-1,∂Ω + αu 0 p-∞ (∂ΩBr(0)) βv 1,∂Ω +K 4 αu 0 L ∞ (∂Ω∩Br(0)) βv p * -1 p * -1,∂Ω + αu 0 ∞ (∂Ω∩Br(0)) βv 1,∂Ω . (6.5) Using (1) of Lemma 2.6 and (4.3) in the proof of Proposition 4.1 we haveI λ (|α|u 0 ) ≤ I λ (u 0 ) = C + λ ;) defined in (4.4). Besides, the remaining terms in (6.5) are o( ) if (6.1) is satisfied. Indeed, notice that in the estimate of the norm ∇u 1 , all the powers of are > 1 if either p ≥ 2 and N > p 2 or 1 < p < 2 and N > max{2p, p p-1 }. The other terms ( ∇u p-1 p-1 , u 1 , • • • ) the power of is > 1 if p < N 2 .
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instance, u + n → u + strongly in W 1,p (Ω). Let us denote, for each v ∈ W 1,p (Ω) and each u ∈ N , the real number

Using estimate (2.7) we have that the sequence B(u ± n ) is bounded away from 0 and therefore

and, because we also have that u + n u + , it comes also that

Using Brézis-Lieb identity we deduce

.

Using the fact that Φ λ (u + n ) = B(u + n ) and Brézis-Lieb Lemma we get

and letting n → ∞ we see that Φ λ (u + ) = B(u + ). In particular I λ (u + ) ≥ 0. Let now > 0. We have, by using Lemma 2.