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A global invariant for path structures and second order
differential equations

E. Falbel and J. M. Veloso

Abstract

We study a global invariant for path structures. The invariant is obtained as a
secondary invariant from a Cartan connection on a canonical bundle associated to a
path structure. It is computed in examples which are defined in terms of reductions of
the path structure. In particular we give a formula for this global invariant for second
order differential equations defined on a torus 7°2.

1 Introduction

Path structures on a 3-manifold are defined by a choice of contact structure and a decom-
position of the contact plane bundle as a direct sum of two line bundles. This structure was
througly studied in the 19th century (see in particular [T]) as it appears in the description of
second order differential equations and their equivalence under certain transformations (see
Section 2 and references [A, IL, BGH]).

In Section 2 we collect definitions and examples. In particular we explain the relation
with ordinary second order equations. In the following section we define the most important
reductions of path structures. The first one is obtained by fixing a global contact form
and it is called strict path structure. There exists a Cartan bundle Y; and a connection
adapted to that structure (see 2.5) which was used in ([FMMV]) to obtain a classification
of compact 3-manifolds with non-compact automorphism group preserving the strict path
structure. We recall the construction in Proposition 2.3. The second one, we call enriched
path structure following [MM] which were used by Mion-Mouton to classify certain classes of
partial-hyperbolic diffeomorphisms of three manifolds. It consists of path structures where
we fix a line transverse to the contact distribution. We define an adapted Cartan bundle Y5
and a canonical connection adapted to this structure (see 2.6 and Proposition 2.5). There
exists a natural embedding Y; — Y5 (Section 2.6.2, Proposition 2.7).

In Section 3 we recall the construction of the Cartan bundle Y and the canonical adapted
connection to a path structure on a 3-manifold (see Proposition 3.3). This construction is
due to Cartan in [Car]. Although one can find modern treatments of this topic in several
references (in particular [IL, BGH]), we include this section for the sake of completeness and
because the conventions we use might differ from others. We obtain a natural embedding
Yo — Y (see 3.4, Proposition 3.4) and compute the curvature of the bundle Y in terms of the
curvature of Y5 (see 3.4.1). The formulas are used in the computation of the global invariant
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in the next section. We also recall the computations by Cartan of the invariants of a second
order differential equation.

In the following section we define the global invariant when Y; admits a global section
(see Definition 4.2). This construction is inspired by an analogous construction of a Chern-
Simons invariant in the case of CR manifolds given in [BE] (see also [CL] for a relative
version which does not depend on the existence of a global section). In [FV] we defined a
similar invariant for flag structures. Those are manifolds equipped with a decomposition
of a complex contact structure defined on the complexified tangent bundle of a 3-manifold.
In this paper we restrict the definition to path structures. We obtain the expression of the
invariant in terms of a reduction Y5 or Y; of the Cartan bundle Y of the path structure
(see Proposition 4.5). We also give a formula of the invariant in the case of a second order
differential equation on the torus (Proposition 4.10). It involves an integration of fifth order
derivatives of the function defining the ordinary equation in the form y” = F(x,y,vy’). We
use coordinates in the projective cotangent bundle over a surface as explained in section 4.1.
We characterize certain families of differential equations on the torus which have vanishing
global invariant in Corollary 4.11. We then compute the invariant for a family of path
structures on tight contact structures on the torus (see Proposition 5.3) and characterize
those structures with vanishing global invariant, they turn to be flat. Finally we compute
the global invariant for homogeneous path structures on SU(2) (see Proposition 6.1) and
identify the flat structure on the sphere where the global invariant is maximal.

The authors thank Martin Mion-Mouton for useful discussions.

2 Path structures in dimension 3

Path geometries are very related to the theory of second order differential equations. See
a modern treatment in section 8.6 of [IL] and in [BGH] where the relation to second order
differential equations is also explained. Le M be a real three dimensional manifold and T'M
be its tangent bundle.

Definition 2.1 A path structure on M is a choice of two sub-bundles T and T? in TM
such that T* N'T? = {0} and such that T* & T? is a contact distribution.

The condition that 7 @ T2 be a contact distribution means that, locally, there exists a
one form 6 € T*M such that ker = T' @& T? and df A 0 is never zero.

One can choose a contact form € up to a scalar function. One can interpret this as follows:
one has a R*-bundle over the manifold given by the choice of 8 at each point (one might keep
only positive multiples for simplicity). Over this line bundle one defines the tautological
form w, = 7*(0x(z)). This bundle is trivial if and only if there exists a global contact form
0. If the contact distribution is oriented, then there exists a global contact form. Indeed,
using a global metric on the distribution one can define locally a transversal vector to the
distribution taking a Lie bracket of orthonormal vectors in the distribution. This defines a
global 1-form.

Fix 0 and local forms Z! and Z? defining the lines as above such that df = Z' A Z2.
There exists global forms Z! and Z? if and only if there exists global vector fields along the



lines. Clearly, if the contact distribution is oriented, it suffices that there exists a global
vector field along one of the foliations by lines.

Local equivalence (also called point equivalence) between path structures happens when
there exists a local diffeomorphism which gives a correspondence between the lines defining
each structure.

2.1 The flat model space

Flat path geometry is the geometry of real flags in R®. That is the geometry of the space
of all couples (p,[) where p € RP? and [ is a real projective line containing p. The space of
flags is identified to the quotient

SL(3,R)/B

where B is the Borel group of all real upper triangular matrices.
The Lie algebra of SL(3,R) decomposes into the following direct sum of vector subspaces:

sIBR) =g ag'ad oe @g’

where
000 000
g 2= 000 . g l= z 0 0 ,
z 00 0 vy O
u+v 0 0
g’ = 0 —2v 0 ,
0 0 —u+vw
0 a O 0 0 ¢
gt = 00 b . gt = 000
000 000

That is the graded decomposition of s[(3,R) where b = g° ® g' @ g* corresponds to upper
triangular matrices with null trace. The tangent space of SL(3,R)/B at [B] is identified to

si(3,R)/b=g2@g "
2.2 Examples

Example I Consider the Heisenberg group
Heis(3) ={ (2,t) | z€C,teR }

with multiplication defined by (z1,%1) * (22,t2) = (21 + 29,t1 + t2 + 2Im 2123). The contact
form
0 = dt — xdy — ydx

is invariant under left multiplications (also called Heisenberg translations). If A C Heis(3)
is a lattice then the quotient A \ Heis(3) is a circle bundle over the torus with a globaly
defined contact form.



A lattice A determines a lattice I' C C corresponding to projection in the exact sequence
0 - R — Heis(3) - C — 0.

There are many global vector fields in the distribution defined by # invariant under A, it
suffices to lift an invariant vector field on C under I'. All circle bundles obtained in this way
are not trivial and the fibers are transverse to the distribution.
Example II. Here we consider the torus 7% with coordinates (z,,t) ( mod 1) and the
global contact form
0, = cos(2mnt)dx — sin(2mnt)dy.

There are two canonical global vector fields on the distribution given by % and sin(27rmf)8% +
cos(27mt)a%. In this example, the fiber given by the coordinate ¢ has tangent space contained
in the distribution.

Example ITI. An homogeneous example is the Lie group SU(2) with left invariant vector
fields X and Y with Z = [X, Y] and cyclic commutation relations. The vector fields X and
Y define a path structure on SU(2).

Example IV. Another homogeneous example is the Lie group SL(2, R) with left invari-
ant vector fields X and Y with Z = [X,Y] with [Z, X] = X and [Z,Y] = —Y given by

generators
01 0 0 1 0
=(ro)or=(00) =0 )

The path structure defined by X and Y induces a path structure on the quotient I''\ SL(2, R)
by a discrete torsion free subgroup I' C SL(2,R). This structure is invariant under the flow
defined by right multiplication by e'Z.

Example V. Let X be a surface equipped with a Riemannian metric. The geodesic flow
on the unit tangent bundle 7Y defines a distribution which, together with the distribution
defined by the vertical fibers of the projection of the unit tangent bundle on X, defines a path
structure which is not invariant under the geodesic flow. For 3 = HZ, the hyperbolic space,
we obtain T'Y = PSL(2,R) with distributions defined by the left invariant distributions
X —Y and Z (using the same generators of the Lie algebra as in the previous example).

Example VI Let M be a three manifold equipped with a path structure D = T* & T? C
TM. Suppose D is orientable and choose a section u of 7. Each section v of T? such
that (u,v) is positive gives rise to a CR structure. Indeed we define Ju = v and Jv = —u.
The choice of v corresponds to a section of an R’ -bundle over M. Reciprocally given a CR

structure on M, defined by J : D — D, one can associate path structures corresponding to
a choice T* C D and defining then 7% = J(T").

2.3 Path structures and second order differential equations

This is studied since a long time (see [T], [IL] and [BGH]). It turns out that path structures
can be obtained putting together second order differential equations in one variable. Indeed,
a second order differential equation in one variable is described locally as

Ty
dx?

d
= F(z,y. 7).
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This defines a path structure on a neighborhood of a point in R* with coordinates (z, vy, p):
Ly = ker{dp — Fdz} Nker{dy — pdz}, Lo = kerdz Nkerdy.
The contact structure is defined by the form
0 = dy — pdzx.

Defining the forms Z' = dx and Z? = dp — Fdx, one has that df = Z' A Z2.

One can show easily that every path structure is, in fact, locally equivalent to a second
order equation. That is, there exists local coordinates such that L; and L, are defined via a
second order ODE as above.

2.4 Reductions of path structures

We will describe two reductions of path geometry corresponding to subgroups G; C G C
SL(3,R) where

a 0 0
G1 = * a% 0
* % a
and
a 0 0
GQ = * % 0
* % b

The models are G; /R* and G /R*? and correspond to the Heisenberg group where in the first
model we fix a contact form and, in the second, a transverse line to the contact distribution.

Other reductions of the Gy-structure might occur, namely by choosing other embeddings
of R* into G3. They appear naturally when certain components of the curvature of the
Cartan connections on Y5 or Y are non-vanishing.

We will construct coframe bundles Y7, Y5 and a principal bundle Y over M with structure
groups R*, R*?* and the Borel group B together with Cartan connections and canonical
embeddings

Y=Y, Y.

They correspond to a strict path structure, an enriched path structure (see next sections for
definitions) and finally, a path structures on the manifold M.

2.5 Path structures with a fixed contact form: strict path struc-
tures.

In this section we fix a contact form and recall the reduction of the structure group of a path
geometry obtained in [FV] where we called the path structure with a fixed contact form a
pseudo flag structure. This structure is called strict path structure in [FMMV].

(G1 denotes from now on the subgroup of SL(3,R) defined by

a 0 O
G, = z % 0| |a€eR (z,y,2) eR®
z Yy a



and P; C (G; the subgroup defined by

a 0 0
P = 0 % 0
0 0 a
Writing the Maurer-Cartan form of G as the matrix
w 0 0
' —2w 0
0 0> w

one obtains the Maurer-Cartan equations:
do+60*N0' =0
do' — 3w A0 =0
d6® + 3w A 6* =0
dw = 0.

(g7 is the automorphism group of the canonical left-invariant strict path structure of
Heis(3), and that its action induces an identification of Heis(3) with the homogeneous
space X = G/ P;.

Let M be a three-manifold equipped with a strict path structure (E!, E?,0) defined by
two one dimensional bundles E' and E? and contact form 6. We let R be the associated
Reeb vector field (satisfying tpdf = 0 and 6(R) = 1). Now let X; € E', X, € E? be such
that df(X;, X5) = 1. The dual coframe of (X;, Xo, R) is (0',6%0), for two 1-forms 61 and
0, verifying df = 6* A 6.

At any point x € M, one can look at the coframes of the form

1
wh = a0 (z), W = —302($), w=0(x)
a
for a € R*.
Definition 2.2 We denote by p, : Y1 — M the R*-coframe bundle over M given by the set
of coframes (w,w',w?) of the above form.
We will denote the tautological forms defined by w!, w?, w using the same letters. That
is, we write w' at the coframe (w!, w? w) to be pi(w’).
Proposition 2.3 There exists a unique Cartan connection on Y

w 0 0

m=| w —2w 0

w w2 w

such that its curvature form is of the form

dw 0 0
H1:d7T1+7T1/\7T1: CL)/\Tl —2dw 0
0 —wAT? dw

with TP ANw? = 2 Aw! = 0.



Observe that the condition 7' A w? = 72 A w! = 0 implies that we may write 7! = 7'21w2

and 72 = 72w!. The structure equations are
dw + w? Aw! =0,

dw' — 3w Aw! =w A T,
dw? + 3w A w? = —w A T2

The proof of the proposition is given in [FMMV] and [FV].
Bianchi identities are obtained differentiating the structure equations. They are described
in the following equations:

dw = CwAw' + Dw A w? + Sw' A w?, (1)
dry — 679w + 3DW! = Topw + Tyw? (2)
dri + 67w + 30w? = 1w + THw' (3)

2.6 Path structures with a fixed transverse line: enriched path
structures.

In this section we introduce a coframe bundle and a Cartan connection associated to a path
structure with a fixed transverse line to the the contact distribution.

The model space is the homogeneous space which is the quotient of the group of lower
triangular matrices in SL(3,R) by the subgroup of diagonal matrices. The Maurer-Cartan
form is the Lie algebra valued form which can be represented by

p+w 0 0
= wt —2w 0
w w? —ptw

The Maurer-Cartan equations dm + 7w A m = (0 are given by
dw = 20 A w + w A w?

dw' = o Aw' 4 3w A w?
dw® = p Aw? — 3w A W
Let M be a three manifold equipped with a path structure D =T @ T? C TM. We fix
a transverse line L so that TM =T' @ T? @ L.
We suppose X; € T, X, € T? and X € L is a frame. The dual coframe is 0, §? and 6.
Observe that 6 is simply a form with kerf = D. One can define a coframe bundle defined

by all coframes:
wl =a'ft, W? =d%6?, w=M\.

where we will suppose, for simplicity, that a', a®, A > 0.
A reduction of this coframe bundle is obtained by imposing that each coframe verifies

dwip = (W' Aw?)p
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for an extension of the 1-form such that kerw = D. This relation does not depend on the
particular extension of a form w defined at a point because dw;p(X,Y) = —w([X,Y]) for
any vector fields X and Y which are sections of the distribution D.

Definition 2.4 We denote by ps : Yo — M the R**-coframe bundle over M given by the set
of 1-forms (w,w",w?) defined above. The structure group R** acts as follows

A0 0
(W, W) = (w,whw?) | 0 a' 0
0 0 a?

where X\, a',a® € R? with ata® = M.

In order to define a Cartan connection on Y, we start taking the tautological forms
corresponding to the forms w, w!, w?, which we will denote by the same letters by abuse of
notation.

Using a coframe section (6,01, 0%) on M one can express the tautological forms as

w = /\p;(e), w' = a1p§(91)= w? = a2p§(02),

with ala? = \.
We need to define two forms ¢ and w corresponding to the vertical directions
Observe first that we have

d\
dw = 5N Aw+w' Aw? mod(w)

and therefore one may write
dw =20 Aw +w' Aw? (4)

where ¢ restricted to the vertical fiber is %. The form ¢ is not yet fixed and any other form
¢’ satisfying the equation satisfies
Y — ¢ = sw

where s is a funtion on Y5.

Differentiating the forms w! and w? we obtain new forms which correspond to the coor-
dinates a', a? :

dw! = %1 Aw' + atdft and dw? = %2 A w? + a?db?.

Observing that

d/\idal_i_da2

A al a?

we can write " L/ dad 2
dwlzﬁ/\wl+§<il—i2)/\wl+ald91

a

d\ 1 (da' da?
2 _ GA 2 L (e 4o 2 2 112
dw —2)\/\w 2(a1 a2>/\w + a“df

Now we can make the first right hand term of each equation to be ¢ A w! and ¢ A w?
respectively by adding terms in w, w’, w? to &. The terms in w' A w? not appearing in these
first terms can be absorbed in the second term in each equation. It remains a last term in
each equation that we denote by w A 71 and —w A 72 respectively. We proved the following:



Lemma 2.1 There exists forms w, 7', 72 defined on Yy such that

do' = p AW +3w AW Fw AT and dw? = AW —3w AW —w AT (5)

The forms 7% and 72 are horizontal, that is, they vanish on vectors tangent to the fibers of

Yo, — M. Moreover, writing w' = a'0', w? = a?60?, w = \0 for a choice of sections on M,

one has p = % and 6w = ‘iill — ‘ii; modulo the tautological forms of the fiber bundle Y5.

Let ¢/, w', 7" and 7" be other forms satisfying equations above. Taking the difference
we obtain
0=(p—¢) A w! —|—3(w—w’)/\w1+w/\ (71 _7_/1)

and
0=(p—¢) A’ =3w—w) A’ —wA (=)

Therefore, as ¢ — ¢’ = sw, we can write
0=—-3w'A(w—uw)+wA (sw' +7' -7
and
0=3wA(w—w)—wA (—sw?+712—77).

rtan mma w n
By Cartan’s le a we obta
w—w = aw,
™ — 7" = —3aw! — sw!' 4 blw,
2 — 1% = —3aw® + sw? + bw.

Now, we can impose that 7! = 7lw! + 7hw? and 72 = 72w! + 73w? by choosing convenient
bt and b* (or by simply considering, from the beginning, 7! and 72 with no terms in w).
Moreover, one can choose unique a and s so that 7 = 0 and 75 = 0. We conclude that

Lemma 2.2 There exists unique forms o, w, 7', 72 defined on Y, such that
dw = 2p Aw + w! A w?

do' = o AW+ 3w AW Fw AT
dw?* = pANwW? —3w AW —wAT?

with T Aw? = T2 Aw! = 0.
Bianchi identities are obtained differentiating the above equations:
Lemma 2.3 There exists a 1-form 1) such that
dp=wA (6)

The form v may be chosen satisfying ¢ = Aw' + Bw? and dip = —2p A +w A« where A, B
are functions on Yo and o is a 1-form on Ys.



Proof. Differentiating equation dw = 2p A w + w! A w? one obtains, using equations 5, that
dp Nw = 0, that is,
dp =w N (7)
for a 1-form ¢ defined on Y;.
Differentiating dp = w A 1) one has

O=doAy—wAdp=02pAw+w AWHAY —wAdp =w AW Ap—w A (dip +2p A).

Using Cartan’s lemma, ¢ = Aw' + Bw? modulo w, and we certainly can choose v satisfying
dp = w A1 with ¢ = Aw! + Bw?. We conclude that

dyp+20 AN =wA a.

O
Equation ddw! = 0 gives after simplifications
0 =d(p+3w) Aw' +w A w?(dry + 275 (¢ — 3w)). (8)
Analogously, ddw? = 0 simplifies to
0=d(p—3w) Aw® —w Aw (drf + 272 (p + 3w)). (9)

Using the previous lemma we may write
dw = Cw A w' + Dw A w? + Sw! A w?,

where C, D and S are functions on Y5.

We can represent the equations above as a matrix equation whose entries are differential
forms. The forms are disposed in the Lie algebra b C s[(3,R) (the Lie algebra of lower
triangular matrices) and we obtain the following Proposition.

Proposition 2.5 Let Y, be the adapted principal bundle constructed above associated to an
enriched path structure on a manifold M. Then there exists a unique Cartan’s connection
with values in b:

p+w 0 0
Ty = wl —2w 0
w w2 —ptw
with curvature:
WAY+W 0 0
I, = dmy + Ty ATy = Taw A w? —2W 0 (10)
0 —rw AWl —wAY+W

where W = Cw A w! + Dw A w? + Sw! Aw? and ¢ = Aw' + Bw?.

10



2.6.1 More Bianchi identities
e Substituting the expressions above in equations 8 and 9 we obtain
dry + 275 (¢ — 3w) + (B + 3D)w' = Typw + Typw?. (11)
e Analogously we obtain
dri + 271 (p + 3w) — (A — 30)w? = Tihw + THW . (12)
From the last two equations we obtain the following

Proposition 2.6 If the adapted connection of Yo has nul torsion and
dw = Swt A w?,
then dp = 0.
e Analogously, ddy = 0 simplifies to
=w AW (dA+ 3A(p + w)) + w A w?(dB + 3B(p — w))

and we obtain

dA+3A(¢p + w) = Agw + Ajw’ + Ay, (13)

dB + 3B(¢ — w) = Byw + Biw' + Byw?, (14)
with A; = B;.
e Also, ddw = 0 simplifies to
0=wAw(dC+3C(p+w)) +wAw?(dD+3D(p —w)) +w' Aw?(dS + 2S¢)

and we obtain

dC + 3C(p + w) = Cow + Crw' + Cow?, (15)
dD +3D(p — w) = Dow + Dyw' + Dyw?, (16)
dS + 2S¢ = Syw + Siw' + Spw?, (17)

with 02_D1+S():0.
Lemma 2.4 Ifr!=72=C=D=0
dp = 0.

Proof. From the last formulae we obtain that v is a multiple of w and the result follows.
O
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2.6.2 The embedding ¢; : Y] — Y,

Given a path structure with a fixed contact form w we obtained first a coframe bundle Y;
and one can also obtain a canonical transverse direction by considering the Reeb vector field
associated to w. One obtains then a coframe bundle Y5 of last section.

Given a coframe (w,w',w?) € Y] one can view the same coframe as a coframe of Y;. This

gives an embedding
(A Yi — ng

By abuse of language we may write the connection forms of Y; and Y5 using the same
letters and then obtain:

Proposition 2.7 There exists a unique embedding v, : Yy — Ya satisfying j(w) = w,
i(wh) = w! and 1} (w?) = w?. Moreover, for this embedding, ti(©) =0 and v} (w) = w.

Proof. 1f unicity is not satisfied one can obtain the same forms pulling back a different
coframe. But from the transformations of the coframe,

. a
0=—-w
b
ot = a?bw!
~ 1
2 _ 2w2
ab

We obtain then that a = b = 1 and the embedding is uniquely determined by the conditions.
Comparing the structure equations of both structures we further get the equations ¢§(¢) =
0 and ¢j(w) = w. O

3 The Cartan connection of a path structure

We review in this section the construction of a Cartan connection. The construction is due to
E. Cartan in [Car| and one can read a modern description of it in [IL]. We include this section
in order to fix our conventions and describe the embedding of Y5 into the corresponding fiber
bundle associated to a path geometry (see 3.4 and 3.4.1) which will be used to define the
global invariant.

The Maurer-Cartan form on SL(3,R) is given by a form with values in the Lie algebra
sl(3,R) :

ptw ¢ 0
T = wt 2w !
w w2 —ptw

satisfying the equation dm + 7 A m = 0. That is
do=w' N+ 20 Aw

do' = p Aw' + 3w AW Fw A @

12



dw® = p ANw? — 3w Aw? —w A P
LI U S
dw:—§<,0 A w —i-éga Aw

1 1
d@zw/\¢—§<,02/\wl—§gol/\w2

dot = Awl —p A+ 3w A !
do* = = Aw? — p A p? — 3w A p?

dp ="' N>+ 20 A .

3.1 The R*-bundle of contact forms and an adapted coframe bun-
dle

We recall the construction of the R*-bundle of contact forms. Define E to be the R*-bundle
of all forms # on TM such that ker@ = T' @ T?. Remark that this bundle is trivial if and
only if there exists a globally defined non-vanishing form 6. Define the set of forms ' and
0% on M satisfying

01 (T") #0 and 6*(T%) # 0.

ker 9|1ker9 =T? and ker 9|2ker0 =T

Fixing one choice, all others are given by 6" = a’0’ + v%0.

On E we define the tautological form w. That is wy = 7*(#) where 7 : E — M is the
natural projection. We also consider the tautological forms defined by the forms ' and 62
over the line bundle E. That is, for each 6 € FE we let w), = 7*(6"). At each point § € F we
have the family of forms defined on E:

Ww=w
JP=alw +olw
Ww? = a?w? + 1w

We may, moreover, suppose that
df = 6' A 6* modulo 0
and therefore

dw = w!' A w? modulo w.

This imposes that a'a? = 1.

Those forms vanish on vertical vectors, that is, vectors in the kernel of the map TFE —
TM. In order to define non-horizontal 1-forms we let 6 be a section of E over M and
introduce the coordinate A € R* in F. By abuse of notation, let § denote the tautological
form on the section §. We write then the tautological form w over F is

wrp = NG,

13



Differentiating this formula we obtain

dw =20 Aw +w' A w? (18)

where ¢ = £ modulo w,w!,w?. Here & is a form intrinsically defined on E up to horizontal

forms. We obtain in this way a coframe bundle satisfying equation 18 over E:
w=w

W = atw! +vlw
w”? = a*w® + v’w
1 1.2 1 1 2.1, 2

gp'z(p—aavw —I—Eavw + sw

vl 9%, s € R and a',a? € R* such that a'a® = 1.

Definition 3.1 We denote by Y the coframe bundle Y — E given by the set of 1-forms

w,wh, w?, ¢ as above. Two coframes are related by

1 v v S
0 a@ 0 —1igh?
N C N A 2 )
(wuw , W 790) (w,w , W 7@) O 0 a2 %a2v1
0O 0 O 1

where and s,v*,v? € R and a',a® € R* satisfy a*a® = 1.

The bundle Y can also be fibered over the manifold M. In order to describe the bundle
Y as a principal fiber bundle over M observe that choosing a local section 6 of E and forms
0! and 6% on M such that df = 6 A 62 one can write a trivialization of the fiber

w =\
w'=a'0" +v' M\
w? = a%0* + v\
dx 1 1
=5 §a10291 + §a2v192 + 0,
where v!,v?, s € R and a!,a? € R* such that a'a® = \. Here the coframe w, w!, w?, ¢ is seen
as composed of tautological forms.
The group H acting on the right of this bundle is

¥

A oth v s
0 ot 0 —ia%?
_ 2 1,2 12 ¥ ot 1,2 _
H 0 0 o %a%l where s,v",v* € R and a*,a” € R* satisfy a'a® = A
0o 0 0 1

Consider the homomorphism from the Borel group B C SL(3,R) of upper triangular
matrices with determinant one into H

j:B—H
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given by

a 42 [ 1
0 o e 2 c;f 3 eb—1|—2acf
) 0 ab O —gabe
0 P .Z — 0 0 % —2ib
00 0 0 0 1

One verifies that the homomorphism is surjective so that H is isomorphic to the Borel group
of upper triangular matrices in SL(3, R).

Proposition 3.2 The bundle Y — M 1is a principal bundle with structure group H.

3.2 Construction of connection forms on the bundle Y

The goal of this section is to review the construction of canonical forms defined on the
coframe bundle Y — E as in [FV]. They give rise to a Cartan connection on Y with values
in s((3,R).

A local section of the coframe bundle over M may be given by three forms

6, 6\, 0

satisfying df = 6' A 62, with ker ¢9|1ker , = T? and ker ¢9|2ker o = T*. They give coordinates on
the cotangent bundle over E. Indeed, at A\@ € FE, the coframes of Y are parametrized as
follows:

w= N0
W= a0t + o' \0

with a'a? = \ and
dw =2p Aw + w' Aw?, (19)

dA

where ¢ = £ mod w', w?, w.

Differentiating the forms w! and w? we obtain new forms which correspond to the coor-
dinates a',v', a?,v? (recall that a* and a? are not independent):

2

Lemma 3.1 There exists linearly independent forms w, ¢, p?* defined on T*Y such that
do' = o AW + 3w AW FwA @t and dw? = Aw? — 3w Aw? —w A P (20)
with w = (9% — 92 mod (w,w',w?) and ¢! = —dv', ¢* = dv?® mod (w,w",w?).

The coordinate s in the bundle Y is associated to a new form:

Lemma 3.2 There exists a 1-form 1 such that
Ly 1 1 2
dgo=w/\¢—§(¢ ANw™ + ¢ Aw) (21)
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The forms w, ¢!, ©? and 1) are not yet determined. Define
_ Lo v Ly o
W—dw+2w A 5% A

P =dp' +3p" Aw+w AP+ AP

P? =dp® —30° ANw — W AY+ A P2

Lemma 3.3 There exists unique forms w, o, ¢* and v such that W = 0, ®! = Q'w A w?
and ®? = Q*w A w! where Q' and Q* are functions on Y.

We can represent the structure equations 19, 20, 21 as a matrix equation whose entries
are differential forms. The forms are disposed in the Lie algebra s[(3, R) and define a Cartan
connection on Y.

Proposition 3.3 There exists a unique Cartan connection 7w : TY — sl(3,R) defined on'Y
of the form

ptw @ 0
T = wt 2w !
w w? —ptw
such that its curvature satisfies
0 & v
H=dr+aAx=[0 0 &
0 0 O

with ' = Q'w Aw?, ¢ = Q*w Aw! and ¥ = (U w' + Uw?) A w.

3.3 Curvature forms and Bianchi identities

Curvature forms appear as differentials of connection forms and are used implicitly in order

to fix the connection forms.
We recall:

1 1
W:dw—EwQ/\(pqu—wl/\goQ:O, 22

5 (22)
' = dp' + 30 Aw W A+ Apt = Qlw AW, (23)
P? =dp® —3p° ANw — W AP+ 0 AP = Q%w A w?, (24)
Ui=dy — ' Ap* =20 A = (Uw! + Usw?) Aw. (25)

where Q', Q?,U' and U? are functions on Y.
3.3.1
Equation d(de') = 0 obtained differentiating ®* above implies
dQ" — 6Q'w + 4Q'p = S'w + Upw' + T"w?, (26)
‘where we introduced functions S* and T™.
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3.3.2

Analogously, equation d(dyp?) = 0 obtained differentiating ®* above implies
dQ? 4 6Q*w + 4Q%¢ = S*w — Uyjw?* + T?w', (27)

where we introduced new functions S? and T72.

3.3.3
Equation d(dy) = 0 obtained from 25 implies

dU, + 5U ¢ + 3Uyw + Q*p' = Aw + Bw' + Cw? (28)

and

dUy + 5Usp — 3Usw — ngo2 = Dw + Cw' + Ew?. (29)

3.4 Embedding s :Y; - Y

The goal now is to obtain an immersion ¢5 : Yo — Y. One can construct the bundle Y5 using
the bundle E of contact forms as a first step. Than Y5 is a coframe bundle over F obtained by
the tautological forms w, w!, w? corresponding to forms @, 6, % satisfying df = 0 AO*+2pAw
with an appropriate .

By abuse of language again as for ¢, : Y; — Y5, we may write the connection forms of Y;

and Y using the same letters and then obtain:
Proposition 3.4 There erists a unique embedding 1o : Yo — Y satisfying t5(w) = w,
) =wh, 3(w?) =w?, Ge) = ¢.

Proof. AsY, and Y are both coframe bundles over the line bundle E of all contact forms,
we can assume that the embedding projects to the identity map on E. Over E, Y is a
coframe bundle with structure group

a C (&
0 % f
0 0 a

In order to determine the embedding we need to choose functions ¢, e and f. The diagonal
matrix correspond to the fiber of Y5 and does not need to be fixed. Consider then a map
from M to the group above given by

1
h=1 0
0

S =0
— S~

Recall that
Ry*m = h™'dh + Ady-1.
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We obtain, neglecting the terms of the connection of Y which are not relevant, the following
transformation formulae. Remark that the term h~'d h does not appear in the transformation
of these components.

w=uw

Or=w'— fw

0 =w+cw

. 1 9 1

p=p—gew —fw +(§cf—e)w (30)

The forms w! and w? defined at each point of Y5 define corresponding forms w! and w?
in Y. We observe then that the functions f and ¢ must be zero in order that t5(w!) = w!,
15(w?) = w?. Finally the form ¢ on Y, defines a corresponding form on Y and we conclude

that e = 0 if we impose that 5(p) = ¢.

3.4.1 The curvature of Y in terms of the curvature of Y,

We obtain the following equations by pulling back to Y5 the structure equations on Y through
the embedding ¢s:

dw =20 Aw+ w' Aw?

do' = Aw' + 30 AW +wAp' (31)

dv’ = o Aw? =30 AwW? —w A p? (32)
dgpzw/\zﬂ—%(gf/\wl%—gol/\w?) (33)

div = —%@2/\(,01 —i—%g&l A w? (34)

dpt + 30 A+ w A4+ o A pt = Qlw A w? (35)

dp? =302 AN — W AN+ o AP = Q*w A w'
dip — o' A — 20 A p = (Uhw! + Usw?) Aw.

In the formulae above we write the pull back of any form « defined on Y using the same
notation « except for the pull backs w = (5w and 1 = (5. We should compare with the
structure equations of Y, and obtain an expression for Q' and (Q?:

dw =20 Aw+ w' Aw?

do' = p AW +3w AW Fw AT

dw’* =AW’ —3wAw? —wAT?

18



with 7' Aw? = 72 Aw! = 0.
Recall also that dp = w A with ¢ = Aw! + Bw? and dw = Cw Aw'+ Dw Aw? + Sw! Aw?,
where A, B,C, D and S are functions on Y5.

e The differences between the pull back equations and the structure equations for dw?
and dw? give, respectively,

3w —w) ANw+wA (pr =) =0
and
3( — w) Aw? +wA (¢* —7%) = 0.

Therefore, by Cartan’s lemma
W —w = mw

for a function m to be determined and

o' — 7t = —3mw' + nw and ¢* — 7% = —3mw? + Pw,

where n and P are functions to be determined.

e The difference between the equation dy = w A ¢ and the pull back equation for dy
above is

WA~ )~ 5 AW+ AW =0,

Substituting the expressions for ¢! and ¢? obtained in the item above we obtain
: 1
w A (1 — Aw' — Bw?) — 5((7‘2 —3mw? + Pw) Aw' + (7! — 3mw' + nw) Aw?) =0,

which simplifies to

~ P
w/\(qﬁ—Awl—BwQ—Ewl—guﬂ):O.

This implies that

7 Py ny o

Y = (A+§)w +(B+§)w + qu,
where ¢ is a function to be determined.

e The difference between the equations for dw and dw is then
1 1
d(mw) = dw — dw = —§g02 Awh + §g01 Aw? — Swr Aw? — Cw Aw! — Dw A W?.

Substituting in this formula the expressions for ¢! and ? in terms of the enriched
structure we obtain

1, 2 1,2 P 1, (" 2
dmAw+m2eAw+w Aw’) = (=S —3m)w Aw +(_§ —CwAw +(§—D)wAw .
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That is,

(S +4m)w' Aw? +w A (—dm —2myp + (g + C)w' — (g — D)uﬂ) = 0.

Therefore
m=—S5/4
and so . ) P
ZdS+§Sgo+(§+C)wl - (g—D)wQ—l—Ew:O

where F is a function determined by the derivative of S. Writing dS + 2S¢ = Syw +
Siw! + Shw? and comparing with the above expression, we obtain

Sy = —4E, S, =—2(P+2C), S, =—2(—n+2D). (36)

Therefore the functions P and n are determined. It remains to determine the function
q.

Computing dp! = d(%w1 + nw + 71) and equating to the structure equation dp' =
3t A — w A — o At 4+ Q'w A w? we obtain, after a computation writing

dn + 3n(p — w) = npw + nyw' + nyw?, (37)
9 3
n=—TgTi —q+ ESQ —3E ,ny=—-Q'+ 55721 + . (38)

Recalling that n = S;/2+4D, S and D are determined by Y3, we obtained an expression
for Q! in terms of the enriched structure. Note also that ¢ is determined by the first
equation.

Analogously, computing dp? = —3%w2 +pw+72 and equating to the structure equation
dp? — 30> AN — W A+ o A p? = Q%w A w' we obtain, after a computation, writing

dP + 3P(p + w) = Pyw + Piw! + Pyw?),
3 9
P =-Q*- 55’7'12 +78 Po=TyTi 4+ q— 1—652 — 3E. (39)

Recalling that P = —5,/2 — 2C, S and C are determined by Y;, we obtained an
expression for Q% in terms of the enriched structure.

The following proposition follows directly from the computations above.

Proposition 3.5 Suppose Yy with its adapted Cartan connection has null torsion, that is,
satisfies 7' = 72 = 0 and dw = Sw* A w?. Then

and

2 — —
Q - 2511
1
1 _ _
Q - 25227

where Sy is the w' component of the form dS, and Say is the w? component of the form dSs.
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Proof. From Proposition 2.6, null torsion and the condition that dw = Sw!' A w? (that
is, C' = D = 0) implies that P = —S5;/2 and n = Sy/2. The result is therefore implied from
the previous formulas. O

3.5 The embedding Y; — Y

Recall that Y] is a coframe bundle of forms (6,60, 0%) over M. Choosing a local section, the
pullback forms over M are also denoted by (6,01, 6?). We recall here an embedding Y; — Y’
obtained in [FV].

A section (6,6%,6?) of the coframe bundle Y; clearly defines a path geometry on M. We
obtain then a line bundle E and a principal bundle Y with its associated Cartan connection.
Also, (6,6,6?) defines, up to the action by the group of matrices

1
0
0

S = 0O
—~ O

sections of the tautological forms (w,w!,w?) on Y. In order to define a canonical section we

use the following

Proposition 3.6 Let 0,0, 0% be a coframe section of Y1 and consider the principal bundle
Y defined by this coframe. Then there exists a unique section s : M — 'Y such that s*w = 6,
sfwt =01, s*w? = 0% and s*p = 0.

It is easy to verify that this definition is equivariant with respect to the action GG1, the one
parameter group of the strict contact structure. This defines then the embedding Y7 — Y.

3.6 The equivalence problem for a second order differential equa-
tion

In this section we recall the treatment by Cartan of the point equivalence between second
order differential equations. It is included in order to fix conventions and to compare the
invariants defined in the next section.

Recall that for a second order differential equation we define

0 = dy — pdzx,

and

Ly = ker{dp — Fdx} Nker{dy — pdx}, Lo = kerdz Nkerdy.

For Z' = dz and Z? = dp — Fdx, one has then df = Z' A Z2. The general forms defining
the lines at each tangent space may be described by

wl=a 2, w?=ayZ%w = ajax0
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where ay, as are non-vanishing positive functions on the manifold, so that we have always

d d
20 Aw+w' Aw? = dw = (— @ ag)/\w—i—alZ A agZ?,
aq a9
and we obtain comparing with 4
1 da1 dCL2
p= 2((11 + . )+ rw
One computes
1.d d 1.d d
(p+3w)Aw' +wAT! = dw' = dayANZM +a,.0 = | = (— L ﬂ) + —(ﬂ — ﬂ) Aw' (40)
2 aq (05} 2 aq (05}
and obtain 1 d p
3w = - ﬂ—ﬂ)—rw—i—swl,@l = 0.
2 aq a9
Observe that, if f(x,y,p) then
1 df
b= aa Tt o
Where = fo+ fyp + fpF. Also
dw? = 92 NG+ agy(— L Fw? — o Fw) A Lw!
= (%(%%—‘ia‘gz)—@(%—@))/\w - pr A w? -G 1)2chu/\w1 (41)

= (gp—3w—2rw—|—(s—|—ale) DA w? —w/\( )le

Comparing with dw? = (¢ — 3w) A w? — w72 we obtain r =0, s = —& TE=14,
1
1 day das 1 day das F
= (— 4+ ) 3w=—(— — —2) = 2,
? 2<CL1 * a9 )’ v 2(6L1 (IQ) alw

From dy = 0, we obtain ¢ = 0, or A = B = 0, and from 75 = 0 it follows D = 7y = 79, = 0.
From above we get

1 E E 1
3dw = —dF, N —w' = — (2w + 2 w) A —w'
aq a3 a1a2 a1

and comparing with dw = Cw A w! + Sw! A w? we obtain

E E

SC:—Zpy, 38 = 2
ajasg a1a9
Also
2 1 dF, 1 1
2 1
dry :d<a_§): _%(SO"‘?’UH’_W )E, a%(al dr a1a2Fyyw+ — Fypw?).



Comparing with drf = —277(p + 3w) — 3Cw? 4+ THw + THw' we obtain
1 dF, 1
2 2
2F,F, + — = —1F,,.
1 = a1( + Ao T Baz

Now

3dS = —2(35¢) +

1 1dep ot 1 9 1
F —F
a1as a; dx pppt? +a1a2 )

and comparing with dS = —2S¢ + Sow + Sjw! + Sgw we obtain

1 dF, 1 1
S; = B Sy=— =——F,,
YT 3a%ay dz 7 3aiad YT 3a2a2 T
It follows from S; = —2P — 4C that 6P = 2 ~(4Fy, — ) Then
F, dF, 4 1dF, 1 1
6dP = — 3 3 — 4F,, — —* — F —F,
a1a2( @+ ow + alw )( yp du Zay  ar d:z; + yppw + P yupW)
1 1d?F, , 1 dF,, 1 dF
——(— EF EF L . 2
Za; ' a; dz? w a2< d + Lypp + Lppp )W + a1a2( du + FpppFy)w)

Comparing with dP = —(3¢ + 3w) P + Pyw + Pw! + Pyw? we obtain

1 dF, 1 dF, dFy, d?*F,
Py=——(4F,,,6 — —2 _F F P = ——(-4F,F, + I, PPy 4 — P
0 6a:1"a%( yup dx poly): ! 6a§’a2( * dx * dx dx? )
1 dF,
Py=——(4F, — 22 _F —F F.).
2 6a%a%( ypp dr ypp ppp p)
From Q? = 71, — 2577 — P, it follows
1 dF, dF, d?’F,
Q? = m(GFyy -3, Fy, +4F,F,, — F, d:fc)p —4 d;:p + dxgp)' (42)
It follows from Sy = 2n — 4D that 6n = Fppp Then
F, 1 1dF 1 1
6dn = — 3 3w— —w)F — (==l —F 4 —F )
n al%( P — ow ay Pw ) pop T+ wad a1 dz W+ s poppW” T 10 pooy)
Comparing with dn = —n(3¢ — 3w) + now + nyw' + naw? we obtain
1 1 dF, 1
o = GG—MFpppya ny = 6a%a§( d;pp + F Fppp) ng = 6a—1a%Fpppp'
From Q' = 73) + 2573 — ny it follows
n 1
Q = _meppp' (43)

Formulas 43 and 42 are in [Car].
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4 A global invariant

In this section we define the global invariant for path structures. It has a very similar
definition with the global invariant obtained in [FV] in the context of a structure defined on
the complexified tangent space of a 3-manifold. But we make the definition explicit in the
case of path structures for the sake of clarity and to adapt differences of conventions with
our previous paper.

Define the second Chern class of the bundle Y with connection form 7 as

1
CQ(K 7T) = ﬁtr (H A H)

U
0 & v 0 & v 0 0 O'AP2
00 @& |Al 0 0 @ |=]100 0
0 0 O 0 0 O 0 0 0

As ! = Q'w A w? and ®? = Q?w A w! we have II ATl = 0 and therefore
(Y, m) =0.

Definition 4.1 The transgression form is defined as

1 1 1
TCy(m) = 52 (tr (m ATI) + gtr (7r/\7r/\7r)> = 247T2tr(7r/\7r/\7r).

Lemma 4.1 The transgression form is closed, that is, dTCy(m) = co(Y,7) = 0.

Proof. We compute first, using the expressions of ®!, ®2 and W, that
tr(lIAT) =P Aw' + @' AW + U Aw=0.

Differentiating the curvature form we obtain dII = II A m — 7w A Il and therefore

O=dtr(IA7T)=tr(dIAT+IIAdr)=tr (IIAT =7 AID)AT+IIA(Il =7 AT))

= —tr(m AL A ).

Note that tr (o A B) = (—=1)*tr (B A @) if @ and 3 are two matrices of forms of degree k
and [ respectively. Therefore, computing

1
gdtr(ﬂ'/\ﬂ'/\ﬂ'):tr(d