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A global invariant for path structures and second order differential equations

We study a global invariant for path structures. The invariant is obtained as a secondary invariant from a Cartan connection on a canonical bundle associated to a path structure. It is computed in examples which are defined in terms of reductions of the path structure. In particular we give a formula for this global invariant for second order differential equations defined on a torus T 2 .

Introduction

Path structures on a 3-manifold are defined by a choice of contact structure and a decomposition of the contact plane bundle as a direct sum of two line bundles. This structure was througly studied in the 19th century (see in particular [T]) as it appears in the description of second order differential equations and their equivalence under certain transformations (see Section 2 and references [A, IL, BGH]).

In Section 2 we collect definitions and examples. In particular we explain the relation with ordinary second order equations. In the following section we define the most important reductions of path structures. The first one is obtained by fixing a global contact form and it is called strict path structure. There exists a Cartan bundle Y 1 and a connection adapted to that structure (see 2.5) which was used in ( [FMMV]) to obtain a classification of compact 3-manifolds with non-compact automorphism group preserving the strict path structure. We recall the construction in Proposition 2.3. The second one, we call enriched path structure following [MM] which were used by Mion-Mouton to classify certain classes of partial-hyperbolic diffeomorphisms of three manifolds. It consists of path structures where we fix a line transverse to the contact distribution. We define an adapted Cartan bundle Y 2 and a canonical connection adapted to this structure (see 2.6 and Proposition 2.5). There exists a natural embedding Y 1 → Y 2 (Section 2.6.2, Proposition 2.7).

In Section 3 we recall the construction of the Cartan bundle Y and the canonical adapted connection to a path structure on a 3-manifold (see Proposition 3.3). This construction is due to Cartan in [Car]. Although one can find modern treatments of this topic in several references (in particular [IL, BGH]), we include this section for the sake of completeness and because the conventions we use might differ from others. We obtain a natural embedding Y 2 → Y (see 3.4, Proposition 3.4) and compute the curvature of the bundle Y in terms of the curvature of Y 2 (see 3.4.1). The formulas are used in the computation of the global invariant in the next section. We also recall the computations by Cartan of the invariants of a second order differential equation.

In the following section we define the global invariant when Y 2 admits a global section (see Definition 4.2). This construction is inspired by an analogous construction of a Chern-Simons invariant in the case of CR manifolds given in [BE] (see also [CL] for a relative version which does not depend on the existence of a global section). In [FV] we defined a similar invariant for flag structures. Those are manifolds equipped with a decomposition of a complex contact structure defined on the complexified tangent bundle of a 3-manifold. In this paper we restrict the definition to path structures. We obtain the expression of the invariant in terms of a reduction Y 2 or Y 1 of the Cartan bundle Y of the path structure (see Proposition 4.5). We also give a formula of the invariant in the case of a second order differential equation on the torus (Proposition 4.10). It involves an integration of fifth order derivatives of the function defining the ordinary equation in the form y = F (x, y, y ). We use coordinates in the projective cotangent bundle over a surface as explained in section 4.1. We characterize certain families of differential equations on the torus which have vanishing global invariant in Corollary 4.11. We then compute the invariant for a family of path structures on tight contact structures on the torus (see Proposition 5.3) and characterize those structures with vanishing global invariant, they turn to be flat. Finally we compute the global invariant for homogeneous path structures on SU(2) (see Proposition 6.1) and identify the flat structure on the sphere where the global invariant is maximal.

The authors thank Martin Mion-Mouton for useful discussions.

Path structures in dimension 3

Path geometries are very related to the theory of second order differential equations. See a modern treatment in section 8.6 of [IL] and in [BGH] where the relation to second order differential equations is also explained. Le M be a real three dimensional manifold and T M be its tangent bundle.

Definition 2.1 A path structure on M is a choice of two sub-bundles T 1 and T 2 in T M such that T 1 ∩ T 2 = {0} and such that T 1 ⊕ T 2 is a contact distribution.

The condition that T 1 ⊕ T 2 be a contact distribution means that, locally, there exists a one form θ ∈ T * M such that ker θ = T 1 ⊕ T 2 and dθ ∧ θ is never zero.

One can choose a contact form θ up to a scalar function. One can interpret this as follows: one has a R * -bundle over the manifold given by the choice of θ at each point (one might keep only positive multiples for simplicity). Over this line bundle one defines the tautological form ω x = π * (θ π(x) ). This bundle is trivial if and only if there exists a global contact form θ. If the contact distribution is oriented, then there exists a global contact form. Indeed, using a global metric on the distribution one can define locally a transversal vector to the distribution taking a Lie bracket of orthonormal vectors in the distribution. This defines a global 1-form.

Fix θ and local forms Z 1 and Z 2 defining the lines as above such that dθ = Z 1 ∧ Z 2 . There exists global forms Z 1 and Z 2 if and only if there exists global vector fields along the lines. Clearly, if the contact distribution is oriented, it suffices that there exists a global vector field along one of the foliations by lines.

Local equivalence (also called point equivalence) between path structures happens when there exists a local diffeomorphism which gives a correspondence between the lines defining each structure.

The flat model space

Flat path geometry is the geometry of real flags in R 3 . That is the geometry of the space of all couples (p, l) where p ∈ RP 2 and l is a real projective line containing p. The space of flags is identified to the quotient

SL(3, R)/B
where B is the Borel group of all real upper triangular matrices.

The Lie algebra of SL(3, R) decomposes into the following direct sum of vector subspaces:

sl(3, R) = g -2 ⊕ g -1 ⊕ g 0 ⊕ g 1 ⊕ g 2 ,
where

g -2 =      0 0 0 0 0 0 z 0 0      , g -1 =      0 0 0 x 0 0 0 y 0      , g 0 =      u + v 0 0 0 -2v 0 0 0 -u + v      , g 1 =      0 a 0 0 0 b 0 0 0      , g 2 =      0 0 c 0 0 0 0 0 0      .
That is the graded decomposition of sl(3, R) where b = g 0 ⊕ g 1 ⊕ g 2 corresponds to upper triangular matrices with null trace. The tangent space of SL(3, R)/B at [B] is identified to

sl(3, R)/b = g -2 ⊕ g -1 .

Examples

Example I Consider the Heisenberg group

Heis(3) = { (z, t) | z ∈ C, t ∈ R } with multiplication defined by (z 1 , t 1 ) (z 2 , t 2 ) = (z 1 + z 2 , t 1 + t 2 + 2Im z 1 z 2 ). The contact form θ = dt -xdy -ydx
is invariant under left multiplications (also called Heisenberg translations). If Λ ⊂ Heis(3) is a lattice then the quotient Λ \ Heis(3) is a circle bundle over the torus with a globaly defined contact form.

A lattice Λ determines a lattice Γ ⊂ C corresponding to projection in the exact sequence

0 → R → Heis(3) → C → 0.
There are many global vector fields in the distribution defined by θ invariant under Λ, it suffices to lift an invariant vector field on C under Γ. All circle bundles obtained in this way are not trivial and the fibers are transverse to the distribution.

Example II. Here we consider the torus T 3 with coordinates (x, y, t) ( mod 1) and the global contact form θ n = cos(2πnt)dx -sin(2πnt)dy.

There are two canonical global vector fields on the distribution given by ∂ ∂t and sin(2πnt) ∂ ∂x + cos(2πnt) ∂ ∂y . In this example, the fiber given by the coordinate t has tangent space contained in the distribution.

Example III. An homogeneous example is the Lie group SU(2) with left invariant vector fields X and Y with Z = [X, Y ] and cyclic commutation relations. The vector fields X and Y define a path structure on SU(2).

Example IV. Another homogeneous example is the Lie group SL(2, R) with left invariant vector fields X and Y with Z = [X, Y ] with [Z, X] = X and [Z, Y ] = -Y given by generators

X = 0 1 0 0 , Y = 0 0 1 0 , Z = 1 0 0 -1 .
The path structure defined by X and Y induces a path structure on the quotient Γ\SL(2, R) by a discrete torsion free subgroup Γ ⊂ SL(2, R). This structure is invariant under the flow defined by right multiplication by e tZ . Example V. Let Σ be a surface equipped with a Riemannian metric. The geodesic flow on the unit tangent bundle T 1 Σ defines a distribution which, together with the distribution defined by the vertical fibers of the projection of the unit tangent bundle on Σ, defines a path structure which is not invariant under the geodesic flow. For Σ = H 2 R , the hyperbolic space, we obtain T 1 Σ = PSL(2, R) with distributions defined by the left invariant distributions X -Y and Z (using the same generators of the Lie algebra as in the previous example).

Example VI Let M be a three manifold equipped with a path structure D = T 1 ⊕ T 2 ⊂ T M . Suppose D is orientable and choose a section u of T 1 . Each section v of T 2 such that (u, v) is positive gives rise to a CR structure. Indeed we define Ju = v and Jv = -u. The choice of v corresponds to a section of an R * + -bundle over M . Reciprocally given a CR structure on M , defined by J : D → D, one can associate path structures corresponding to a choice T 1 ⊂ D and defining then T 2 = J(T 1 ).

Path structures and second order differential equations

This is studied since a long time (see [T], [IL] and [BGH]). It turns out that path structures can be obtained putting together second order differential equations in one variable. Indeed, a second order differential equation in one variable is described locally as

d 2 y dx 2 = F (x, y, dy dx
).

This defines a path structure on a neighborhood of a point in R 3 with coordinates (x, y, p):

L 1 = ker{dp -F dx} ∩ ker{dy -pdx}, L 2 = ker dx ∩ ker dy.
The contact structure is defined by the form θ = dy -pdx.

Defining the forms Z 1 = dx and Z 2 = dp -F dx, one has that dθ = Z 1 ∧ Z 2 . One can show easily that every path structure is, in fact, locally equivalent to a second order equation. That is, there exists local coordinates such that L 1 and L 2 are defined via a second order ODE as above.

Reductions of path structures

We will describe two reductions of path geometry corresponding to subgroups

G 1 ⊂ G 2 ⊂ SL(3, R)
where

G 1 =      a 0 0 1 a 2 0 a      and G 2 =      a 0 0 1 ab 0 b      .
The models are G 1 /R * and G 2 /R * 2 and correspond to the Heisenberg group where in the first model we fix a contact form and, in the second, a transverse line to the contact distribution.

Other reductions of the G 2 -structure might occur, namely by choosing other embeddings of R * into G 2 . They appear naturally when certain components of the curvature of the Cartan connections on Y 2 or Y are non-vanishing.

We will construct coframe bundles Y 1 , Y 2 and a principal bundle Y over M with structure groups R * , R * 2 and the Borel group B together with Cartan connections and canonical embeddings

Y 1 → Y 2 → Y.
They correspond to a strict path structure, an enriched path structure (see next sections for definitions) and finally, a path structures on the manifold M .

2.5 Path structures with a fixed contact form: strict path structures.

In this section we fix a contact form and recall the reduction of the structure group of a path geometry obtained in [FV] where we called the path structure with a fixed contact form a pseudo flag structure. This structure is called strict path structure in [FMMV].

G 1 denotes from now on the subgroup of SL(3, R) defined by

G 1 =      a 0 0 x 1 a 2 0 z y a   | a ∈ R * , (x, y, z) ∈ R 3    and P 1 ⊂ G 1 the subgroup defined by P 1 =      a 0 0 0 1 a 2 0 0 0 a      .
Writing the Maurer-Cartan form of G 1 as the matrix

  w 0 0 θ 1 -2w 0 θ θ 2 w  
one obtains the Maurer-Cartan equations:

dθ + θ 2 ∧ θ 1 = 0 dθ 1 -3w ∧ θ 1 = 0 dθ 2 + 3w ∧ θ 2 = 0 dw = 0.
G 1 is the automorphism group of the canonical left-invariant strict path structure of Heis(3), and that its action induces an identification of Heis(3) with the homogeneous space X = G 1 /P 1 .

Let M be a three-manifold equipped with a strict path structure (E 1 , E 2 , θ) defined by two one dimensional bundles E 1 and E 2 and contact form θ. We let R be the associated Reeb vector field (satisfying ι R dθ = 0 and θ(R) = 1). Now let X 1 ∈ E 1 , X 2 ∈ E 2 be such that dθ(X 1 , X 2 ) = 1. The dual coframe of (X 1 , X 2 , R) is (θ 1 , θ 2 , θ), for two 1-forms θ1 and θ 2 verifying dθ = θ 1 ∧ θ 2 .

At any point x ∈ M , one can look at the coframes of the form

ω 1 = a 3 θ 1 (x), ω 2 = 1 a 3 θ 2 (x), ω = θ(x) for a ∈ R * .
Definition 2.2 We denote by p 1 : Y 1 → M the R * -coframe bundle over M given by the set of coframes (ω, ω 1 , ω 2 ) of the above form.

We will denote the tautological forms defined by ω 1 , ω 2 , ω using the same letters. That is, we write ω i at the coframe (ω 1 , ω 2 , ω) to be p * 1 (ω i ). Proposition 2.3 There exists a unique Cartan connection on Y 1

π 1 =   w 0 0 ω 1 -2w 0 ω ω 2 w  
such that its curvature form is of the form

Π 1 = dπ 1 + π 1 ∧ π 1 =   dw 0 0 ω ∧ τ 1 -2dw 0 0 -ω ∧ τ 2 dw   with τ 1 ∧ ω 2 = τ 2 ∧ ω 1 = 0.
Observe that the condition τ 1 ∧ ω 2 = τ 2 ∧ ω 1 = 0 implies that we may write τ 1 = τ 1 2 ω 2 and τ 2 = τ 2 1 ω 1 . The structure equations are

dω + ω 2 ∧ ω 1 = 0, dω 1 -3w ∧ ω 1 = ω ∧ τ 1 , dω 2 + 3w ∧ ω 2 = -ω ∧ τ 2 .
The proof of the proposition is given in [FMMV] and [FV].

Bianchi identities are obtained differentiating the structure equations. They are described in the following equations:

dw = Cω ∧ ω 1 + Dω ∧ ω 2 + Sω 1 ∧ ω 2 , ( 1 
)
dτ 1 2 -6τ 1 2 w + 3Dω 1 = τ 1 20 ω + τ 1 22 ω 2
(2)

dτ 2 1 + 6τ 2 1 w + 3Cω 2 = τ 2 10 ω + τ 2 11 ω 1 (3)
2.6 Path structures with a fixed transverse line: enriched path structures.

In this section we introduce a coframe bundle and a Cartan connection associated to a path structure with a fixed transverse line to the the contact distribution. The model space is the homogeneous space which is the quotient of the group of lower triangular matrices in SL(3, R) by the subgroup of diagonal matrices. The Maurer-Cartan form is the Lie algebra valued form which can be represented by

π =   ϕ + w 0 0 ω 1 -2w 0 ω ω 2 -ϕ + w  
The Maurer-Cartan equations dπ + π ∧ π = 0 are given by

dω = 2ϕ ∧ ω + ω 1 ∧ ω 2 dω 1 = ϕ ∧ ω 1 + 3w ∧ ω 1 dω 2 = ϕ ∧ ω 2 -3w ∧ ω 2 .
Let M be a three manifold equipped with a path structure

D = T 1 ⊕ T 2 ⊂ T M . We fix a transverse line L so that T M = T 1 ⊕ T 2 ⊕ L.
We suppose X 1 ∈ T 1 , X 2 ∈ T 2 and X ∈ L is a frame. The dual coframe is θ 1 , θ 2 and θ. Observe that θ is simply a form with ker θ = D. One can define a coframe bundle defined by all coframes:

ω 1 = a 1 θ 1 , ω 2 = a 2 θ 2 , ω = λθ.
where we will suppose, for simplicity, that a 1 , a 2 , λ > 0.

A reduction of this coframe bundle is obtained by imposing that each coframe verifies

dω |D = (ω 1 ∧ ω 2 ) |D
for an extension of the 1-form such that ker ω = D. This relation does not depend on the particular extension of a form ω defined at a point because dω |D (X, Y ) = -ω([X, Y ]) for any vector fields X and Y which are sections of the distribution D.

Definition 2.4 We denote by p 2 : Y 2 → M the R * 2 -coframe bundle over M given by the set of 1-forms (ω, ω 1 , ω 2 ) defined above. The structure group R * 2 acts as follows

(ω , ω 1 , ω 2 ) = (ω, ω 1 , ω 2 )   λ 0 0 0 a 1 0 0 0 a 2  
where λ, a 1 , a 2 ∈ R * + with a 1 a 2 = λ. In order to define a Cartan connection on Y 2 we start taking the tautological forms corresponding to the forms ω, ω 1 , ω 2 , which we will denote by the same letters by abuse of notation.

Using a coframe section (θ, θ 1 , θ 2 ) on M one can express the tautological forms as

ω = λp * 2 (θ), ω 1 = a 1 p * 2 (θ 1 ), ω 2 = a 2 p * 2 (θ 2 ), with a 1 a 2 = λ.
We need to define two forms ϕ and w corresponding to the vertical directions Observe first that we have

dω = dλ λ ∧ ω + ω 1 ∧ ω 2 mod(ω)
and therefore one may write

dω = 2ϕ ∧ ω + ω 1 ∧ ω 2 (4)
where ϕ restricted to the vertical fiber is dλ 2λ . The form ϕ is not yet fixed and any other form ϕ satisfying the equation satisfies

ϕ -ϕ = sω
where s is a funtion on Y 2 . Differentiating the forms ω 1 and ω 2 we obtain new forms which correspond to the coordinates a 1 , a 2 :

dω 1 = da 1 a 1 ∧ ω 1 + a 1 dθ 1 and dω 2 = da 2 a 2 ∧ ω 2 + a 2 dθ 2 . Observing that dλ λ = da 1 a 1 + da 2 a 2 we can write dω 1 = dλ 2λ ∧ ω 1 + 1 2 da 1 a 1 - da 2 a 2 ∧ ω 1 + a 1 dθ 1 dω 2 = dλ 2λ ∧ ω 2 - 1 2 da 1 a 1 - da 2 a 2 ∧ ω 2 + a 2 dθ 2
Now we can make the first right hand term of each equation to be ϕ ∧ ω 1 and ϕ ∧ ω 2 respectively by adding terms in ω, ω 1 , ω 2 to dλ 2λ . The terms in ω 1 ∧ ω 2 not appearing in these first terms can be absorbed in the second term in each equation. It remains a last term in each equation that we denote by ω ∧ τ 1 and -ω ∧ τ 2 respectively. We proved the following: Lemma 2.1 There exists forms w, τ 1 , τ 2 defined on Y 2 such that

dω 1 = ϕ ∧ ω 1 + 3w ∧ ω 1 + ω ∧ τ 1 and dω 2 = ϕ ∧ ω 2 -3w ∧ ω 2 -ω ∧ τ 2 .
(5)

The forms τ 1 and τ 2 are horizontal, that is, they vanish on vectors tangent to the fibers of Y 2 → M . Moreover, writing ω 1 = a 1 θ 1 , ω 2 = a 2 θ 2 , ω = λθ for a choice of sections on M , one has ϕ = dλ 2λ and 6w = da 1 a 1 -da 2 a 2 modulo the tautological forms of the fiber bundle Y 2 .

Let ϕ , w , τ 1 and τ 2 be other forms satisfying equations above. Taking the difference we obtain 0

= (ϕ -ϕ ) ∧ ω 1 + 3(w -w ) ∧ ω 1 + ω ∧ (τ 1 -τ 1 ) and 0 = (ϕ -ϕ ) ∧ ω 2 -3(w -w ) ∧ ω 2 -ω ∧ (τ 2 -τ 2 )
Therefore, as ϕ -ϕ = sω, we can write

0 = -3ω 1 ∧ (w -w ) + ω ∧ (sω 1 + τ 1 -τ 1 ) and 0 = 3ω 2 ∧ (w -w ) -ω ∧ (-sω 2 + τ 2 -τ 2 ). By Cartan's lemma we obtain w -w = aω, τ 1 -τ 1 = -3aω 1 -sω 1 + b 1 ω, τ 2 -τ 2 = -3aω 2 + sω 2 + b 2 ω.
Now, we can impose that τ 1 = τ 1 1 ω 1 + τ 1 2 ω 2 and τ 2 = τ 2 1 ω 1 + τ 2 2 ω 2 by choosing convenient b 1 and b 2 (or by simply considering, from the beginning, τ 1 and τ 2 with no terms in ω). Moreover, one can choose unique a and s so that τ 1 1 = 0 and τ 2 2 = 0. We conclude that Lemma 2.2 There exists unique forms ϕ, w, τ 1 , τ 2 defined on Y 2 such that

dω = 2ϕ ∧ ω + ω 1 ∧ ω 2 dω 1 = ϕ ∧ ω 1 + 3w ∧ ω 1 + ω ∧ τ 1 dω 2 = ϕ ∧ ω 2 -3w ∧ ω 2 -ω ∧ τ 2 with τ 1 ∧ ω 2 = τ 2 ∧ ω 1 = 0.
Bianchi identities are obtained differentiating the above equations:

Lemma 2.3 There exists a 1-form ψ such that

dϕ = ω ∧ ψ (6)
The form ψ may be chosen satisfying ψ = Aω 1 + Bω 2 and dψ = -2ϕ ∧ ψ + ω ∧ α where A, B are functions on Y 2 and α is a 1-form on Y 2 .

Proof. Differentiating equation dω = 2ϕ ∧ ω + ω 1 ∧ ω 2 one obtains, using equations 5, that dϕ ∧ ω = 0, that is,

dϕ = ω ∧ ψ (7) for a 1-form ψ defined on Y 2 . Differentiating dϕ = ω ∧ ψ one has 0 = dω ∧ ψ -ω ∧ dψ = (2ϕ ∧ ω + ω 1 ∧ ω 2 ) ∧ ψ -ω ∧ dψ = ω 1 ∧ ω 2 ∧ ψ -ω ∧ (dψ + 2ϕ ∧ ψ).
Using Cartan's lemma, ψ = Aω 1 + Bω 2 modulo ω, and we certainly can choose ψ satisfying dϕ = ω ∧ ψ with ψ = Aω 1 + Bω 2 . We conclude that

dψ + 2ϕ ∧ ψ = ω ∧ α.
2

Equation ddω 1 = 0 gives after simplifications

0 = d(ϕ + 3w) ∧ ω 1 + ω ∧ ω 2 (dτ 1 2 + 2τ 1 2 (ϕ -3w)). ( 8 
)
Analogously, ddω 2 = 0 simplifies to

0 = d(ϕ -3w) ∧ ω 2 -ω ∧ ω 1 (dτ 2 1 + 2τ 2 1 (ϕ + 3w)). (9) 
Using the previous lemma we may write

dw = Cω ∧ ω 1 + Dω ∧ ω 2 + Sω 1 ∧ ω 2 ,
where C, D and S are functions on Y 2 . We can represent the equations above as a matrix equation whose entries are differential forms. The forms are disposed in the Lie algebra b ⊂ sl(3, R) (the Lie algebra of lower triangular matrices) and we obtain the following Proposition.

Proposition 2.5 Let Y 2 be the adapted principal bundle constructed above associated to an enriched path structure on a manifold M . Then there exists a unique Cartan's connection with values in b:

π 2 =   ϕ + w 0 0 ω 1 -2w 0 ω ω 2 -ϕ + w  
with curvature:

Π 2 = dπ 2 + π 2 ∧ π 2 =   ω ∧ ψ + W 0 0 τ 1 2 ω ∧ ω 2 -2W 0 0 -τ 2 1 ω ∧ ω 1 -ω ∧ ψ + W   ( 10 
)
where

W = Cω ∧ ω 1 + Dω ∧ ω 2 + Sω 1 ∧ ω 2 and ψ = Aω 1 + Bω 2 .
2.6.1 More Bianchi identities

• Substituting the expressions above in equations 8 and 9 we obtain

dτ 1 2 + 2τ 1 2 (ϕ -3w) + (B + 3D)ω 1 = τ 1 20 ω + τ 1 22 ω 2 . ( 11 
)
• Analogously we obtain

dτ 2 1 + 2τ 2 1 (ϕ + 3w) -(A -3C)ω 2 = τ 2 10 ω + τ 2 11 ω 1 . ( 12 
)
From the last two equations we obtain the following Proposition 2.6 If the adapted connection of Y 2 has nul torsion and

dw = Sω 1 ∧ ω 2 ,
then dϕ = 0.

• Analogously, ddϕ = 0 simplifies to

0 = ω ∧ ω 1 (dA + 3A(ϕ + w)) + ω ∧ ω 2 (dB + 3B(ϕ -w))
and we obtain

dA + 3A(ϕ + w) = A 0 ω + A 1 ω 1 + A 2 ω 2 , ( 13 
) dB + 3B(ϕ -w) = B 0 ω + B 1 ω 1 + B 2 ω 2 , ( 14 
)
with A 2 = B 1 .

• Also, ddw = 0 simplifies to

0 = ω ∧ ω 1 (dC + 3C(ϕ + w)) + ω ∧ ω 2 (dD + 3D(ϕ -w)) + ω 1 ∧ ω 2 (dS + 2Sϕ)
and we obtain

dC + 3C(ϕ + w) = C 0 ω + C 1 ω 1 + C 2 ω 2 , ( 15 
) dD + 3D(ϕ -w) = D 0 ω + D 1 ω 1 + D 2 ω 2 , ( 16 
) dS + 2Sϕ = S 0 ω + S 1 ω 1 + S 2 ω 2 , ( 17 
) with C 2 -D 1 + S 0 = 0. Lemma 2.4 If τ 1 = τ 2 = C = D = 0 dϕ = 0.
Proof. From the last formulae we obtain that ψ is a multiple of ω and the result follows. 2

The embedding ι

1 : Y 1 → Y 2
Given a path structure with a fixed contact form ω we obtained first a coframe bundle Y 1 and one can also obtain a canonical transverse direction by considering the Reeb vector field associated to ω. One obtains then a coframe bundle Y 2 of last section. Given a coframe (ω, ω 1 , ω 2 ) ∈ Y 1 one can view the same coframe as a coframe of Y 2 . This gives an embedding

ι 1 : Y 1 → Y 2 .
By abuse of language we may write the connection forms of Y 1 and Y 2 using the same letters and then obtain: Proposition 2.7 There exists a unique embedding

ι 1 : Y 1 → Y 2 satisfying ι * 1 (ω) = ω, ι * 1 (ω 1 ) = ω 1 and ι * 1 (ω 2 ) = ω 2 . Moreover, for this embedding, ι * 1 (ϕ) = 0 and ι * 1 (w) = w.
Proof. If unicity is not satisfied one can obtain the same forms pulling back a different coframe. But from the transformations of the coframe,

ω = a b ω ω1 = a 2 b ω 1 ω2 = 1 ab 2 ω 2 .
We obtain then that a = b = 1 and the embedding is uniquely determined by the conditions. Comparing the structure equations of both structures we further get the equations ι * 1 (ϕ) = 0 and ι * 1 (w) = w. 2

3 The Cartan connection of a path structure

We review in this section the construction of a Cartan connection. The construction is due to E. Cartan in [Car] and one can read a modern description of it in [IL]. We include this section in order to fix our conventions and describe the embedding of Y 2 into the corresponding fiber bundle associated to a path geometry (see 3.4 and 3.4.1) which will be used to define the global invariant.

The Maurer-Cartan form on SL(3, R) is given by a form with values in the Lie algebra sl(3, R) :

π =   ϕ + w ϕ 2 ψ ω 1 -2w ϕ 1 ω ω 2 -ϕ + w   satisfying the equation dπ + π ∧ π = 0. That is dω = ω 1 ∧ ω 2 + 2ϕ ∧ ω dω 1 = ϕ ∧ ω 1 + 3w ∧ ω 1 + ω ∧ ϕ 1 dω 2 = ϕ ∧ ω 2 -3w ∧ ω 2 -ω ∧ ϕ 2 dw = - 1 2 ϕ 2 ∧ ω 1 + 1 2 ϕ 1 ∧ ω 2 dϕ = ω ∧ ψ - 1 2 ϕ 2 ∧ ω 1 - 1 2 ϕ 1 ∧ ω 2 dϕ 1 = ψ ∧ ω 1 -ϕ ∧ ϕ 1 + 3w ∧ ϕ 1 dϕ 2 = -ψ ∧ ω 2 -ϕ ∧ ϕ 2 -3w ∧ ϕ 2 dψ = ϕ 1 ∧ ϕ 2 + 2ψ ∧ ϕ.
3.1 The R * -bundle of contact forms and an adapted coframe bundle

We recall the construction of the R * -bundle of contact forms. Define E to be the R * -bundle of all forms θ on T M such that ker θ = T 1 ⊕ T 2 . Remark that this bundle is trivial if and only if there exists a globally defined non-vanishing form θ. Define the set of forms θ 1 and θ 2 on M satisfying θ 1 (T 1 ) = 0 and θ 2 (T 2 ) = 0.

ker θ 1 | ker θ = T 2 and ker θ 2 | ker θ = T 1 . Fixing one choice, all others are given by θ i = a i θ i + v i θ.

On E we define the tautological form ω. That is ω θ = π * (θ) where π : E → M is the natural projection. We also consider the tautological forms defined by the forms θ 1 and θ 2 over the line bundle E. That is, for each θ ∈ E we let ω i θ = π * (θ i ). At each point θ ∈ E we have the family of forms defined on E:

ω = ω ω 1 = a 1 ω 1 + v 1 ω ω 2 = a 2 ω 2 + v 2 ω
We may, moreover, suppose that

dθ = θ 1 ∧ θ 2 modulo θ and therefore dω = ω 1 ∧ ω 2 modulo ω.
This imposes that a 1 a 2 = 1. Those forms vanish on vertical vectors, that is, vectors in the kernel of the map T E → T M . In order to define non-horizontal 1-forms we let θ be a section of E over M and introduce the coordinate λ ∈ R * in E. By abuse of notation, let θ denote the tautological form on the section θ. We write then the tautological form ω over E is

ω λθ = λθ.
Differentiating this formula we obtain

dω = 2ϕ ∧ ω + ω 1 ∧ ω 2 (18)
where ϕ = dλ 2λ modulo ω, ω 1 , ω 2 . Here dλ 2λ is a form intrinsically defined on E up to horizontal forms. We obtain in this way a coframe bundle satisfying equation 18 over E:

ω = ω ω 1 = a 1 ω 1 + v 1 ω ω 2 = a 2 ω 2 + v 2 ω ϕ = ϕ - 1 2 a 1 v 2 ω 1 + 1 2 a 2 v 1 ω 2 + sω v 1 , v 2 , s ∈ R and a 1 , a 2 ∈ R * such that a 1 a 2 = 1.
Definition 3.1 We denote by Y the coframe bundle Y → E given by the set of 1-forms ω, ω 1 , ω 2 , ϕ as above. Two coframes are related by

(ω , ω 1 , ω 2 , ϕ ) = (ω, ω 1 , ω 2 , ϕ)     1 v 1 v 2 s 0 a 1 0 -1 2 a 1 v 2 0 0 a 2 1 2 a 2 v 1 0 0 0 1    
where and s, v 1 , v 2 ∈ R and a 1 , a 2 ∈ R * satisfy a 1 a 2 = 1.

The bundle Y can also be fibered over the manifold M . In order to describe the bundle Y as a principal fiber bundle over M observe that choosing a local section θ of E and forms θ 1 and θ 2 on M such that dθ = θ 1 ∧ θ 2 one can write a trivialization of the fiber

ω = λθ ω 1 = a 1 θ 1 + v 1 λθ ω 2 = a 2 θ 2 + v 2 λθ ϕ = dλ 2λ - 1 2 a 1 v 2 θ 1 + 1 2 a 2 v 1 θ 2 + sθ, where v 1 , v 2 , s ∈ R and a 1 , a 2 ∈ R * such that a 1 a 2 = λ.
Here the coframe ω, ω 1 , ω 2 , ϕ is seen as composed of tautological forms.

The group H acting on the right of this bundle is

H =            λ v 1 λ v 2 λ s 0 a 1 0 -1 2 a 1 v 2 0 0 a 2 1 2 a 2 v 1 0 0 0 1     where s, v 1 , v 2 ∈ R and a 1 , a 2 ∈ R * satisfy a 1 a 2 = λ       
.

Consider the homomorphism from the Borel group B ⊂ SL(3, R) of upper triangular matrices with determinant one into

H j : B → H given by   a c e 0 1 ab f 0 0 b   -→     a b -a 2 f c b -eb + 1 2 acf 0 a 2 b 0 -1 2 abc 0 0 1 ab 2 -f 2b 0 0 0 1    
One verifies that the homomorphism is surjective so that H is isomorphic to the Borel group of upper triangular matrices in SL(3, R).

Proposition 3.2 The bundle Y → M is a principal bundle with structure group H.

Construction of connection forms on the bundle Y

The goal of this section is to review the construction of canonical forms defined on the coframe bundle Y → E as in [FV]. They give rise to a Cartan connection on Y with values in sl(3, R).

A local section of the coframe bundle over M may be given by three forms

θ, θ 1 , θ 2 satisfying dθ = θ 1 ∧ θ 2 , with ker θ 1 | ker θ = T 2 and ker θ 2 | ker θ = T 1 .
They give coordinates on the cotangent bundle over E. Indeed, at λθ ∈ E, the coframes of Y are parametrized as follows:

ω = λθ ω i = a i θ i + v i λθ with a 1 a 2 = λ and dω = 2ϕ ∧ ω + ω 1 ∧ ω 2 , (19) 
where ϕ = dλ 2λ mod ω 1 , ω 2 , ω. Differentiating the forms ω 1 and ω 2 we obtain new forms which correspond to the coordinates a 1 , v 1 , a 2 , v 2 (recall that a 1 and a 2 are not independent): Lemma 3.1 There exists linearly independent forms w, ϕ 1 , ϕ 2 defined on T * Y such that

dω 1 = ϕ ∧ ω 1 + 3w ∧ ω 1 + ω ∧ ϕ 1 and dω 2 = ϕ ∧ ω 2 -3w ∧ ω 2 -ω ∧ ϕ 2 (20) with w = 1 6 ( da 1 a 1 -da 2 a 2 ) mod (ω, ω 1 , ω 2 ) and ϕ 1 = -dv 1 , ϕ 2 = dv 2 mod (ω, ω 1 , ω 2 ).
The coordinate s in the bundle Y is associated to a new form:

Lemma 3.2 There exists a 1-form ψ such that

dϕ = ω ∧ ψ - 1 2 (ϕ 2 ∧ ω 1 + ϕ 1 ∧ ω 2 ) ( 21 
)
The forms w, ϕ 1 , ϕ 2 and ψ are not yet determined. Define

W = dw + 1 2 ω 2 ∧ ϕ 1 - 1 2 ω 1 ∧ ϕ 2 Φ 1 = dϕ 1 + 3ϕ 1 ∧ w + ω 1 ∧ ψ + ϕ ∧ ϕ 1 Φ 2 = dϕ 2 -3ϕ 2 ∧ w -ω 2 ∧ ψ + ϕ ∧ ϕ 2
Lemma 3.3 There exists unique forms w, ϕ 1 , ϕ 2 and ψ such that

W = 0, Φ 1 = Q 1 ω ∧ ω 2 and Φ 2 = Q 2 ω ∧ ω 1 where Q 1 and Q 2 are functions on Y .
We 

π =   ϕ + w ϕ 2 ψ ω 1 -2w ϕ 1 ω ω 2 -ϕ + w   .
such that its curvature satisfies

Π = dπ + π ∧ π =   0 Φ 2 Ψ 0 0 Φ 1 0 0 0   with Φ 1 = Q 1 ω ∧ ω 2 , Φ 2 = Q 2 ω ∧ ω 1 and Ψ = (U 1 ω 1 + U 2 ω 2 ) ∧ ω.

Curvature forms and Bianchi identities

Curvature forms appear as differentials of connection forms and are used implicitly in order to fix the connection forms. We recall:

W = dw - 1 2 ω 2 ∧ ϕ 1 + 1 2 ω 1 ∧ ϕ 2 = 0, (22) 
Φ 1 = dϕ 1 + 3ϕ 1 ∧ w + ω 1 ∧ ψ + ϕ ∧ ϕ 1 = Q 1 ω ∧ ω 2 , (23) 
Φ 2 = dϕ 2 -3ϕ 2 ∧ w -ω 2 ∧ ψ + ϕ ∧ ϕ 2 = Q 2 ω ∧ ω 1 , (24) 
Ψ := dψ -ϕ 1 ∧ ϕ 2 -2ϕ ∧ ψ = (U 1 ω 1 + U 2 ω 2 ) ∧ ω. ( 25 
)
where Q 1 , Q 2 , U 1 and U 2 are functions on Y .

3.3.1

Equation d(dϕ 1 ) = 0 obtained differentiating Φ 1 above implies

dQ 1 -6Q 1 w + 4Q 1 ϕ = S 1 ω + U 2 ω 1 + T 1 ω 2 , (26) 
'where we introduced functions S 1 and T 1 .

3.3.2

Analogously, equation d(dϕ 2 ) = 0 obtained differentiating Φ 2 above implies

dQ 2 + 6Q 2 w + 4Q 2 ϕ = S 2 ω -U 1 ω 2 + T 2 ω 1 , (27) 
where we introduced new functions S 2 and T 2 .

3.3.3

Equation d(dψ) = 0 obtained from 25 implies

dU 1 + 5U 1 ϕ + 3U 1 w + Q 2 ϕ 1 = Aω + Bω 1 + Cω 2 (28) 
and

dU 2 + 5U 2 ϕ -3U 2 w -Q 1 ϕ 2 = Dω + Cω 1 + Eω 2 . ( 29 
) 3.4 Embedding ι 2 : Y 2 → Y
The goal now is to obtain an immersion ι 2 : Y 2 → Y . One can construct the bundle Y 2 using the bundle E of contact forms as a first step. Than Y 2 is a coframe bundle over E obtained by the tautological forms ω, ω 1 , ω 2 corresponding to forms θ, θ 1 , θ 2 satisfying dθ = θ 1 ∧θ 2 +2ϕ∧ω with an appropriate ϕ.

By abuse of language again as for ι 1 : Y 1 → Y 2 , we may write the connection forms of Y 1 and Y using the same letters and then obtain: Proposition 3.4 There exists a unique embedding

ι 2 : Y 2 → Y satisfying ι * 2 (ω) = ω, ι * 2 (ω 1 ) = ω 1 , ι * 2 (ω 2 ) = ω 2 , ι * 2 (ϕ) = ϕ.
Proof. As Y 2 and Y are both coframe bundles over the line bundle E of all contact forms, we can assume that the embedding projects to the identity map on E. Over E, Y is a coframe bundle with structure group

     a c e 0 1 a 2 f 0 0 a      .
In order to determine the embedding we need to choose functions c, e and f . The diagonal matrix correspond to the fiber of Y 2 and does not need to be fixed. Consider then a map from M to the group above given by

h =   1 c e 0 1 f 0 0 1   . Recall that R h * π = h -1 d h + Ad h -1 π.
We obtain, neglecting the terms of the connection of Y which are not relevant, the following transformation formulae. Remark that the term h -1 d h does not appear in the transformation of these components.

ω = ω ω1 = ω 1 -f ω ω2 = ω 2 + c ω φ = ϕ - 1 2 c ω 1 -f ω 2 + ( 1 2 cf -e) ω (30) 
The forms ω 1 and ω 2 defined at each point of Y 2 define corresponding forms ω 1 and ω 2 in Y . We observe then that the functions f and c must be zero in order that ι * 2 (ω 1 ) = ω 1 , ι * 2 (ω 2 ) = ω 2 . Finally the form ϕ on Y 2 defines a corresponding form on Y and we conclude that e = 0 if we impose that ι * 2 (ϕ) = ϕ. We obtain the following equations by pulling back to Y 2 the structure equations on Y through the embedding ι 2 :

dω = 2ϕ ∧ ω + ω 1 ∧ ω 2 dω 1 = ϕ ∧ ω 1 + 3 w ∧ ω 1 + ω ∧ ϕ 1 (31) dω 2 = ϕ ∧ ω 2 -3 w ∧ ω 2 -ω ∧ ϕ 2 (32) dϕ = ω ∧ ψ - 1 2 (ϕ 2 ∧ ω 1 + ϕ 1 ∧ ω 2 ) (33) d w = - 1 2 ϕ 2 ∧ ω 1 + 1 2 ϕ 1 ∧ ω 2 (34) dϕ 1 + 3ϕ 1 ∧ w + ω 1 ∧ ψ + ϕ ∧ ϕ 1 = Q 1 ω ∧ ω 2 (35) dϕ 2 -3ϕ 2 ∧ w -ω 2 ∧ ψ + ϕ ∧ ϕ 2 = Q 2 ω ∧ ω 1 d ψ -ϕ 1 ∧ ϕ 2 -2ϕ ∧ ψ = (U 1 ω 1 + U 2 ω 2 ) ∧ ω.
In the formulae above we write the pull back of any form α defined on Y using the same notation α except for the pull backs w = ι * 2 w and ψ = ι * 2 ψ. We should compare with the structure equations of Y 2 and obtain an expression for Q 1 and Q 2 :

dω = 2ϕ ∧ ω + ω 1 ∧ ω 2 dω 1 = ϕ ∧ ω 1 + 3w ∧ ω 1 + ω ∧ τ 1 dω 2 = ϕ ∧ ω 2 -3w ∧ ω 2 -ω ∧ τ 2 with τ 1 ∧ ω 2 = τ 2 ∧ ω 1 = 0.
Recall also that dϕ = ω ∧ψ with ψ = Aω 1 +Bω 2 and dw = Cω ∧ω 1 +Dω ∧ω 2 +Sω 1 ∧ω 2 , where A, B, C, D and S are functions on Y 2 .

• The differences between the pull back equations and the structure equations for dω 1 and dω 2 give, respectively,

3( w -w) ∧ ω 1 + ω ∧ (ϕ 1 -τ 1 ) = 0 and 3( w -w) ∧ ω 2 + ω ∧ (ϕ 2 -τ 2 ) = 0.
Therefore, by Cartan's lemma w -w = mω for a function m to be determined and

ϕ 1 -τ 1 = -3mω 1 + nω and ϕ 2 -τ 2 = -3mω 2 + P ω,
where n and P are functions to be determined.

• The difference between the equation dϕ = ω ∧ ψ and the pull back equation for dϕ

above is ω ∧ ( ψ -ψ) - 1 2 (ϕ 2 ∧ ω 1 + ϕ 1 ∧ ω 2 ) = 0.
Substituting the expressions for ϕ 1 and ϕ 2 obtained in the item above we obtain

ω ∧ ( ψ -Aω 1 -Bω 2 ) - 1 2 ((τ 2 -3mω 2 + P ω) ∧ ω 1 + (τ 1 -3mω 1 + nω) ∧ ω 2 ) = 0, which simplifies to ω ∧ ( ψ -Aω 1 -Bω 2 - P 2 ω 1 - n 2 ω 2 ) = 0. This implies that ψ = (A + P 2 )ω 1 + (B + n 2 )ω 2 + qω,
where q is a function to be determined.

• The difference between the equations for d w and dw is then

d(mω) = d w -dw = - 1 2 ϕ 2 ∧ ω 1 + 1 2 ϕ 1 ∧ ω 2 -Sω 1 ∧ ω 2 -Cω ∧ ω 1 -Dω ∧ ω 2 .
Substituting in this formula the expressions for ϕ 1 and ϕ 2 in terms of the enriched structure we obtain

dm ∧ ω + m(2ϕ ∧ ω + ω 1 ∧ ω 2 ) = (-S -3m)ω 1 ∧ ω 2 + (- P 2 -C)ω ∧ ω 1 + ( n 2 -D)ω ∧ ω 2 .
That is,

(S + 4m)ω 1 ∧ ω 2 + ω ∧ -dm -2mϕ + ( P 2 + C)ω 1 -( n 2 -D)ω 2 = 0. Therefore m = -S/4
and so

1 4 dS + 1 2 Sϕ + ( P 2 + C)ω 1 -( n 2 -D)ω 2 + Eω = 0
where E is a function determined by the derivative of S. Writing dS + 2Sϕ = S 0 ω + S 1 ω 1 + S 2 ω 2 and comparing with the above expression, we obtain

S 0 = -4E, S 1 = -2(P + 2C), S 2 = -2(-n + 2D). ( 36 
)
Therefore the functions P and n are determined. It remains to determine the function q.

• Computing dϕ 1 = d( 3S 4 ω 1 + nω + τ 1 ) and equating to the structure equation

dϕ 1 = -3ϕ 1 ∧ w -ω 1 ∧ ψ -ϕ ∧ ϕ 1 + Q 1 ω ∧ ω 2 we obtain, after a computation writing dn + 3n(ϕ -w) = n 0 ω + n 1 ω 1 + n 2 ω 2 , ( 37 
)
n 1 = -τ 1 2 τ 2 1 -q + 9 16 S 2 -3E , n 2 = -Q 1 + 3 2 Sτ 1 2 + τ 1 20 . ( 38 
)
Recalling that n = S 2 /2+4D, S and D are determined by Y 2 , we obtained an expression for Q 1 in terms of the enriched structure. Note also that q is determined by the first equation.

• Analogously, computing dϕ 2 = -3 3S 4 ω 2 +pω+τ 2 and equating to the structure equation

dϕ 2 -3ϕ 2 ∧ w -ω 2 ∧ ψ + ϕ ∧ ϕ 2 = Q 2 ω ∧ ω 1 we
obtain, after a computation, writing dP + 3P (ϕ + w) = P 0 ω + P 1 ω 1 + P 2 ω 2 ),

P 1 = -Q 2 - 3 2 Sτ 2 1 + τ 2 10 , P 2 = τ 1 2 τ 2 1 + q - 9 16 S 2 -3E. ( 39 
)
Recalling that P = -S 1 /2 -2C, S and C are determined by Y 2 , we obtained an expression for Q 2 in terms of the enriched structure.

The following proposition follows directly from the computations above.

Proposition 3.5 Suppose Y 2 with its adapted Cartan connection has null torsion, that is, satisfies τ 1 = τ 2 = 0 and dw = Sω 1 ∧ ω 2 . Then

Q 2 = 1 2 S 11
and

Q 1 = - 1 2 S 22 ,
where S 11 is the ω 1 component of the form dS 1 and S 22 is the ω 2 component of the form dS 2 .

Proof. From Proposition 2.6, null torsion and the condition that dw = Sω 1 ∧ ω 2 (that is, C = D = 0) implies that P = -S 1 /2 and n = S 2 /2. The result is therefore implied from the previous formulas. 2

The embedding Y 1 → Y

Recall that Y 1 is a coframe bundle of forms (θ, θ 1 , θ 2 ) over M . Choosing a local section, the pullback forms over M are also denoted by (θ, θ 1 , θ 2 ). We recall here an embedding Y 1 → Y obtained in [FV].

A section (θ, θ 1 , θ 2 ) of the coframe bundle Y 1 clearly defines a path geometry on M . We obtain then a line bundle E and a principal bundle Y with its associated Cartan connection. Also, (θ, θ 1 , θ 2 ) defines, up to the action by the group of matrices

  1 c e 0 1 f 0 0 1  
sections of the tautological forms (ω, ω 1 , ω 2 ) on Y . In order to define a canonical section we use the following Proposition 3.6 Let θ, θ 1 , θ 2 be a coframe section of Y 1 and consider the principal bundle Y defined by this coframe. Then there exists a unique section s :

M → Y such that s * ω = θ, s * ω 1 = θ 1 , s * ω 2 = θ 2 and s * ϕ = 0.
It is easy to verify that this definition is equivariant with respect to the action G 1 , the one parameter group of the strict contact structure. This defines then the embedding Y 1 → Y .

The equivalence problem for a second order differential equation

In this section we recall the treatment by Cartan of the point equivalence between second order differential equations. It is included in order to fix conventions and to compare the invariants defined in the next section.

Recall that for a second order differential equation we define θ = dy -pdx, and L 1 = ker{dp -F dx} ∩ ker{dy -pdx}, L 2 = ker dx ∩ ker dy.

For Z 1 = dx and Z 2 = dp -F dx, one has then dθ = Z 1 ∧ Z 2 . The general forms defining the lines at each tangent space may be described by

ω 1 = a 1 Z 1 , ω 2 = a 2 Z 2 , ω = a 1 a 2 θ
where a 1 , a 2 are non-vanishing positive functions on the manifold, so that we have always

2ϕ ∧ ω + ω 1 ∧ ω 2 = dω = ( da 1 a 1 + da 2 a 2 ) ∧ ω + a 1 Z 1 ∧ a 2 Z 2 ,
and we obtain comparing with 4

ϕ = 1 2 ( da 1 a 1 + da 2 a 2 ) + rω.
One computes

(ϕ+3w)∧ω 1 +ω ∧τ 1 = dω 1 = da 1 ∧Z 1 +a 1 .0 = 1 2 ( da 1 a 1 + da 2 a 2 ) + 1 2 ( da 1 a 1 - da 2 a 2 ) ∧ω 1 (40) and obtain 3w = 1 2 ( da 1 a 1 - da 2 a 2 ) -rω + sω 1 , τ 1 2 = 0. Observe that, if f (x, y, p) then df = 1 a 1 df dx ω 1 + 1 a 2 f p ω 2 + 1 a 1 a 2 f y ω,
where df dx = f x + f y p + f p F . Also

dω 2 = da 2 a 2 ∧ ω 2 + a 2 (-1 a 2 F p ω 2 -1 a 1 a 2 F y ω) ∧ 1 a 1 ω 1 = ( 1 2 ( da 1 a 1 + da 2 a 2 ) -1 2 ( da 1 a 1 -da 2 a 2 )) ∧ ω 2 + 1 a 1 F p ω 1 ∧ ω 2 -1 (a 1 ) 2 F y ω ∧ ω 1 = (ϕ -3w -2rω + (s + 1 a 1 F p )ω 1 ) ∧ ω 2 -ω ∧ Fy (a 1 ) 2 ω 1 (41) Comparing with dω 2 = (ϕ -3w) ∧ ω 2 -ω ∧ τ 2 we obtain r = 0, s = -Fp a 1 , τ 2 1 = Fy a 2 1 , ϕ = 1 2 ( da 1 a 1 + da 2 a 2 ), 3w = 1 2 ( da 1 a 1 - da 2 a 2 ) - F p a 1 ω 1 .
From dϕ = 0, we obtain ψ = 0, or A = B = 0, and from

τ 1 2 = 0 it follows D = τ 1 20 = τ 1 22 = 0. From above we get 3dw = -dF p ∧ 1 a 1 ω 1 = -( F pp a 2 ω 2 + F py a 1 a 2 ω) ∧ 1 a 1 ω 1
and comparing with dw

= Cω ∧ ω 1 + Sω 1 ∧ ω 2 we obtain 3C = - F py a 2 1 a 2 , 3S = F pp a 1 a 2 . Also dτ 2 1 = d( F y a 2 1 ) = - 2 a 2 1 (ϕ + 3w + F p a 1 ω 1 )F y + 1 a 2 1 ( 1 a 1 dF y dx ω 1 + 1 a 1 a 2 F yy ω + 1 a 2 F yp ω 2 ).
Comparing with dτ 2 1 = -2τ 2 1 (ϕ + 3w) -3Cω 2 + τ 2 10 ω + τ 2 11 ω 1 we obtain

τ 2 11 = 1 a 3 1 (-2F p F y + dF y dx ), τ 2 10 = 1 a 3 1 a 2 F yy . Now 3dS = -2(3Sϕ) + 1 a 1 a 2 ( 1 a 1 dF pp dx ω 1 + 1 a 2 F ppp ω 2 + 1 a 1 a 2 F ppy ω)
and comparing with dS = -2Sϕ + S 0 ω + S 1 ω 1 + S 2 ω 2 we obtain

S 1 = 1 3a 2 1 a 2 dF pp dx , S 2 = 1 3a 1 a 2 2 F ppp , S 0 = 1 3a 2 1 a 2 2 F ppy . It follows from S 1 = -2P -4C that 6P = 1 a 2 1 a 2 (4F yp -dFpp dx ). Then 6dP = - 1 a 2 1 a 2 (3ϕ + 3w + F p a 1 ω 1 )(4F yp - dF pp dx ) + 4 a 2 1 a 2 ( 1 a 1 dF yp dx ω 1 + 1 a 2 F ypp ω 2 + 1 a 1 a 2 F yyp ω) - 1 a 2 1 a 2 ( 1 a 1 d 2 F pp dx 2 ω 1 + 1 a 2 ( dF ppp dx + F ypp + F ppp F p )ω 2 + 1 a 1 a 2 ( dF ypp dx + F ppp F y )ω)
Comparing with dP = -(3ϕ + 3w)P + P 0 ω + P 1 ω 1 + P 2 ω 2 we obtain

P 0 = 1 6a 3 1 a 2 2 (4F yyp - dF ypp dx -F ppp F y ), P 1 = 1 6a 3 1 a 2 (-4F p F yp + F p dF pp dx + 4 dF yp dx - d 2 F pp dx 2 ), P 2 = 1 6a 2 1 a 2 2 (4F ypp - dF ppp dx -F ypp -F ppp F p ). From Q 2 = τ 2 10 -3 2 Sτ 2 1 -P 1 it follows Q 2 = 1 6a 3 1 a 2 (6F yy -3F y F pp + 4F p F yp -F p dF pp dx -4 dF yp dx + d 2 F pp dx 2 ). ( 42 
) It follows from S 2 = 2n -4D that 6n = 1 a 1 a 2 2 F ppp . Then 6dn = - 1 a 1 a 2 2 (3ϕ -3w - F p a 1 ω 1 )F ppp + 1 a 1 a 2 2 ( 1 a 1 dF ppp dx ω 1 + 1 a 2 F pppp ω 2 + 1 a 1 a 2 F pppy ω).
Comparing with dn = -n(3ϕ -3w) + n 0 ω + n 1 ω 1 + n 2 ω 2 we obtain

n 0 = 1 6a 2 1 a 3 2 F pppy , n 1 = 1 6a 2 1 a 2 2 ( dF ppp dx + F p F ppp ) n 2 = 1 6a 1 a 3 2 F pppp . From Q 1 = τ 1 20 + 3 2 Sτ 1 2 -n 2 it follows Q 1 = - 1 6a 1 a 3 2 F pppp . (43) 
Formulas 43 and 42 are in [Car].

A global invariant

In this section we define the global invariant for path structures. It has a very similar definition with the global invariant obtained in [FV] in the context of a structure defined on the complexified tangent space of a 3-manifold. But we make the definition explicit in the case of path structures for the sake of clarity and to adapt differences of conventions with our previous paper. Define the second Chern class of the bundle Y with connection form π as

c 2 (Y, π) = 1 8π 2 tr (Π ∧ Π).   0 Φ 2 Ψ 0 0 Φ 1 0 0 0   ∧   0 Φ 2 Ψ 0 0 Φ 1 0 0 0   =   0 0 Φ 1 ∧ Φ 2 0 0 0 0 0 0   . As Φ 1 = Q 1 ω ∧ ω 2 and Φ 2 = Q 2 ω ∧ ω 1 we have Π ∧ Π = 0 and therefore c 2 (Y, π) = 0.
Definition 4.1 The transgression form is defined as

T C 2 (π) = 1 8π 2 tr (π ∧ Π) + 1 3 tr (π ∧ π ∧ π) = 1 24π 2 tr (π ∧ π ∧ π). Lemma 4.1 The transgression form is closed, that is, d T C 2 (π) = c 2 (Y, π) = 0.
Proof. We compute first, using the expressions of Φ 1 , Φ 2 and Ψ, that

tr (Π ∧ π) = Φ 2 ∧ ω 1 + Φ 1 ∧ ω 2 + Ψ ∧ ω = 0.
Differentiating the curvature form we obtain d Π = Π ∧ π -π ∧ Π and therefore

0 = d tr (Π ∧ π) = tr (d Π ∧ π + Π ∧ d π) = tr ((Π ∧ π -π ∧ Π) ∧ π + Π ∧ (Π -π ∧ π)) = -tr (π ∧ Π ∧ π).
Note that tr (α ∧ β) = (-1) kl tr (β ∧ α) if α and β are two matrices of forms of degree k and l respectively. Therefore, computing

1 3 d tr (π ∧ π ∧ π) = tr (d π ∧ π ∧ π) = tr ((Π -π ∧ π) ∧ π ∧ π) = -tr (π ∧ π ∧ π ∧ π) = 0.
2 Definition 4.2 Suppose that the fiber bundle Y → M is trivial and let s : M → Y be a section, we define then

µ = M s * T C 2 (π) = 1 24π 2 M s * tr (π ∧ π ∧ π).
In principle that integral depends on the section but the following proposition shows that the integrand

s * T C 2 (π)
defines an element in H 3 (M, R) which does not depend on the section.

Proposition 4.3 Suppose s and s are two sections. Then

s * T C 2 (π) -s * T C 2 (π) = - 1 8π 2 d s * tr (h -1 π ∧ d h).
where h : M → H is a map such that s = R h • s.

Proof. Fix the section s. Than there exists a map h :

M → H such that s = R h • s. We have then s * T C 2 (π) = 1 24π 2 s * tr (R * h π ∧ R * h π ∧ R * h π).
From the formula

R h * π = h -1 d h + Ad h -1 π, we obtain tr (R * h π ∧ R * h π ∧ R * h π) = tr h -1 d h ∧ h -1 d h ∧ h -1 d h + 3h -1 d h ∧ h -1 π ∧ d h + 3h -1 π ∧ π ∧ d h + π ∧ π ∧ π = tr -h -1 d h ∧ d h -1 ∧ d h -3d h -1 ∧ π ∧ d h + 3h -1 π ∧ π ∧ d h + π ∧ π ∧ π .
Observe that the first term in the right hand side vanishes. Indeed, d h -1 ∧ d h is upper triangular with null diagonal. Moreover h -1 d h is upper triangular and therefore the Lie algebra valued form also has zero diagonal. Therefore

tr (h -1 d h ∧ d h -1 ∧ d h) = 0.

By the same argument tr (h

-1 Π ∧ d h) = 0. Now we show that d tr (h -1 π ∧ d h) = tr d h -1 ∧ π ∧ d h -h -1 π ∧ π ∧ d h . Compute dtr (h -1 π ∧ d h) = tr (d h -1 ∧ π ∧ d h + h -1 dπ ∧ d h) = tr d h -1 ∧ π ∧ d h + h -1 (Π -π ∧ π) ∧ d h ,
which gives, using that tr (h

-1 Π ∧ d h) = 0, dtr (h -1 π ∧ d h) = tr d h -1 ∧ π ∧ d h -h -1 π ∧ π ∧ d h .

The global invariant for second order differential equations on the torus

In this section we obtain formulas for the global invariant in the case of an ordinary differential equation defined on the torus. Recall that the projectivized cotangent bundle π : P T * S → S of a surface S is described locally by (x, y, [p, q]) where (x, y) are local coordinates on the surface and pdx + qdy is a form at (x, y). The Liouville form θ on T * S is defined to be the tautological form θ(x, y, -pdx + qdy) = π * (-pdx + qdy). It induces a contact distribution on P T * S, which in the chart (x, y, p) → (x, y, [p, 1]) is given by the kernel of the form dy -pdx. On the chart (x, y, q) → (x, y, [1, q]) the contact distribution is the kernel of dx -qdx. One can also consider, fixing a metric on the surface, the unit cotangent bundle (T * ) 1 S which is a double cover of P T * S.

The fibers of the bundle P T * S give a canonical field of directions on the Liouville distribution. Observe that, in local coordinates (x, y, p), it is described by ker dx ∩ ker dy = ker dx ∩ ker(dy -pdx). Choosing another direction on the contact distribution amounts to define a form, in local coordiantes (x, y, p), dp -G(x, y, p)dx, where G(x, y, p) is a function. On the chart (x, y, q) one writes then

d( 1 q ) -G(x, y, 1 q )dx = - 1 q 2 dq -G(x, y, 1 q )dx.
Therefore, the direction is determined by dq + G(x, y, 1 q )q 3 dy (the contact distribution is ker(dx-qdy)). In order to have a well defined direction we need that the function G(x, y, 1 q )q 3 has a differentiable extension for q = 0. Definition 4.7 A second order differential equation on a surface S is a path structure on the projective cotangent bundle with contact structure induced by the Liouville form and such that one of the directions is given by the fibers.

It is convenient to introduce a new coordinate in the fiber α ∈] -π, π] through the formula p = tan α/2. The contact distribution is defined by a globally defined form on the coordinates (x, y, α): θ = cos α/2dy -sin α/2dx.

The fiber direction is defined by the equations dx = dy = 0 which can also be described by, defining θ 1 = sin α/2dy + cos α/2dx, as ker θ 1 ∩ ker θ. The last form, which depends on a choice of a function, is θ 2 = dα -F (x, y, α)θ 1 .

Observe that

dθ = 1 2 θ 1 ∧ θ 2 .
The relation with the differential equation given on the chart (x, y, p) is given writing

dp = 1 2 (1 + p 2 )dα
and therefore, as dy = pdx in that chart, dα -F (x, y, α)θ 1 = 2 1 + p 2 dp -F (x, y, 2 arctan p)(sin α/2dy + cos α/2dx) = 2 1 + p 2 dp -F (x, y, 2 arctan p)(sin α/2.pdx + cos α/2dx) = 2 1 + p 2 dp -F (x, y, 2 arctan p)(sin α/2. tan α/2 + cos α/2)dx.

and recalling that cos

α/2 = 1 √ 1+p 2 , = 2 1 + p 2 dp -F (x, y, 2 arctan p)(1 + p 2 ) 1/2 dx.
Therefore 2G(x, y, p) = F (x, y, 2 arctan p)(1 + p 2 ) 3/2 . 4.1.1 The strict and enriched structure of a differential equation on the torus Here we will work with a double cover of the projective cotangent bundle of the torus. We define the path structure associated to a differential equation on the torus through a strict path structure defined by θ = cos αdy -sin αdx.

θ 1 = sin αdy + cos αdx and θ 2 = dα -F (x, y, α)θ 1 .

Here F (x, y, α) is a function defined on the torus. Observe that

dθ = θ 1 ∧ θ 2 .
In the following we will write, for a function f : T 3 → R, defined on the torus,

df = f 0 θ + f 1 θ 1 + f 2 θ 2 , so that f x = -f 0 sin α + (f 1 -f 2 F ) cos α, f y = f 0 cos α + (f 1 -f 2 F ) sin α and f α = f 2 . Compute dθ 1 = (θ 2 + F θ 1 ) ∧ θ and dθ 2 = ((F 0 -F 2 )θ 1 -F θ 2 ) ∧ θ + F 2 θ 1 ∧ θ 2 .
Consider now the enriched structure defined by θ, θ 1 and θ 2 and the tautological forms ω = a 1 a 2 θ, ω 1 = a 1 θ 1 and ω 2 = a 2 θ 2 .

We first compute

dω = 2ϕ ∧ ω + ω 1 ∧ ω 2 ,
where ϕ = 1 2 ( da 1 a 1 + da 2 a 2 ). Next we compute dω 1 and dω 2 :

dω 1 = da 1 a 1 ∧ a 1 θ 1 + a 1 (θ 2 + F θ 1 ) ∧ θ dω 2 = da 2 a 2 ∧ a 2 θ 2 + a 2 (((F 0 -F 2 )θ 1 -F θ 2 ) ∧ θ + F 2 θ 1 ∧ θ 2 )
Comparing with the structure equations of the enriched structure in 5 we may write

dω 1 = ϕ ∧ ω 1 + 3w ∧ ω 1 + ω ∧ τ 1 dω 2 = ϕ ∧ ω 2 -3w ∧ ω 2 -ω ∧ τ 2 . ( 45 
) with 3w = 1 2 ( da 1 a 1 - da 2 a 2 ) - 1 a 1 a 2 F ω - 1 a 1 F 2 ω 1 , τ 1 = - 1 a 2 2 ω 2 and τ 2 = 1 a 2 1 (F 0 -F 2 )ω 1 .

Curvatures

We compute now dϕ = ω ∧ (Aω 1 + Bω 2 ) and dw = Cω ∧ ω 1 + Dω ∧ ω 2 + Sω 1 ∧ ω 2 (see Proposition 2.5) . From dϕ = 0 we obtain A = B = 0. Computing dw and comparing to the formula above we obtain

C = F 1 -F 20 + F F 2 3a 2 1 a 2 , D = 2F 2 3a 1 a 2 2 , S = F 22 -F 3a 1 a 2 .
In order to compute the global invariant we need to compute the coefficients S 0 , S 1 and S 2 in equation 17 (a Bianchi identity) : dS + 2Sϕ = S 0 ω + S 1 ω 1 + S 2 ω 2 . One obtains

S 0 = F 220 -F 0 3a 2 1 a 2 2 , S 1 = F 221 -F 1 3a 2 1 a 2 , S 2 = F 222 -F 2 3a 1 a 2 2 .
Now we use the expressions obtained in section 3.4.1 of the curvatures of Y in terms of the curvature of Y 2 . In order to compute µ(Y ) we need to compute n and its derivatives (see 36 and 37).

We have 2n = S 2 + 4D = F 222 +7F 2 3a 2 2 a 1 and compute the left hand of dn + 3(ϕ -w)n = n 0 ω + n 1 ω 1 + n 2 ω 2 (formula 37) to obtain then

n 0 = 1 6a 2 1 a 3 2 (F (F 222 + F 2 ) + F 2220 + 7F 20 ) , n 1 = 1 6a 2 1 a 2 2 (F 2 (F 222 + F 2 ) + F 2221 + 7F 21 ) n 2 = 1 6a 1 a 3 2 (F 2222 + 7F 22 )
We use equations 38 and 39 to compute the curvature functions Q 1 and Q 2 . We have

Q 1 = -n 2 + 3 2 Sτ 1 2 + τ 1 20 and Q 2 = -P 1 -3 2 Sτ 2 1 + τ 2 10 .
For that sake, we compute first the derivatives of the torsion, τ 1 20 and τ 2 10 , using formulas 11 and 12. Computing the left hand side of the equation dτ 1 2 + 2τ 1 2 (ϕ -3w) + (B + 3D)ω 1 = τ 1 20 ω + τ 1 22 ω 2 and comparing to the right hand side we obtain

τ 1 20 = - 2F a 1 a 3 2 .
Analogously, computing the left hand side of the equation dτ

2 1 +2τ 2 1 (ϕ+3w)-(A-3C)ω 2 = τ 2 10 ω + τ 2 11 ω 1 we obtain τ 2 10 = F 00 -4F F 0 + 2F 3 a 3 1 a 2 .
Proposition 4.8 Given a (local) differential equation as a path structure induced by the forms θ, θ 1 and θ 2 as above one computes the curvature functions in terms of the enriched structure:

Q 1 = - 1 6a 1 a 3 2 (F 2222 + 10F 22 + 9F ) and Q 2 = 1 6a 3 1 a 2 (F 2 F 221 + 3F 2 F 2 1 -4F 2 F 20 + 4F F 2 2 + F 2211 + 6F 1 F 11 -4F 201 + 4F 2 F 1 + 4F F 21 -3F 22 F 0 + 3F 22 F 2 -21F F 0 + 9F 3 + 6F 00 ).
Proof. Recall from formula 36 that P = -S 1 /2 -2C and we write dP + 3P (ϕ + w) = P 0 ω + P 1 ω 1 + P 2 ω 2 . Computing the left side and comparing the right side we obtain the expression of P 1 which we use in the formulas above.

2

The following proposition describes locally differential equations satisfying Q 1 = 0.

Proposition 4.9 Differential equations on an open subset with coordinates (x, y) given by θ = cos αdy -sin αdx, θ 1 = sin αdy + cos αdx and θ 2 = dα -F (x, y, α)θ 1 satisfy

Q 1 = 0 if and only if F (x, y, α) = A(x, y) cos α + B(x, y) sin α + C(x, y) cos 3α + D(x, y) sin 3α
where A, B, C and D are functions on x and y.

Proof. Observe that Q 1 = 0 is equivalent to

F 2222 + 10F 22 + 9F = F αααα + 10F αα + 9F = 0.
The only solutions to this linear equation are of the form above. 2

Using the coordinates (x, y, p) as above where the differential equation is described as dp -G(x, y, p)dx = 0 the condition Q 1 = 0 implies that G(x, y, p) is at most a third order polynomial in p with coefficients functions of x and y (see [A]).

The global invariant

We are ready now to use Proposition 4.5 to detemine the global invariant: Proposition 4.10 Let M be an enriched path structure defined by an ordinary differential equation of second order on the torus with strict structure defined by the forms θ, θ 1 and θ 2 as above. Let Y 2 → Y be the canonical embedding of the enriched geometry into the induced path geometry whose connection is π. Then

8π 2 s * (T C 2 (π)) = 1 12 (-12F 2 α +2(F αααx cos α+F αααy sin α+F αααα F )+14(F αx cos α+F αy sin α +F αα F )-3(-F ααx sin α+F ααy cos α)+3F α -24(-F x sin α+F y cos α)+18F 2 +6F F αα )θ∧θ 1 ∧θ 2 . and 8π 2 µ(Y ) = 8π 2 M s * (T C 2 (π)) = 1 12 M (-32F 2 α + 2F 2 αα + 18F 2 )θ ∧ θ 1 ∧ θ 2 .
Proof. The terms in Proposition 4.5 were all computed before. A substitution of these terms in the formula gives the first formula. The second formula is obtained by integration by parts.
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Corollary 4.11 Let M be equipped with a path structure defined by an ordinary differential equation of second order on the torus with strict structure defined by the forms θ, θ 1 and θ 2 . Let Y be the canonical Cartan bundle with its associated Cartan connection.

1. If θ 2 = dα -F (x, y)θ 1 (the function F does not depend on α). Then µ(Y ) = 0 if and only if F = 0.

2. Q 1 (Y ) = 0 and µ(Y ) = 0 if and only if F = 0. Proof. Clearly, if F = 0 then µ(Y ) = 0 and Q 1 = 0. If F does not depend on α then the invariant becomes 4 3 M F 2 θ ∧ θ 1 ∧ θ 2 ,
which is zero only if F = 0. Suppose now that Q 1 (Y ) = 0 and µ(Y ) = 0. Observe that the integral formula for the invariant, by an integration by part and a slight rearrangement, may be written as

1 12 M (-12F 2 α + 2F αααα F + 20F αα F + 18F 2 )θ ∧ θ 1 ∧ θ 2 .
Using the expression of Q 1 given in 4.8 and the hypothesis Q 1 = 0, we obtain F 2222 + 10F 22 + 9F = 0, and therefore 2F αααα F + 20F αα F + 18F 2 = 0.

We compute dθ

1 = adθ 1 + bdθ 2 = -bθ 1 ∧ θ = -bf θ 1 ∧ θ + b 2 θ 2 ∧ θ and dθ 2 = cdθ 1 + f dθ 2 = -f θ 1 ∧ θ = -f 2 θ 1 ∧ θ + bf θ 2 ∧ θ.
In order to compute the enriched connection we need to find ϕ , w , τ 1 , τ 2 satisfying

dω 1 = (ϕ + 3w ) ∧ ω 1 + ω ∧ τ 1 2 ω 2 , dω 2 = (ϕ -3w ) ∧ ω 2 -ω ∧ τ 2 1 ω 1 .
Comparing with the structure equations and observing ω i = a i θ i we obtain

ϕ = 1 2 ( da 1 a 1 + da 2 a 2 ), 3w = 1 2 ( da 1 a 1 - da 2 a 2 ) + bf a 1 a 2 ω, τ 1 2 = - b 2 a 2 2 θ 2 and τ 2 1 = - f 2 a 2 1 θ 1 .
Then dϕ = 0, 3dw = bf a 1 a 2 ω 1 ∧ ω 2 , and it follows A = B = C = D = 0 and 3S = bf a 1 a 2 . Also

dτ 1 2 = -2τ 1 2 (ϕ -3w) + 2b 3 f a 3 2 a 1 ω, dτ 2 1 = -2τ 2 1 (ϕ + 3w) - 2bf 3 a 3 1 a 2 ω,
and τ 1 20 = 2b 3 f a 3 2 a 1 , τ 2 10 = -2bf 3 a 3 1 a 2 . At last dS = -2Sϕ and we get S 0 = S 1 = S 2 = 0. Then P = n = 0, and we obtain from formulas 38 and 39 that

Q 1 = 3 2 b 3 f a 1 a 3 2 , Q 2 = - 3 2 bf 3 a 3 1 a 2 .
We proved Lemma 5.2 The path structures defined by the forms θ 1 , θ 2 , θ on T 3 have curvatures Q 1 = 3 2 b 3 f, Q 2 = -3 2 bf 3 (computed through a section on the torus). Note that the path structure is flat if and only if the one of the torsions τ 1 or τ 2 are zero and this happens if the direction defined by ∂ ∂t is one of the line bundles contained in the contact bundle of the path structure. The couple (b, f ) is determined up to a sign by the curvatures Q 1 and Q 2 .

The global invariant is given in the next Proposition. Proof. This is a direct computation using the formula for the global invariant (see formula 44): 6 Invariant path structures on SU(2)

T 3 s * T C 2 (π) = T 3 1 8π 2 (2τ 1 2 τ 2 1 θ ∧ θ 1 ∧ θ 2 - 9 2 w ∧ θ 1 ∧ θ 2 ) = T 3 1 8π 2 3 2 b 2 f 2 θ ∧ θ 1 ∧ θ 2 .
Tight contact structures on S 3 are all contactomorphic (see [E]). In this section we explicit homogeneous strict path structures on SU(2) which are carried by a fixed left invariant tight contact structure. Let α, β, γ be a basis of left invariant 1-forms defined on SU(2) with dα = -β ∧ γ, dβ = -γ ∧ α, dγ = -α ∧ β

A strict path structure on SU(2) is given by fixing the contact form θ = γ and the line fields E 1 = ker α ∩ ker θ and E 2 = ker β ∩ ker θ.

We define strict path structures by choosing a map from SU(2) to SL(2, R):

θ = γ, Z 1 = r 1 β + r 2 α, Z 2 = s 1 β + s 2 α, with r 1 s 2 -r 2 s 1 = 1. Then dθ = Z 1 ∧ Z 2 .
In the case the map SU(2) → SL(2, R) is constant, from β = s 2 Z 1 -r 2 Z 2 and α = -s 1 Z 1 + r 1 Z 2 , we obtain

dZ 1 = r 1 dβ + r 2 dα = θ ∧ xZ 1 + yZ 2
and analogously, dZ 2 = θ ∧ zZ 1 -xZ 2 , where x = r 1 s 1 + r 2 s 2 , y = -(r 2 1 + r 2 2 ), z = s 2 1 + s 2 2 . Observe that x 2 + yz = -1. Then for a enriched path structure with coframes obtained from t!he tautological forms ω = a 1 a 2 θ, ω 1 = a 1 Z 1 and ω 2 = a 2 Z 2 we obtain

dω 1 = ( da 1 a 1 + xθ) ∧ ω 1 + a 1 yθ ∧ Z 2 . dω 2 = ( da 2 a 2 -xθ) ∧ ω 2 + a 2 zθ ∧ Z 1
From Proposition 2.3 we have 

ϕ = 1 2 ( da 1 a 1 + da 2 a 2 ), 3w = 1 2 ( da 1 a 1 - da 2 a 2 ) + x a 1 a 2 ω,
From dS = - x 3a 1 a 2 ( da 1 a 1 + da 2 a 2 ) = -2ϕS
we obtain S 0 = S 1 = S 2 = 0, ans P = n = 0. It follows from formulas 38 and 39 that Q 1 = τ 1 20 + 3 2 Sτ 1 2 and Q 2 = τ 2 10 -3 2 Sτ 2 1 , therefore

Q 1 = - xy a 1 a 3 2 and Q 2 = - xz a 3 1 a 2 .
Observe that y and z never vanish. We conclude that the invariant strict structure on SU(2) is a flat path structure if and only if x = 0. This can be interpreted, because x = r 1 s 1 + r 2 s 2 , as the strict structures such that the directions E 1 and E 2 are perpendicular for the canonical metric defined by the forms α and β.

Proposition 6.1 Define strict path structures on SU(2) by choosing a constant map from SU(2) to SL(2, R): θ = γ, Z 1 = r 1 β + r 2 α, Z 2 = s 1 β + s 2 α, with r 1 s 2 -r 2 s 1 = 1. Let x = r 1 s 1 + r 2 s 2 . Then the global invariant of the induced path structure is µ(SU(2)(r 1 , r 2 , s 1 , s 2 )) = -

1 2 - 3 8 x 2 .
Proof. We compute, using formula 44, the global invariant for the family of structures defined on SU(2). We have from above that x = r 1 s 1 + r 2 s 2 , y = -(r 2 1 + r 2 2 ), z = s 2 1 + s 2 2 and that x 2 + yz = -1. Then it follows SU(2) s * T C 2 (π) = SU(2)

1 8π 2 (2τ 1 2 τ 2 1 θ - 9 2 Sw) ∧ θ 1 ∧ θ 2 = - SU(2) 1 8π 2 (2yz + 1 2 x 2 )γ ∧ β ∧ α = SU(2) 1 8π 2 (-2 - 3 2 x 2 )γ ∧ β ∧ α.
We use then that SU(2) γ ∧ β ∧ α = 2π 2 . 2

Observe that the invariant is never null for this family even in the case of a flat path structure (which happens when x = 0). Also the critical point of the invariant along this family is a maximal at x = 0, at a flat structure, and it is equal to -1 2 .

  can represent the structure equations 19, 20, 21 as a matrix equation whose entries are differential forms. The forms are disposed in the Lie algebra sl(3, R) and define a Cartan connection on Y . Proposition 3.3 There exists a unique Cartan connection π : T Y → sl(3, R) defined on Y of the form

  curvature of Y in terms of the curvature of Y 2

Proposition 5. 3

 3 Let T 3 n (a, b, c, d, f ) as the path structure on the torus defined as above. Then the global invariant is µ(T 3 n (a, b, c, d, f )

2

  Note that the global invariant is null if and only if the path structure is flat.

  dϕ = 0, 3dw = d(xθ) = x a 1 a 2 ω 1 ∧ ω 2 so that S = x 3a 1 a 2 , A = B = C = D = 0.

We obtained therefore that ẽs * T C 2 (π) = s * T C 2 (π) -1 8π 2 d s * tr (h -1 π ∧ d h) and this completes the proof of the proposition.

2

Let µ(t) be the invariant defined as a function of the a parameter describing the deformation of the structure on a closed manifold M and define δµ = d dt µ(0). One can interpret the flat structures as giving critical points of the global invariant µ through the first variation formula which we refer to [FV] for a proof.

The global invariant can be computed most easily for a path structure induced by an enriched or strict path structure.

Proposition 4.5 Let M be an enriched path structure and Y 2 → Y be the canonical embedding of the enriched geometry into the induced path geometry. Then

Proof. One compute first the following formula.

Therefore using the embedding of Y 2 → Y in the previous section we obtain by a computation:

2

Using the embedding of Y 1 → Y in the previous section we obtain by a similar computation:

Proposition 4.6 Let M be a strict path structure and Y 1 → Y be the canonical embedding of the strict geometry into the induced path geometry. Then

We observe therefore that if µ(Y ) = 0 then F α should be null. But if F does not depend on α it should be null by the first part. 2

5 Path structures on a torus

We recall example II which is the torus T 3 with coordinates (x, y, t) ( mod 1) and the global contact form, for a fixed n ∈ Z * , θ = cos(2πnt)dx -sin(2πnt)dy.

It was proven independently by E. Giroux and Y. Kanda that the contact structures defined by these contact forms classify all tight structures on T 3 (see [?]). We will show here that for each of these contact structures one can define a flat path structure.

There are two canonical global vector fields on the distribution given by X 1 = ∂ ∂t and X 2 = sin(2πnt) ∂ ∂x + cos(2πnt) ∂ ∂y . We define θ 1 = -2πndt, θ 2 = sin(2πnt)dx + cos(2πnt)dy, so that dθ = θ 1 ∧ θ 2 and we define the strict path structure defined by these forms. We compute dθ 1 = 0, dθ 2 = -θ 1 ∧ θ.

Comparing now with the enriched path connection we obtain

and therefore dϕ = dw = dτ 1 2 = dτ 2 1 + 2τ 2 1 (ϕ + 3w) = 0. It follows that A = B = C = D = S = τ 1 20 = τ 2 10 = 0, and it follows from formulas 38 and 39 that Q 1 = Q 2 = 0. We proved: