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A global invariant for path structures and second order
differential equations

E. Falbel and J. M. Veloso

Abstract

We study a global invariant for path structures. The invariant is obtained as a
secondary invariant from a Cartan connection on a canonical bundle associated to a
path structure. It is computed in examples which are defined in terms of reductions of
the path structure. In particular we give a formula for this global invariant for second
order differential equations defined on a torus T 2.

1 Introduction

Path structures on a 3-manifold are defined by a choice of contact structure and a decom-
position of the contact plane bundle as a direct sum of two line bundles. This structure was
througly studied in the 19th century (see in particular [T]) as it appears in the description of
second order differential equations and their equivalence under certain transformations (see
Section 2 and references [A, IL, BGH]).

In Section 2 we collect definitions and examples. In particular we explain the relation
with ordinary second order equations. In the following section we define the most important
reductions of path structures. The first one is obtained by fixing a global contact form
and it is called strict path structure. There exists a Cartan bundle Y1 and a connection
adapted to that structure (see 2.5) which was used in ([FMMV]) to obtain a classification
of compact 3-manifolds with non-compact automorphism group preserving the strict path
structure. We recall the construction in Proposition 2.3. The second one, we call enriched
path structure following [MM] which were used by Mion-Mouton to classify certain classes of
partial-hyperbolic diffeomorphisms of three manifolds. It consists of path structures where
we fix a line transverse to the contact distribution. We define an adapted Cartan bundle Y2
and a canonical connection adapted to this structure (see 2.6 and Proposition 2.5). There
exists a natural embedding Y1 → Y2 (Section 2.6.2, Proposition 2.7).

In Section 3 we recall the construction of the Cartan bundle Y and the canonical adapted
connection to a path structure on a 3-manifold (see Proposition 3.3). This construction is
due to Cartan in [Car]. Although one can find modern treatments of this topic in several
references (in particular [IL, BGH]), we include this section for the sake of completeness and
because the conventions we use might differ from others. We obtain a natural embedding
Y2 → Y (see 3.4, Proposition 3.4) and compute the curvature of the bundle Y in terms of the
curvature of Y2 (see 3.4.1). The formulas are used in the computation of the global invariant
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in the next section. We also recall the computations by Cartan of the invariants of a second
order differential equation.

In the following section we define the global invariant when Y2 admits a global section
(see Definition 4.2). This construction is inspired by an analogous construction of a Chern-
Simons invariant in the case of CR manifolds given in [BE] (see also [CL] for a relative
version which does not depend on the existence of a global section). In [FV] we defined a
similar invariant for flag structures. Those are manifolds equipped with a decomposition
of a complex contact structure defined on the complexified tangent bundle of a 3-manifold.
In this paper we restrict the definition to path structures. We obtain the expression of the
invariant in terms of a reduction Y2 or Y1 of the Cartan bundle Y of the path structure
(see Proposition 4.5). We also give a formula of the invariant in the case of a second order
differential equation on the torus (Proposition 4.10). It involves an integration of fifth order
derivatives of the function defining the ordinary equation in the form y′′ = F (x, y, y′). We
use coordinates in the projective cotangent bundle over a surface as explained in section 4.1.
We characterize certain families of differential equations on the torus which have vanishing
global invariant in Corollary 4.11. We then compute the invariant for a family of path
structures on tight contact structures on the torus (see Proposition 5.3) and characterize
those structures with vanishing global invariant, they turn to be flat. Finally we compute
the global invariant for homogeneous path structures on SU(2) (see Proposition 6.1) and
identify the flat structure on the sphere where the global invariant is maximal.

The authors thank Martin Mion-Mouton for useful discussions.

2 Path structures in dimension 3

Path geometries are very related to the theory of second order differential equations. See
a modern treatment in section 8.6 of [IL] and in [BGH] where the relation to second order
differential equations is also explained. Le M be a real three dimensional manifold and TM
be its tangent bundle.

Definition 2.1 A path structure on M is a choice of two sub-bundles T 1 and T 2 in TM
such that T 1 ∩ T 2 = {0} and such that T 1 ⊕ T 2 is a contact distribution.

The condition that T 1 ⊕ T 2 be a contact distribution means that, locally, there exists a
one form θ ∈ T ∗M such that ker θ = T 1 ⊕ T 2 and dθ ∧ θ is never zero.

One can choose a contact form θ up to a scalar function. One can interpret this as follows:
one has a R∗-bundle over the manifold given by the choice of θ at each point (one might keep
only positive multiples for simplicity). Over this line bundle one defines the tautological
form ωx = π∗(θπ(x)). This bundle is trivial if and only if there exists a global contact form
θ. If the contact distribution is oriented, then there exists a global contact form. Indeed,
using a global metric on the distribution one can define locally a transversal vector to the
distribution taking a Lie bracket of orthonormal vectors in the distribution. This defines a
global 1-form.

Fix θ and local forms Z1 and Z2 defining the lines as above such that dθ = Z1 ∧ Z2.
There exists global forms Z1 and Z2 if and only if there exists global vector fields along the
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lines. Clearly, if the contact distribution is oriented, it suffices that there exists a global
vector field along one of the foliations by lines.

Local equivalence (also called point equivalence) between path structures happens when
there exists a local diffeomorphism which gives a correspondence between the lines defining
each structure.

2.1 The flat model space

Flat path geometry is the geometry of real flags in R3. That is the geometry of the space
of all couples (p, l) where p ∈ RP 2 and l is a real projective line containing p. The space of
flags is identified to the quotient

SL(3,R)/B

where B is the Borel group of all real upper triangular matrices.
The Lie algebra of SL(3,R) decomposes into the following direct sum of vector subspaces:

sl(3,R) = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2,

where

g−2 =


 0 0 0

0 0 0
z 0 0

 , g−1 =


 0 0 0

x 0 0
0 y 0

 ,

g0 =


 u+ v 0 0

0 −2v 0
0 0 −u+ v

 ,

g1 =


 0 a 0

0 0 b
0 0 0

 , g2 =


 0 0 c

0 0 0
0 0 0

 .

That is the graded decomposition of sl(3,R) where b = g0⊕g1⊕g2 corresponds to upper
triangular matrices with null trace. The tangent space of SL(3,R)/B at [B] is identified to

sl(3,R)/b = g−2 ⊕ g−1.

2.2 Examples

Example I Consider the Heisenberg group

Heis(3) = { (z, t) | z ∈ C, t ∈ R }

with multiplication defined by (z1, t1) ? (z2, t2) = (z1 + z2, t1 + t2 + 2Im z1z2). The contact
form

θ = dt− xdy − ydx
is invariant under left multiplications (also called Heisenberg translations). If Λ ⊂ Heis(3)
is a lattice then the quotient Λ \ Heis(3) is a circle bundle over the torus with a globaly
defined contact form.
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A lattice Λ determines a lattice Γ ⊂ C corresponding to projection in the exact sequence

0→ R→ Heis(3)→ C→ 0.

There are many global vector fields in the distribution defined by θ invariant under Λ, it
suffices to lift an invariant vector field on C under Γ. All circle bundles obtained in this way
are not trivial and the fibers are transverse to the distribution.

Example II. Here we consider the torus T 3 with coordinates (x, y, t) ( mod 1) and the
global contact form

θn = cos(2πnt)dx− sin(2πnt)dy.

There are two canonical global vector fields on the distribution given by ∂
∂t

and sin(2πnt) ∂
∂x

+
cos(2πnt) ∂

∂y
. In this example, the fiber given by the coordinate t has tangent space contained

in the distribution.
Example III. An homogeneous example is the Lie group SU(2) with left invariant vector

fields X and Y with Z = [X, Y ] and cyclic commutation relations. The vector fields X and
Y define a path structure on SU(2).

Example IV. Another homogeneous example is the Lie group SL(2,R) with left invari-
ant vector fields X and Y with Z = [X, Y ] with [Z,X] = X and [Z, Y ] = −Y given by
generators

X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
, Z =

(
1 0
0 −1

)
.

The path structure defined by X and Y induces a path structure on the quotient Γ\SL(2,R)
by a discrete torsion free subgroup Γ ⊂ SL(2,R). This structure is invariant under the flow
defined by right multiplication by etZ .

Example V. Let Σ be a surface equipped with a Riemannian metric. The geodesic flow
on the unit tangent bundle T 1Σ defines a distribution which, together with the distribution
defined by the vertical fibers of the projection of the unit tangent bundle on Σ, defines a path
structure which is not invariant under the geodesic flow. For Σ = H2

R, the hyperbolic space,
we obtain T 1Σ = PSL(2,R) with distributions defined by the left invariant distributions
X − Y and Z (using the same generators of the Lie algebra as in the previous example).

Example VI Let M be a three manifold equipped with a path structure D = T 1⊕T 2 ⊂
TM . Suppose D is orientable and choose a section u of T 1. Each section v of T 2 such
that (u, v) is positive gives rise to a CR structure. Indeed we define Ju = v and Jv = −u.
The choice of v corresponds to a section of an R∗+-bundle over M . Reciprocally given a CR
structure on M , defined by J : D → D, one can associate path structures corresponding to
a choice T 1 ⊂ D and defining then T 2 = J(T 1).

2.3 Path structures and second order differential equations

This is studied since a long time (see [T], [IL] and [BGH]). It turns out that path structures
can be obtained putting together second order differential equations in one variable. Indeed,
a second order differential equation in one variable is described locally as

d2y

dx2
= F (x, y,

dy

dx
).
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This defines a path structure on a neighborhood of a point in R3 with coordinates (x, y, p):

L1 = ker{dp− Fdx} ∩ ker{dy − pdx}, L2 = ker dx ∩ ker dy.

The contact structure is defined by the form

θ = dy − pdx.

Defining the forms Z1 = dx and Z2 = dp− Fdx, one has that dθ = Z1 ∧ Z2.
One can show easily that every path structure is, in fact, locally equivalent to a second

order equation. That is, there exists local coordinates such that L1 and L2 are defined via a
second order ODE as above.

2.4 Reductions of path structures

We will describe two reductions of path geometry corresponding to subgroups G1 ⊂ G2 ⊂
SL(3,R) where

G1 =


 a 0 0

? 1
a2

0
? ? a


and

G2 =


 a 0 0

? 1
ab

0
? ? b

 .

The models are G1/R∗ and G2/R∗2 and correspond to the Heisenberg group where in the first
model we fix a contact form and, in the second, a transverse line to the contact distribution.

Other reductions of the G2-structure might occur, namely by choosing other embeddings
of R∗ into G2. They appear naturally when certain components of the curvature of the
Cartan connections on Y2 or Y are non-vanishing.

We will construct coframe bundles Y1, Y2 and a principal bundle Y over M with structure
groups R∗,R∗2 and the Borel group B together with Cartan connections and canonical
embeddings

Y1 → Y2 → Y.

They correspond to a strict path structure, an enriched path structure (see next sections for
definitions) and finally, a path structures on the manifold M .

2.5 Path structures with a fixed contact form: strict path struc-
tures.

In this section we fix a contact form and recall the reduction of the structure group of a path
geometry obtained in [FV] where we called the path structure with a fixed contact form a
pseudo flag structure. This structure is called strict path structure in [FMMV].

G1 denotes from now on the subgroup of SL(3,R) defined by

G1 =


 a 0 0

x 1
a2

0
z y a

 | a ∈ R∗, (x, y, z) ∈ R3
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and P1 ⊂ G1 the subgroup defined by

P1 =


 a 0 0

0 1
a2

0
0 0 a

 .

Writing the Maurer-Cartan form of G1 as the matrix w 0 0
θ1 −2w 0
θ θ2 w


one obtains the Maurer-Cartan equations:

dθ + θ2 ∧ θ1 = 0

dθ1 − 3w ∧ θ1 = 0

dθ2 + 3w ∧ θ2 = 0

dw = 0.

G1 is the automorphism group of the canonical left-invariant strict path structure of
Heis(3), and that its action induces an identification of Heis(3) with the homogeneous
space X = G1/P1.

Let M be a three-manifold equipped with a strict path structure (E1, E2, θ) defined by
two one dimensional bundles E1 and E2 and contact form θ. We let R be the associated
Reeb vector field (satisfying ιRdθ = 0 and θ(R) = 1). Now let X1 ∈ E1, X2 ∈ E2 be such
that dθ(X1, X2) = 1. The dual coframe of (X1, X2, R) is (θ1, θ2, θ), for two 1-forms θ1 and
θ2 verifying dθ = θ1 ∧ θ2.

At any point x ∈M , one can look at the coframes of the form

ω1 = a3θ1(x), ω2 =
1

a3
θ2(x), ω = θ(x)

for a ∈ R∗.

Definition 2.2 We denote by p1 : Y1 → M the R∗-coframe bundle over M given by the set
of coframes (ω, ω1, ω2) of the above form.

We will denote the tautological forms defined by ω1, ω2, ω using the same letters. That
is, we write ωi at the coframe (ω1, ω2, ω) to be p∗1(ω

i).

Proposition 2.3 There exists a unique Cartan connection on Y1

π1 =

 w 0 0
ω1 −2w 0
ω ω2 w


such that its curvature form is of the form

Π1 = dπ1 + π1 ∧ π1 =

 dw 0 0
ω ∧ τ 1 −2dw 0

0 −ω ∧ τ 2 dw


with τ 1 ∧ ω2 = τ 2 ∧ ω1 = 0.
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Observe that the condition τ 1 ∧ ω2 = τ 2 ∧ ω1 = 0 implies that we may write τ 1 = τ 12ω
2

and τ 2 = τ 21ω
1. The structure equations are

dω + ω2 ∧ ω1 = 0,

dω1 − 3w ∧ ω1 = ω ∧ τ 1,

dω2 + 3w ∧ ω2 = −ω ∧ τ 2.

The proof of the proposition is given in [FMMV] and [FV].
Bianchi identities are obtained differentiating the structure equations. They are described

in the following equations:

dw = Cω ∧ ω1 +Dω ∧ ω2 + Sω1 ∧ ω2, (1)

dτ 12 − 6τ 12w + 3Dω1 = τ 120ω + τ 122ω
2 (2)

dτ 21 + 6τ 21w + 3Cω2 = τ 210ω + τ 211ω
1 (3)

2.6 Path structures with a fixed transverse line: enriched path
structures.

In this section we introduce a coframe bundle and a Cartan connection associated to a path
structure with a fixed transverse line to the the contact distribution.

The model space is the homogeneous space which is the quotient of the group of lower
triangular matrices in SL(3,R) by the subgroup of diagonal matrices. The Maurer-Cartan
form is the Lie algebra valued form which can be represented by

π =

 ϕ+ w 0 0
ω1 −2w 0
ω ω2 −ϕ+ w


The Maurer-Cartan equations dπ + π ∧ π = 0 are given by

dω = 2ϕ ∧ ω + ω1 ∧ ω2

dω1 = ϕ ∧ ω1 + 3w ∧ ω1

dω2 = ϕ ∧ ω2 − 3w ∧ ω2.

Let M be a three manifold equipped with a path structure D = T 1 ⊕ T 2 ⊂ TM . We fix
a transverse line L so that TM = T 1 ⊕ T 2 ⊕ L.

We suppose X1 ∈ T 1, X2 ∈ T 2 and X ∈ L is a frame. The dual coframe is θ1, θ2 and θ.
Observe that θ is simply a form with ker θ = D. One can define a coframe bundle defined
by all coframes:

ω1 = a1θ1, ω2 = a2θ2, ω = λθ.

where we will suppose, for simplicity, that a1, a2, λ > 0.
A reduction of this coframe bundle is obtained by imposing that each coframe verifies

dω|D = (ω1 ∧ ω2)|D
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for an extension of the 1-form such that kerω = D. This relation does not depend on the
particular extension of a form ω defined at a point because dω|D(X, Y ) = −ω([X, Y ]) for
any vector fields X and Y which are sections of the distribution D.

Definition 2.4 We denote by p2 : Y2 →M the R∗2-coframe bundle over M given by the set
of 1-forms (ω, ω1, ω2) defined above. The structure group R∗2 acts as follows

(ω′, ω′1, ω′2) = (ω, ω1, ω2)

 λ 0 0
0 a1 0
0 0 a2


where λ, a1, a2 ∈ R∗+ with a1a2 = λ.

In order to define a Cartan connection on Y2 we start taking the tautological forms
corresponding to the forms ω, ω1, ω2, which we will denote by the same letters by abuse of
notation.

Using a coframe section (θ, θ1, θ2) on M one can express the tautological forms as

ω = λp∗2(θ), ω
1 = a1p∗2(θ

1), ω2 = a2p∗2(θ
2),

with a1a2 = λ.
We need to define two forms ϕ and w corresponding to the vertical directions
Observe first that we have

dω =
dλ

λ
∧ ω + ω1 ∧ ω2 mod(ω)

and therefore one may write
dω = 2ϕ ∧ ω + ω1 ∧ ω2 (4)

where ϕ restricted to the vertical fiber is dλ
2λ

. The form ϕ is not yet fixed and any other form
ϕ′ satisfying the equation satisfies

ϕ− ϕ′ = sω

where s is a funtion on Y2.
Differentiating the forms ω1 and ω2 we obtain new forms which correspond to the coor-

dinates a1, a2 :
dω1 = da1

a1
∧ ω1 + a1dθ1 and dω2 = da2

a2
∧ ω2 + a2dθ2.

Observing that
dλ

λ
=
da1

a1
+
da2

a2

we can write

dω1 =
dλ

2λ
∧ ω1 +

1

2

(
da1

a1
− da2

a2

)
∧ ω1 + a1dθ1

dω2 =
dλ

2λ
∧ ω2 − 1

2

(
da1

a1
− da2

a2

)
∧ ω2 + a2dθ2

Now we can make the first right hand term of each equation to be ϕ ∧ ω1 and ϕ ∧ ω2

respectively by adding terms in ω, ω1, ω2 to dλ
2λ

. The terms in ω1 ∧ω2 not appearing in these
first terms can be absorbed in the second term in each equation. It remains a last term in
each equation that we denote by ω ∧ τ 1 and −ω ∧ τ 2 respectively. We proved the following:
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Lemma 2.1 There exists forms w, τ 1, τ 2 defined on Y2 such that

dω1 = ϕ ∧ ω1 + 3w ∧ ω1 + ω ∧ τ 1 and dω2 = ϕ ∧ ω2 − 3w ∧ ω2 − ω ∧ τ 2. (5)

The forms τ 1 and τ 2 are horizontal, that is, they vanish on vectors tangent to the fibers of
Y2 → M . Moreover, writing ω1 = a1θ1, ω2 = a2θ2, ω = λθ for a choice of sections on M ,
one has ϕ = dλ

2λ
and 6w = da1

a1
− da2

a2
modulo the tautological forms of the fiber bundle Y2.

Let ϕ′, w′, τ ′1 and τ ′2 be other forms satisfying equations above. Taking the difference
we obtain

0 = (ϕ− ϕ′) ∧ ω1 + 3(w − w′) ∧ ω1 + ω ∧ (τ 1 − τ ′1)

and
0 = (ϕ− ϕ′) ∧ ω2 − 3(w − w′) ∧ ω2 − ω ∧ (τ 2 − τ ′2)

Therefore, as ϕ− ϕ′ = sω, we can write

0 = −3ω1 ∧ (w − w′) + ω ∧ (sω1 + τ 1 − τ ′1)

and
0 = 3ω2 ∧ (w − w′)− ω ∧ (−sω2 + τ 2 − τ ′2).

By Cartan’s lemma we obtain
w − w′ = aω,

τ 1 − τ ′1 = −3aω1 − sω1 + b1ω,

τ 2 − τ ′2 = −3aω2 + sω2 + b2ω.

Now, we can impose that τ 1 = τ 11ω
1 + τ 12ω

2 and τ 2 = τ 21ω
1 + τ 22ω

2 by choosing convenient
b1 and b2 (or by simply considering, from the beginning, τ 1 and τ 2 with no terms in ω).
Moreover, one can choose unique a and s so that τ 11 = 0 and τ 22 = 0. We conclude that

Lemma 2.2 There exists unique forms ϕ,w, τ 1, τ 2 defined on Y2 such that

dω = 2ϕ ∧ ω + ω1 ∧ ω2

dω1 = ϕ ∧ ω1 + 3w ∧ ω1 + ω ∧ τ 1

dω2 = ϕ ∧ ω2 − 3w ∧ ω2 − ω ∧ τ 2

with τ 1 ∧ ω2 = τ 2 ∧ ω1 = 0.

Bianchi identities are obtained differentiating the above equations:

Lemma 2.3 There exists a 1-form ψ such that

dϕ = ω ∧ ψ (6)

The form ψ may be chosen satisfying ψ = Aω1 +Bω2 and dψ = −2ϕ∧ψ+ω∧α where A,B
are functions on Y2 and α is a 1-form on Y2.

9



Proof. Differentiating equation dω = 2ϕ ∧ ω + ω1 ∧ ω2 one obtains, using equations 5, that
dϕ ∧ ω = 0, that is,

dϕ = ω ∧ ψ (7)

for a 1-form ψ defined on Y2.
Differentiating dϕ = ω ∧ ψ one has

0 = dω ∧ ψ − ω ∧ dψ = (2ϕ∧ ω + ω1 ∧ ω2)∧ ψ − ω ∧ dψ = ω1 ∧ ω2 ∧ ψ − ω ∧ (dψ + 2ϕ∧ ψ).

Using Cartan’s lemma, ψ = Aω1 +Bω2 modulo ω, and we certainly can choose ψ satisfying
dϕ = ω ∧ ψ with ψ = Aω1 +Bω2. We conclude that

dψ + 2ϕ ∧ ψ = ω ∧ α.

2

Equation ddω1 = 0 gives after simplifications

0 = d(ϕ+ 3w) ∧ ω1 + ω ∧ ω2(dτ 12 + 2τ 12 (ϕ− 3w)). (8)

Analogously, ddω2 = 0 simplifies to

0 = d(ϕ− 3w) ∧ ω2 − ω ∧ ω1(dτ 21 + 2τ 21 (ϕ+ 3w)). (9)

Using the previous lemma we may write

dw = Cω ∧ ω1 +Dω ∧ ω2 + Sω1 ∧ ω2,

where C,D and S are functions on Y2.
We can represent the equations above as a matrix equation whose entries are differential

forms. The forms are disposed in the Lie algebra b ⊂ sl(3,R) (the Lie algebra of lower
triangular matrices) and we obtain the following Proposition.

Proposition 2.5 Let Y2 be the adapted principal bundle constructed above associated to an
enriched path structure on a manifold M . Then there exists a unique Cartan’s connection
with values in b:

π2 =

 ϕ+ w 0 0
ω1 −2w 0
ω ω2 −ϕ+ w


with curvature:

Π2 = dπ2 + π2 ∧ π2 =

 ω ∧ ψ +W 0 0
τ 12ω ∧ ω2 −2W 0

0 −τ 21ω ∧ ω1 −ω ∧ ψ +W

 (10)

where W = Cω ∧ ω1 +Dω ∧ ω2 + Sω1 ∧ ω2 and ψ = Aω1 +Bω2.
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2.6.1 More Bianchi identities

• Substituting the expressions above in equations 8 and 9 we obtain

dτ 12 + 2τ 12 (ϕ− 3w) + (B + 3D)ω1 = τ 120ω + τ 122ω
2. (11)

• Analogously we obtain

dτ 21 + 2τ 21 (ϕ+ 3w)− (A− 3C)ω2 = τ 210ω + τ 211ω
1. (12)

From the last two equations we obtain the following

Proposition 2.6 If the adapted connection of Y2 has nul torsion and

dw = Sω1 ∧ ω2,

then dϕ = 0.

• Analogously, ddϕ = 0 simplifies to

0 = ω ∧ ω1(dA+ 3A(ϕ+ w)) + ω ∧ ω2(dB + 3B(ϕ− w))

and we obtain

dA+ 3A(ϕ+ w) = A0ω + A1ω
1 + A2ω

2, (13)

dB + 3B(ϕ− w) = B0ω +B1ω
1 +B2ω

2, (14)

with A2 = B1.

• Also, ddw = 0 simplifies to

0 = ω ∧ ω1(dC + 3C(ϕ+ w)) + ω ∧ ω2(dD + 3D(ϕ− w)) + ω1 ∧ ω2(dS + 2Sϕ)

and we obtain

dC + 3C(ϕ+ w) = C0ω + C1ω
1 + C2ω

2, (15)

dD + 3D(ϕ− w) = D0ω +D1ω
1 +D2ω

2, (16)

dS + 2Sϕ = S0ω + S1ω
1 + S2ω

2, (17)

with C2 −D1 + S0 = 0.

Lemma 2.4 If τ 1 = τ 2 = C = D = 0

dϕ = 0.

Proof. From the last formulae we obtain that ψ is a multiple of ω and the result follows.
2
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2.6.2 The embedding ι1 : Y1 → Y2

Given a path structure with a fixed contact form ω we obtained first a coframe bundle Y1
and one can also obtain a canonical transverse direction by considering the Reeb vector field
associated to ω. One obtains then a coframe bundle Y2 of last section.

Given a coframe (ω, ω1, ω2) ∈ Y1 one can view the same coframe as a coframe of Y2. This
gives an embedding

ι1 : Y1 → Y2.

By abuse of language we may write the connection forms of Y1 and Y2 using the same
letters and then obtain:

Proposition 2.7 There exists a unique embedding ι1 : Y1 → Y2 satisfying ι∗1(ω) = ω,
ι∗1(ω

1) = ω1 and ι∗1(ω
2) = ω2. Moreover, for this embedding, ι∗1(ϕ) = 0 and ι∗1(w) = w.

Proof. If unicity is not satisfied one can obtain the same forms pulling back a different
coframe. But from the transformations of the coframe,

ω̃ =
a

b
ω

ω̃1 = a2b ω1

ω̃2 =
1

ab2
ω2.

We obtain then that a = b = 1 and the embedding is uniquely determined by the conditions.
Comparing the structure equations of both structures we further get the equations ι∗1(ϕ) =

0 and ι∗1(w) = w. 2

3 The Cartan connection of a path structure

We review in this section the construction of a Cartan connection. The construction is due to
E. Cartan in [Car] and one can read a modern description of it in [IL]. We include this section
in order to fix our conventions and describe the embedding of Y2 into the corresponding fiber
bundle associated to a path geometry (see 3.4 and 3.4.1) which will be used to define the
global invariant.

The Maurer-Cartan form on SL(3,R) is given by a form with values in the Lie algebra
sl(3,R) :

π =

 ϕ+ w ϕ2 ψ
ω1 −2w ϕ1

ω ω2 −ϕ+ w


satisfying the equation dπ + π ∧ π = 0. That is

dω = ω1 ∧ ω2 + 2ϕ ∧ ω

dω1 = ϕ ∧ ω1 + 3w ∧ ω1 + ω ∧ ϕ1

12



dω2 = ϕ ∧ ω2 − 3w ∧ ω2 − ω ∧ ϕ2

dw = −1

2
ϕ2 ∧ ω1 +

1

2
ϕ1 ∧ ω2

dϕ = ω ∧ ψ − 1

2
ϕ2 ∧ ω1 − 1

2
ϕ1 ∧ ω2

dϕ1 = ψ ∧ ω1 − ϕ ∧ ϕ1 + 3w ∧ ϕ1

dϕ2 = −ψ ∧ ω2 − ϕ ∧ ϕ2 − 3w ∧ ϕ2

dψ = ϕ1 ∧ ϕ2 + 2ψ ∧ ϕ.

3.1 The R∗-bundle of contact forms and an adapted coframe bun-
dle

We recall the construction of the R∗-bundle of contact forms. Define E to be the R∗-bundle
of all forms θ on TM such that ker θ = T 1 ⊕ T 2. Remark that this bundle is trivial if and
only if there exists a globally defined non-vanishing form θ. Define the set of forms θ1 and
θ2 on M satisfying

θ1(T 1) 6= 0 and θ2(T 2) 6= 0.

ker θ1| ker θ = T 2 and ker θ2| ker θ = T 1.

Fixing one choice, all others are given by θ′i = aiθi + viθ.
On E we define the tautological form ω. That is ωθ = π∗(θ) where π : E → M is the

natural projection. We also consider the tautological forms defined by the forms θ1 and θ2

over the line bundle E. That is, for each θ ∈ E we let ωiθ = π∗(θi). At each point θ ∈ E we
have the family of forms defined on E:

ω′ = ω

ω′1 = a1ω1 + v1ω

ω′2 = a2ω2 + v2ω

We may, moreover, suppose that

dθ = θ1 ∧ θ2 modulo θ

and therefore
dω = ω1 ∧ ω2 modulo ω.

This imposes that a1a2 = 1.
Those forms vanish on vertical vectors, that is, vectors in the kernel of the map TE →

TM . In order to define non-horizontal 1-forms we let θ be a section of E over M and
introduce the coordinate λ ∈ R∗ in E. By abuse of notation, let θ denote the tautological
form on the section θ. We write then the tautological form ω over E is

ωλθ = λθ.

13



Differentiating this formula we obtain

dω = 2ϕ ∧ ω + ω1 ∧ ω2 (18)

where ϕ = dλ
2λ

modulo ω, ω1, ω2. Here dλ
2λ

is a form intrinsically defined on E up to horizontal
forms. We obtain in this way a coframe bundle satisfying equation 18 over E:

ω′ = ω

ω′1 = a1ω1 + v1ω

ω′2 = a2ω2 + v2ω

ϕ′ = ϕ− 1

2
a1v2ω1 +

1

2
a2v1ω2 + sω

v1, v2, s ∈ R and a1, a2 ∈ R∗ such that a1a2 = 1.

Definition 3.1 We denote by Y the coframe bundle Y → E given by the set of 1-forms
ω, ω1, ω2, ϕ as above. Two coframes are related by

(ω′, ω′1, ω′2, ϕ′) = (ω, ω1, ω2, ϕ)


1 v1 v2 s
0 a1 0 −1

2
a1v2

0 0 a2 1
2
a2v1

0 0 0 1


where and s, v1, v2 ∈ R and a1, a2 ∈ R∗ satisfy a1a2 = 1.

The bundle Y can also be fibered over the manifold M . In order to describe the bundle
Y as a principal fiber bundle over M observe that choosing a local section θ of E and forms
θ1 and θ2 on M such that dθ = θ1 ∧ θ2 one can write a trivialization of the fiber

ω = λθ

ω1 = a1θ1 + v1λθ

ω2 = a2θ2 + v2λθ

ϕ =
dλ

2λ
− 1

2
a1v2θ1 +

1

2
a2v1θ2 + sθ,

where v1, v2, s ∈ R and a1, a2 ∈ R∗ such that a1a2 = λ. Here the coframe ω, ω1, ω2, ϕ is seen
as composed of tautological forms.

The group H acting on the right of this bundle is

H =




λ v1λ v2λ s
0 a1 0 −1

2
a1v2

0 0 a2 1
2
a2v1

0 0 0 1

 where s, v1, v2 ∈ R and a1, a2 ∈ R∗ satisfy a1a2 = λ

 .

Consider the homomorphism from the Borel group B ⊂ SL(3,R) of upper triangular
matrices with determinant one into H

j : B → H

14



given by

 a c e
0 1

ab
f

0 0 b

 −→


a
b
−a2f c

b
−eb+ 1

2
acf

0 a2b 0 −1
2
abc

0 0 1
ab2

− f
2b

0 0 0 1


One verifies that the homomorphism is surjective so that H is isomorphic to the Borel group
of upper triangular matrices in SL(3,R).

Proposition 3.2 The bundle Y →M is a principal bundle with structure group H.

3.2 Construction of connection forms on the bundle Y

The goal of this section is to review the construction of canonical forms defined on the
coframe bundle Y → E as in [FV]. They give rise to a Cartan connection on Y with values
in sl(3,R).

A local section of the coframe bundle over M may be given by three forms

θ, θ1, θ2

satisfying dθ = θ1 ∧ θ2, with ker θ1| ker θ = T 2 and ker θ2| ker θ = T 1. They give coordinates on
the cotangent bundle over E. Indeed, at λθ ∈ E, the coframes of Y are parametrized as
follows:

ω = λθ

ωi = aiθi + viλθ

with a1a2 = λ and

dω = 2ϕ ∧ ω + ω1 ∧ ω2, (19)

where ϕ = dλ
2λ

mod ω1, ω2, ω.
Differentiating the forms ω1 and ω2 we obtain new forms which correspond to the coor-

dinates a1, v1, a2, v2 (recall that a1 and a2 are not independent):

Lemma 3.1 There exists linearly independent forms w,ϕ1, ϕ2 defined on T ∗Y such that

dω1 = ϕ ∧ ω1 + 3w ∧ ω1 + ω ∧ ϕ1 and dω2 = ϕ ∧ ω2 − 3w ∧ ω2 − ω ∧ ϕ2 (20)

with w = 1
6
(da

1

a1
− da2

a2
) mod (ω, ω1, ω2) and ϕ1 = −dv1, ϕ2 = dv2 mod (ω, ω1, ω2).

The coordinate s in the bundle Y is associated to a new form:

Lemma 3.2 There exists a 1-form ψ such that

dϕ = ω ∧ ψ − 1

2
(ϕ2 ∧ ω1 + ϕ1 ∧ ω2) (21)

15



The forms w,ϕ1, ϕ2 and ψ are not yet determined. Define

W = dw +
1

2
ω2 ∧ ϕ1 − 1

2
ω1 ∧ ϕ2

Φ1 = dϕ1 + 3ϕ1 ∧ w + ω1 ∧ ψ + ϕ ∧ ϕ1

Φ2 = dϕ2 − 3ϕ2 ∧ w − ω2 ∧ ψ + ϕ ∧ ϕ2

Lemma 3.3 There exists unique forms w,ϕ1, ϕ2 and ψ such that W = 0, Φ1 = Q1ω ∧ ω2

and Φ2 = Q2ω ∧ ω1 where Q1 and Q2 are functions on Y .

We can represent the structure equations 19, 20, 21 as a matrix equation whose entries
are differential forms. The forms are disposed in the Lie algebra sl(3,R) and define a Cartan
connection on Y .

Proposition 3.3 There exists a unique Cartan connection π : TY → sl(3,R) defined on Y
of the form

π =

 ϕ+ w ϕ2 ψ
ω1 −2w ϕ1

ω ω2 −ϕ+ w

 .

such that its curvature satisfies

Π = dπ + π ∧ π =

 0 Φ2 Ψ
0 0 Φ1

0 0 0


with Φ1 = Q1ω ∧ ω2, Φ2 = Q2ω ∧ ω1 and Ψ = (U1ω

1 + U2ω
2) ∧ ω.

3.3 Curvature forms and Bianchi identities

Curvature forms appear as differentials of connection forms and are used implicitly in order
to fix the connection forms.

We recall:

W = dw − 1

2
ω2 ∧ ϕ1 +

1

2
ω1 ∧ ϕ2 = 0, (22)

Φ1 = dϕ1 + 3ϕ1 ∧ w + ω1 ∧ ψ + ϕ ∧ ϕ1 = Q1ω ∧ ω2, (23)

Φ2 = dϕ2 − 3ϕ2 ∧ w − ω2 ∧ ψ + ϕ ∧ ϕ2 = Q2ω ∧ ω1, (24)

Ψ := dψ − ϕ1 ∧ ϕ2 − 2ϕ ∧ ψ = (U1ω
1 + U2ω

2) ∧ ω. (25)

where Q1, Q2, U1 and U2 are functions on Y .

3.3.1

Equation d(dϕ1) = 0 obtained differentiating Φ1 above implies

dQ1 − 6Q1w + 4Q1ϕ = S1ω + U2ω
1 + T 1ω2, (26)

‘where we introduced functions S1 and T 1.
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3.3.2

Analogously, equation d(dϕ2) = 0 obtained differentiating Φ2 above implies

dQ2 + 6Q2w + 4Q2ϕ = S2ω − U1ω
2 + T 2ω1, (27)

where we introduced new functions S2 and T 2.

3.3.3

Equation d(dψ) = 0 obtained from 25 implies

dU1 + 5U1ϕ+ 3U1w +Q2ϕ1 = Aω +Bω1 + Cω2 (28)

and

dU2 + 5U2ϕ− 3U2w −Q1ϕ2 = Dω + Cω1 + Eω2. (29)

3.4 Embedding ι2 : Y2 → Y

The goal now is to obtain an immersion ι2 : Y2 → Y . One can construct the bundle Y2 using
the bundle E of contact forms as a first step. Than Y2 is a coframe bundle over E obtained by
the tautological forms ω, ω1, ω2 corresponding to forms θ, θ1, θ2 satisfying dθ = θ1∧θ2+2ϕ∧ω
with an appropriate ϕ.

By abuse of language again as for ι1 : Y1 → Y2, we may write the connection forms of Y1
and Y using the same letters and then obtain:

Proposition 3.4 There exists a unique embedding ι2 : Y2 → Y satisfying ι∗2(ω) = ω,
ι∗2(ω

1) = ω1, ι∗2(ω
2) = ω2, ι∗2(ϕ) = ϕ.

Proof. As Y2 and Y are both coframe bundles over the line bundle E of all contact forms,
we can assume that the embedding projects to the identity map on E. Over E, Y is a
coframe bundle with structure group

 a c e
0 1

a2
f

0 0 a

 .

In order to determine the embedding we need to choose functions c, e and f . The diagonal
matrix correspond to the fiber of Y2 and does not need to be fixed. Consider then a map
from M to the group above given by

h =

 1 c e
0 1 f
0 0 1

 .

Recall that
Rh
∗π = h−1d h+ Adh−1π.
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We obtain, neglecting the terms of the connection of Y which are not relevant, the following
transformation formulae. Remark that the term h−1d h does not appear in the transformation
of these components.

ω̃ = ω

ω̃1 = ω1 − f ω
ω̃2 = ω2 + c ω

ϕ̃ = ϕ− 1

2
c ω1 − f ω2 + (

1

2
cf − e)ω (30)

The forms ω1 and ω2 defined at each point of Y2 define corresponding forms ω1 and ω2

in Y . We observe then that the functions f and c must be zero in order that ι∗2(ω
1) = ω1,

ι∗2(ω
2) = ω2. Finally the form ϕ on Y2 defines a corresponding form on Y and we conclude

that e = 0 if we impose that ι∗2(ϕ) = ϕ.

2

3.4.1 The curvature of Y in terms of the curvature of Y2

We obtain the following equations by pulling back to Y2 the structure equations on Y through
the embedding ι2:

dω = 2ϕ ∧ ω + ω1 ∧ ω2

dω1 = ϕ ∧ ω1 + 3w̃ ∧ ω1 + ω ∧ ϕ1 (31)

dω2 = ϕ ∧ ω2 − 3w̃ ∧ ω2 − ω ∧ ϕ2 (32)

dϕ = ω ∧ ψ̃ − 1

2
(ϕ2 ∧ ω1 + ϕ1 ∧ ω2) (33)

dw̃ = −1

2
ϕ2 ∧ ω1 +

1

2
ϕ1 ∧ ω2 (34)

dϕ1 + 3ϕ1 ∧ w̃ + ω1 ∧ ψ̃ + ϕ ∧ ϕ1 = Q1ω ∧ ω2 (35)

dϕ2 − 3ϕ2 ∧ w̃ − ω2 ∧ ψ̃ + ϕ ∧ ϕ2 = Q2ω ∧ ω1

dψ̃ − ϕ1 ∧ ϕ2 − 2ϕ ∧ ψ̃ = (U1ω
1 + U2ω

2) ∧ ω.

In the formulae above we write the pull back of any form α defined on Y using the same
notation α except for the pull backs w̃ = ι∗2w and ψ̃ = ι∗2ψ. We should compare with the
structure equations of Y2 and obtain an expression for Q1 and Q2:

dω = 2ϕ ∧ ω + ω1 ∧ ω2

dω1 = ϕ ∧ ω1 + 3w ∧ ω1 + ω ∧ τ 1

dω2 = ϕ ∧ ω2 − 3w ∧ ω2 − ω ∧ τ 2
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with τ 1 ∧ ω2 = τ 2 ∧ ω1 = 0.
Recall also that dϕ = ω∧ψ with ψ = Aω1+Bω2 and dw = Cω∧ω1+Dω∧ω2+Sω1∧ω2,

where A,B,C,D and S are functions on Y2.

• The differences between the pull back equations and the structure equations for dω1

and dω2 give, respectively,

3(w̃ − w) ∧ ω1 + ω ∧ (ϕ1 − τ 1) = 0

and
3(w̃ − w) ∧ ω2 + ω ∧ (ϕ2 − τ 2) = 0.

Therefore, by Cartan’s lemma
w̃ − w = mω

for a function m to be determined and

ϕ1 − τ 1 = −3mω1 + nω and ϕ2 − τ 2 = −3mω2 + Pω,

where n and P are functions to be determined.

• The difference between the equation dϕ = ω ∧ ψ and the pull back equation for dϕ
above is

ω ∧ (ψ̃ − ψ)− 1

2
(ϕ2 ∧ ω1 + ϕ1 ∧ ω2) = 0.

Substituting the expressions for ϕ1 and ϕ2 obtained in the item above we obtain

ω ∧ (ψ̃ − Aω1 −Bω2)− 1

2
((τ 2 − 3mω2 + Pω) ∧ ω1 + (τ 1 − 3mω1 + nω) ∧ ω2) = 0,

which simplifies to

ω ∧ (ψ̃ − Aω1 −Bω2 − P

2
ω1 − n

2
ω2) = 0.

This implies that

ψ̃ = (A+
P

2
)ω1 + (B +

n

2
)ω2 + qω,

where q is a function to be determined.

• The difference between the equations for dw̃ and dw is then

d(mω) = dw̃ − dw = −1

2
ϕ2 ∧ ω1 +

1

2
ϕ1 ∧ ω2 − Sω1 ∧ ω2 − Cω ∧ ω1 −Dω ∧ ω2.

Substituting in this formula the expressions for ϕ1 and ϕ2 in terms of the enriched
structure we obtain

dm∧ω+m(2ϕ∧ω+ω1∧ω2) = (−S−3m)ω1∧ω2 + (−P
2
−C)ω∧ω1 + (

n

2
−D)ω∧ω2.
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That is,

(S + 4m)ω1 ∧ ω2 + ω ∧
(
−dm− 2mϕ+ (

P

2
+ C)ω1 − (

n

2
−D)ω2

)
= 0.

Therefore
m = −S/4

and so
1

4
dS +

1

2
Sϕ+ (

P

2
+ C)ω1 − (

n

2
−D)ω2 + Eω = 0

where E is a function determined by the derivative of S. Writing dS + 2Sϕ = S0ω +
S1ω

1 + S2ω
2 and comparing with the above expression, we obtain

S0 = −4E, S1 = −2(P + 2C), S2 = −2(−n+ 2D). (36)

Therefore the functions P and n are determined. It remains to determine the function
q.

• Computing dϕ1 = d(3S
4
ω1 + nω + τ 1) and equating to the structure equation dϕ1 =

−3ϕ1 ∧ w̃ − ω1 ∧ ψ̃ − ϕ ∧ ϕ1 +Q1ω ∧ ω2 we obtain, after a computation writing

dn+ 3n(ϕ− w) = n0ω + n1ω
1 + n2ω

2, (37)

n1 = −τ 12 τ 21 − q +
9

16
S2 − 3E , n2 = −Q1 +

3

2
Sτ 12 + τ 120. (38)

Recalling that n = S2/2+4D, S and D are determined by Y2, we obtained an expression
for Q1 in terms of the enriched structure. Note also that q is determined by the first
equation.

• Analogously, computing dϕ2 = −33S
4
ω2+pω+τ 2 and equating to the structure equation

dϕ2 − 3ϕ2 ∧ w̃ − ω2 ∧ ψ̃ + ϕ ∧ ϕ2 = Q2ω ∧ ω1 we obtain, after a computation, writing
dP + 3P (ϕ+ w) = P0ω + P1ω

1 + P2ω
2),

P1 = −Q2 − 3

2
Sτ 21 + τ 210 , P2 = τ 12 τ

2
1 + q − 9

16
S2 − 3E. (39)

Recalling that P = −S1/2 − 2C, S and C are determined by Y2, we obtained an
expression for Q2 in terms of the enriched structure.

The following proposition follows directly from the computations above.

Proposition 3.5 Suppose Y2 with its adapted Cartan connection has null torsion, that is,
satisfies τ 1 = τ 2 = 0 and dw = Sω1 ∧ ω2. Then

Q2 =
1

2
S11

and

Q1 = −1

2
S22,

where S11 is the ω1 component of the form dS1 and S22 is the ω2 component of the form dS2.
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Proof. From Proposition 2.6, null torsion and the condition that dw = Sω1 ∧ ω2 (that
is, C = D = 0) implies that P = −S1/2 and n = S2/2. The result is therefore implied from
the previous formulas. 2

3.5 The embedding Y1 → Y

Recall that Y1 is a coframe bundle of forms (θ, θ1, θ2) over M . Choosing a local section, the
pullback forms over M are also denoted by (θ, θ1, θ2). We recall here an embedding Y1 → Y
obtained in [FV].

A section (θ, θ1, θ2) of the coframe bundle Y1 clearly defines a path geometry on M . We
obtain then a line bundle E and a principal bundle Y with its associated Cartan connection.
Also, (θ, θ1, θ2) defines, up to the action by the group of matrices 1 c e

0 1 f
0 0 1


sections of the tautological forms (ω, ω1, ω2) on Y . In order to define a canonical section we
use the following

Proposition 3.6 Let θ, θ1, θ2 be a coframe section of Y1 and consider the principal bundle
Y defined by this coframe. Then there exists a unique section s : M → Y such that s∗ω = θ,
s∗ω1 = θ1, s∗ω2 = θ2 and s∗ϕ = 0.

It is easy to verify that this definition is equivariant with respect to the action G1, the one
parameter group of the strict contact structure. This defines then the embedding Y1 → Y .

3.6 The equivalence problem for a second order differential equa-
tion

In this section we recall the treatment by Cartan of the point equivalence between second
order differential equations. It is included in order to fix conventions and to compare the
invariants defined in the next section.

Recall that for a second order differential equation we define

θ = dy − pdx,

and

L1 = ker{dp− Fdx} ∩ ker{dy − pdx}, L2 = ker dx ∩ ker dy.

For Z1 = dx and Z2 = dp−Fdx, one has then dθ = Z1 ∧Z2. The general forms defining
the lines at each tangent space may be described by

ω1 = a1Z
1, ω2 = a2Z

2, ω = a1a2θ
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where a1, a2 are non-vanishing positive functions on the manifold, so that we have always

2ϕ ∧ ω + ω1 ∧ ω2 = dω = (
da1
a1

+
da2
a2

) ∧ ω + a1Z
1 ∧ a2Z2,

and we obtain comparing with 4

ϕ =
1

2
(
da1
a1

+
da2
a2

) + rω.

One computes

(ϕ+3w)∧ω1+ω∧τ 1 = dω1 = da1∧Z1+a1.0 =

(
1

2
(
da1
a1

+
da2
a2

) +
1

2
(
da1
a1
− da2

a2
)

)
∧ω1 (40)

and obtain

3w =
1

2
(
da1
a1
− da2

a2
)− rω + sω1, τ 12 = 0.

Observe that, if f(x, y, p) then

df =
1

a1

df

dx
ω1 +

1

a2
fpω

2 +
1

a1a2
fyω,

where df
dx

= fx + fyp+ fpF . Also

dω2 = da2
a2
∧ ω2 + a2(− 1

a2
Fpω

2 − 1
a1a2

Fyω) ∧ 1
a1
ω1

= (1
2
(da1
a1

+ da2
a2

)− 1
2
(da1
a1
− da2

a2
)) ∧ ω2 + 1

a1
Fpω

1 ∧ ω2 − 1
(a1)2

Fyω ∧ ω1

= (ϕ− 3w − 2rω + (s+ 1
a1
Fp)ω

1) ∧ ω2 − ω ∧ Fy

(a1)2
ω1

(41)

Comparing with dω2 = (ϕ− 3w) ∧ ω2 − ω∧τ 2 we obtain r = 0, s = −Fp

a1
, τ 21 = Fy

a21
,

ϕ =
1

2
(
da1
a1

+
da2
a2

), 3w =
1

2
(
da1
a1
− da2

a2
)− Fp

a1
ω1.

From dϕ = 0, we obtain ψ = 0, or A = B = 0, and from τ 12 = 0 it follows D = τ 120 = τ 122 = 0.
From above we get

3dw = −dFp ∧
1

a1
ω1 = −(

Fpp
a2
ω2 +

Fpy
a1a2

ω) ∧ 1

a1
ω1

and comparing with dw = Cω ∧ ω1 + Sω1 ∧ ω2 we obtain

3C = − Fpy
a21a2

, 3S =
Fpp
a1a2

.

Also

dτ 21 = d(
Fy
a21

) = − 2

a21
(ϕ+ 3w +

Fp
a1
ω1)Fy +

1

a21
(

1

a1

dFy
dx

ω1 +
1

a1a2
Fyyω +

1

a2
Fypω

2).
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Comparing with dτ 21 = −2τ 21 (ϕ+ 3w)− 3Cω2 + τ 210ω + τ 211ω
1 we obtain

τ 211 =
1

a31
(−2FpFy +

dFy
dx

), τ 210 =
1

a31a2
Fyy.

Now

3dS = −2(3Sϕ) +
1

a1a2
(

1

a1

dFpp
dx

ω1 +
1

a2
Fpppω

2 +
1

a1a2
Fppyω)

and comparing with dS = −2Sϕ+ S0ω + S1ω
1 + S2ω

2 we obtain

S1 =
1

3a21a2

dFpp
dx

, S2 =
1

3a1a22
Fppp, S0 =

1

3a21a
2
2

Fppy.

It follows from S1 = −2P − 4C that 6P = 1
a21a2

(4Fyp − dFpp

dx
). Then

6dP = − 1

a21a2
(3ϕ+ 3w +

Fp
a1
ω1)(4Fyp −

dFpp
dx

) +
4

a21a2
(

1

a1

dFyp
dx

ω1 +
1

a2
Fyppω

2 +
1

a1a2
Fyypω)

− 1

a21a2
(

1

a1

d2Fpp
dx2

ω1 +
1

a2
(
dFppp
dx

+ Fypp + FpppFp)ω
2 +

1

a1a2
(
dFypp
dx

+ FpppFy)ω)

Comparing with dP = −(3ϕ+ 3w)P + P0ω + P1ω
1 + P2ω

2 we obtain

P0 =
1

6a31a
2
2

(4Fyyp −
dFypp
dx
− FpppFy), P1 =

1

6a31a2
(−4FpFyp + Fp

dFpp
dx

+ 4
dFyp
dx
− d2Fpp

dx2
),

P2 =
1

6a21a
2
2

(4Fypp −
dFppp
dx
− Fypp − FpppFp).

From Q2 = τ 210 − 3
2
Sτ 21 − P1 it follows

Q2 =
1

6a31a2
(6Fyy − 3FyFpp + 4FpFyp − Fp

dFpp
dx
− 4

dFyp
dx

+
d2Fpp
dx2

). (42)

It follows from S2 = 2n− 4D that 6n = 1
a1a22

Fppp. Then

6dn = − 1

a1a22
(3ϕ− 3w − Fp

a1
ω1)Fppp +

1

a1a22
(

1

a1

dFppp
dx

ω1 +
1

a2
Fppppω

2 +
1

a1a2
Fpppyω).

Comparing with dn = −n(3ϕ− 3w) + n0ω + n1ω
1 + n2ω

2 we obtain

n0 =
1

6a21a
3
2

Fpppy, n1 =
1

6a21a
2
2

(
dFppp
dx

+ FpFppp) n2 =
1

6a1a32
Fpppp.

From Q1 = τ 120 + 3
2
Sτ 12 − n2 it follows

Q1 = − 1

6a1a32
Fpppp. (43)

Formulas 43 and 42 are in [Car].
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4 A global invariant

In this section we define the global invariant for path structures. It has a very similar
definition with the global invariant obtained in [FV] in the context of a structure defined on
the complexified tangent space of a 3-manifold. But we make the definition explicit in the
case of path structures for the sake of clarity and to adapt differences of conventions with
our previous paper.

Define the second Chern class of the bundle Y with connection form π as

c2(Y, π) =
1

8π2
tr (Π ∧ Π).

 0 Φ2 Ψ
0 0 Φ1

0 0 0

 ∧
 0 Φ2 Ψ

0 0 Φ1

0 0 0

 =

 0 0 Φ1 ∧ Φ2

0 0 0
0 0 0

 .

As Φ1 = Q1ω ∧ ω2 and Φ2 = Q2ω ∧ ω1 we have Π ∧ Π = 0 and therefore

c2(Y, π) = 0.

Definition 4.1 The transgression form is defined as

TC2(π) =
1

8π2

(
tr (π ∧ Π) +

1

3
tr (π ∧ π ∧ π)

)
=

1

24π2
tr (π ∧ π ∧ π).

Lemma 4.1 The transgression form is closed, that is, d TC2(π) = c2(Y, π) = 0.

Proof. We compute first, using the expressions of Φ1, Φ2 and Ψ, that

tr (Π ∧ π) = Φ2 ∧ ω1 + Φ1 ∧ ω2 + Ψ ∧ ω = 0.

Differentiating the curvature form we obtain dΠ = Π ∧ π − π ∧ Π and therefore

0 = d tr (Π ∧ π) = tr (dΠ ∧ π + Π ∧ d π) = tr ((Π ∧ π − π ∧ Π) ∧ π + Π ∧ (Π− π ∧ π))

= −tr (π ∧ Π ∧ π).

Note that tr (α ∧ β) = (−1)kltr (β ∧ α) if α and β are two matrices of forms of degree k
and l respectively. Therefore, computing

1

3
d tr (π ∧ π ∧ π) = tr (d π ∧ π ∧ π) = tr ((Π− π ∧ π) ∧ π ∧ π)

= −tr (π ∧ π ∧ π ∧ π) = 0.

2
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Definition 4.2 Suppose that the fiber bundle Y → M is trivial and let s : M → Y be a
section, we define then

µ =

∫
M

s∗TC2(π) =
1

24π2

∫
M

s∗tr (π ∧ π ∧ π).

In principle that integral depends on the section but the following proposition shows that
the integrand

s∗TC2(π)

defines an element in H3(M,R) which does not depend on the section.

Proposition 4.3 Suppose s and s̃ are two sections. Then

s̃∗TC2(π)− s∗TC2(π) = − 1

8π2
d s∗tr (h−1π ∧ d h).

where h : M → H is a map such that s̃ = Rh ◦ s.

Proof. Fix the section s. Than there exists a map h : M → H such that s̃ = Rh ◦ s. We
have then

s̃∗TC2(π) =
1

24π2
s∗tr (R∗hπ ∧R∗hπ ∧R∗hπ).

From the formula
Rh
∗π = h−1d h+ Adh−1π,

we obtain
tr (R∗hπ ∧R∗hπ ∧R∗hπ) =

tr
(
h−1d h ∧ h−1d h ∧ h−1d h+ 3h−1d h ∧ h−1π ∧ d h+ 3h−1π ∧ π ∧ d h+ π ∧ π ∧ π

)
= tr

(
−h−1d h ∧ d h−1 ∧ d h− 3d h−1 ∧ π ∧ d h+ 3h−1π ∧ π ∧ d h+ π ∧ π ∧ π

)
.

Observe that the first term in the right hand side vanishes. Indeed, d h−1 ∧ d h is upper
triangular with null diagonal. Moreover h−1d h is upper triangular and therefore the Lie
algebra valued form also has zero diagonal. Therefore

tr (h−1d h ∧ d h−1 ∧ d h) = 0.

By the same argument tr (h−1Π ∧ d h) = 0.
Now we show that

d tr (h−1π ∧ d h) = tr
(
d h−1 ∧ π ∧ d h− h−1π ∧ π ∧ d h

)
.

Compute dtr (h−1π ∧ d h) = tr (d h−1 ∧ π ∧ d h+ h−1dπ ∧ d h)

= tr
(
d h−1 ∧ π ∧ d h+ h−1(Π− π ∧ π) ∧ d h

)
,

which gives, using that tr (h−1Π ∧ d h) = 0,

dtr (h−1π ∧ d h) = tr
(
d h−1 ∧ π ∧ d h− h−1π ∧ π ∧ d h

)
.
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We obtained therefore that

ẽs∗TC2(π) = s∗TC2(π)− 1

8π2
d s∗tr (h−1π ∧ d h)

and this completes the proof of the proposition.

2

Let µ(t) be the invariant defined as a function of the a parameter describing the deforma-
tion of the structure on a closed manifold M and define δµ = d

dt
µ(0). One can interpret the

flat structures as giving critical points of the global invariant µ through the first variation
formula which we refer to [FV] for a proof.

Proposition 4.4

δµ = − 1

4π2

∫
M

s∗tr (π̇ ∧ Π).

The global invariant can be computed most easily for a path structure induced by an
enriched or strict path structure.

Proposition 4.5 Let M be an enriched path structure and Y2 → Y be the canonical embed-
ding of the enriched geometry into the induced path geometry. Then

8π2µ(Y ) = (n1 −
3

4
S0 + 2τ 12 τ

2
1 )ω ∧ ω1 ∧ ω2 + ω ∧ ω1 ∧ (−2Aϕ− (

3

2
S1 + 6C)w)

+ω ∧ ω2(−2Bϕ− (
3

2
S2 + 6D)w)− 9

2
Sw ∧ ω1 ∧ ω2.

Proof. One compute first the following formula.

1

3
tr (π∧π∧π) = (2ω∧ϕ−ω1∧ω2)∧ψ−ω∧ϕ1∧ϕ2 +ω1∧ (ϕ+3w)∧ϕ2 +ω2∧ (ϕ−3w)∧ϕ1.

Therefore using the embedding of Y2 → Y in the previous section we obtain by a computa-
tion:

1

3
tr (π ∧ π ∧ π) = (n1 −

3

4
S0 + 2τ 12 τ

2
1 )ω ∧ ω1 ∧ ω2 + ω ∧ ω1 ∧ (−2Aϕ− (

3

2
S1 + 6C)w)

+ω ∧ ω2(−2Bϕ− (
3

2
S2 + 6D)w)− 9

2
Sw ∧ ω1 ∧ ω2.

2

Using the embedding of Y1 → Y in the previous section we obtain by a similar computa-
tion:

Proposition 4.6 Let M be a strict path structure and Y1 → Y be the canonical embedding
of the strict geometry into the induced path geometry. Then

8π2µ(Y ) = (n1−
3

4
S0+2τ 12 τ

2
1 )ω∧ω1∧ω2−w∧((

3

2
S1+6C)ω∧ω1+(

3

2
S2+6D)ω∧ω2+

9

2
Sω1∧ω2)

(44)
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4.1 The global invariant for second order differential equations on
the torus

In this section we obtain formulas for the global invariant in the case of an ordinary dif-
ferential equation defined on the torus. Recall that the projectivized cotangent bundle
π : PT ∗S → S of a surface S is described locally by (x, y, [p, q]) where (x, y) are local co-
ordinates on the surface and pdx + qdy is a form at (x, y). The Liouville form θ on T ∗S
is defined to be the tautological form θ(x, y,−pdx + qdy) = π∗(−pdx + qdy). It induces
a contact distribution on PT ∗S, which in the chart (x, y, p) → (x, y, [p, 1]) is given by the
kernel of the form dy − pdx. On the chart (x, y, q) → (x, y, [1, q]) the contact distribution
is the kernel of dx − qdx. One can also consider, fixing a metric on the surface, the unit
cotangent bundle (T ∗)1S which is a double cover of PT ∗S.

The fibers of the bundle PT ∗S give a canonical field of directions on the Liouville dis-
tribution. Observe that, in local coordinates (x, y, p), it is described by ker dx ∩ ker dy =
ker dx ∩ ker(dy − pdx). Choosing another direction on the contact distribution amounts to
define a form, in local coordiantes (x, y, p), dp−G(x, y, p)dx, where G(x, y, p) is a function.
On the chart (x, y, q) one writes then

d(
1

q
)−G(x, y,

1

q
)dx = − 1

q2
dq −G(x, y,

1

q
)dx.

Therefore, the direction is determined by dq + G(x, y, 1
q
)q3dy (the contact distribution is

ker(dx−qdy)). In order to have a well defined direction we need that the function G(x, y, 1
q
)q3

has a differentiable extension for q = 0.

Definition 4.7 A second order differential equation on a surface S is a path structure on
the projective cotangent bundle with contact structure induced by the Liouville form and such
that one of the directions is given by the fibers.

It is convenient to introduce a new coordinate in the fiber α ∈] − π, π] through the
formula p = tanα/2. The contact distribution is defined by a globally defined form on the
coordinates (x, y, α):

θ = cosα/2dy − sinα/2dx.

The fiber direction is defined by the equations dx = dy = 0 which can also be described by,
defining θ1 = sinα/2dy + cosα/2dx, as ker θ1 ∩ ker θ. The last form, which depends on a
choice of a function, is

θ2 = dα− F (x, y, α)θ1.

Observe that

dθ =
1

2
θ1 ∧ θ2.

The relation with the differential equation given on the chart (x, y, p) is given writing

dp =
1

2
(1 + p2)dα
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and therefore, as dy = pdx in that chart,

dα− F (x, y, α)θ1 =
2

1 + p2
dp− F (x, y, 2 arctan p)(sinα/2dy + cosα/2dx)

=
2

1 + p2
dp− F (x, y, 2 arctan p)(sinα/2.pdx+ cosα/2dx)

=
2

1 + p2
dp− F (x, y, 2 arctan p)(sinα/2. tanα/2 + cosα/2)dx.

and recalling that cosα/2 = 1√
1+p2

,

=
2

1 + p2
dp− F (x, y, 2 arctan p)(1 + p2)1/2dx.

Therefore 2G(x, y, p) = F (x, y, 2 arctan p)(1 + p2)3/2.

4.1.1 The strict and enriched structure of a differential equation on the torus

Here we will work with a double cover of the projective cotangent bundle of the torus. We
define the path structure associated to a differential equation on the torus through a strict
path structure defined by

θ = cosαdy − sinαdx.

θ1 = sinαdy + cosαdx

and
θ2 = dα− F (x, y, α)θ1.

Here F (x, y, α) is a function defined on the torus. Observe that

dθ = θ1 ∧ θ2.

In the following we will write, for a function f : T 3 → R, defined on the torus,

df = f0θ + f1θ
1 + f2θ

2,

so that fx = −f0 sinα + (f1 − f2F ) cosα, fy = f0 cosα + (f1 − f2F ) sinα and fα = f2.
Compute

dθ1 = (θ2 + Fθ1) ∧ θ

and
dθ2 = ((F0 − F 2)θ1 − Fθ2) ∧ θ + F2θ

1 ∧ θ2.

Consider now the enriched structure defined by θ, θ1 and θ2 and the tautological forms
ω = a1a2θ, ω

1 = a1θ
1 and ω2 = a2θ

2.
We first compute

dω = 2ϕ ∧ ω + ω1 ∧ ω2,
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where ϕ = 1
2
(da1
a1

+ da2
a2

). Next we compute dω1 and dω2:

dω1 =
da1
a1
∧ a1θ1 + a1(θ

2 + Fθ1) ∧ θ

dω2 =
da2
a2
∧ a2θ2 + a2(((F0 − F 2)θ1 − Fθ2) ∧ θ + F2θ

1 ∧ θ2)

Comparing with the structure equations of the enriched structure in 5 we may write

dω1 = ϕ ∧ ω1 + 3w ∧ ω1 + ω ∧ τ 1 dω2 = ϕ ∧ ω2 − 3w ∧ ω2 − ω ∧ τ 2. (45)

with

3w =
1

2
(
da1
a1
− da2

a2
)− 1

a1a2
Fω − 1

a1
F2ω

1,

τ 1 = − 1

a22
ω2

and

τ 2 =
1

a21
(F0 − F 2)ω1.

4.1.2 Curvatures

We compute now dϕ = ω ∧ (Aω1 + Bω2) and dw = Cω ∧ ω1 + Dω ∧ ω2 + Sω1 ∧ ω2(see
Proposition 2.5) . From dϕ = 0 we obtain A = B = 0. Computing dw and comparing to the
formula above we obtain

C =
F1 − F20 + FF2

3a21a2
, D =

2F2

3a1a22
, S =

F22 − F
3a1a2

.

In order to compute the global invariant we need to compute the coefficients S0, S1 and S2

in equation 17 (a Bianchi identity) : dS + 2Sϕ = S0ω + S1ω
1 + S2ω

2. One obtains

S0 =
F220 − F0

3a21a
2
2

, S1 =
F221 − F1

3a21a2
, S2 =

F222 − F2

3a1a22
.

Now we use the expressions obtained in section 3.4.1 of the curvatures of Y in terms of
the curvature of Y2. In order to compute µ(Y ) we need to compute n and its derivatives (see
36 and 37).

We have 2n = S2 + 4D = F222+7F2

3a22a1
and compute the left hand of dn + 3(ϕ − w)n =

n0ω + n1ω
1 + n2ω

2 (formula 37) to obtain then

n0 =
1

6a21a
3
2

(F (F222 + F2) + F2220 + 7F20) ,

n1 =
1

6a21a
2
2

(F2(F222 + F2) + F2221 + 7F21)

n2 =
1

6a1a32
(F2222 + 7F22)
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We use equations 38 and 39 to compute the curvature functions Q1 and Q2. We have
Q1 = −n2 + 3

2
Sτ 12 + τ 120 and Q2 = −P1 − 3

2
Sτ 21 + τ 210. For that sake, we compute first the

derivatives of the torsion, τ 120 and τ 210, using formulas 11 and 12. Computing the left hand
side of the equation dτ 12 + 2τ 12 (ϕ− 3w) + (B + 3D)ω1 = τ 120ω + τ 122ω

2 and comparing to the
right hand side we obtain

τ 120 = − 2F

a1a32
.

Analogously, computing the left hand side of the equation dτ 21 +2τ 21 (ϕ+3w)−(A−3C)ω2 =
τ 210ω + τ 211ω

1 we obtain

τ 210 =
F00 − 4FF0 + 2F 3

a31a2
.

Proposition 4.8 Given a (local) differential equation as a path structure induced by the
forms θ, θ1 and θ2 as above one computes the curvature functions in terms of the enriched
structure:

Q1 = − 1

6a1a32
(F2222 + 10F22 + 9F )

and

Q2 =
1

6a31a2
(F2F221 + 3F2F

2
1 − 4F2F20 + 4FF 2

2 + F2211 + 6F1F11

−4F201 + 4F2F1 + 4FF21 − 3F22F0 + 3F22F
2 − 21FF0 + 9F 3 + 6F00).

Proof. Recall from formula 36 that P = −S1/2 − 2C and we write dP + 3P (ϕ + w) =
P0ω + P1ω

1 + P2ω
2. Computing the left side and comparing the right side we obtain the

expression of P1 which we use in the formulas above. 2

The following proposition describes locally differential equations satisfying Q1 = 0.

Proposition 4.9 Differential equations on an open subset with coordinates (x, y) given by
θ = cosαdy − sinαdx, θ1 = sinαdy + cosαdx and θ2 = dα− F (x, y, α)θ1 satisfy

Q1 = 0

if and only if

F (x, y, α) = A(x, y) cosα +B(x, y) sinα + C(x, y) cos 3α +D(x, y) sin 3α

where A,B,C and D are functions on x and y.

Proof. Observe that Q1 = 0 is equivalent to F2222 + 10F22 + 9F = Fαααα + 10Fαα + 9F = 0.
The only solutions to this linear equation are of the form above. 2

Using the coordinates (x, y, p) as above where the differential equation is described as
dp − G(x, y, p)dx = 0 the condition Q1 = 0 implies that G(x, y, p) is at most a third order
polynomial in p with coefficients functions of x and y (see [A]).
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4.1.3 The global invariant

We are ready now to use Proposition 4.5 to detemine the global invariant:

Proposition 4.10 Let M be an enriched path structure defined by an ordinary differential
equation of second order on the torus with strict structure defined by the forms θ, θ1 and θ2

as above. Let Y2 → Y be the canonical embedding of the enriched geometry into the induced
path geometry whose connection is π. Then

8π2s∗(TC2(π)) =
1

12
(−12F 2

α+2(Fαααx cosα+Fαααy sinα+FααααF )+14(Fαx cosα+Fαy sinα

+FααF )−3(−Fααx sinα+Fααy cosα)+3Fα−24(−Fx sinα+Fy cosα)+18F 2+6FFαα)θ∧θ1∧θ2.

and

8π2µ(Y ) = 8π2

∫
M

s∗(TC2(π)) =
1

12

∫
M

(−32F 2
α + 2F 2

αα + 18F 2)θ ∧ θ1 ∧ θ2.

Proof. The terms in Proposition 4.5 were all computed before. A substitution of these terms
in the formula gives the first formula. The second formula is obtained by integration by
parts.

2

Corollary 4.11 Let M be equipped with a path structure defined by an ordinary differential
equation of second order on the torus with strict structure defined by the forms θ, θ1 and θ2.
Let Y be the canonical Cartan bundle with its associated Cartan connection.

1. If θ2 = dα − F (x, y)θ1 (the function F does not depend on α). Then µ(Y ) = 0 if and
only if F = 0.

2. Q1(Y ) = 0 and µ(Y ) = 0 if and only if F = 0.

Proof. Clearly, if F = 0 then µ(Y ) = 0 and Q1 = 0. If F does not depend on α then the
invariant becomes

4

3

∫
M

F 2θ ∧ θ1 ∧ θ2,

which is zero only if F = 0. Suppose now that Q1(Y ) = 0 and µ(Y ) = 0. Observe that
the integral formula for the invariant, by an integration by part and a slight rearrangement,
may be written as

1

12

∫
M

(−12F 2
α + 2FααααF + 20FααF + 18F 2)θ ∧ θ1 ∧ θ2.

Using the expression of Q1 given in 4.8 and the hypothesis Q1 = 0, we obtain F2222 +10F22 +
9F = 0, and therefore

2FααααF + 20FααF + 18F 2 = 0.
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Therefore

8π2µ(Y ) = −
∫
M

F 2
αθ ∧ θ1 ∧ θ2.

We observe therefore that if µ(Y ) = 0 then Fα should be null. But if F does not depend on
α it should be null by the first part. 2

5 Path structures on a torus

We recall example II which is the torus T 3 with coordinates (x, y, t) ( mod 1) and the global
contact form, for a fixed n ∈ Z∗,

θ = cos(2πnt)dx− sin(2πnt)dy.

It was proven independently by E. Giroux and Y. Kanda that the contact structures
defined by these contact forms classify all tight structures on T 3 (see [?]). We will show here
that for each of these contact structures one can define a flat path structure.

There are two canonical global vector fields on the distribution given by X1 = ∂
∂t

and
X2 = sin(2πnt) ∂

∂x
+ cos(2πnt) ∂

∂y
.

We define

θ1 = −2πndt, θ2 = sin(2πnt)dx+ cos(2πnt)dy,

so that dθ = θ1 ∧ θ2 and we define the strict path structure defined by these forms. We
compute

dθ1 = 0, dθ2 = −θ1 ∧ θ.

Comparing now with the enriched path connection we obtain

ϕ =
1

2
(
da1
a1

+
da2
a2

), 3w =
1

2
(
da1
a1
− da2

a2
), τ 12 = 0, τ 21 = − 1

a21

and therefore dϕ = dw = dτ 12 = dτ 21 + 2τ 21 (ϕ + 3w) = 0. It follows that A = B = C = D =
S = τ 120 = τ 210 = 0, and it follows from formulas 38 and 39 that Q1 = Q2 = 0.

We proved:

Lemma 5.1 The path structures defined by the forms θ1, θ2, θ on T 3 are flat.

We now define a new strict path structure by fixing the contact form θ and changing θ1

and θ2 by a constant matrix:(
θ1
′

θ2
′

)
=

(
a b
c f

)(
θ1

θ2

)
or

(
θ1

θ2

)
=

(
f −b
−c a

)(
θ1
′

θ2
′

)
,

where

det

(
a b
c f

)
= 1.
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We compute dθ1
′
= adθ1 + bdθ2 = −bθ1∧ θ = −bfθ1′∧ θ+ b2θ2

′∧ θ and dθ2
′
= cdθ1 +fdθ2 =

−fθ1 ∧ θ = −f 2θ1
′ ∧ θ + bfθ2

′ ∧ θ. In order to compute the enriched connection we need to
find ϕ′, w′, τ 1

′
, τ 2
′

satisfying

dω1′ = (ϕ′ + 3w′) ∧ ω1′ + ω′ ∧ τ 12
′
ω2′, dω2′ = (ϕ′ − 3w′) ∧ ω2′ − ω′ ∧ τ 21

′
ω1′.

Comparing with the structure equations and observing ωi
′
= aiθ

i′ we obtain

ϕ′ =
1

2
(
da1
a1

+
da2
a2

), 3w′ =
1

2
(
da1
a1
− da2

a2
) +

bf

a1a2
ω,

τ 12
′
= − b

2

a22
θ2
′

and τ 21
′
= −f

2

a21
θ1
′
.

Then dϕ = 0, 3dw = bf
a1a2

ω1′ ∧ω2′, and it follows A = B = C = D = 0 and 3S = bf
a1a2

. Also

dτ 12
′
= −2τ 12

′
(ϕ− 3w) +

2b3f

a32a1
ω, dτ 21

′
= −2τ 21

′
(ϕ+ 3w)− 2bf 3

a31a2
ω,

and τ 120
′

= 2b3f
a32a1

, τ 210
′

= − 2bf3

a31a2
. At last dS = −2Sϕ and we get S0 = S1 = S2 = 0. Then

P = n = 0, and we obtain from formulas 38 and 39 that

Q1 =
3

2

b3f

a1a32
, Q2 = −3

2

bf 3

a31a2
.

We proved

Lemma 5.2 The path structures defined by the forms θ′1, θ′2, θ on T 3 have curvatures Q1 =
3
2
b3f, Q2 = −3

2
bf 3 (computed through a section on the torus).

Note that the path structure is flat if and only if the one of the torsions τ 1
′

or τ 2
′

are
zero and this happens if the direction defined by ∂

∂t
is one of the line bundles contained in

the contact bundle of the path structure. The couple (b, f) is determined up to a sign by
the curvatures Q1 and Q2.

The global invariant is given in the next Proposition.

Proposition 5.3 Let T 3
n(a, b, c, d, f) as the path structure on the torus defined as above.

Then the global invariant is

µ(T 3
n(a, b, c, d, f)) =

3n

8π
(bf)2.

Proof. This is a direct computation using the formula for the global invariant (see formula
44):∫

T 3

s∗TC2(π) =

∫
T 3

1

8π2
(2τ 12

′
τ 21
′
θ ∧ θ1 ∧ θ2 − 9

2
w ∧ θ1 ∧ θ2) =

∫
T 3

1

8π2

3

2
b2f 2θ ∧ θ1 ∧ θ2.

Therefore

µ(T 3
n(a, b, c, d, f)) =

∫
T 3

3

16π2
(bf)2θdθ =

3n

8π
(bf)2.

2

Note that the global invariant is null if and only if the path structure is flat.
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6 Invariant path structures on SU(2)

Tight contact structures on S3 are all contactomorphic (see [E]). In this section we explicit
homogeneous strict path structures on SU(2) which are carried by a fixed left invariant tight
contact structure.

Let α, β, γ be a basis of left invariant 1-forms defined on SU(2) with

dα = −β ∧ γ, dβ = −γ ∧ α, dγ = −α ∧ β

A strict path structure on SU(2) is given by fixing the contact form θ = γ and the line fields
E1 = kerα ∩ ker θ and E2 = ker β ∩ ker θ.

We define strict path structures by choosing a map from SU(2) to SL(2,R):

θ = γ, Z1 = r1β + r2α, Z2 = s1β + s2α,

with r1s2 − r2s1 = 1. Then
dθ = Z1 ∧ Z2.

In the case the map SU(2) → SL(2,R) is constant, from β = s2Z
1 − r2Z

2 and α =
−s1Z1 + r1Z

2, we obtain

dZ1 = r1dβ + r2dα = θ ∧
(
xZ1 + yZ2

)
and analogously,

dZ2 = θ ∧
(
zZ1 − xZ2

)
,

where
x = r1s1 + r2s2, y = −(r21 + r22), z = s21 + s22.

Observe that x2 +yz = −1. Then for a enriched path structure with coframes obtained from
t!he tautological forms ω = a1a2θ, ω

1 = a1Z
1 and ω2 = a2Z

2 we obtain

dω1 = (
da1
a1

+ xθ) ∧ ω1 + a1yθ ∧ Z2.

dω2 = (
da2
a2
− xθ) ∧ ω2 + a2zθ ∧ Z1

From Proposition 2.3 we have

ϕ =
1

2
(
da1
a1

+
da2
a2

), 3w =
1

2
(
da1
a1
− da2

a2
) +

x

a1a2
ω,

τ 12 =
y

a22
, τ 21 = − z

a21
.

and therefore
dϕ = 0, 3dw = d(xθ) =

x

a1a2
ω1 ∧ ω2

so that S = x
3a1a2

, A = B = C = D = 0.
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From

dτ 12 = −2
da2
a2

y

a22
= −2τ 12 (ϕ− 3w)− 2

xy

a1a32
ω

dτ 21 = 2
da1
a1

z

a21
= −2τ 21 (ϕ+ 3w)− 2

xz

a2a31
ω

we obtain
τ 120 = −2

xy

a1a32
, τ 210 = −2

xz

a2a31
From

dS = − x

3a1a2
(
da1
a1

+
da2
a2

) = −2ϕS

we obtain S0 = S1 = S2 = 0, ans P = n = 0.
It follows from formulas 38 and 39 that Q1 = τ 120 + 3

2
Sτ 12 and Q2 = τ 210 − 3

2
Sτ 21 , therefore

Q1 = − xy

a1a32

and
Q2 = − xz

a31a2
.

Observe that y and z never vanish. We conclude that the invariant strict structure on SU(2)
is a flat path structure if and only if x = 0. This can be interpreted, because x = r1s1 +r2s2,
as the strict structures such that the directions E1 and E2 are perpendicular for the canonical
metric defined by the forms α and β.

Proposition 6.1 Define strict path structures on SU(2) by choosing a constant map from
SU(2) to SL(2,R):

θ = γ, Z1 = r1β + r2α, Z2 = s1β + s2α,

with r1s2 − r2s1 = 1. Let x = r1s1 + r2s2. Then the global invariant of the induced path
structure is

µ(SU(2)(r1, r2, s1, s2)) = −1

2
− 3

8
x2.

Proof. We compute, using formula 44, the global invariant for the family of structures defined
on SU(2). We have from above that x = r1s1 + r2s2, y = −(r21 + r22), z = s21 + s22 and that
x2 + yz = −1. Then it follows∫
SU(2)

s∗TC2(π) =

∫
SU(2)

1

8π2
(2τ 12 τ

2
1 θ−

9

2
Sw)∧θ1∧θ2 = −

∫
SU(2)

1

8π2
(2yz+

1

2
x2)γ∧β∧α

=

∫
SU(2)

1

8π2
(−2− 3

2
x2)γ ∧ β ∧ α.

We use then that
∫
SU(2)

γ ∧ β ∧ α = 2π2. 2

Observe that the invariant is never null for this family even in the case of a flat path
structure (which happens when x = 0). Also the critical point of the invariant along this
family is a maximal at x = 0, at a flat structure, and it is equal to −1

2
.
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Ordinaire du Second Ordre y′′ = ω(x, y, y′), Preisschriften der Furstlichen
Jablonowskischen Gesellschaft XXXII, Leipzig, 1896.

E. Falbel
Institut de Mathématiques
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