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This paper concerns semilinear elliptic equations involving sign-changing weight function and a nonlinearity of subcritical nature understood in a generalized sens. Using an Orlicz-Sobolev space setting, we consider superlinear nonlinearities which do not have a polynomial growth, and state sufficient conditions guaranteeing the Palais-Smale condition. We study the existence of a bifurcated branch of classical positive solutions, containing a turning point, and providing multiplicity of solutions.

Introduction

In this paper we study the classical positive solutions to the Dirichlet problem for a class of semilinear elliptic equations whose nonlinear term is of subcritical nature in a generalized sens and involves indefinite nonlinearities. More precisely, given Ω ⊂ R N , N > 2, a bounded, connected open subset, with C 2 boundary ∂Ω, we look for positive solutions to:

(1.1)

-∆u = λu + a(x)f (u), in Ω, u = 0, on ∂Ω, where λ ∈ R is a real parameter, a ∈ C 1 ( Ω) changes sign in Ω,

(1.2) f (s) := g(s) + h(s), with h(s) := |s| 2 * -2 s [ln(e + |s|)] α , 2 * = 2N
N -2 is the critical Sobolev exponent, α > 0 is a fixed exponent, and g ∈ C 1 (R) satisfies

(H)      (H) 0 lim s→0 f (s) |s| p-2 s = L 1 ,
for some L 1 > 0, and p ∈ 2, 2N N -2

(H) ∞ lim s→∞ g(s)

|s| q-2 s = L 2 , for some L 2 ≥ 0, and q ∈ 2, 2N N -2

(H) g |g (s)| ≤ C(1 + |s| q-2 ), for s ∈ R.

The second author is supported by grants PID2019-103860GB-I00, MICINN, Spain, and by UCM-BSCH, Spain, GR58/08, Grupo 920894.

We will say that g (or even f ) satisfies hypothesis (H) whenever (H) 0 , (H) ∞ , and (H) g are satisfied. Since we are interested in positive solutions, we (1.3) redefine f to be zero on (-∞, 0],

note that f (0) = 0 and that (1.4)

lim s→0 + f (s) s -L 1 |s| p-2 = 0.
When λ = 0, a(x) ≡ 1 and g(s) ≡ 0, this kind of nonlinearity has been studied in [START_REF] Castro | A priori bounds for Positive Solutions of Subcritical Elliptic Equations[END_REF][START_REF] Castro | A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions Discrete and Continuous Dynamical[END_REF][START_REF] Castro | Equivalence between uniform L 2 * (Ω) a-priori bounds and uniform L ∞ (Ω) a-priori bounds for subcritical elliptic equations[END_REF][START_REF] Mavinga | A priori bounds and existence of positive solutions for semilinear elliptic systems[END_REF], and in [START_REF] Damascelli | A priori estimates for some elliptic equations involving the p-Laplacian Nonlinear Analysis[END_REF] for the case of the p-laplacian operator, with α > p N -p . It is known the existence of uniform L ∞ a priori bounds for any positive classical solution, and as a consequence, the existence of positive solutions. When α → 0, there is a positive solution blowing up at a non-degenerate point of the Robin function as α → 0, see [START_REF] Clapp | Alberto A solution to a slightly subcritical elliptic problem with non-power nonlinearity[END_REF] for details.

From [START_REF] Crandall | Bifurcation from simple eigenvalues[END_REF] it is known that (λ 1 , 0) is a bifurcation point of positive solutions (λ, u λ ) to the equation (1.1) .

For f behaving like |u| p-2 u at zero with 2 ≤ p ≤ 2 * , the influence of the negative part of the weight a is displayed under the sign of Ω a(x)ϕ 1 (x) p dx, where ϕ 1 is the first positive eigenfunction for -∆ in H 1 0 (Ω). Specifically, whenever

Ω a(x)ϕ 1 (x) p dx < 0 the bifurcation of positive solutions from the trivial solution set is 'on the right' of the first eigenvalue, in other words for values of λ > λ 1 . And whenever Ω a(x)ϕ 1 (x) p dx > 0 the bifurcation from the trivial solution set is 'on the left' of the first eigenvalue, in other words for values of λ < λ 1 .

Inspired by the work of Alama and Tarantello in [START_REF] Alama | On semilinear elliptic problems with indefinite nonlinearities Calculus Var[END_REF], we will focus our attention to the case a(x) changing sign and (1.5) is satisfied, and, among other things, we will prove the existence of a turning point for a value of the parameter Λ > λ 1 , and in particular the existence of solutions when λ = λ 1 . We will use local bifurcation and variational techniques.

All throughout the paper, for v : Ω → R, v = v + -v -where v + (x) := max{v(x), 0} and v -(x) := max{-v(x), 0}.

Let us also define Ω ± := {x ∈ Ω : ±a(x) > 0}, Ω 0 := {x ∈ Ω : a(x) = 0}, and assume that both Ω + , Ω -are non empty sets.

For this nonlinearity the Palais-Smale condition of the energy functional becomes a delicate issue, needing Orlicz spaces and a Orlicz-Sobolev embedding theorem.

In order to prove (PS) condition, Alama and Tarantello ( [START_REF] Alama | On semilinear elliptic problems with indefinite nonlinearities Calculus Var[END_REF]) assume that the zero set Ω 0 has a non empty interior. This is also a common hypothesis for other authors when dealing with changing sign superlinear nonlinearities [START_REF] Chang | Mei-Yue Dirichlet problem with indefinite nonlinearities[END_REF][START_REF] Ramos | Christophe Superlinear indefinite elliptic problems and Pohožaev type identities[END_REF][START_REF] Tehrani | Infinitely many solutions for an indefinite semilinear elliptic problem in R N[END_REF]. But this is a technical hypothesis. (PS)-condition will be proved in Proposition 3.1 without assuming that hypothesis. We neither use Ambrosetti-Rabinowitz.

Let us now denote

(1.6) C 0 = inf{C ≥ 0 : f (s) + C ≥ 0 for all s ≥ 0},
and remark that hypothesis (H) implies that C 0 < +∞. Observe also that

(1.7) f (s) + C 0 s ≥ 0, for all s ≥ 0; f (s)s + C 0 s 2 ≥ 0, for all s ∈ R.
Let u be a weak solution to (1.1). By a regularity result, see Lemma 2.1, u ∈ C 2 (Ω)∩C 1,µ (Ω). So by a solution, we mean a classical solution.

Assume that u is a non-negative nontrivial solution. It is easy to see that the solution is strictly positive. Indeed, adding ±C 0 a(x)u to the r.h.s. of the equation, splitting a = a + -a -, taking into account (1.4), and letting in each side the nonnegative terms, we can write

-∆ + a -(x) f (u) u + C 0 + C 0 a(x) + u (1.8) = λu + a(x) + f (u) + C 0 u + C 0 a(x) -u, in Ω.
Now, the strong Maximum Principle implies that u > 0 in Ω, and ∂u ∂ν < 0 on ∂Ω.

Our main result is the following theorem.

Theorem 1.1. Assume that g ∈ C 1 (R) satisfies hypothesis (H). Let C 0 > 0 be defined by (1.6). If a changes sign in Ω, and (1.5) holds, then there exists a Λ ∈ R,

λ 1 < Λ < min λ 1 int (Ω 0 ) , λ 1 int Ω + ∪ Ω 0 + C 0 sup a +
and such that (1.1) has a classical positive solution if and only if λ ≤ Λ.

Moreover, there exists a continuum (a closed and connected set) C of classical positive solutions to (1.1) emanating from the trivial solution set at the bifurcation point (λ, u) = (λ 1 , 0) which is unbounded. The paper is organized in the following way. Section 2 contains a regularity result and a non existence result. (PS)-condition and an existence of solutions result for λ < λ 1 based in the Mountain Pass Theorem will be proved in Section 3. A bifurcation result for λ > λ 1 is developped in Section 4. The main result is proved in Section 5. Appendix A contains some useful estimates. Orlicz spaces, a Orlicz-Sobolev embeddings theorems, and variational techniques, also including a (PS) condition in Orlicz-Sobolev spaces setting and the Mountain Pass Theorem, will be treated in Appendix B.

A regularity result and a non existence result

Next, we recall a regularity Lemma stating that any weak solution is in fact a classical solution.

Lemma 2.1. If u ∈ H 1 0 (Ω) weakly solves (1.1) with a continuous function f with polynomial critical growth

|f (x, s)| ≤ C(1 + |s| 2 * -1 ), then, u ∈ C 2 (Ω) ∩ C 1,µ (Ω) and u C 1,µ (Ω) ≤ C 1 + u 2 * -1 L (2 * -1)r (Ω) , for any r > N and µ = 1 -N/r. Moreover, if ∂Ω ∈ C 2,µ , then u ∈ C 2,µ (Ω).
Proof. Due to an estimate of Brézis-Kato [START_REF] Brézis | Remarks on the Schrödinger operator with singular complex potentials[END_REF], based on Moser's iteration technique [START_REF] Moser | A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations[END_REF], u ∈ L r (Ω) for any r > 1; and by elliptic regularity u ∈ W 2,r (Ω), for any r > 1 (see [START_REF] Struwe | Variational methods, Applications to nonlinear partial differential equations and Hamiltonian systems[END_REF]Lemma B.3] and comments below).

Moreover, by Sobolev embeddings for r > N and interior elliptic regularity

u ∈ C 1,α (Ω) ∩ C 2 (Ω). Furthermore, if ∂Ω ∈ C 2,α , then u ∈ C 2,α (Ω).
Proposition 2.2. Let f satisfy hypothesis (H) and let C 0 be defined in (1.6). Assume that a changes sign in Ω.

(1) Problem (1.1) does not admit a positive solution u ∈ H 1 0 (Ω) for any λ ≥ λ 1 int Ω + ∪ Ω 0 + C 0 sup a + .

(

) If int (Ω 0 ) = ∅, then λ 1 int (Ω 0 ) < +∞ and (1.1) 2 
does not admit a positive solution for any

λ ≥ λ 1 int (Ω 0 ) . Proof. 1. Let λ ≥ λ 1 int Ω + ∪Ω 0 +C 0 sup a +
, and assume by contradiction that there exists a non-negative non-trivial solution u ∈ H 1 0 (Ω) to (1.1) for the parameter λ. Since the Maximum Principle u > 0 in Ω, see (1.8).

Let φ be the positive eigenfunction of -∆, H 1 0 (int Ω + ∪ Ω 0 of L 2 -norm equal to 1. For simplicity we will denote also by φ the extension by 0 of φ in all Ω. By Hopf's maximum principle we have

∂ φ ∂ν < 0 on ∂ int Ω + ∪ Ω 0
, where ν is the outward normal.

Again if we multiply the equation (1.1) by φ and integrate along int Ω + ∪ Ω 0 we find, after integrating by parts,

0 > ∂(int(Ω + ∪Ω 0 )) u ∂ φ ∂ν dσ + int(Ω + ∪Ω 0 ) λ 1 int (Ω + ∪ Ω 0 ) -λ + C 0 a + (x) u φ dx = Ω + a + (x) f (u) + C 0 u φ dx > 0, a contradiction. 2. Let λ ≥ λ 1 int (Ω 0
) and assume by contradiction that there exists a positive solution u ∈ H 1 0 (Ω) of problem (1.1) for the parameter λ. Let φ be a positive eigenfunction associated to λ 1 int (Ω 0 ) < +∞. For simplicity we will also denote by φ the extension by 0 in all Ω. If we multiply equation (1.1) by φ and integrate along Ω 0 we find, after integrating by parts,

int (Ω 0 ) ∇u • ∇ φ dx = λ int (Ω 0 ) u φ dx.
On the other hand

int (Ω 0 ) ∇u • ∇ φ dx = λ 1 (int (Ω 0 )) int (Ω 0 ) φu dx + ∂(int (Ω 0 )) u ∂ φ ∂ν dσ. Hence 0 > ∂(int (Ω 0 )) u ∂ φ ∂ν dσ = λ -λ 1 int (Ω 0 ) int (Ω 0 ) u φ dx ≥ 0, a contradiction.
3. An existence result for λ < λ 1

In this section we prove the existence of a nontrivial solution to equation (1.1) for λ < λ 1 , through the Mountain Pass Theorem.

3.1. On Palais-Smale sequences. In this subsection, we define the framework for the functional J λ associated to the problem (1.1) λ . Hereafter we denote by • the usual norm of H 1 0 (Ω): 

u = Ω |∇u| 2 dx 1/2 . Given f (s) = h(s) + g(s) defined
F (s) + 1 2 C 0 s 2 ≥ 0, for all s ≥ 0.
Consider the functional J λ : H 1 0 (Ω) → R given by

J λ [v] := 1 2 Ω |∇v| 2 dx - λ 2 Ω (v + ) 2 dx - Ω a(x)F (v + ) dx.
Observe that for all v ∈ H 1 0 (Ω),

J λ v + ≤ J λ [v].
The functional J λ is well defined and belongs to the class C 1 with

J λ [v] ψ = Ω ∇v∇ψ dx -λ Ω v + ψ dx - Ω a(x)f (v + )ψ dx,
for all ψ ∈ H 1 0 (Ω). Consequently, non-negative critical points of the functional J λ correspond to non-negative weak solutions to (1.1).

The next Proposition proves that Palais-Smale sequences are bounded whenever λ < λ 1 (int Ω 0 ), where λ 1 (int Ω 0 ) may be infinite. Proposition 3.1. Assume that g ∈ C 1 (R) satisfies hypothesis (H) and assume also that λ < λ 1 (int Ω 0 ) ≤ +∞.

Then any (PS) sequence, that is, a sequence satisfying

(J 1 ) J λ [u n ] ≤ C, (J 2 ) J λ [u n ] ψ ≤ ε n ψ , where ε n → 0 as n → +∞ is a bounded sequence.
Proof. 1. Let {u n } n∈N be a (PS) sequence in H 1 0 (Ω) and assume by contradiction that u n → +∞. Let us first prove the following claim:

Claim. Let v ∈ H 1 0 (Ω) be the weak limit of v n = un un and assume that v n → v, strongly in L 2 * -1 (Ω) and a.e. Then v = 0 a.e. in Ω.

Assume that v ≡ 0 and denote

γ n = u n . Let ω n := {x ∈ Ω : v + n (x) > 1}, then for any ψ ∈ C 1 0 (Ω), ln(e + γ n ) α γ 2 * -1 n (u + n (x)) 2 * -1 [ln(e + γ n v + n (x))] α |ψ| ≤ |v + n (x)| 2 * -1 ψ ∞ , ∀x ∈ ω n .
Let x ∈ Ω \ ω n , using the estimates (A.1),

ln(e + γ n ) α γ 2 * -1 n (u + n ) 2 * -1 [ln(e + γ n v + n )] α |ψ| ≤ |v + n | 2 * -2 ψ ∞ ≤ ψ ∞
Besides, by the reverse of the Lebesgue dominated convergence theorem, see for instance [2, Theorem 4.9, p. 94] , there exists h i ∈ L 1 (Ω), 1 ≤ i ≤ 3 such that, up to a subsequence,

|v + n | 2 * -1 ≤ h 1 , |v + n | p-1 ≤ h 2 |v + n | 2 * -2 ≤ h 3 , , a.e.
x ∈ Ω, for all n ∈ N, and therefore

ln(e + γ n ) α γ 2 * -1 n f (u + n )ψ ≤ C (h 1 + h 2 + h 3 + 1)) ψ ∞ ∈ L 1 (Ω).
By Lebesgue dominated convergent theorem we have

ln(e + γ n ) α γ 2 * -1 n a(•)f (u + n )ψ → a(•)(v + ) 2 * -1 ψ strongly in L 1 (Ω).
We have used here that if v + (x) = 0, then

lim n→+∞ ln(e + γ n ) ln(e + γ n v + n (x)) = 1,
and if v + (x) = 0, then lim n→+∞ ln(e + γ n ) ln(e + γ n v + n (x)) α |v + n (x)| 2 * -1 ≤ lim n→+∞ |v + n (x)| 2 * -2 = 0.
On the other hand

ln(e + γ n ) α γ 2 * -1 n Ω ∇u n • ∇ψ dx → 0.
Hence, using (J 2 ) for an arbitrary test function ψ, multiplying by ln(e+γn) α γ 2 * -1 n and passing to the limit we find

Ω a(x)(v + ) 2 * -1 ψ dx = 0 ∀ψ ∈ C 1 0 (Ω).
In particular v + = 0 a.e. in Ω \ Ω 0 .

Assume that int Ω 0 = ∅, and that λ < λ 1 (int Ω 0 ). Thus, for any

ψ ∈ C 1 0 (int Ω 0 ) we have from (J 2 ) int Ω 0 ∇u n • ∇ψ dx -λ int Ω 0 u + n ψ dx = o(1).
Dividing by u n and passing to the limit we have

int Ω 0 ∇v • ∇ψ dx = λ int Ω 0 v + ψ dx. From the Maximum Principle, v ≥ 0 in int Ω 0 . Since λ < λ 1 (int Ω 0 ) then it must be v + ≡ 0 in int Ω 0 . Hence v + ≡ 0 in Ω.
On the other hand, taking u - n as a test function in the condition (J 2 ),

- Ω |∇u - n | 2 dx - Ω a(x)f (u + n )u - n dx = Ω |∇u - n | 2 dx ≤ n u -
n so u - n → 0 and then v -≡ 0, and we conclude the proof of the claim.

2. In order to achieve a contradiction, we use a Hölder inequality, and properties on convergence into an Orlicz space, cf. Appendix B.

To this end, the analysis of Lemma A.2 give us the existence of

α * > 0 such that the function s → s 2 * -1 [ln(e+s)] α is increasing along [0, +∞[ if α ≤ α * .
In this case we will denote

(3.2) m(s) = s 2 * -1 [ln(e + s)] α If α > α * the function s → s 2 * -1 [ln(e+s)] α possesses a local maximum s 1 in [0, +∞[. Let us denote by s 1 the unique solution s > s 1 such that s 2 * -1 1 [ln(e + s 1 )] α = s 2 * -1 [ln(e + s)] α
and define the non-decreasing function Since

(3.3) m(s) :=    s 2 * -1 [ln(e+s)] α if s ∈ [s 1 , s 1 ], s 2 * -1 1 [ln(e+s 1 )] α if s ∈ [s 1 , s 1 ]. It follows that (3.4) s → M (s) = s 0 m(t) dt is a N -function in [0, +∞[.
v n 0 in H 1 0 (Ω) and strongly in L 2 (Ω), it follows from (J 2 ) applied to ψ = u n that (3.5) lim n→∞ Ω a(x) f (u + n )u n u n 2 dx = lim n→∞ Ω a(x) f (u + n ) u n v + n dx = 1.
Since the Hölder inequality into Orlicz spaces, see Proposition B.11.(ii),

(3.6) Ω a(x) f (u + n ) u n v + n dx ≤ a ∞ u n f (u + n ) M * v + n M
By Theorem B.3 and Theorem B.12 we have

(3.7) v n -v M → 0.
Moreover, since there exists C > 0 such that m(s) ≤ Cs 2 * -1 and M (s) ≤ Cs 2 * for all s ≥ 0, and the sequence {u n } n∈N ⊂ H 1 0 (Ω), then, for each n ∈ N, there exists a C n such that

|u n m(u n )| ≤ C n , |M (|u n |)| ≤ C n .
By using definition B.8 of M * and identities of Proposition B.9 we have

M * |m(u n )| = |u n m(u n )| -M (|u n |) then, for each n ∈ N, Ω M * |m(u n )| dx ≤ 2C n . Observe that f (s) ≤ C(1 + m(s)), that M * f (s) ≤ M * C(1 + m(s)) , see Proposition B.11.(iii)
, and by convexity of M * , that

f (u + n ) M * ≤ Ω M * C(1 + m(u + n ) dx + 1 ≤ C n ,
see Proposition B.11.(i), and the r.h.s. is bounded for each n. Consequently, a(x [START_REF] Krasnoselskiȋ | Rutickiȋ Convex functions and Orlicz Spaces[END_REF], Theorem 14.2).

) f (u + n ) un ∈ L M * (Ω), which is the dual of L M (Ω) (see
On the other hand, from

J 2 , for all ψ ∈ C ∞ c (Ω), (3.8) Ω ∇v n ∇ψ dx -λ n Ω v n ψ dx - Ω a(x) f (u + n ) u n ψ dx ≤ ε n u n ψ .
Taking the limit, and since [START_REF] Donaldson | Trudinger Orlicz-Sobolev Ppaces and Imbedding Theorems[END_REF]),

C ∞ c (Ω) is dense in L M (Ω) (see
(3.9) lim n→∞ Ω a(x) f (u + n ) u n ψ dx = 0, for all ψ ∈ L M (Ω). Moreover, since (3.7), v n → v = 0 in L M (Ω).
Hence [2, Proposition 3.13 (iv)], and (3.9) imply

lim n→∞ Ω a(x) f (u + n ) u n v n dx = 0,
which contradicts (3.5), ending the proof.

Theorem 3.2. Assume the hypothesis of Proposition 3.1 and let {u n } n∈N be a (PS) sequence in H 1 0 (Ω). Then, there exists a subsequence, denoted by {u n } n∈N , such that u n → u in H 1 0 (Ω). Proof. From Proposition 3.1 we know that the sequence is bounded. Consequently, there exists a subsequence, denoted by {u n } n∈N , and some u ∈ H 1 0 (Ω) such that u n u weakly in

H 1 0 (Ω), (3.10) Ω a(x)g(u n )|u n -u| dx → 0, (3.11) u n → u a.e. (3.12)
By testing (J 2 ) against ψ = u n -u and using (3.10), and (3.11) we get

u n -u 2 = Ω ∇u n • ∇(u n -u) dx + o(1) ≤ a ∞ Ω |u n | 2 * -1 [ln(e + |u n |)] α |u n -u| dx + o(1). Claim. Ω |u n | 2 * -1 [ln(e + |u n |)] α |u n -u|dx = o(1),
In order to prove this claim, we use as in the above proposition, a Hölder inequality and a compact embedding into an Orlicz space, c.f. Appendix B.

By Theorem B.3 and Theorem B.12 we have

(3.13) u n -u M → 0,
where m, and M are defined by (3.2)-(3.4), as in the above proposition.

On the other hand, since there exists C > 0 such that m(s) ≤ Cs 2 * -1 and M (s) ≤ Cs 2 * for all s ≥ 0, and the sequence

{u n } n∈N is bounded in H 1 0 (Ω), then |u n m(u n )| ≤ C, |M (|u n |)| ≤ C for all n ∈ N
By using definition B.8 of M * and identities of Proposition B.9 we have Now, using Holder's inequality (B.6) and that s 2 * -1 [ln(e+s)] α ≤ m(s) for all s ≥ 0, we get

M * |m(u n )| = |u n m(u n )| -M (|u n |) then Ω M * |m(u n )| dx ≤ C for all n ∈ N.
Ω |u n | 2 * -1 [ln(e + |u n |)] α |u n -u|dx ≤ u n -u M m(u n ) M * ≤ (C+1) u n -u M
and it follows from (3.13) that u n -u → 0. Proof. We verify the hypothesis of the Mountain Pass Theorem, see [13, Theorem 2, §8.5]. Observe that the derivative of the functional J λ :

H 1 0 (Ω) → H 1 0 (Ω)
is Lipschitz continuous on bounded sets of H 1 0 (Ω); also the (PS) condition is satisfied, see Proposition 3.1. Clearly J λ [0] = 0.

1. Let now u ∈ H 1 0 (Ω) with u = r, for r > 0 to be selected below. Then,

(3.14) J λ [u] = r 2 2 - λ 2 Ω (u + ) 2 dx - Ω a(x)F (u + ) dx.
From hypothesis (H) we have

Ω a(x)G(u + ) dx ≤ C Ω |u| p + |u| q dx ≤ C (r p + r q ) .
where

G(s) := s 0 g(t) dt. Now, definition (1.2) implies that Ω a(x)F (u + ) dx ≤ C r p + r q + r 2 * .
In view of (3.14), and thanks to the Poincaré inequality we get

J λ [u] ≥ 1 2 1 - |λ| λ 1 r 2 -C r p + r q + r 2 * ≥ C 1 r 2 ,
taking |λ| < λ 1 , r > 0 small enough, and using that p, q, 2 * > 2.

2. Now, fix some element 0 ≤ u 0 ∈ H 1 0 (Ω), u 0 > 0 in Ω + , u 0 ≡ 0 in Ω -. Let v = tu 0 for a certain t = t 0 > 0 to be selected a posteriori. Since (3.15) f

(tu 0 ) = |t| 2 * -2 t f (u 0 ) ln(e + |u 0 |) ln(e + |tu 0 |) α + g(tu 0 ), then f (tu 0 )/t → +∞ as t → +∞ in Ω + .
From definition, and integrating by parts,

F (s) = s 0 t 2 * -1 ln(e + t) α + g(t) dt = 1 2 * sh(s) + G(s) + α 2 * s 0 1 ln(e + t) α+1 t 2 * e + t dt.
It can be easily seen that lim s→+∞ G(s) sf (s) = 0. Therefore, using l'Hôpital's rule we can write

lim s→+∞ F (s) sf (s) = 1 2 * ∈ 0, 1 2 , (3.16) hence lim t→+∞ F (tu 0 ) tu 0 f (tu 0 ) = 1 2 * ∈ 0, 1 2 in Ω + . (3.17)
Let C 0 ≥ 0 be such that F (s) + 1 2 C 0 s 2 ≥ 0 for all s ≥ 0 (see (1.7)), and let (3.18)

Ω + δ := {x ∈ Ω + : a(x) = a + (x) > δ}.
By definition, u 0 ≡ 0 in Ω -, so, introducing ± 1 2 C 0 (tu 0 ) 2 , splitting the integral, and using (3.17)-(3.18) we obtain

- Ω a(x)F (tu 0 ) dx = - Ω + a + (x)F (tu 0 ) dx ≤ C 0 t 2 2 Ω + a + (x)u 2 0 dx - Ω + δ a + (x) 1 2 C 0 (tu 0 ) 2 + F (tu 0 ) dx ≤ C + C 0 t 2 2 Ω + a + (x)u 2 0 dx - δt 2 2 Ω + δ C 0 u 2 0 + u 0 f (tu 0 ) 2 * t dx.
Hence, there exists a positive constant C > 0 such that

J λ [tu 0 ] = t 2 2 u 0 2 -t 2 λ 2 u 0 2 L 2 (Ω) - Ω + a + (x)F (tu 0 ) ≤ C(1 + t 2 ) - δ t 2 2 Ω + δ C 0 (u 0 ) 2 + u 0 f (tu 0 ) 2 * t dx < 0
for t = t 0 > 0 big enough.

Step 3. We have at last checked that all the hypothesis of the Mountain Pass Theorem are accomplished. Let

Γ := {g ∈ C [0, 1]; H 1 0 (Ω) : g(0) = 0, g(1) = t 0 u 0 }, then, there exists c ≥ C 1 r 2 > 0 such that c := inf g∈Γ max 0≤t≤1 J λ [g(t)] is a critical value of J λ , that is, the set K c := {v ∈ H 1 0 (Ω) : J λ [v] = c, J λ [v] = 0} = ∅. Thus there exists u ∈ H 1 0 (Ω), u ≥ 0, u = 0 such that for each ψ ∈ H 1 0 (Ω), we have (3.19) Ω ∇u • ∇ψ dx = Ω λu + + a(x)f (u + ) ψ dx.
and thereby u is a nontrivial weak solution to (3.19). By Lemma 2.1, u is a classical solution, and by (1.8), u > 0 in Ω.

A bifurcation result for λ > λ 1

Next Proposition uses Crandall -Rabinowitz's local bifurcation theory, see [START_REF] Crandall | Bifurcation from simple eigenvalues[END_REF], and Rabinowitz's global bifurcation theory, see [START_REF] Rabinowitz | Some global results for nonlinear eigenvalue problems[END_REF]. 

λ 1 < Λ < min λ 1 int (Ω 0 ) , λ 1 int Ω + ∪ Ω 0 + C 0 sup a + where C 0 > 0 is such that f (s) + C 0 s ≥ 0 for all s ≥ 0, (see definition (1.6)).
Moreover, there exists an unbounded continuum (a closed and connected set) C of classical positive solutions to (1.1) emanating from the trivial solution set at the bifurcation point (λ, u) = (λ 1 , 0).

Proof. Proposition 2.2 proves the upper bounds for Λ. Next we concentrate our attention in proving that Λ > λ 1 . Choosing λ as the bifurcation parameter, we check that the conditions of Crandall -Rabinowitz's Theorem [START_REF] Crandall | Bifurcation from simple eigenvalues[END_REF] are satisfied. For r > N , we define the set W 2,r + := {u ∈ W 2,r (Ω) : u > 0 in Ω}, and consider W 2,r + (Ω) ∩ W 1,r 0 (Ω) endowed with the topology of W 2,r (Ω). If r > N , we have that

W 2,r + (Ω) ∩ W 1,r 0 (Ω) → C 1,µ 0 (Ω) for µ = 1 -N r ∈ (0, 1)
. Moreover, from Hopf's lemma, we know that if ũ is a positive solution to (1.1) then ũ lies in the interior of W 2,r + (Ω) ∩ W 1,r 0 (Ω). We consider the map F :

R×W 2,r + (Ω)∩W 1,r 0 (Ω) → L r (Ω) for r > N , F : (λ, u) → -∆u -λu -a(x)f (u)
The map F is a continuously differentiable map. Since hypothesis (i), g(0) = 0, and so a(x)F (0) = 0, F (λ, 0) = 0 for all λ ∈ R, and since F u (x, 0) = 0,

D u F (λ 1 , 0)w := -∆w -λ 1 w, D λ,u F (λ 1 , 0)w := -w. Observe that N D u F (λ 1 , 0) = span[ϕ 1 ], codim R D u F (λ 1 , 0) = 1, D λ,u F (λ 1 , 0)ϕ 1 = -ϕ 1 ∈ R D u F (λ 1 , 0) ,
where N (•) is the kernel, and R(•) denotes the range of a linear operator. Hence, the hypotheses of Crandall-Rabinowitz theorem are satisfied and (λ 1 , 0) is a bifurcation point. Thus, decomposing

C 1,µ 0 (Ω) = span[ϕ 1 ] ⊕ Z, where Z = span[ϕ 1 ] ⊥ ,
there exists a neighbourhood U of (λ 1 , 0) in R× C 1,µ 0 (Ω), and continuous functions λ(s), w(s), s ∈ (-ε, ε), λ : (-ε, ε) → R, w : (-ε, ε) → Z such that λ(0) = λ 1 , w(0) = 0, with Ω wϕ 1 dx = 0, and the only nontrivial solutions to (1.1) in U , are (4.1) λ(s), sϕ 1 + s w(s) : s ∈ (-ε, ε) .

Set u = u(s) = sϕ 1 + s w(s). Note that by continuity w(s) → 0 as s → 0, which guarantees that u(s) > 0 in Ω for all s ∈ (0, ε) small enough.

Next, we show that λ(s) > λ 1 for all s small enough. Since (3.15), and hypothesis (H) 0 on f , note that a(x)f (su) s p-1 u p-1 → L 1 a(x) as s → 0. In fact, as w(s) → 0 uniformly as s → 0, hypothesis (H) 0 yields a(x)f sϕ 1 + s w(s)

s p-1 ϕ 1 + w(s) p-1 -→ L 1 a(x) uniformly in Ω as s → 0.
Hence, multiplying and dividing by ϕ 1 + w(s) p-1 , we deduce

1 s p-1 Ω a(x)f u(s) ϕ 1 → s→0 L 1 Ω a(x)ϕ p 1 .
Now we prove that λ(s) > λ 1 arguing by contradiction. Assume that there is a sequence (λ n , u n ) = λ(s n ), u(s n ) of bifurcated solutions to (1.1) in U , with λ(s n ) ≤ λ 1 . Multiplying (1.1) λn by ϕ 1 and integrating by parts

0 ≤ λ 1 -λ(s n ) s p-1 n Ω u(s n )ϕ 1 = 1 s p-1 n Ω a(x)f u(s n ) ϕ 1 → L 1 Ω a(x)ϕ p 1 < 0
which yields a contradiction, and consequently, Λ > λ 1 . Finally, Rabinowitz's global bifurcation Theorem [START_REF] Rabinowitz | Some global results for nonlinear eigenvalue problems[END_REF] states that in fact, the set C of positive solutions to (1.1) emanating from (λ 1 , 0) is a continuum (a closed and connected set) which is either unbounded, or contains another bifurcation point, or contains a pair of points (λ, u), (λ, -u) whith u = 0. Since (1.8), any non-negative non-trivial solution is strictly positive, moreover (λ 1 , 0) is the only bifurcation point to positive solutions, so C can not reach another bifurcation point. Since (1.3), neither C contains a pair of points (λ, u), (λ, -u) whith u = 0, which state that C is unbounded, ending the proof.

Proof of Theorem 1.1

First we prove an auxiliary result.

Proposition 5.1. For each λ ∈ (λ 1 , Λ), the following holds: (i) Problem (1.1) λ admits a positive solution

u λ = inf u(x) : u > 0 solving (1.1) λ ,
in other words u λ is minimal. (ii) Moreover, the map λ → u λ is strictly monotone increasing, that is, if λ < µ < Λ, then u λ (x) < u µ (x) for all x ∈ Ω, and ∂u λ ∂ν (x) > ∂uµ ∂ν (x) for all x ∈ ∂Ω. (iii) Furthermore, u λ is a local minimum of the functional J λ .

Proof. (i.a) Step 1. Existence of positive solutions for any λ ∈ (λ 1 , Λ).

Let λ ∈ (λ 1 , Λ) be fixed. By definition of Λ, there exists a λ 0 ∈ (λ, Λ) such that the problem (1.1) λ 0 admits a positive solution u 0 . It is easy to verify that u 0 > 0 is a supersolution to (1.1) λ . Indeed, for any

ψ ∈ H 1 0 (Ω) with ψ ≥ 0 in Ω Ω ∇u 0 ∇ψ dx-λ Ω u 0 ψ dx- Ω a(x)f (u 0 )ψ dx = (λ 0 -λ) Ω u 0 ψ dx ≥ 0.
Moreover, for every δ > 0 satisfying (5.1)

0 < δ < λ -λ 1 2L 1 a -∞ 1 p-2 1 ϕ 1 ∞
the function u = δϕ 1 is a subsolution for (1.1) λ whenever λ > λ 1 . Let δ > 0 satisfying (5.1) and such that g(s) ≥ 0 for any s ∈ [0, δ ϕ 1 L ∞ (Ω) ]. For any ψ ∈ H 1 0 (Ω), ψ > 0 with in Ω we deduce

δ Ω ∇ϕ 1 ∇ψ dx -λδ Ω ϕ 1 ψ dx - Ω a(x)f (δϕ 1 )ψ dx = -(λ -λ 1 )δ Ω ϕ 1 ψ dx - Ω a(x)f (δϕ 1 )ψ dx = -(λ -λ 1 )δ Ω ϕ 1 ψ dx - Ω a(x) (δϕ 1 ) 2 * -1 [ln(e + δϕ 1 )] α + g(δϕ 1 ) ψ dx ≤ -(λ -λ 1 )δ Ω ϕ 1 ψ dx + a - ∞ Ω h(δϕ 1 ) + g(δϕ 1 ) ψ dx < 0.
This allow us to take u = δϕ 1 as a subsolution for (1.1) λ with u < u 0 . The sub-and supersolution method now guarantees a positive solution u to (1.1) λ , with u ≤ u ≤ u 0 .

(i.b) Step 2. Existence of a minimal positive solution u λ for any λ ∈ (λ 1 , Λ).

To show that there is in fact a minimal solution, for each x ∈ Ω we define u λ (x) := inf u(x) : u > 0 solving (1.1) λ .

Firstly, we claim that u λ ≥ 0, u λ ≡ 0. Assume by contradiction that u λ ≡ 0. This would yield a sequence u n of positive solutions to (1.1) λ such that ||u n || C(Ω) → 0 as n → ∞, or in other words, (λ, 0) is a bifurcation point from the trivial solution set to positive solutions. Set

v n := un ||un|| C(Ω)
. Observe that v n is a weak solution to the problem

(5.2) -∆v n = λv n + a(x)f (u n )/||u n || C(Ω) in Ω ; v n = 0 on ∂Ω .
It follows from (H) 0 that a(x)f (un)

||un|| C(Ω)
→ 0 in C(Ω) as n → ∞. Therefore, the right-hand side of (5.2) is bounded in C(Ω). Hence, by the elliptic regularity, v n ∈ W 2,r (Ω) for any r > 1, in particular for r > N . Then, the Sobolev embedding theorem implies that

||v n || C 1,α (Ω) is bounded by a constant C that is independent of n. Then, the compact embedding of C 1,µ (Ω) into C 1,β (Ω) for 0 < β < µ yields, up to a subsequence, v n → Φ ≥ 0 in C 1,β (Ω). Since ||v n || C(Ω) = 1, we have that ||Φ|| C(Ω) = 1. Hence, Φ ≥ 0, Φ ≡ 0.
Using the weak formulation of equation (5.2), passing to the limit, and taking into account that λ is fixed and v n → Φ, we obtain that Φ ≥ 0, Φ ≡ 0, is a weak solution to the equation

-∆Φ = λΦ in Ω , Φ = 0 on ∂Ω.
Then, by the maximum principle it follows that Φ = ϕ 1 > 0, the first eigenfunction, and λ = λ 1 is its corresponding eigenvalue, which contradicts that λ > λ 1 .

Secondly, we show that u λ solves (1.1) λ . We argue on the contrary. Observe that the minimum of any two positive solutions to (1.1) λ furnishes a supersolution to (1.1) λ . Assume that there are a finite number of solutions to (1.1) λ , then u λ (x) := min u(x) : u > 0 solves (1.1) λ and u λ is a supersolution. Choosing ε 0 small enough so that ε 0 ϕ 1 < u λ , the sub-supersolution method provides a solution ε 0 ϕ 1 ≤ v ≤ u λ . Since v is a solution and u λ is not, then v u λ , contradicting the definition of u λ , and achieving this part of the proof.

Assume now that there is a sequence u n of positive solutions to (1.1) λ such that, for each x ∈ Ω, inf u n (x) = u λ (x) ≥ 0, u λ ≡ 0. Let u 1 := min{u 1 , u 2 }. Choosing ε 1 small enough so that ε 1 ϕ 1 < u 1 , the subsupersolution method provides a solution ε 1 ϕ 1 ≤ v 1 ≤ u 1 . We reason by induction.

Let u n := min{v n-1 , u n+1 }. Choosing ε n small enough so that ε n ϕ 1 < u n , the sub-supersolution method provides a solution ε n ϕ 1 ≤ v n ≤ u n ≤ v n-1 . With this induction procedure, we build a monotone sequence of solutions v n , such that

(5.3) 0 < v n ≤ u n ≤ v n-1 ≤ u n-1 ≤ • • • ≤ v 1 .
Since monotonicity and Lemma 2.1,

v n C(Ω) ≤ v 1 C(Ω)
, by elliptic regularity, v n C 1,µ (Ω) ≤ C for any µ < 1, and by compact embedding

v n → v in C 1,β (Ω) for any β < α.
Using the weak formulation of equation (1.1) λ , passing to the limit, and taking into account that λ is fixed, we obtain that v is a weak solution to the equation (1.1) λ . Hence

v(x) ≥ u λ > 0. Moreover, since (5.3), v n (x) ↓ v(x) pointwise for x ∈ Ω, so inf v n (x) = v(x)
. Also, and due to (5.3), u n (x) ↓ v(x) pointwise for x ∈ Ω, and inf u n (x) = v(x).

On the other hand, by construction u n ≤ u n+1 , so, for each

x ∈ Ω, v(x) = inf u n (x) ≤ inf u n (x) = u λ (x)
. Therefore, and by definition of u λ , necessarily v = u λ , proving that u λ solves (1.1) λ , and achieving the proof of step 2.

(ii) The monotonicity of the minimal solutions is concluded from a subsupersolution method. Reasoning as in step 1, u µ is a strict supersolution to (1.1) λ , so w := u µ (x) -u λ (x) ≥ 0, w ≡ 0. Moreover, w = 0 on ∂Ω, and we can always choose c 0 := C 0 a ∞ > 0 where C 0 is defined by (1.6), so that a -(x)f (s) + c 0 ≥ 0 and a + (x)f (s) + c 0 ≥ 0 for all s ≥ 0, then

-∆ + a -(x)f θu µ + (1 -θ)u λ + c 0 w = (µ -λ)u µ + λw + a + (x)f θu µ + (1 -θ)u λ + c 0 w > 0 in Ω,
finally, the Maximum Principle implies that w > 0 in Ω, and ∂w ∂ν < 0 on ∂Ω, ending the proof of step 3. Theorem 2] if there exists an ordered pair of L ∞ bounded sub and super-solution u ≤ u to (1.1) λ , and neither u nor u is a solution to (1.1) λ , then there exist a solution u < u < u to (1.1) λ such that u is a local minimum of J λ at H 1 0 (Ω). Reasoning as in (i), u := u µ with µ > λ is a strict super-solution to (1.1) λ , and u := δϕ 1 is a strict sub-solution for δ > 0 small enough, such that u(x) < u(x) for each x ∈ Ω. This achieves the proof.

(iii) Since [4,
Proof of Theorem 1.1. Theorem 3.3 provides the existence of positive solutions for λ < λ 1 , and Proposition 5.1 provide the existence of minimal positive solutions for λ ∈ (λ 1 , Λ).

(a) Step 1. Existence of a second positive solution for λ ∈ (λ 1 , Λ).

Fix an arbitrary λ ∈ (λ 1 , Λ), and let u λ be the minimal solution to (1.1) λ given by Proposition 5.1, minimizing J λ . A second solution follows seeking a solution through variational arguments [14, Theorem 5.10] and the Mountain Pass procedure shown below.

First, reasoning as in Proposition 5.1(iii), we get a local minimum ũλ > 0 of J λ . If ũλ = u λ , then ũλ is the second positive solution, ending the proof. Assume that ũλ = u λ . Now we reason as in [14, Theorem 5.10] on the nature of local minima. Thus, either

(i) there exists ε 0 > 0, such that inf J λ (u) : u -ũλ = ε 0 > J λ (ũ λ ), in other words, ũλ is a strict local minimum, or (ii) for each ε > 0, there exists u ε ∈ H 1 0 (Ω) such that J λ has a local minimum at a point u ε with u ε -ũλ = ε and J λ (u ε ) = J λ (ũ λ ).
Let us assume that (i) holds, since otherwise case (ii) implies the existence of a second solution.

Consider now the functional

I λ : H 1 0 (Ω) → R given by I λ [v] = J λ [u λ + v] -J λ [u λ ], more specifically I λ [v] := 1 2 Ω |∇v| 2 dx - λ 2 Ω (v + ) 2 dx - Ω Gλ (x, v + ) dx.
where

Gλ (x, s) := a(x) F (u λ (x) + s) -F (u λ (x)) -f (u λ (x))s = a(x) 1 2 f (u λ (x))s 2 + o(s 2 )
.

Obviously I λ [v + ] ≤ I λ [v],
and observe that

I λ [v] = 0 ⇐⇒ J λ [u λ + v] = 0. Fix now some element 0 ≤ v 0 ∈ H 1 0 (Ω)∩L ∞ (Ω), v 0 > 0 in Ω + , v 0 ≡ 0 in Ω -. Let v =
tv 0 for a certain t = t 0 > 0 to be selected a posteriori, and evaluate

I λ [tv 0 ] = 1 2 t 2 ∇v 0 2 L 2 (Ω) -λ v 0 2 L 2 (Ω) - Ω Gλ (x, tv 0 ) dx.
Reasoning as in the proof of Theorem 3.3 for large positive t, since F (t)/t 2 → ∞ as t → ∞, and using also (3.1) we obtain that

I λ [tv 0 ] ≤ C(1 + t + t 2 ) - Ω + a + (x) F (u λ + tv 0 ) + 1 2 C 0 (u λ + tv 0 ) 2 ≤ C(1 + t + t 2 ) -δ Ω + δ F (u λ + tv 0 ) + 1 2 C 0 (u λ + tv 0 ) 2 dx, so I λ [tv 0 ] < 0
for t = t 0 big enough, and where Ω + δ is defined by (3.18). Thus, the Mountain Pass Theorem implies that if

Γ := {g ∈ C [0, 1]; H 1 0 (Ω) : g(0) = 0, I λ [g(1)] < 0}, then, there exists c > 0 such that c := inf g∈Γ max 0≤t≤1 I λ [g(t)]
is a critical value of I λ , and thereby

K c := {v ∈ H 1 0 (Ω) : I λ [v] = c, I λ [v] = 0} is non empty.
Since for any g ∈ Γ we have

I λ [g + (t)] ≤ I λ [g(t)
] for all t ∈ [0, 1], it follows that g + ∈ Γ, and we derive the existence of a sequence v n such that

I λ [v n ] → c, I λ [v n ] → 0, v n ≥ 0.
On the other hand, w n := u λ + v n is a (PS) sequence for the original functional

J λ . Since Theorem 3.2, if λ < λ 1 (int Ω 0 ), v n → v λ en H 1 0 (Ω), so I λ [v] = 0 and I λ [v] = c > 0, hence v λ ≥ 0 is a nontrivial critical point of I λ . Consequently, w λ := u λ + v λ is a positive critical point of J λ , such that, for each ψ ∈ H 1 0 (Ω), we have Ω ∇w λ • ∇ψ dx = Ω λw λ + a(x)f (w λ ) ψ dx,
and thereby w λ := u λ + v λ ≥ u λ , w λ = u λ is a second positive solution to (1.1) λ .

(b) Step 2. Existence of a classical positive solution for λ = Λ.

We prove the existence of a solution for λ = Λ. For each λ ∈ (λ 1 , Λ), problem (1.1) admits a minimal positive weak solution u λ and λ → u λ is increasing, see Proposition 5.1. Taking the monotone pointwise limit, let us define u Λ (x) := lim λ↑Λ u λ (x).

Since step 1, for any λ ∈ (λ 1 , Λ) there exists a second positive solution to (1.1) λ . Let's denote it by ũλ = u λ . Now, define the pointwise limit (5.7) ũ λ 1 (x) := lim sup

λ→λ 1 ũ λ (x).
Reasoning as in step 2, ũ λ 1 < +∞ and ũ

λ 1 ∈ C 2 (Ω) ∩ C 1,µ (Ω) is a classical solution to (1.1) λ 1 .
Moreover, ũ λ 1 > 0. Assume on the contrary that ũ λ 1 = 0. By the Crandall-Rabinowitz's Theorem [START_REF] Crandall | Bifurcation from simple eigenvalues[END_REF], the only nontrivial solutions to (1.1) in a neighborhood of the bifurcation point (λ 1 , 0) are given by (4.1)). Since Proposition 5.1, those are the minimal solutions u λ , and due to ũλ = u λ , ũλ are not in a neighbourhood of (λ 1 , 0), contradicting the definition of ũ λ 1 (x), (5.7)

Hence, ũ λ 1 ≥ 0, and reasoning as in (1.8), the Maximum Principle implies that ũ λ 1 > 0.

Appendix A. Some estimates First, we prove an useful estimate of ln(e+s) ln(e+as) . Lemma A.1. Let 0 < a ≤ 1 be fixed. Then for all s ≥ 0, (A. [START_REF] Alama | On semilinear elliptic problems with indefinite nonlinearities Calculus Var[END_REF] ln(e + s) ln(e + as) ≤ ln e a ≤ 1 a .

Proof. Denote (s) = ln(e+s) ln(e+as) for all s ≥ 0. Then 1 ≤ (s) ≤ (s 0 ) where s 0 > 0 is the unique value where (s) = 0. When computing s 0 we find (s 0 ) = 0 ⇐⇒ (e + as 0 ) ln(e + as 0 ) -a(e + s 0 ) ln(e + s 0 ) = 0 and therefore max = (s 0 ) = ln(e + s 0 ) ln(e + as 0 ) = e + as 0 a(e + s 0 ) .

Notice that we have (s 0 ) ≤ 1 a . In order to find a better upper bound of ln( e+as 0 e+s 0 ) let us denote for all s ≥ 0 θ(s) = (e + as) ln(e + as) -a(e + s) ln(e + s).

Then, there exists χ ∈ (0, s 0 ) such that and the first inequality of (A.1) is achieved. The second one is obvious.

0 -e(1 -a) = θ(s 0 ) -θ(0) = θ (χ)s 0 =⇒ e(1 -a) s 0 = -θ (χ).

Then

Next lemma is about the variations of h(s) = s Let us define for s ≥ 0, θ(s) := ln(e + s) -α 2 * -1 s s + e .

We have:

     θ(0) = 1, θ(s) → +∞ as s → +∞, θ (s) = s+e(1-α 2 * -1 ) (e+s) 2 
.

Hence:

(1) If α 2 * -1 ≤ 1 then θ (s) ≥ 0 for all s ≥ 0 and in particular θ(s) ≥ 0 and therefore h (s) ≥ 0 for all s ≥ 0;

(2) if α 2 * -1 > 1 then θ (s 0 ) = 0 for s 0 = e α 2 * -1 -1 .
Let us compute θ(s 0 ):

θ(s 0 ) = ln α 2 * -1 - α 2 * -1 + 2,
and hence:

(i) if θ(s 0 ) ≥ 0 then θ(s) ≥ 0 for all s ≥ 0 and therefore h (s) ≥ 0 for all s ≥ 0;

(ii) if θ(s 0 ) < 0 then there exists s 1 < s 2 such that

θ(s) > 0 ∀s ∈ [0, +∞[ \ ]s 1 , s 2 [ =⇒ h (s) > 0 ∀s ∈ [0, +∞[ \ ]s 1 , s 2 [.
Notice that t → ln t is greater that t → t -2 somewhere between some t 1 < 1 and the value t * =the unique solution > 2 of the equation

ln t * = t * -2.
Finally the statement of the lemma holds for α * = t * (2 * -1).

Appendix B. A compact embedding using Orlicz spaces

For references on Orlicz spaces see [START_REF] Krasnoselskiȋ | Rutickiȋ Convex functions and Orlicz Spaces[END_REF][START_REF] Rao | Theory of Orlicz Spaces[END_REF]. Throughout Ω ⊂ R N is an bounded open set. We will denote L(Ω) = {ϕ : Ω → R : ϕ is Lebesgue measurable}. Assume also that M satisfies the ∆ 2 -condition, that is,

(B.1) ∃K > 0, ∀s ∈ [0, +∞[, M (2s) ≤ KM (s). Let {u n } n∈N in H 1 0 (Ω) be a sequence satisfying (1) sup n∈N u n 2 * < ∞, (2 
) there exists u ∈ H 1 0 (Ω) such that lim n→+∞ u n (x) = u(x) a.e. Then there exists a subsequence {u n k } k∈N such that

(B.2) lim k→∞ Ω M |u n k (x) -u(x)| dx = 0.
In order to proof this theorem we need some definitions. Proof. Let fix ε > 0 and let δ > 0 be such that

∀n ∈ N, ∀A ⊂ Ω mesurable , |A| < δ =⇒ A M (|u n |)dx ≤ ε.
Using Fatou's lemma we infer that also

∀A ⊂ Ω mesurable , |A| < δ =⇒ A M (|u|)dx ≤ ε. Let Ω n = {x ∈ Ω : |u n (x) -u(x)| > M -1 (ε)}.
As a consequence of Egoroff's theorem, the sequence (u n ) n∈N converge in measure to u so there exists n 0 ∈ N such that

|Ω n | < δ.
Then, using the convexity of M and (B.1) it comes

Ω M |u n -u| dx = Ωn M |u n -u| dx + Ω\Ωn M |u n -u| dx ≤ 1 2 Ωn (M 2|u n | + M 2|u| dx + |Ω| M M -1 (ε) ≤ K 2 Ωn M (|u n |) + M (|u|) dx + |Ω|ε ≤ (K + |Ω|)ε.
In order to prove that, for the sequence of our theorem, the set Proof. For the Valle Poussin's theorem see [START_REF] Natanson | Theory of functions of a real variable[END_REF] page 159. To prove the second statement remark that the function Φ = Φ•M -1 satisfies (B.3).

Here M -1 stand for the right-hand inverse.

Proof of theorem B.3. Let us take Φ(s) = |s| 2 * . From hypothesis (1) of the theorem, the set K = {u n : n ∈ N} satisfies (B.4) for some D > 0.

Then the conclusion follows from lemma B.5 and Lemma B.6 .

Remark B.7. Whenever (B.2) is satisfied we say that the sequence {u n k } k∈N converges in M -mean to u.

One can formulate Theorem B.3 as a compact embedding of H 1 0 (Ω) in some vector space endowed of the Luxembourg norm associate to M (see [START_REF] Krasnoselskiȋ | Rutickiȋ Convex functions and Orlicz Spaces[END_REF][START_REF] Rao | Theory of Orlicz Spaces[END_REF]). Instead, we are going to use the Orlicz-norm which is more suitable to our purposes. We will will see later in Theorem B.12 that the convergence in M -mean implies the convergence with respect to the Orlicz-norm, provided that the ∆ 2 -condition is satisfied. • M is a norm in the real vector space L M (Ω) = u ∈ L(Ω) : u M < +∞ .

(see [START_REF] Krasnoselskiȋ | Rutickiȋ Convex functions and Orlicz Spaces[END_REF] for the details). Let us prove the following less trivial properties: (ii) The divide the proof in 3 steps.

Step 1: For all v ∈ L(Ω), 

Ω uv dx ≤ u M if ρ(v, M * ) ≤ 1 ρ(v, M * ) u M if ρ(v, M * ) > 1

  Furthermore, (a) For every, λ ∈ λ 1 , Λ), (1.1) admits at least two classical ordered positive solutions. (b) For λ = Λ, problem (1.1) admits at least one classical positive solution. (c) For every λ ≤ λ 1 , problem (1.1) admits at least one classical positive solution.

  which implies that there exists K > 0 such that m(2s) ≤ Km(s) for all s ≥ 0 and consequently M satisfies the ∆ 2 -condition (B.1).

  Finally, by inequality (B.5) of Proposition B.12 we get sup m(|u n |) M * , n ∈ N ≤ C + 1.

3. 2 .

 2 An existence result for λ < λ 1 . The next Theorem provides a solution to (1.1) for λ < λ 1 based on the Mountain Pass Theorem. Theorem 3.3. Assume that Ω ⊂ R N is a bounded domain with C 2 boundary. Assume that the nonlinearity f defined by (1.2) satisfies (H), ant that the weight a ∈ C 1 (Ω). Then, the boundary value problem (1.1) λ has at least one classical positive solution for any λ < λ 1 .

Proposition 4 . 1 .

 41 Let us define Λ := sup{λ > 0 : (1.1) admits a positive solution}. If (1.5) holds then,

  -θ (s) = a ln e + s e + as ≤ a ln 1 a) + 1 -a a ln(1/a) + 1 -a ≤ ln(1/a) + 1,

Definition B. 1 .

 1 We will say that a function M : [0, +∞[→ [0, +∞[ is a N -function if and only if (N1) M is convex, increasing and continuous, The proof of the following property is trivial, we just quoted it for the sake of completeness. Proposition B.2. Any N -function M admits a representation of the form M (s) = s 0 m(t)dt where m : [0, +∞[→ [0, +∞[ is a non-decreasing right-continuous function satisfying m(0) = 0 and lim s→+∞ m(s) = +∞. Thus, m is the right-derivative of M .Our first aim is to prove the following result: Theorem B.3. Let M : [0, +∞[→ R be a N -function such that lim s→+∞

Definition B. 4 .

 4 Let K ⊂ L(Ω). We say that K has equi-absolutely continuous integrals if and only if ∀ε > 0 there exists h > 0 such that∀ϕ ∈ K, ∀A ⊂ Ω mesurable , |A| < h =⇒ A |ϕ(x)| dx < ε.Lemma B.5. Let M : [0, +∞[→ R be a N -function satisfying the ∆ 2 condition (B.1). Let {u n } n∈N be a sequence of measurable functions converging a.e. to some function u and such that the set M |u n | : n ∈ N has equi-absolutely continuous integrals. Then (B.2) holds.

MΦthen the family K 1 =

 1 |u n | : n ∈ N has equi-absolutely continuous integrals we are going to use the following lemma : Lemma B.6. Let K ⊂ L(Ω) and let Φ : [0, +∞[→ [0, +∞[ |u| dx ≤ D. Then all the functions u ∈ K are integrable and K has equi-absolutely continuous integrals (Valle Poussin's theorem). Moreover, if M : [0, +∞[→ [0, +∞[ is a continuous increasing function satisfying {M |u| : u ∈ K} has equi-absolutely continuous integrals.

Definition B. 8 .

 8 Let M be a N -function. The complementary of M defined for all s ≥ 0 is the functionM * (s) := max st -M (t) : t ≥ 0 .As before, we give the following trivial result for the sake of completeness:Proposition B.9. If m is the right derivative of M then m * (s) = sup{t : m(t) ≤ s}is the right derivative of M * and M * is a N -function. Furthermore, for all s ≥ 0 we have sm(s) = M (s) + M * (m(s)), sm * (s) = M (m * (s)) + M * (s). Next, let us introduce the Orlicz norm associated to M : Definition B.10. Let M be a N -function and let M * be its complementary. Let us denote for any v ∈ L(Ω) ρ(v, M * ) = Ω M * |v| dx and define the Orlicz norm of any u ∈ L(Ω) by u M := sup Ω uv dx : v ∈ L(Ω), ρ(v, M * ) ≤ 1 .

Proposition B. 11 .

 11 (i) For all u ∈ L(Ω), (B.5) u M ≤ Ω M (|u|) dx + 1.

(

  ii) For any u and v in L(Ω) it holds (B.6) Ω uv dx ≤ u M v M * (Holder's inequality). (iii) For any u and v in L(Ω) we have u M ≤ v M if |u| ≤ |v| a.e. Proof. (i) This follows from the definition of • M and the inequality |uv| ≤ M (|u|) + M * |v| .

Step 2 : 3 :

 23 Indeed, the first case follows directly from the definition. If ρ(v, M * ) > 1 then by convexityM * |v| ρ(v, M * ) ≤ M * |v| ρ(v, M * )and thereforeρ |v| ρ(v, M * ) , M * ≤ 1 ρ(v, M * ) Ω M * |v| dx = 1andΩ u v ρ(v, M * ) dx ≤ u M . If u M ≤ 1 then ρ m(|u| , M * ) ≤ 1. Set u n = uχ {|u|≤n} for all n ∈ N. Since u n is bounded then ρ (m(|u n | , M * < +∞. Assume by contradiction that Ω M * m(|u| dx > 1 and let n 0 ∈ N be such that Ω M * m |u n 0 | dx > 1. We have M * m(|u n 0 | < M |u n 0 | + M * m(|u n 0 |)| = |u n 0 | m |u n 0 | and therefore, by (i), ρ m(|u n 0 |), M * < Ω |u n 0 | m |u n 0 | dx ≤ u n 0 M ρ m(|u n 0 |), M * which contradicts u n 0 M ≤ u M ≤ 1.This is trivial from the definition of u M , step 1 and the fact that |u|m(|u|) = M (|u|) + M * m(|u| .Step If u M ≤ 1 then ρ(u, M ) ≤ u M . Let us remark that for all s ≥ 0 M * (m(s)) + M (s) = sm(s).

  2 * -1 [ln(e+s)] α for s ≥ 0. Lemma A.2. There exists α * > 2(2 * -1) such that h is an increasing function on ]0, +∞[ if and only if α ≤ α * . Moreover, if α > α * there exists s 1 < s 2 such that h is increasing in [0, +∞[ \ ]s 1 , s 2 [.

	Proof. We have				
	h (s) =	s 2 * -2 [ln(e + s)] α+1 (2 * -1) ln(e + s) -	αs s + e	,
	so	h (s) ≥ 0 ⇐⇒ ln(e + s) ≥	α 2 * -1	s s + e	.
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We next see that u Λ < +∞, reasoning on the contrary. Assume that there exists a sequence of solutions u n := u λn such that u λn → +∞ as λ n → Λ. Set v n := u n / u n , then there exists a subsequence, again denoted by v n such that v n v in H 1 0 (Ω), and v n → v in L p (Ω) for any p < 2 * and a.e. Arguing as in the claim of Proposition 3.1, v ≡ 0. Moreover (5.4)

On the other hand, from the weak formulation, for all

)

Taking the limit, and since

Hence [2, Proposition 3.13 (iv)], and (5.6) imply

which contradicts (5.4) and yields u Λ < +∞.

By Sobolev embedding and the Lebesgue dominated convergence theorem,

Now, by substituting ψ = u n in (5.5), using Hölder inequality and Sobolev embeddings we obtain

By compactness, for a subsequence again denoted by u n , u n u * in H 1 0 (Ω), u n → u * in L p (Ω) for any p < 2 * and a.e. By uniqueness of the limit, u Λ = u * . Finally, by taking limits in the weak formulation of u n as λ n → Λ, we get

The existence of a classical positive solution for λ < λ 1 is done in Theorem 3.3. Let's look for a solution when λ = λ 1 .

Set v 0 = m(|u|). From step 2, ρ(v 0 , M * ) ≤ 1 and then

Now we prove Holder's inequality. From step 2 applied to M * and

and Holder's inequality follows.

The proof of (iii) is trivial.

Finally, we give the following compact embedding result: