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ABSTRACT: We herein demonstrate the acylsilane directed Rh-catalyzed arene C-H bond alkylation with maleimides. The resulting 
derivatives were utilized in visible-light-induced intramolecular siloxycarbene-amide cyclization for the synthesis of new tricyclic γ-
lactams. In Parallel, we also harnessed the same acylsilane and maleimide units through [3+2] carbo-annulation by using Ru-catalysis. 
A wide range of maleimides and aroylsilanes were used to establish the broadness of these transformations.

Acylsilanes are captivating chemical probes in organic 
chemistry1-6 which are partaking in wide range of 
transformations, including cross couplings, aldol reactions, 
radical reactions, nucleophilic additions, C-H 
functionalizations, and annulation reactions. From a plethora of 
possible reactions of acylsilanes, the nucleophilic addition/1,2-
Brook rearrangement is one of the most attractive 
transformations to construct C-C and C-X bonds through singlet 
nucleophilic siloxycarbene intermediates.3-5 This 
rearrangement offers chemists an expeditious path to probe in 
unearthed chemical space for various organic synthetic 
activities. Diverse elegant routes were established for such 
rearrangements, using visible-light, organo catalysts and 
transition-metal catalysts with a range of carbon and heteroatom 
trapping reagents (Scheme 1ai).
Scheme 1: Reactivity of benzoyl silanes
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Conversely, directing group (DG) assisted transition-metal 
catalyzed site selective C-H functionalization is a swift strategy 
to construct verity of complex acyclic and cyclic motifs in a 
single operation.7 These strategies not only avoid the pre-

functionalization of the reactive centers but also fetch atom- and 
step-economy in the anticipated transformation with high 
functional group compatibility. Over the past few years, many 
splendid routes were established using a large spectrum of 
transition-metals (Pd, Rh, Ru, Ir, Cu, Co, Mn, Ni, etc.) and 
coupling partners. In this context, pendent chelating group 
assists the metal catalyst in activation of C-H bond through pre-
coordination (concerted metalation-deprotonation). These 
chelating directing groups mainly nitrogen, oxygen, and 
carbon-based functional groups, which will also join in 
annulation reactions along with various ᴫ-congeners. In this 
paradigm, hefty series of DGs, including weakly coordinated 
carbonyls also illustrated in such C-H functionalization and 
annulation reactions.7 

In stark contrast to the Brook rearrangement, the ortho C-H 
functionalization of arene acylsilanes is subtle,6 because, these 
chemprobs have aldehyde trait which can endure 
supplementary transformations in given condition. The 
unscathed acylsilane is a potential reactive handle for later 
transformations which offers novel potentialities to this arsenal, 
as the acylsilane itself is a uniquely reactive center (vide supra). 
Using this weakly coordinated functional group as C-H 
directing group, some elegant functionalizations (alkenylation, 
amidation, allylation) and annulation (indene) transformations 
were documented via Rh,6a,f Ir,6b Ru6c-e and Co6g catalysis 
(Scheme 1aii). The Rh/Ru catalyzed C-H alkenylation (Heck 
type)6a, 6c was reported using unsaturated carbonyl derivatives 
through β-hydride elimination, where both metals shown 
identical reactivity (Scheme 1b). However, the availability of 
acylsilane C-H functionalization strategies remains scanty. In 
this letter, we demonstrate the acylsilane directed Rh-catalyzed 
C-H alkylation with maleimides and subsequent visible-light-
induced siloxycarbene-amide cyclization affording tricyclic 
indeno-γ-lactams. Further, a stereoselective annulation was also 
achieved under Ru catalysis with the same reactive partners 
(Scheme 1c). 

The easily available and flexible reactive maleimides have 
been recently dragged a great attention of synthetic organic 
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chemists, due to the omnipresent nature of these motifs in 
various fields of biology.8 Specially, the succinimide and its 
fused derivatives are frequently present in natural products and 
biologically intriguing molecules (Figure 1).8
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Figure 1. Some bioactive succinimide and indano-
pyrrolidine derivatives

Maleimides are linchpin prototypes in DG assisted C-H 
activation reactions, which are most engaged one in three (viz 
alkenylating, alkylating and annulating reactions; depending on 
the kind of DG, metal catalyst and reaction conditions) coupling 
partners in C-H functionalization.9 Utilizing these maleimides, 
we herein report, the synthesis of acylsilylated phensuximide 
derivatives as well as indano- succinimide adducts in 
expeditious way.  

Initially we conducted the reaction using benzoyl silane (1a) 
and N-phenyl maleimide (2a) as test substrates. After extensive 
optimization studies, we found that the reaction of 1a with 2a 
in presence of 5 mol% [Cp*RhCl2]2, with 60 mol% of 
Cu(OAc)2.H2O as an additive and 10 mol % AgSbF6 silver salt 
in DCE solvent at 70 oC afforded adduct 3aa in 82% yield (for 
detailed optimization studies see Supporting Information). 
Having these optimized conditions in hand, we headed to 
examine the generality of the C-H alkylation path (Scheme 2). 
Scheme 2. Scope of acylsilanesa
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We first verified the substrate scope by using electronically 
distinct acylsilanes, thus the halogenated (F, Cl, Br and I) 
benzoyl silanes were well tolerated under the given conditions 
and afforded expected adducts 3ba-3ga in 68-74% yields 
irrespective of their positions on core aryl group (ortho and 
para). The exquisite iodo functional group reactivity is 
particularly noteworthy, as it is one of the least often selected 
functional group in C-H activation. The resulting adducts could 
be used for further functionalization with various cross coupling 
conditions for succinimide handled products. To our 
astonishment, the ortho and para iodo substrates 1f-g smoothly 

transformed to C-H alkylated adducts 3fa-ga in 68-70% yields. 
Subsequently, the electronically neutral –tert-Butyl and 
electronic rich alkoxy substitutions like methoxy, 3,4-
dimethoxy and 2,3-dimethoxy benzoyl silanes (1h-l) could 
survive with equal ease in the formation of corresponding 
adducts 3ha-la in 65-74% yields. 
Scheme 3. Scope of Maleimidesa
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Reaction conditions: a 1 (0.25 mmol), 2 (0.375 mmol),[Cp*RhCl2]2 (5 mol%),
AgSbF6 (10 mol %), Cu(OAc)2.H2O (60 mol%) in DCE (1.5 mL) bIsolated yield.

We subsequently investigated the reaction feasibility of 
various N-substituted maleimide coupling partners, as 
exemplified in Scheme 3. The alkyl groups (ethyl, dimethyl, 
trimethyl, diisopropyl and n-butyl) on N-aryl maleimides 2b-f 
provided corresponding final products 3ab-af in 64-77% yields. 
The N-para-methoxy phenyl maleimide delivered 3ag in 71% 
yield and the structure was confirmed by X-ray crystallography. 
The halogenated N-aryl maleimides also showed equal 
reactivity in standard conditions. Thus, the F, Cl, Br and I 
substituted chemprobs 2h-k afforded 3ah-ak in good yields 
(72-74%). These functionalities could also be used in further 
extension reactions. The electron withdrawing CF3, Cl and NO2 
aryl maleimides worked similarly to their halogenated cousins 
(3al-am in 70-75%). We further extended our focus to test the 
viability of N-alkylated maleimides under title conditions. The 
N-Methyl maleimide 2n afforded the acylsilated phensuximide 
3an in 78% yield. The other N- alkylated (Et, n-propyl, tBu and 
cyclohexyl) maleimides showed analogous reactivity to N-
methyl maleimide (3ao-ar). To our delight, the N-unsubstituted 
maleimide 2s also reacted with 1a in equal manner. Setting a 
limitation, the other doubly activated alkenes (maleic 
anhydride, 1,4-benzoquinone) were found to be inapt in this 
transformation.

In continuation, the meticulous search on the aforementioned 
1,2-Brook rearrangement brings to light the meagerness in the 
intramolecular trapping of such reactions.4 Thus the utility of 
unscathed acylsilane functionality in concomitant reaction with 
pendent reactive handle is limited to certain section of 
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molecules.5 In order to exemplify such a possibility, we utilized 
the newly formed o-succinimide benzoyl silanes in 
siloxycarbene-amide cyclization through 1,2-silyl migration 
followed by a cyclization sequence towards pharmacologically 
significant tricyclic hydroxy γ-lactam derivatives 4 (Scheme 
4).10 
Scheme 4. Visible-light-induced amide cyclization 

SiMe3

O

NO

O

R3

O

N
OH

O

Ar

H
4b

O

N
OH

OH

(455 nm)

DCM, 1 h

X
O

N
OH

OH

Cl

CF3

O

N
OH

O

Ph

H

O

N
OH

O

Me

H

4a, X = H, 89%
4b, X = Et, 90%
4c, X = nBu, 92%
4d, X = F, 82%
4e, X = I, 86%
4f, X = NO2, 78% 4g, 81%

4h, 73% 4i, CCDC No 2220857

blue LEDs

MeO

MeO

4i, 81%

Owing to the occurrence of two stereogenic centers along 
with a quaternary carbon, the synthesis of these privileged 
tricyclic compounds are challenging.10a,b To achieve this 
synthesis in easy and simple manner, we conducted a reaction 
with 3aa under 455 nm visible-light (blue LEDs) (see SI for 
optimization studies) which provided the cyclization product 4a 
in 89%. 
Scheme 5. Substrate scope for carbo-annulation reactiona
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The other functionalized succinimide derivatives (aryl-alkyl, 
halo, NO2 and alkyl) also participated well in this light-

mediated amide cyclization affording corresponding tricyclic 
products in good to excellent yields (4b-4h in 73-92%). The 
structure of the tricyclic γ-latam 4i was confirmed by X-ray 
crystal analysis. Moving further, the alteration in the reactivity 
(chemo-divergence and/or regio-divergence) of same substrates 
came from switching the metal catalysts, metal attached 
ligand.11 An analogy to Rh(III)-catalyst, the other metal 
catalysts, for instance, less expensive Ru(II)-catalyst often 
provide complementary reaction patterns.11c We then quested 
towards carbo-annulation using same substrates. 

In this line, we harnessed aroylsilanes and maleimides in 
Ru(II)-catalyzed carbo-annulation approach for biologically 
intriguing indano-succinimide motifs.12 Initially, we 
synthesized compound 5a in 71% yield under Ru-catalysis (for 
optimization studies, see supporting information) as shown in 
Scheme 5. To ascertain the generality of this annulation, we 
screened electronically dissimilar substrates under established 
conditions. The N-aryl functionalized maleimides (with 
halogens and alkyls) proved to be good starting materials for 
this reaction with benzoyl silane (5b-e in 58-64% yields). 
Delightfully, the N-methylated and N-unsubstituted maleimides 
produce the corresponding 5f and 5g in fair to good yields (56-
73%). The structure of 5g was confirmed by X-ray 
crystallography. Subsequently, iodo-substituted indanone 5h 
was also synthesized from aroylsilane and maleimide. Whereas, 
the ortho-methoxy substituted acylsilane afforded the indanol 
product12b 5i in 57% yield only, perhaps due to the ortho-
methoxy coordination which might have promoted the 1,2-
Brook and proto-demetallation sequence. It is noteworthy to 
mention that the reduced pyrodo-indanol (5i) was found as 
antihypertensive agent.12 

Lastly, we utilized the synthesized succinimide derivative for 
further transformation. First, we synthesized the aldehyde 6a 
from 3la in 71% yield. This aldehyde 6a is an intermediate for 
antihypertensive agent12a (Scheme 6,eq i). We further 
deacylated the compound 3an for the synthesis of formylated 
phensuximide 6b in 79% yield (Scheme 6, eq ii).
Scheme 6. Synthetic transformations and catalyst 
competitive experiments 
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continuation, to verify the competitive nature of rhodium and 
ruthenium catalysis, we performed a reaction using both 
catalysts in single pot (Scheme 6, eq iii). After 6 h of the 

Page 3 of 6

ACS Paragon Plus Environment

Submitted to Organic Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



reaction we observed C-alkylation as the only product. In 
prolongation time we isolated 3aa in 45% along with annulated 
adduct 5a (17% yield). We further conducted the cyclization 
reaction using 3aa under Ru-catalysis no expected product 5a 
was observed (Scheme 6, eq iv). These results suggest that the 
C-metal interaction is crucial for annulation. 

Based on these observations and literature precedence, we 
propose the tentative mechanism, as shown in Scheme 7. 
Initially the cationic metal catalyst activates the C-H bond 
through concerted-metalation-deprotonation process, which 
upon chelation, followed by insertion of maleimide affords the 
intermediate C. This intermediate deliver compound 3 through 
proto-derhodation of C-Rh bond. In the case of ruthenium, the 
less acidic C-Ru bond inserts into the acylsilane and provides 
the intermediate E, which upon desilyl-rutheniation gave carbo-
annulated adduct 5. 
Scheme 7. Mechanistic proposal.
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Further, the Cu(OAc)2 oxidizes the metal catalysts for the 
next cycle. The tricyclic hydroxy γ-lactams (4) were achieved 
through light-induced 1,2-rearrangemt followed by the 
siloxycarbene insertion into amide bond and silyl migration 
sequence. 

In conclusion, we have unveiled the acylsilane directed Rh-
catalyzed C-H bond alkylation with maleimides for the 
synthesis of ortho-acylsilylated phensuximide derivatives. The 
weakly coordinated acylsilane group triggers the C-H bond 
functionalization and intervenes in the concurrent 
transformations. The synthesized o-succinimide aroylsilanes 
proved to be remarkable substrates in visible-light-induced 
intramolecular siloxycarbene-amide cyclization towards 
indano-γ-lactams. In contrast to the Rh-catalyzed alkylation, we 
further pursued the stereo-selective [3+2] annulation of 
aroylsilanes and maleimides using Ru-catalysis to indenol 
succinimide fused derivatives. Efforts to expand the aroylsialne 
reactivities are ongoing in our laboratory.
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