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Several recent papers have addressed modelling of the tissue growth by the multi-phase models where the velocity is related to the pressure by one of the physical laws (Stoke's, Brinkman's or Darcy's). While each of these models has been extensively studied, not so much is known about the connection between them. In the recent paper (arXiv:2303.10620), assuming the linear form of the pressure, the Authors connected two multi-phase models by an inviscid limit: the viscoelastic one (of Brinkman's type) and the inviscid one (of Darcy's type). Here, we prove that the same is true for a nonlinear, power-law pressure. The new ingredient is that we use relation between the pressure p and the Brinkman potential W to deduce compactness in space of p from the compactness in space of W .

Introduction

Last years brought deep understanding of mechanical models of tissue growth. These models are based on the continuity equation for the density ρ ∂ t ρ + div(ρv) = 0, where the velocity v is linked to the pressure p which is assumed to be a power-law function of density ρ i.e. p(ρ) = ρ γ for some γ ≥ 1. The most widely studied one, Darcy's law, asserts that the velocity v = -∇p. Such approach has been thoroughly studied [START_REF] David | Convergence rate for the incompressible limit of nonlinear diffusion-advection equations[END_REF][START_REF] Guillen | A Hele-Shaw limit without monotonicity[END_REF][START_REF] Jacobs | Darcy's law with a source term[END_REF][START_REF] Perthame | Derivation of a Hele-Shaw type system from a cell model with active motion[END_REF][START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF], also in the context of two populations [START_REF] Bubba | Hele-Shaw limit for a system of two reaction-(cross-)diffusion equations for living tissues[END_REF][START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF][START_REF] Kim | On nonlinear cross-diffusion systems: an optimal transport approach[END_REF][START_REF] Liu | Existence and incompressible limit of a tissue growth model with autophagy[END_REF][START_REF] Lorenzi | On interfaces between cell populations with different mobilities[END_REF][START_REF] Price | Global existence theorem for a model governing the motion of two cell populations[END_REF], presence of a nutrient [START_REF] David | Free boundary limit of a tumor growth model with nutrient[END_REF][START_REF] Perthame | Traveling wave solution of the Hele-Shaw model of tumor growth with nutrient[END_REF], more general Patlak-Keller-Segel equation [START_REF] He | Incompressible limits of Patlak-Keller-Segel model and its stationary state[END_REF] or additional advection effects [START_REF] David | On the incompressible limit for a tumour growth model incorporating convective effects[END_REF][START_REF] Kim | Singular limit of the porous medium equation with a drift[END_REF]. Another approach is the Brinkman's law [START_REF] Dębiec | Incompressible limit for a two-species model with coupling through brinkman's law in any dimension[END_REF][START_REF] Dębiec | Incompressible limit for a two-species tumour model with coupling through Brinkman's law in one dimension[END_REF][START_REF] Kim | Uniform convergence for the incompressible limit of a tumor growth model[END_REF][START_REF] Perthame | Incompressible limit of a mechanical model of tumour growth with viscosity[END_REF][START_REF] Tang | Composite waves for a cell population system modeling tumor growth and invasion[END_REF]. Here, velocity equals v = -∇W where W solves an elliptic equation

-σ∆W + W = p,
for some small σ > 0. In this approach, the velocity enjoys higher regularity due to elliptic regularity theory. Last but not least, one can consider the Stoke's law where the velocity is given by the corresponding Navier-Stokes(-Korteweg) equation [START_REF] Labbé | A free boundary model for Korteweg fluids as a limit of barotropic compressible Navier-Stokes equations[END_REF][START_REF] Lions | On a free boundary barotropic model[END_REF][START_REF] Vauchelet | Incompressible limit of the Navier-Stokes model with a growth term[END_REF] or with additional surface-tension effects [START_REF] Degond | Multi-species viscous models for tissue growth: incompressible limit and qualitative behaviour[END_REF][START_REF] Elbar | Nonlocal cahn-hilliard equation with degenerate mobility: Incompressible limit and convergence to stationary states[END_REF][START_REF] Elbar | Degenerate Cahn-Hilliard and incompressible limit of a Keller-Segel model[END_REF][START_REF] Elbar | Pressure jump and radial stationary solutions of the degenerate Cahn-Hilliard equation[END_REF] by including Cahn-Hilliard-type terms.

Most of the studies discussed above have been carried out to in the context of so-called incompressible limit. This procedure links mechanistic models and free-boundary problems extensively used in the context of tumor growth [START_REF] Byrne | Growth of necrotic tumors in the presence and absence of inhibitors[END_REF]. Mathematically, the limit corresponds to sending γ → ∞ in the pressure relation p(ρ) = ρ γ . In the limit, ρ ≤ 1 and the zone Ω t := {x : ρ(t, x) = 1} is interpreted as a tumor resulting in the free boundary problem which has been extensively studied, see for instance [START_REF] Jacobs | Tumor growth with nutrients: Regularity and stability[END_REF][START_REF] Kim | Porous medium equation to Hele-Shaw flow with general initial density[END_REF][START_REF] Kim | Free boundary problems for tumor growth: a viscosity solutions approach[END_REF][START_REF] Mellet | A Hele-Shaw problem for tumor growth[END_REF]. In this context, it is worth mentioning another form of the pressure p(ρ) = ε ρ 1-ρ which enforces the density to stay below 1 so it is useful for modeling populations with congestion constraints, see [START_REF] Bresch | Compression effects in heterogeneous media[END_REF][START_REF] Bresch | Singular limit of a Navier-Stokes system leading to a free/congested zones two-phase model[END_REF][START_REF] Degond | Incompressible limit of a continuum model of tissue growth for two cell populations[END_REF][START_REF] Hecht | Incompressible limit of a mechanical model for tissue growth with nonoverlapping constraint[END_REF][START_REF] Perrin | Free/congested two-phase model from weak solutions to multi-dimensional compressible Navier-Stokes equations[END_REF].

For such pressure laws, one can also study incompressible limit by sending ε → 0.

In the present work, we are interested in linking the two populations model of Brinkman's type with the one of Darcy's type. Hence, we consider the system of PDEs posed on [0, T ]×R d

∂ t u σ -div(u σ ∇W σ ) = u σ F (p σ ), ∂ t v σ -div(v σ ∇W σ ) = v σ G(p σ ), (1.1) 
where u σ , v σ are densities of two populations of interest, p = (u σ + v σ ) γ is the pressure, γ > 1 and W σ is the solution of the elliptic equation

-σ∆W σ + W σ = p σ (1.2)
corresponding to the so-called Brinkman's law. Our target is to rigorously justify the limit σ → 0 where we expect the Darcy's law W = p = (u + v) γ and the densities u, v satisfy

∂ t u -div(u∇p) = u F (p), ∂ t v -div(v∇p) = v G(p). (1.3) 
In [START_REF] David | A degenerate cross-diffusion system as the inviscid limit of a nonlocal tissue growth model[END_REF], the case of γ = 1 was established. Here, we study the nonlinear case γ > 1. As discussed above, from the point of view of free boundary models, large γ is more physically relevant and this motivates our studies.

We first list the assumptions which are standard in the theory of (1.1).

Assumption 1.1. We assume that:

(A) The nonlinearities F , G belong to C 1 (R) and they are strictly decreasing: F ′ , G ′ ≤ -α < 0 for some α > 0. Moreover, there exists p H > 0 (the so-called homeostatic pressure) such that

F (p H ) = G(p H ) = 0.
(B) The initial condition (u 0 , v 0 ) is nonnegative and satisfies the following: the upper bound (u 0 + v 0 ) γ ≤ p H , the mass bound ´Rd (u 0 + v 0 ) dx ≤ C and the tail estimate

´Rd (u 0 + v 0 )|x| 2 dx ≤ C.
The weak solutions to the systems (1.1)-(1.2) and (1.3) are defined as follows:

Definition 1.2 (Weak solutions to the Brinkman system). We say that

(u σ , v σ ) is a weak solution of (1.1)-(1.2) with initial condition (u 0 , v 0 ) if u σ , v σ ∈ L ∞ (0, T ; L 1 (R d ) ∩ L ∞ (R d ))
and for all ϕ

∈ C ∞ c ([0, T ) × R d ) and φ ∈ C ∞ c ([0, T ) × R d ): ˆT 0 ˆRd u σ ∂ t ϕ dx dt + ˆRd ϕ(0, x)u 0 (x) dx = = ˆT 0 ˆRd u σ ∇W σ • ∇ϕ dx dt - ˆT 0 ˆRd u σ F (p σ )ϕ dx dt, ˆT 0 ˆRd v σ ∂ t φ dx dt + ˆRd φ(0, x)v 0 (x) dx = = ˆT 0 ˆRd v σ ∇W σ • ∇φ dx dt - ˆT 0 ˆRd v σ G(p σ )φ dx dt, with p σ = (u σ + v σ ) γ and -∆W σ + W σ = p σ a.e. in (0, T ) × R d .
We note that the terms u σ ∇W σ , v σ ∇W σ make sense. Indeed, one can write

W σ = K σ * p σ where K σ is a fundamental solution of -σ∆K σ + K σ = δ 0 . It is well-known (see, for instance, [51, eq. (2.6)]) that K σ ≥ 0, ´Rd K σ dx = 1 and ∇K σ ∈ L 1 (R d )
where the last estimate blows up when σ → 0. Therefore, for σ fixed, ∇W σ ∈ L ∞ (0, T ; L q (R d )) for all

q ∈ [1, ∞].
Definition 1.3 (Weak solutions to the Darcy system). We say that (u, v) is a weak solution of (1.3) with initial condition (u 0 , v 0 ) and p

= (u + v) γ if u, v ∈ L ∞ (0, T ; L 1 (R d ) ∩ L ∞ (R d )), ∇p ∈ L 2 ((0, T ) × R d ) and for all ϕ ∈ C ∞ c ([0, T ) × R d ) and φ ∈ C ∞ c ([0, T ) × R d ): ˆT 0 ˆRd u ∂ t ϕ dx dt + ˆRd ϕ(0, x)u 0 (x) dx = = ˆT 0 ˆRd u∇p • ∇ϕ dx dt - ˆT 0 ˆRd uF (p)ϕ dx dt, ˆT 0 ˆRd v ∂ t φ dx dt + ˆRd φ(0, x)v 0 (x) dx = = ˆT 0 ˆRd v∇p • ∇φ dx dt - ˆT 0 ˆRd vG(p)φ dx dt.
The existence of weak solutions to the Brinkman system is given by the following result.

Theorem 1.4. Under Assumption 1.1, there exists a weak solution (u σ , v σ ) to the system (1.1)-(1.2) in the sense of Definition 1.2. Moreover, the solution is uniformly bounded

0 ≤ (u σ + v σ ) γ ≤ p H . (1.4)
The existence result is fairly standard and it is based on suitable regularizations. Nevertheless, it contains few interesting technical difficulties, therefore we present the proof in the Appendix A. Let us point that that the uniform bound (1.4) is the direct consequence of the maximum principle in [55, Lemma 2.1].

Our main result is the rigorous justification of passing to the limit σ → 0.

Theorem 1.5 (Brinkman to Darcy). Let (u σ , v σ ) be a weak solution of system (1.1)-(1.2)

as in Theorem 1.4. Then, as σ → 0, we can extract a subsequence (not relabeled) such that

u σ → u weakly* in L ∞ ((0, T ) × R d ) and weakly in L q ((0, T ) × R d ) for 1 ≤ q < ∞, v σ → v weakly* in L ∞ ((0, T ) × R d ) and weakly in L q ((0, T ) × R d ) for 1 ≤ q < ∞, p σ → p strongly in L q ((0, T ) × R d ) for all 1 ≤ q < +∞, W σ → p strongly in L 2 (0, T ; H 1 (R d )) ∩ L q ((0, T ) × R d ) for all 1 < q < +∞, with p = (u + v) γ . Moreover (u, v) is a weak solution of (1.3) as in Definition 1.3.
Let us briefly outline the strategy. The main difficulty is to pass to the limit in the terms u σ ∇W σ and v σ ∇W σ . It seems that there is no hope for the strong compactness of u σ and v σ because this requires at least uniform bounds on {D 2 W σ } (cf. [START_REF] Belgacem | Compactness for nonlinear continuity equations[END_REF]) which does not seem to be available (see (2.2) for the energy identity). Therefore, we plan to prove strong

compactness of {∇W σ } in L 2 ((0, T ) × R d
) by proving weak compactness and convergences of norms:

∇W σ ⇀ ∇p in L 2 ((0, T ) × R d ), lim σ→0 ∇W σ 2 L 2 ((0,T )×R d ) = ∇p 2 L 2 ((0,T )×R d ) ,
which was recently applied in several problems of similar nature [START_REF] David | Phenotypic heterogeneity in a model of tumour growth: existence of solutions and incompressible limit[END_REF][START_REF] Jacobs | Existence of solutions to reaction cross diffusion systems[END_REF][START_REF] Liu | Existence and incompressible limit of a tissue growth model with autophagy[END_REF][START_REF] Price | Global existence theorem for a model governing the motion of two cell populations[END_REF]. This can be achieved if one proves strong compactness of {p σ }. Indeed, weak compactness of {∇W σ } is then a consequence of the energy estimate (2.2) and the elliptic equation (1.2). The convergence of norms follows from the energy: we compare energy (2.2) for σ → 0 with the energy for

∂ t (u + v) -div((u + v) ∇p) = u F (p) + v G(p),
which can be written because {p σ } is strongly compact.

It remains to explain how we obtain strong compactness of the pressures {p σ }. From a priori estimates (Proposition 2.1) we know that {p σ } is compact in time while {W σ } is compact in space. Moreover, the term σ∆W σ converges strongly to 0. Therefore, we can use the elliptic equation (1.2) to translate information about compactness of {W σ } into compactness of {p σ }. Details are given in Lemma 3.2 and Lemma 3.4.

We also remark that our method covers the linear case γ = 1 studied in [START_REF] David | A degenerate cross-diffusion system as the inviscid limit of a nonlocal tissue growth model[END_REF]. The only difference is that the energy identity used to obtain all the estimates and deduce strong compactness of {∇W σ } is deduced by multiplying equation for the sum u σ + v σ with log(u σ + v σ ). Some care is necessary as this function may not be admissible in the vacuum where u σ + v σ = 0 and the details are discussed in [START_REF] David | A degenerate cross-diffusion system as the inviscid limit of a nonlocal tissue growth model[END_REF].

Finally, let us remark that the problem of passing to the limit from (1.1) to (1.3) can be seen in a much broader context of passing to the limit from the nonlocal equation to the local one. More precisely, (1.2) can be written as W σ = K σ * p σ where K σ is a kernel approaching Dirac mass δ 0 so that W = p in the limit σ → 0. Such problems are intesively studied for several PDEs, including porous media equation [START_REF] Burger | Porous medium equation and cross-diffusion systems as limit of nonlocal interaction[END_REF][START_REF] Carrillo | Nonlocal approximation of nonlinear diffusion equations[END_REF][START_REF] Hecht | Multispecies cross-diffusions: from a nonlocal mean-field to a porous medium system without self-diffusion[END_REF][START_REF] Lions | Une méthode particulaire déterministe pour des équations diffusives non linéaires[END_REF], Cahn-Hilliard equation (both nondegenerate [START_REF] Davoli | Degenerate nonlocal Cahn-Hilliard equations: well-posedness, regularity and local asymptotics[END_REF][START_REF] Davoli | Nonlocal-to-local convergence of Cahn-Hilliard equations: Neumann boundary conditions and viscosity terms[END_REF] and degenerate [START_REF] Carrillo | Degenerate Cahn-Hilliard systems: From nonlocal to local[END_REF][START_REF] Elbar | Degenerate Cahn-Hilliard equation: From nonlocal to local[END_REF]) and hyperbolic conservation laws [START_REF] Coclite | Oleinik-type estimates for nonlocal conservation laws and applications to the nonlocal-to-local limit[END_REF].

A priori estimates

Here, we prove the following:

Proposition 2.1. Let σ > 0. Let (u σ , v σ ) be a weak solution of (1.1)-(1.
2). Then, the following sequences are uniformly bounded with respect to σ ∈ (0, 1):

(A) {p σ } and {W σ } in L ∞ (0, T ; L 1 (R d ) ∩ L ∞ (R d )), (B) {∇W σ } in L 2 ((0, T ) × R d ), (C) { √ σ ∆W σ } in L 2 ((0, T ) × R d ) , (D) {∂ t p σ } in L 1 (0, T ; H -s loc (R d )), for s large enough, (E) {p σ |x| 2 } in L ∞ (0, T ; L 1 (R d )),
Proof. First, the L ∞ estimate for p σ is a direct consequence of (1.4) and the same is true for W σ = K σ * p σ because ´Rd K σ dx = 1. The estimates (A), (B) and (C) are a consequence of energy considerations. The equation for the sum u σ + v σ reads:

∂ t (u σ + v σ ) -div((u σ + v σ )∇W σ ) = u σ F (p σ ) + v σ G(p σ ).
(2.1)

We multiply with γ (u σ + v σ ) γ-1 and integrate in space so that

∂ t ˆRd p σ dx + γ (γ -1) ˆRd (u σ + v σ ) γ-1 ∇(u σ + v σ ) • ∇W σ dx = = γ ˆRd (u σ F (p σ ) + v σ G(p σ ))(u σ + v σ ) γ-1 dx,
which, with (1.2), can be rewritten as

∂ t ˆRd p σ dx + (γ -1)
ˆRd |∇W σ | 2 + σ|∆W σ | 2 dx = γ ˆRd (u σ F (p σ ) + v σ G(p σ ))(u σ + v σ ) γ-1 dx ≤ C ˆRd p σ dx, (2.2) 
because p σ is uniformly bounded and F , G are continuous. Finally, we have

W σ L 1 (R d ) = K σ * p σ L 1 (R d ) = p σ L 1 (R d )
which concludes the proof of (A), (B) and (C).

Next, we establish the bound (D) on ∂ t p σ . We first write the equation on p which can be obtained after multiplying (2.1) by γ(u σ + v σ ) γ-1 :

∂ t p σ = ∇p σ ∇W σ + γ p σ ∆W σ + γ (u σ F (p σ ) + v σ G(p σ )) (u σ + v σ ) γ-1 .
First note that the last term on the right-hand side is bounded in L ∞ ((0, T ) × R d ) by assumptions on F and G. In order to obtain a bound on ∂ t p σ in a negative Sobolev spaces, we see that, up to integration by parts, it remains to study the term p σ ∆W σ . Let ϕ be a smooth, compactly supported test function. Then, by definition of

W σ ˆRd p σ ∆W σ ϕ dx = -σ ˆRd |∆W σ | 2 ϕ dx - ˆRd |∇W σ | 2 ϕ dx - ˆRd W σ ∇W σ • ∇ϕ dx.
The proof of (D) is concluded using (A), (B) and (C). Now, we prove (E). Since p σ is bounded in L ∞ we only need to prove that u σ and v σ have uniformly bounded second moments. We compute it for u σ and the proof is similar for v σ

∂ t ˆRd |x| 2 u σ dx + 2 ˆRd u σ ∇W σ • x dx = ˆRd |x| 2 u σ F (p σ ) dx.
Integrating in time, using Cauchy-Schwartz inequality, estimate (B), assumptions on F and Gronwall's inequality, we obtain the result.

Strong compactness of the pressure

Proposition 3.1. There exist functions u, v and p such that p = (u + v) γ a.e. and such that up to a subsequence (not relabelled) for all 1 ≤ q < ∞:

u σ → u weakly* in L ∞ ((0, T ) × R d ) and weakly in L q ((0, T ) × R d ), (3.1) 
v σ → v weakly* in L ∞ ((0, T ) × R d ) and weakly in L q ((0, T ) × R d ), (3.2 
)

σ∆W σ → 0 strongly in L 2 ((0, T ) × R d ), (3.3) 
p σ → p strongly in L q ((0, T ) × R d ), (3.4) 
W σ → p weakly in L 2 (0, T ; H 1 (R d )), strongly in L q ((0, T ) × R d ) for q > 1, (3.5) 
u σ + v σ → u + v strongly in L q ((0, T ) × R d ), (3.6) 
(u σ + v σ )(T ) → (u + v)(T ) weakly in L γ (R d ). (3.7) 
The crucial step in the proof of Proposition 3.1 is the strong compactness of the pressure p σ which will be achieved by the following lemma which in the spirit is a version of Lions-Aubin-Simon's argument [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF].

Lemma 3.2. Suppose that for each compact set

K ⊂ R d lim y→0 ˆT 0 ˆK |p σ (t, x + y) -p σ (t, x)| dx dt = 0 uniformly in σ ∈ (0, 1). (3.8)
Moreover, assume that {∂ t p σ } is bounded in L 1 (0, T ; H -s loc (R d )) for some s > 0 and {p σ |x| 2 } is uniformly bounded in L 1 ((0, T ) × R d ). Then, the sequence {p σ } is strongly compact in

L 1 ((0, T ) × R d ).
Remark 3.3. Several variants of this result are possible. For instance, one can have more general assumption on the time derivative or one can also formulate it in for the space L p ((0, T ) × R d ) space with p > 1. Another trivial generalization is that the tail estimate could be replaced with more general tightness assumption.

Proof of Lemma 3.2. In view of the Riesz-Kolmogorov-Frechet theorem, to establish local compactness it is sufficient to prove

lim h→0 ˆT -h 0 ˆK |p σ (t + h, x) -p σ (t, x)| dx dt = 0 uniformly in σ ∈ (0, 1)
for each compact set K ⊂ R d . Using a family of smooth, compactly supported mollifiers {ϕ δ } with δ depending on h, we have

ˆT -h 0 ˆK |p σ (t + h, x) -p σ (t, x)| dx dt ≤ ≤ ˆT -h 0 ˆK |p σ (t + h, x) -p σ (t + h, x) * ϕ δ | dx dt + ˆT -h 0 ˆK |p σ (t, x) -p σ (t, x) * ϕ δ | dx dt + ˆT -h 0 ˆK |p σ * ϕ δ (t + h, x) -p σ * ϕ δ (t, x)| dx dt.
The first two terms converge to 0 when δ → 0, independently of h, as a consequence of (3.8).

Hence, we only need to study the third term. We write

p σ * ϕ δ (t + h, x) -p σ * ϕ δ (t, x) = h ˆ1 0 ∂ t p σ * ϕ δ (t + s h, x) ds.
Therefore, the term of interest can be estimated by

C h ˆT -h 0 ˆK ˆ1 0 ∂ t p σ * ϕ δ (t + s h, x) ds dx dt ≤ ≤ C h ˆ1 0 ˆT -h 0 ˆK |∂ t p σ * ϕ δ (t + s h, x)| dx dt ds ≤ C h ∂ t p σ * ϕ δ L 1 ((0,T )×K) ,
where we applied Fubini's theorem. It remains to estimate the convolution. We have

∂ t p σ * ϕ δ (t, x) = ˆRd ∂ t p σ (t, y) ϕ δ (x -y) dy ≤ ∂ t p σ (t, •) H -s loc ϕ δ H s ,
Applying the L 1 ((0, T ) × K) norm we obtain

∂ t p σ * ϕ δ L 1 ((0,T )×K) ≤ |K| ∂ t p σ L 1 t H -s loc,x ϕ δ H s ≤ C(K) δ s+d/2 .
Choosing h = δ 1+s+d/2 we obtain compactness of {p σ } on (0, T )×K for each compact set K.

To obtain global compactness, we perform a usual argument which uses the decay estimate.

Let B n be the sequence of balls B(0, n). By the diagonal method, we construct a subsequence such that p σ → p in L 1 ((0, T ) × B n ) for each n ∈ N. Then,

p σ -p L 1 ((0,T )×R d ) ≤ p σ -p L 1 ((0,T )×Bn) + p σ -p L 1 ((0,T )×(R d \Bn)) ≤ p σ -p L 1 ((0,T )×Bn) + C n 2 ,
where C = sup σ∈(0,1) p σ |x| 2 L 1 ((0,T )×R d ) and we used, that by Fatou lemma,

p|x| 2 L 1 ((0,T )×R d ) ≤ lim inf σ→0 p σ |x| 2 L 1 ((0,T )×R d ) .
Hence, lim sup σ→0 p σ -p L 1 ((0,T )×R d ) ≤ C n 2 for all n which concludes the proof.

By interpolation, we deduce:

Lemma 3.4. The sequence of pressures {p σ } is strongly compact in L q ((0, T ) × R d ) for all 1 ≤ q < +∞.

It turns out that the sequence of pressures {p σ } satisfies (3.8).

Proof of (3.8). We recall the definition of the Brinkman law

p σ = -σ∆W σ + W σ .
First note that -σ∆W σ converges strongly to 0 in L 2 ((0, T ) × R d ) as a consequence of (C).

In particular it is compact and by the converse of the Riesz-Kolmogorov-Frechet theorem we deduce

lim y→0 ˆT 0 ˆK |σ∆W σ (t, x + y) -σ∆W σ (t, x)| dx dt = 0 uniformly in σ ∈ (0, 1).
To conclude the proof of (3.8) in remains to prove that

lim y→0 ˆT 0 ˆK |W σ (t, x + y) -W σ (t, x)| dx dt = 0 uniformly in σ ∈ (0, 1).
This is a simple consequence of the formula

W σ (t, x + y) -W σ (t, x) = ˆ1 0 ∇W σ (t, x + sy) • y ds
and the uniform bound (B) (note that we work on the compact set K so that L 2 (K) embeds into L 1 (K)). of W σ and then in every L q (except q = 1, ∞) by interpolation using (A). Using also the estimate (B), we deduce the weak convergence of ∇W σ and conclude the proof of (3.5).

The convergence (3.6) is a consequence of (3.4): indeed we can extract a subsequence of pressures that converge a.e. so that u σ + v σ converges a.e. Due to the uniform L ∞ bound (A) and tail estimate (E), Vitali convergence theorem implies (3.6).

Finally, we prove (3.7). We adapt the argument from [2, Lemma II.5.9]. First, we prove that (u σ + v σ )(T ) makes sense as an element of

L γ (R d ). Let η δ = 1 δ 1 [-δ,0] and f δ (t, x) = (u σ + v σ ) * η δ where the convolution is a convolution in time. As u σ + v σ ∈ L ∞ (0, T ; L γ (R d )), f δ (T, •) L γ (R d ) ≤ C independently of δ > 0. Hence, up to a subsequence, f δ (T ) ⇀ f in L γ (R d ) and it remains to prove f = (u σ + v σ )(T ). Let ψ ∈ C ∞ c (R d ). Since ˆRd f δ (T, x) ψ(x) dx = ˆRd (u σ + v σ )(•, x) ψ(x) dx * η δ (T ) (3.9)
and the function t → ´Rd (u σ + v σ ) ψ(x) dx is continuous (it can be easily seen that the sequence {∂ t (u σ +v σ )} is uniformly bounded in L 2 (0, T ; H -1 loc (R d )) and such regularity implies also continuity in C(0, T ; H -1 loc (R d )), see [START_REF]Nonlinear partial differential equations with applications[END_REF]Lemma 7.1]), the (RHS) of (3.9) converges to ´Rd (u σ (T )+ v σ (T )) ψ(x) dx so that f = (u σ + v σ )(T ) a.e. on R d . Exactly the same argument shows that (u + v)(T ) makes sense because, thanks to convergences (3.1), (3.2), (3.5), (3.6), we can pass to the limit σ → 0 and deduce the same weak formulation

ˆT 0 ˆRd (u + v)∂ t ϕ dx dt + ˆRd (u 0 + v 0 ) ϕ(0) dx - ˆT 0 ˆRd (u + v) ∇p • ∇ϕ dx dt = = ˆT 0 ˆRd u F (p) dx dt + ˆT 0 ˆRd v G(p) dx dt, (3.10) 
which implies continuity of t → ´Rd (u + v) ψ(x) dx.

The argument above shows that the sequence

{(u σ + v σ )(T )} is bounded in L γ (R d ) so it has
a subsequence converging to some s ∈ L γ (R d ) when σ → 0. We claim that s = (u + v)(T ).

To this end, we consider the weak formulation from Definition 1. 

ˆT 0 ˆRd (u σ + v σ )(t, x) ψ(x)∂ t η δ (t) dx dt = 1 δ ˆT -δ T -2δ ˆRd (u σ + v σ )(t, x) ψ(x) dx dt δ→0 ---→ ˆRd (u σ + v σ )(T, x) ψ(x) dx σ→0 ---→ ˆRd s(x) ψ(x) dx.
We can apply the same limiting procedure δ → 0 in the weak formulation (3.10). By comparing the results, we deduce that s = (u + v)(T ) a.e. on R d and this concludes the proof.

Strong convergence of ∇W σ and conclusion

Proof of Theorem 1.5. Due to the weak convergence of u σ and v σ , cf. (

, to pass to the limit in (1.1), it is sufficient to prove strong convergence of ∇W σ . As ∇W σ ⇀ ∇p, it is sufficient to prove convergence of L 2 norms, i.e.

∇W σ 2 L 2 ((0,T )×R d ) → ∇p 2 L 2 ((0,T )×R d ) .
By the properties of the weak convergence

∇p 2 L 2 ((0,T )×R d ) ≤ lim inf σ→0 ∇W σ 2 L 2 ((0,T )×R d ) . (4.1) 
so we only need to estimate lim sup σ→0 . The idea is to pass to the limit in Equation (2.1).

First, due to the strong compactness of u + v and p in Proposition 3.1, we can pass to the limit in Equation (2.1) and obtain (in the weak sense)

∂ t (u + v) -div((u + v)∇p) = u F (p) + v G(p). (4.2) 
We can test this equation with γ(u + v) γ-1 (see Remark 4.1 below for the precise argument)

and we obtain after integrating in time which together with (4.1) concludes the proof.

ˆRd p(T, x) dx + (γ -1) ˆT 0 ˆRd |∇p| 2 dx dt = = ˆRd p 0 (x) dx + γ ˆT 0 ˆRd (u F (p) + v G(p))(u + v) γ-1 dx dt. (4.3) 
Remark 4.1. To make integration by parts rigorous, we test equation with

γ(u + v) γ-1 ψ R (x)
where ψ R is a smooth function such that ψ R (x) = 1 for |x| ≤ R, ψ R (x) = 0 for |x| ≥ R + 1

and |ψ ′ R | ≤ 1.
Then, the integration by parts is justified and we obtain

(γ -1) ˆT 0 ˆRd |∇p| 2 ψ R (x) dx dt + γ ˆT 0 ˆR≤|x|≤R+1 p ∇p ψ ′ dx dt.
The first term converges to (γ -1) ´Rd |∇p| 2 ψ R (x) dx by the dominated convergence theorem. For the second term, we note that p ∇p ∈ L 1 ((0, T ) × R d ) (in fact, we have even better) so this term converges to 0 again by the dominated convergence theorem.

Remark 4.2. Similarly, to make testing (4.2) with γ (u + v) γ-1 rigorous, one mollifies (4.2)

both in time and space with η δ (t) ψ ε (x). Then, one tests (4.2) with γ ((u + v) * η δ * ψ ε ) γ-1 so that the usual chain rule in Sobolev spaces can be applied resulting in the term of the form ´Rd ((u + v) * η δ * ψ ε ) γ (T, x) dx. Then, one sends δ → 0 using weak continuity of the sum (u + v) as in the proof of Proposition 3.1 and then ε → 0 using the properties of the mollifiers.

its maximum). Furthermore, the source term is strictly negative due to (A) in Assumption 1.1. Finally, we note that by Young's convolutional inequality

W δ (t, x * ) -p(t, x * ) ≤ p(t, •) ∞ K σ 1 ω δ 1 -p(t, •) ∞ = 0
so that the term W δ -p at x * is nonpositive. We conclude that ∂ t p(t, x * ) < 0 so that p cannot become greater than p H . We conclude that Q(p) = p in (A.1). Now, we send δ → 0. We write u δ and v δ for solutions to (A.1), p δ = (u δ + v δ ) γ for the pressure and W δ = K σ * ω δ * p δ . First, thanks to the presence of diffusion and

∇K σ ∈ L 1 (R d ),
the sequences {u δ } and {v δ } are locally compact in L q ((0, T ) × R d ) for all q < ∞ by usual Lions-Aubin lemma and interpolation in Lebesgue spaces. As a consequence, it is easy to pass to the limit in the source terms. The nontrivial part is to pass to the limit in the advection term. To identify the limit we write

ˆT 0 ˆRd ∇u δ • ∇W δ ϕ = - ˆT 0 ˆRd u δ ∆W δ ϕ + u δ ∇W δ • ∇ϕ.
Hence, it is sufficient to prove that ∆W δ and ∇W δ converge at least weakly to the appropriate limits. However, these sequences are bounded in L ∞ ((0,

T ) × R d ) because ∆W δ = 1 σ (p δ -p δ * K σ ) * ω δ and ∇W δ = ∇K σ * p δ * ω δ .
Therefore, up to a subsequence, they have weak * limits which equals ∆W and ∇W with W = K σ * p due to the strong compactness of u δ and v δ .

In the limit δ → 0, we obtain the system

∂ t u -ε∆u -div(u ∇W ) = u F (p), ∂ t v -ε∆v -div(v ∇W ) = v G(p), (A.3)
where W = K σ * p and it remains to remove the diffusion, i.e. send ε → 0. Again, we write u ε and v ε for solutions to (A.3), p ε = (u ε + v ε ) γ for the pressure and

W ε = K σ * p ε . Clearly, u ε * ⇀ u and v ε * ⇀ v in L ∞ ((0, T ) × R d ). Moreover, standard computations show that {∂ t u ε }, {∂ t v ε } are uniformly bounded in L 2 (0, T ; H -1 (R d ))
. We prove that both sequences {u ε } and {v ε } are strongly compact in space so that by Lemma 3.2, we deduce strong compactness.

The same will follow for the pressure p ε so that ∇W ε = ∇K σ * p ε converges in L 1 ((0, T )×R d )

to ∇K σ * p and so, by interpolation, in L q ((0, T ) × R d ) for all q ∈ [1, 2). This is sufficient to pass to the limit in (A.3).

The proof of compactness in space follows the method of Jabin and Belgacem [START_REF] Belgacem | Compactness for nonlinear continuity equations[END_REF] (the only difference is that we deal with an additional source term). Let us recall that [START_REF] Belgacem | Compactness for nonlinear continuity equations[END_REF] deals with compactness for the conservative equations

∂ t u ε -ε∆u ε -div(u ε a ε ) = 0,
where a ε is the vector field satisfying the following:

(1)

sup ε∈(0,1) div a ε L ∞ ((0,T )×R d ) < ∞, (2) 
sup ε∈(0,1) a ε L ∞ (0,T ;W 1,p (R d )) < ∞ for some p > 1, ( 
) div a ε = d ε + r ε where d ε is compact in space while r ε is such that |r ε (x) -r ε (y)| ≤ C |u ε (x) -u ε (y)|. 3 
In our case, a ε = ∇W ε satisfies (1) and (2). Indeed, div ∇W ε = ∆W ε = 1 σ (p ε -K σ * p ε ) is uniformly bounded. Furthemore, it is easy to see, for instance from (A.2), that {p ε } is uniformly bounded in L ∞ (0, T ; L 1 (R d )) so that it is bounded in L ∞ (0, T ; L 2 (R d )). Hence, {∆W ε } is bounded in L ∞ (0, T ; L 2 (R d )) which easily implies that {W ε } is bounded in L ∞ (0, T ; W 2,2 (R d )) so that (2) holds true with p = 2. so that the estimate depends on both species. Below, we briefly explain a simple modification of argument in [START_REF] Belgacem | Compactness for nonlinear continuity equations[END_REF] to cover the case of (A.4) as well as how to include the source terms.

The compactness in [START_REF] Belgacem | Compactness for nonlinear continuity equations[END_REF] 

Proof of Proposition 3 . 1 .

 31 Convergences (3.1), (3.2), (3.3) follow from Proposition 2.1 and nonnegativity of u σ , v σ . The strong convergence of the pressure (3.4) is a consequence of Lemma 3.4. Combining this convergence and (3.3) we deduce the strong convergence in L 2

  2 with test function of the form ψ(x) η δ (t) where η δ = 1 on [0, T -2δ], η δ = 0 on [T -δ, T ] and it is linear interpolation on [T -2δ, T -δ] (such function is admissible by density as it has Sobolev derivative). By weak continuity, as δ → 0,

Concerning ( 3 )

 3 , it is satisfied in a weaker sense. We have d ε = W ε (it is compact in space by the estimate on {∇W ε }) and r ε = p ε which satisfies (by the uniform boundedness of {u ε } and {v ε })|r ε (t, x) -r ε (t, y)| ≤ C |u ε (t, x) -u ε (t, y)| + C |v ε (t, x) -v ε (t, y)|, (A.4)

  is established by analysis of the quantityQ uε (t) = ˆRd ˆRd K h (x -y)|u ε (t, x) -u ε (t, y)| dx dy,where K h is a smooth, nonnegative kernel, supported in the ballB 2 (0) such that K h (x) = 1 (|x| 2 +h 2 ) d/2 on B 1 (0). Similarly, we define Q vε (t). It can be proved, cf. [1, Lemma 3.1], that the sequence {u ε } is locally compact in space in L 1 ((0, T ) × R d ) ifThen, one computes d dt Q uε using the PDE on u ε . Applying [1, proof of Theorem 1.2] with new assumption (A.4) and additional source term we deduceQ uε (t) ≤ Q uε (0) + C ˆt 0 (Q uε (s) + Q vε (s)) ds + C ε h 2Now, it is easy to see that since {∇d ε } is uniformly bounded in L 1 ((0, T ) × R d ), the last term is bounded by a constant. Hence, Gronwall's inequality and (A.5) imply compactness in space of {u ε } and {v ε }.

	lim h→0	lim sup ε→0	1 | log h| ˆT 0	Q uε (t) dt = 0.	(A.5)
						ˆt 0	(Q uε (s) + Q vε (s)) ds + C	ε h 2
	+	ˆt 0 ˆRd ˆRd	K

+ ˆt 0 ˆRd ˆRd K h (x -y)|d ε (t, x) -d ε (t, y)| dx dy ds + ˆt 0 ˆRd ˆRd K h (x -y)|u ε (x)F (p ε (x)) -u ε (y)F (p ε (y))| dx dy ds. (A.6)

The last integral can be bounded by C ´t 0 (Q uε (s) + Q vε (s)) ds. Now, to deduce compactness, we write the same expression as (A.6) for Q vε (t) and we sum up to deduce

Q uε (t) + Q vε (t) ≤ Q uε (0) + Q vε (0) + C h (x -

y)|d ε (t, x) -d ε (t, y)| dx dy ds.
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Appendix A. Proof of Theorem 1.4 (existence result)

Here, we prove existence of solutions to the system (1.1) by introducing an artificial diffusion. We also recall the uniform (in terms of γ and σ) L ∞ bounds from [START_REF] Tang | Composite waves for a cell population system modeling tumor growth and invasion[END_REF].

We rewrite (1.1) as follows

where we skipped the lower index σ as σ is fixed. It is useful to write W = K σ * p where K σ is a fundamental solution -σ∆K σ + K σ = δ 0 and p = (u + v) γ . We regularize the problem in three ways. First, we introduce diffusion. Second, we mollify K σ with a usual mollifier ω δ (i.e. ω δ (x) = 1 δ d ω(x/δ) where ω is smooth, supported in the unit ball and of mass 1). Third, we truncate all nonlinearities by the truncation operator

The resulting system reads

where p = (u + v) γ . By properties of convolutions, ∇W δ = K σ * ∇ω δ * Q(p) so that (A.1) can be considered as a semilinear parabolic system with Lipschitz nonlinearities which are well-understood [START_REF] Ladyzhenskaya | Linear and quasilinear equations of parabolic type[END_REF][START_REF] Lieberman | Second order parabolic differential equations[END_REF]. Hence, it has a nonnegative solution (u, v). Now, following [55, Lemma 2.1], we claim that p ≤ p H . To this end, we sum up equations for u, v and multiply by γ (u + v) γ-1 to obtain