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Abstract. We propose a detector of adversarial samples that is based
on the view of neural networks as discrete dynamic systems. The detector
tells clean inputs from abnormal ones by comparing the discrete vector
fields they follow through the layers. We also show that regularizing this
vector field during training makes the network more regular on the data
distribution’s support, thus making the activations of clean inputs more
distinguishable from those of abnormal ones. Experimentally, we compare
our detector favorably to other detectors on seen and unseen attacks,
and show that the regularization of the network’s dynamics improves the
performance of adversarial detectors that use the internal embeddings as
inputs, while also improving test accuracy.

Keywords: Deep learning · Adversarial detection · Optimal transport

1 Introduction

Neural networks have improved performances on many tasks, including image
classification. They are however vulnerable to adversarial attacks which modify
an image in a way that is imperceptible to a human but that fools the network
into wrongly classifying the image [50]. These adversarial images transfer between
networks [39], can be carried out physically (e.g. causing autonomous cars to
misclassify road signs [15]), and can be generated without access to the network
[34]. Developing networks that are robust to adversarial samples or accompanied
by detectors that can detect them is indispensable to deploying them safely [3].

We focus on detecting adversarial samples. Networks trained with a softmax
classifier produce overconfident predictions even for out-of-distribution inputs
[42]. This makes it difficult to detect such inputs via the softmax outputs. A
detector is a system capable of predicting if an input at test time has been
adversarially modified. Detectors are trained on a dataset made up of clean and
adversarial inputs, after the network training. While simply training the detector
on the inputs has been tried, using their intermediate embeddings works better
[9]. Detectors vary by which activations to use and how to process them to extract
the features that the classifier uses to tell clean samples from adversarial ones.

We make two contributions. First, we propose an adversarial detector that is
based on the view of neural networks as dynamical systems that move inputs
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in space, time represented by depth, to separate them before applying a linear
classifier [55]. Our detector follows the trajectory of samples in space, through
time, to differentiate clean and adversarial images. The statistics that we extract
are the positions of the internal embeddings in space approximated by their
norms and cosines to a fixed vector. Given their resemblance to the Euler scheme
for differential equations, residual networks [21, 22, 55] are particularly amenable
to this analysis. Skip connections and residuals are basic building blocks in many
architectures such as EfficientNet [51] and MobileNetV2 [47], and ResNets and
their variants such as WideResNet [60] and ResNeXt [59] remain competitive
[57]. Visions Transformers [35, 14] are also mainly made up of residual stages.
Besides, [58] show an increased vulnerability of residual-type architectures to
transferable attacks, precisely because of the skip connections. This motivates
the need for a detector that is well adapted to residual-type architectures. But
the analysis and implementation can extend immediately to any network where
most layers have the same input and output dimensions.

Our second contribution is to use the transport regularization during training
proposed in [26] to make the activations of adversarial samples more distinguish-
able from those of clean samples, thus making adversarial detectors perform
better, while also improving generalization. We prove that the regularization
achieves this by making the network more regular on the support of the data
distribution. This does not necessarily make it more robust, but it will make
the activations of the clean samples closer to each other and further from those
of out-of-distribution samples, thus making adversarial detection easier. This is
illustrated on a 2-dimension example in Figure 1.

2 Related Work

Given a classifier f in a classification task and ϵ>0, an adversarial sample y
constructed from a clean sample x is y = x + δ, such that f(y) ̸= f(x) and
∥δ∥p ≤ ϵ for a certain Lp norm. The maximal perturbation size ϵ has to be
so small as to be almost imperceptible to a human. Adversarial attacks are
algorithms that find such adversarial samples, and they have been particularly
successful against neural networks [50, 8]. We present the adversarial attacks
we use in our experiments in Appendix D.1. The main defense mechanisms are
robustness, i.e. training a network that is not easily fooled by adversarial samples,
and having a detector of these samples.

An early idea for detection was to use a second network [38]. However, this
network can also be adversarially attacked. More recent statistical approaches
include LID [36], which trains the detector on the local intrinsic dimensionality of
activations approximated over a batch, and the Mahalanobis detector [33], which
trains the detector on the Mahalanobis distances between the activations and a
Gaussian fitted to them during training, assuming they are normally distributed.
Our detector is not a statistical approach and does not need batch-level statistics,
nor statistics from the training data. Detectors trained in the Fourier domain of
activations have also been proposed in [20]. See [1] for a review.
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Our second contribution is to regularize the network in a way that makes it
Hölder-continuous, but only on the data distribution’s support. Estimations of
the Lipschitz constant of a network have been used as estimates of its robustness
to adversarial samples in [56, 50, 54, 23], and making the network more Lipschitz
(e.g. by penalizing an upper bound on its Lipschitz constant) has been used to
make it more robust (i.e. less likely to be fooled) in [23, 11]. These regularizations
often work directly on the weights of the network, therefore making it more
regular on all the input space. The difference with our method is that we only
endue the network with regularity on the support of the clean data. This won’t
make it more robust to adversarial samples, but it makes its behavior on them
more distinguishable, since they tend to lie outside the data manifold.

Fig. 1. Transformed circles test set from scikit-learn (red and blue) and out-of-
distribution points (green) after blocks 6 and 9 of a small ResNet with 9 blocks.
In the second row, we add our proposed regularization during training, which makes
the movements of the clean points (red and blue) more similar to each other and more
different from the movements of the green out-of-distribution points than when using
the vanilla network in the first row. In particular, without the regularization, the green
points are closer to the clean red points after blocks 6 and 9 which is undesirable.

That adversarial samples lie outside the data manifold, particularly in its
co-dimensions, is a common observation and explanation for why adversarial
samples are easy to find in high dimensions [18, 52, 49, 36, 46, 29, 2, 16]. To the
best of our knowledge, [44] is the only other method that attempts to improve



4 S. Karkar et al.

detection by encouraging the network during training to learn representations
that are more different between clean and adversarial samples. They do this
by replacing cross-entropy by a reverse cross-entropy that encourages uniform
softmax outputs among the non-predicted classes. We find that our regularization
leads to better classification accuracy and adversarial detection than this method.

3 Background

Our detector is based on the dynamic viewpoint of neural networks that followed
from the analogy between ResNets and the Euler scheme made in [55]. We present
this analogy in Section 3.2. The regularization we use was proposed in [26] to
improve generalization and we also present it in Section 3.2. The regularity results
that follow from this regularization require the use of optimal transport theory,
which we present in Section 3.1.

3.1 Optimal Transport

Let α and β be absolutely continuous densities on a compact set Ω⊂Rd. The
Monge problem is to look for T :Rd→Rd moving α to β, i.e. T♯α=β, with minimal
transport cost:

min
T s.t. T♯α=β

∫
Ω

∥T (x)− x∥22 dα(x) (1)

and this problem has a unique solution T ⋆. An equivalent formulation of the
Monge problem in this setting is the dynamical formulation. Here, instead of
directly pushing points from α to β through T , we continuously displace mass
from time 0 to 1 according to velocity field vt : Rd → Rd. We denote ϕx

t the
position at time t of the particle that was at x ∼ α at time 0. This position
evolves according to ∂tϕ

x
t = vt(ϕ

x
t ). Rewriting the constraint, Problem (1) is

equivalent to the dynamical formulation:

min
v

∫ 1

0

∥vt∥2L2((ϕ·
t)♯α)

dt (2)

s.t. ∂tϕ
x
t = vt(ϕ

x
t ) for x ∈ support(α) and t ∈ [0, 1[

ϕ·
0 = id, (ϕ·

1)♯α = β

3.2 Least Action Principle Residual Networks

A residual stage made up of M residual blocks applies xm+1 = xm + hrm(xm)
for 0 ≤ m < M , with x0 being the input and h=1 in practice. The final point
xM is then classified by a linear layer F . The dynamic view considers a residual
network as an Euler discretization of a differential equation:

xm+1 = xm + hrm(xm) ←→ ∂txt = vt(xt) (3)
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where rm approximates the vector field vt at time t = m/M . The dynamic view
allows to consider that ResNets are transporting their inputs in space by following
a vector field to separate them, the depth representing time, before classification
by a linear layer. [26] look for a network F ◦ T that solves the task while having
minimal transport cost:

inf
T,F

∫
Ω

∥T (x)− x∥22 dα(x)

s.t. L(F, T♯α) = 0

(4)

where T is made up of the M residual blocks, α is the data distribution, F is
the classification head and L(F, T♯α) is the (cross-entropy) loss obtained from
classifying the transformed data distribution T♯α through F . Given Section 3.1,
the corresponding dynamical version of (4) is

inf
v,F

∫ 1

0

∥vt∥2L2((ϕ·
t)♯α)

dt (5)

s.t. ∂tϕ
x
t = vt(ϕ

x
t ) for x ∈ support(α) and t ∈ [0, 1[

ϕ·
0 = id, L(F, (ϕ·

1)♯α) = 0

[26] show that (4) and (5) are equivalent and have a solution such that T is
an optimal transport map. In practice, (5) is discretized using a sample D from
α and an Euler scheme, which gives a residual architecture with residual blocks
rm (parametrized along with the classifier by θ) that approximate v. This gives
the following problem

min
θ

C(θ) =
∑
x∈D

M−1∑
m=0

∥rm(φx
m)∥22 (6)

s.t φx
m+1 = φx

m + hrm(φx
m), φx

0 = x ∀ x ∈ D
L(θ) = 0

In practice, we solve Problem (6) using a method of multipliers (see Section 4.2).
Our contribution is to show, theoretically and experimentally, that this makes
adversarial examples easier to detect.

4 Method

We take the view that a ResNet moves its inputs through a discrete vector field to
separate them, points in the same class having similar trajectories. Heuristically,
for a successful adversarial sample that is close to clean samples, the vector field
it follows has to be different at some step from that of the clean samples, so that
it joins the trajectory of the points in another class. In Section 4.1, we present
how we detect adversarial samples by considering these trajectories. In Section
4.2, we apply the transport regularization by solving (6) to improve detectability
of adversarial samples.
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4.1 Detection

Given a network that applies xm+1 = xm+hrm(xm) to an input x0 for 0 ≤ m<M ,
we consider the embeddings xm for 0<m ≤ M , or the residues rm(xm) for
0 ≤ m<M . To describe their positions in space, we take their norms and their
cosine similarities with a fixed vector as features to train our adversarial detector
on. Using only the norms already gave good detection accuracy. Cosines to
other orthogonal vectors can be added to better locate the points at the price of
increasing the number of features. We found that using only one vector already
gives state-of-the-art detection, so we only use the norms and cosines to a fixed
vector of ones. We train the detector (a random forest in practice, see Section 5.2)
on these features. The embeddings xm and the residues rm(xm) can equivalently
describe the trajectory of x0 in space through the blocks. In practice, we use the
residues rm(xm), with their norms squared and averaged. So the feature vector
given to the random forest for each input x0 that goes through a network that
applies xm+1 = xm + h rm(xm) is(

1

dm
∥rm(xm)∥22, cos

(
rm(xm),1m

))
0≤m<M

(7)

and the label is 0 if x0 is clean and 1 if it is adversarial. Here cos is the cosine
similarity between two vectors and 1m is a vector of ones of size dm where dm is
the size of rm(xm). For any non-residual architecture xm+1 = gm(xm), the vector
xm+1−xm can be used instead of rm(xm) on layers that have the same input
and output dimension, allowing to apply the method to any network with many
such layers. And we do test the detector on a ResNeXt, which does not fully
satisfy the dynamic view, as the activation is applied after the skip-connection,
i.e. xm+1 = ReLU(xm + h rm(xm)).

The number of features is twice that of residual blocks (a norm and a cosine
per block). This is of the same order as for other popular detectors such as
Mahalanobis [33] and LID [36] that extract one feature per residual stage (a
residual stage is a group of blocks that keep the same dimension). Even for
common large architectures, twice the number of residual blocks is still a small
number of features for training a binary classifier (ResNet152 has 50 blocks). More
importantly, the features we extract (norms and cosines) are quick to calculate,
whereas those of other methods require involved statistical computations on the
activations. We include in Appendix D.10 a favorable time comparison of our
detector to the Mahalanobis detector. Another advantage is that our detector does
not have a hyper-parameter to tune unlike the Mahalanobis and LID detectors.

4.2 Regularization

Regularity of neural networks (typically Lipschitz continuity) has been used as
a measure of their robustness to adversarial samples [56, 50, 54, 23, 11]. Indeed,
the smaller the Lipschitz constant L of a function f satisfying ∥f(x)− f(y)∥ ≤
L∥x− y∥, the less f changes its output f(y) for a perturbation (adversarial or
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not) y of x. Regularizing a network to make it more Lipschitz and more robust
has therefore been tried in [23] and [11]. For this to work, the regularization
has to apply to adversarial points, i.e. outside the support of the clean data
distribution. Indeed, the Lipschitz continuity obtained though most of these
methods and analyses apply on the entire input space Rd as they penalize the
network’s weights directly. Likewise, a small step size h as in [62] will have the
same effect on all inputs, clean or not.

We propose here an alternative approach where we regularize the network
only on the support of the input distribution, making it η-Hölder on this support
(a function f is η-Hölder on X if ∀ a, b ∈ X, we have ∥f(a)− f(b)∥ ≤ C∥a− b∥η
for some constants C>0 and 0<η≤1, and we denote this f ∈ C0,η(X)). Since
this result does not apply outside the input distribution’s support, particularly
in the adversarial spaces, then this regularity that only applies to clean samples
can serve to make adversarial samples more distinguishable from clean ones,
and therefore easier to detect. We show experimentally that the behavior of the
network will be more distinguishable between clean and adversarial samples in
practice in Section 5.1. We discuss the implementation of the regularization in
Section 4.2 and prove the regularity it endues the network with in Section 4.2.

Implementation. We regularize the trajectory of the samples by solving Prob-
lem (6). This means finding, among the networks that solve the task (condition
L(θ) = 0 in (6)), the network that moves the points the least, that is the one
with minimal kinetic energy C. The residual functions rm we find are then our
approximation of the vector field v that solves the continuous version (5) of
Problem (6).

We solve Problem (6) via a method of multipliers: since L ≥ 0, Problem (6) is
equivalent to the min-max problem minθ maxλ>0 C(θ) + λ L(θ), which we solve,
given growth factor τ > 0, and starting from initial weight given to the loss λ0

and initial parameters θ0, through{
θi+1 = argmin

θ
C(θ) + λi L(θ)

λi+1 = λi + τ L(θi+1)
(8)

We use SGD for s>0 steps (i.e. batches) for the minimization in the first line
of (8), starting from the previous θi. When using a ResNeXt, where a residual
block applies xm+1 = ReLU(xm + rm(xm)), we regularize the norms of the true
residues xm+1−xm instead of rm(xm).

Theoretical Analysis. We take Ω⊂Rd convex and compact and the data
distribution α∈P(Ω) absolutely continuous such that δΩ is α-negligible. We
suppose that there exists an open bounded convex set X⊂Ω such that α is
bounded away from zero and infinity on X and is zero on X∁. From [26], Problems
(4) and (5) are equivalent and have solutions (T, F ) and (v, F ) such that T is an
optimal transport map between α and β:=T♯α. We suppose that β is absolutely
continuous and that there exists an open bounded convex set Y⊂Ω such that β
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is bounded away from zero and infinity on Y and is zero on Y ∁. In the rest of
this section, v solves (5) and we suppose that we find a solution to the discretized
problem (6) that is an ε/2-approximation of v, i.e. ∥rm − vtm∥∞≤ε/2 for all
0≤m<M , with tm=m/M .

Definition 1. A function f is η-Hölder on X if ∀ a, b ∈ X, we have ∥f(a) −
f(b)∥ ≤ C∥a − b∥η for some constants C>0 and 0<η≤1. We denote this f ∈
C0,η(X).

In Theorem 1, we show that the regularization makes the residual blocks of
the network η-Hölder (with an error of ε) on the support of the input distribution
as it moves according to the theoretical vector field solution v. The results hold
for all norms on Rd.

Theorem 1. For a, b ∈ support(αtm), αt:=(ϕ·
t)♯α where ϕ solves (5) along with

v, we have

∥rm(a)− rm(b)∥ ≤ ε+K∥a− b∥ζ1 if ∥a− b∥ ≤ 1

∥rm(a)− rm(b)∥ ≤ ε+K∥a− b∥ζ2 if ∥a− b∥ > 1

for constants K > 0 and 0 < ζ1 ≤ ζ2 ≤ 1.

Proof. The detailed proof is in Appendix C.1. First, we have that vt = (T −
id) ◦ T−1

t where Tt := (1 − t)id + tT and T solves (4). Being an optimal
transport map, T is η-Hölder. So for all a, b ∈ support(αt) and t ∈ [0, 1[, where
αt = (ϕ·

t)♯α = (Tt)♯α with ϕ solving (5) with v, we have

∥vt(a)− vt(b)∥ ≤ ∥T−1
t (a)− T−1

t (b)∥+ C∥T−1
t (a)− T−1

t (b)∥η (9)

We then show that T−1
t is an optimal transport map and so is ηt-Hölder with

0<ηt≤1. Using the hypothesis on r and the triangle inequality, we get, for all
a, b ∈ support(αtm)

∥rm(a)− rm(b)∥ ≤ ε+ Ctm∥a− b∥ηtm + CCη
tm∥a− b∥ηηtm (10)

Then set the constants K, ζ1 and ζ2 as necessary.

We use Theorem 1 to now bound the distance between the residues at depth
m as a function of the distance between the network’s inputs. For inputs a0 and
b0 to the network, the intermediate embeddings are am+1 = am + hrm(am) and
bm+1 = bm+hrm(bm), and the residues used to compute features for adversarial
detection are rm(am) and rm(bm). So we want to bound ∥rm(am)− rm(bm)∥ as a
function of ∥a0− b0∥. This is usually done by multiplying the Lipschitz constants
of each block up to depth m, which leads to an overestimation [24], or through
more complex estimation algorithms [54, 32, 6]. Bound (9) allows through T−1

t

to avoid multiplying the Hölder constants of the blocks. If a0 and b0 are on the
clean data support X, we get Theorem 2 below with proof in Appendix C.2.
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Theorem 2. For a0, b0 ∈ X and constants C,L>0,

∥rm(am)− rm(bm)∥ ≤ ε+ ∥a0 − b0∥+ C∥a0 − b0∥η+
+ L(∥am − ϕa0

tm∥+ ∥bm − ϕb0
tm∥)

Term µ(a0):=∥am−ϕa0
tm∥ (and µ(b0):=∥bm−ϕb0

tm∥) is the distance between
the point am after m residual blocks and the point ϕa0

tm we get by following
the theoretical solution vector field v up to time tm starting from a0. If a0 and
b0 are not on the data support X, an extra term has to be introduced to use
bound (9). Bounding the terms µ(a0) and µ(b0) is possible under more regularity
assumptions on v. We assume then that v is C1 and Lipschitz in x, which is not
stronger than the regularity we get on v through our regularization, as it does
not give a similar result to bound (9). We have for all inputs a0 and b0, whether
they are clean or not, Theorem 3 below with proof in Appendix C.2.

Theorem 3. For a0, b0 ∈ Rd and constants R,S > 0,

∥rm(am)− rm(bm)∥ ≤ ε+ LSε+ LSRh+ ∥a0 − b0∥+ C∥a0 − b0∥η+
+ LS(dist(a0, X) + dist(b0, X))

Terms dist(a0, X) and dist(b0, X) show that the regularity guarantee is in-
creased for inputs in X. The trajectories of clean points are then closer to each
other and more different from those of abnormal samples outside X as in Figure
1.

5 Experiments

We evaluate our method on adversarial samples found by 8 attacks. The threat
model is as follows. We use 6 white-box attacks that can access the network and
its weights and architecture but not its training data: FGM [19], BIM [31], DF
[40], CW [8], AutoAttack (AA) [13] and the Auto-PGD-CE (APGD) variant
of PGD [37], and 2 black-box attacks that only query the network: HSJ [10]
and BA [7]. We assume the attacker has no knowledge of the detector and use
the untargeted (i.e. not trying to direct the mistake towards a particular class)
versions of the attacks. We use a maximal perturbation of ϵ=0.03 for FGM,
APGD, BIM and AA. We use the L2 norm for CW and HSJ and L∞ for the
other attacks. We compare our detector (which we call the Transport detector or
TR) to the Mahalanobis detector (MH in the tables below) of [33] and to the
detector of [28, 27] that uses natural scene statistics (NS in the tables below), and
our regularization to reverse cross entropy training of [44], which is also meant to
improve detection of adversarial samples. We use ART [43] and its default hyper-
parameter values (except those specified) to generate the adversarial samples,
except for AA for which we use the authors’ original code. The code is available
at github.com/advadvadvadvadv/adv. See Appendix D.1 for more details.

We use 3 networks and datasets: ResNeXt50 on CIFAR100, ResNet110 on
CIFAR10 and WideResNet on TinyImageNet. Each network is trained normally



10 S. Karkar et al.

with cross entropy, with the transport regularization added to cross entropy
(called a LAP-network for Least Action Principle), and with reverse cross entropy
instead of cross entropy (called an RCE-network). For LAP training, we use (8)
with τ=1, s=1 and λ0=1 for all networks. These hyper-parameters are chosen to
improve validation accuracy during training not adversarial detection. Training
details are in Appendix D.2.

In Section 5.1, we conduct preliminary experiments to show that LAP training
improves generalization and stability, and increases the difference between the
transport costs of clean and adversarial samples. In Section 5.2, we test our
detector when it is trained and tested on samples generated by the same attack.
In Section 5.3, we test our detector when it is trained on samples generated by
FGM and tested on samples from the other attacks. We then consider OOD
detection and adaptive attacks on the detector.

5.1 Preliminary Experiments

Our results confirm those in [26] that show that LAP training improves test
accuracy. Vanilla ResNeXt50 has an accuracy of 74.38% on CIFAR100, while
LAP-ResNeXt50 has an accuracy of 77.2%. Vanilla ResNet110 has an accuracy
of 92.52% on CIFAR10, while LAP-ResNet110 has an accuracy of 93.52% and
the RCE-ResNet110 of 93.1%. Vanilla WideResNet has an accuracy of 65.14% on
TinyImageNet, while LAP-WideResNet has an accuracy of 65.34%. LAP training
is also more stable by allowing to train deep networks without batch-normalization
in Figure 4 in Appendix D.4.

We see in Figure 2 that LAP training makes the transport cost C more
different between clean and adversarial points. Using its empirical quantiles on
clean points allows then to detect samples from some attacks with high recall
and a fixed false positive rate, without seeing adversarial samples.

Fig. 2. Histogram of transport cost C for clean and FGM-attacked test samples with
different values of ϵ on CIFAR100. The vertical lines represent the 0.02 and 0.98
empirical quantiles of the transport cost of the clean samples. Left: ResNeXt50. Right:
LAP-ResNeXt50.
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5.2 Detection of Seen Attacks

For detection training, the test set is split in 0.9/0.1 proportions into two datasets,
B1 and B2. For each image in B1 (respectively B2), an adversarial sample is
generated and a balanced detection training set (respectively a detection test
set) is created. Since adversarial samples are created for a specific network, this
is done for the vanilla version of the network and its LAP and RCE versions.
We tried augmenting the detection training dataset with a randomly perturbed
version of each image, to be considered clean during detection training, as in
[33], but we found that this does not improve detection accuracy. This dataset
creation protocol is standard and is depicted in Figure 3 in Appendix D.3. We
did not limit the datasets to successfully attacked images only as in [33], as we
consider the setting of detecting all adversarial samples, whether or not they fool
the network, more challenging (which is seen in the results). It also allows to
detect any attempted interference with the network, even if it fails at fooling it.

Samples in the detection training set are fed through the network and the fea-
tures for each detector are extracted. We tried three classifiers (logistic regression,
random forest and SVM) trained on these features for all detectors, and kept the
random forest as it always performs best. We tried two methods to improve the
accuracy of all detectors: class-conditioning and ensembling. In class-conditioning,
the features are grouped by the class predicted by the network, and a detector is
trained for every class. At test time, the detector trained on the features of the
predicted class is used. A detector is also trained on all samples regardless of the
predicted class and is used in case a certain class is never targeted by the attack.
We also tried ensembling the class-conditional detector with the general all-class
detector: an input is considered an attack if at least one detector says so. This
ensemble of the class-conditional detector and the general detector performs best
for all detectors, and is the one we use.

We report the accuracy of each detector on the detection test set for both the
vanilla and the LAP network in Table 1. In each cell, the first number corresponds
to the vanilla network and the second to the regularized LAP-network. Since
the NS detector takes the image and not its embeddings as input, the impact
of LAP and RCE training on its performance is minimal and we report its
performance on the vanilla network only. These results are averaged over 5 runs
and the standard deviations (which are tight) are in Tables 3, 4, 5, 6 and 7 in
Appendix D.5, along with results on RCE-networks. Since some attacks are slow,
we don’t test them on all network-dataset pairs in this experiment. Results in
Table 1 show two things. First, our detector performs better than both other
detectors, with or without the regularization. Second, both the TR and MH
detectors work better on the LAP-networks most times. The MH detector benefits
more from the regularization, but on all attacks, the best detector is always the
Transport detector. In the tables in Appendix D.5, RCE often improves detection
accuracy in this experiment, but clearly less than LAP training. On CIFAR10,
our detector outperforms the MH detector by 9 to 16 percentage points on the
vanilla ResNet110, and the NS detector by up to 5 points. LAP training improves
the accuracy of our detector by an average 1.5 points and that of the MH detector



12 S. Karkar et al.

by a substantial 8.3 points on average. On CIFAR100, our detector outperforms
the MH detector by 1 to 5 points on the vanilla ResNeXt50, and the NS detector
by up to 3 points. LAP training improves the accuracy of both detectors by
an average 1 point. On TinyImageNet, our detector greatly outperforms the
MH detector by 3 to 15 points on the vanilla WideResNet, and the NS detector
slightly. LAP training does not change the accuracy of our detector and improves
that of the MH detector by 0.85 points on average. Detection rates of successful
adversarial samples (i.e. those that fool the network) are in Table 14 in Appendix
D.7 and are higher than 95% on our detector. False positive rates (positive
meaning adversarial) are in Table 16 in Appendix D.8 and are always less than
5% on our detector. The AUROC is in Table 18 in Appendix D.9. On all these
metrics, our detector outperforms the other detectors largely, and LAP-training
greatly improves the performance of the Mahalanobis detector.

Table 1: Average accuracy of detectors on adversarial samples from seen attacks
on Network/LAP-Network over 5 runs.

Attack Detector
ResNet110
CIFAR10

ResNeXt50
CIFAR100

WideResNet
TinyImageNet

FGM
TR 97.14/98.70 97.26/98.32 95.36/95.14
MH 87.78/95.64 95.82/96.82 81.06/85.26
NS 94.56 94.70 94.90

APGD
TR 94.10/97.50 96.04/97.84 95.22/95.20
MH 82.08/90.70 93.94/94.60 79.66/85.10
NS 94.28 94.18 94.86

BIM
TR 97.54/99.28 98.02/98.92 95.26/95.12
MH 86.78/95.38 96.06/97.76 81.20/82.46
NS 95.04 94.72 95.00

AA
TR 88.88/94.08 84.90/87.56 81.38/81.24
MH 80.46/89.96 83.90/86.58 78.40/78.40
NS 88.78 84.82 81.32

DF
TR 99.98/99.84 99.80/99.58
MH 91.50/96.70 97.30/97.12
NS 99.78 99.6

CW
TR 98.04/97.96 97.04/97.80
MH 85.58/93.36 95.38/96.42
NS 93.86 90.7

HSJ
TR 99.94/99.92
MH 85.50/94.56
NS 99.68

BA
TR 96.56/97.02
MH 80.20/89.62
NS 92.10
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5.3 Detection of Unseen Attacks

An important setting is when we don’t know which attack might be used or
only have time to train detectors on samples from one attack. We still want our
detector to generalize well to unseen attacks. To test this, we use the same vanilla
networks as above but the detectors are now trained on the detection training set
created by the simplest and quickest attack (FGM) and tested on the detection
test sets created by the other attacks. Results are in Table 2. We see that our
detector has very good generalization to unseen attacks, even those very different
from FGM, comfortably better than the MH detector, by up to 19 percentage
points, while the NS detector only generalizes to variants of FGM (APGD and
BIM), and fails on the other attacks. These results are averaged over 5 runs and
the standard deviations are in Tables 8 to 13 in Appendix D.6. On our detector,
the detection rate of successful adversarial samples remains higher than 90% in
most cases (Table 15 in Appendix D.7) and the FPR is always lower than 10%
(Table 17 in Appendix D.8). The AUROC is in Table 19 in Appendix D.9. Our
detector almost always outperforms the other detectors on all these metrics.

Table 2: Average accuracy of detectors on samples from unseen attacks after
training on FGM over 5 runs.

Attack Detector
ResNet110
CIFAR10

ResNeXt50
CIFAR100

WideResNet
TinyImageNet

APGD
TR 89.32 91.94 93.26
MH 77.34 90.86 76.96
NS 92.08 92.16 94.06

BIM
TR 96.02 95.02 94.66
MH 77.24 93.16 77.02
NS 93.88 93.88 94.62

AA
TR 85.10 73.32 77.04
MH 72.12 73.08 60.36
NS 51.82 51.32 65.60

DF
TR 91.02 85.16 90.62
MH 80.12 82.72 73.18
NS 51.40 51.62 72.82

CW
TR 93.18 78.18 91.42
MH 79.92 76.44 75.52
NS 50.84 51.02 71.96

HSJ
TR 93.00 85.04
MH 79.70 82.82
NS 52.12 52.04

BA
TR 90.92 92.14
MH 79.32 84.46
NS 59.88 57.90
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However, this experiment shows that our regularization has some limitations.
We see in Tables 8, 9, 10, 11, 12 and 13 in Appendix D.6 that LAP training
does not improve detection accuracy as much, and sometimes reduces it. It still
improves it for the MH detector on all attacks on ResNet110 and WideResNet
by up to 10 points, and LAP training still always does better than RCE training.
We claim this is because these methods reduce the variance of features extracted
on the seen attack, harming generalization to unseen attacks. This explains why
detection of APGD and BIM, variants of FGM, improves.

5.4 Detection of Out-Of-Distribution Samples

Since our analysis applies to all out-of-distribution (OOD) samples, we test
detection of OOD samples in a similar setting to [33]. We train a model on
a first dataset (ResNet110 on CIFAR10 and ResNeXt50 on CIFAR100), then
train detectors to tell this first dataset from a second dataset (which can be
an adversarially attacked version of the first dataset), then test their ability to
tell the first dataset from a third unseen dataset (SVHN). Our detector does
very well and better than the MH detector on both experiments, and detection
accuracy of samples from the unseen distribution is higher than 90% when using
the CW attack to create the second dataset. Details are in Appendix D.11.

5.5 Attacking the Detector

We consider the case where the detector is also attacked (adaptive attacks). We
try 2 attacks on the TR and MH detectors. Both are white-box with respect
to the network. The first is black-box with respect to the detector and only
knows if a sample has been detected or not. The second has some knowledge
about the detector. It knows what features it uses and can attack it directly to
find adversarial features. We test these attacks by looking at the percentage of
detected successful adversarial samples that they turn into undetected successful
adversarial samples. For the first attack, this is 6.8% for our detector and 12.9%
for the MH detector on the LAP-ResNet110, and is lowered by LAP training.
For the second attack it is 14% on our detector. Given that detection rates of
successful adversarial samples are almost 100% (see Appendix D.7), this shows
that an adaptive attack does not circumvent the detector, as detection rates drop
to 85% at worst. Details are in Appendix D.12.

6 Conclusion

We proposed a method for detecting adversarial samples, based on the dynamical
view of neural networks. The method examines the discrete vector field moving
the inputs to distinguish clean and abnormal samples. The detector requires
minimal computation to extract the features it uses for detection and achieves
state-of-the-art detection accuracy on seen and unseen attacks. We also use a
transport regularization that both improves test classification accuracy and the
accuracy of adversarial detectors.
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Ethical Statement

Adversarial detection and robustness are essential to safely deploy neural networks
that attackers might target for nefarious purposes. But adversarial attacks can
be used to evade neural networks that are deployed for nefarious purposes.
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A Background on Optimal Transport

The Wasserstein space W2(Ω) with Ω a convex and compact subset of Rd is the
space P(Ω) of probability measures over Ω, equipped with the distance W2 given
by the solution to the optimal transport problem

W 2
2 (α, β) = min

γ∈Π(α,β)

∫
Ω×Ω

∥x− y∥2 dγ(x, y) (11)

where Π(α, β) is the set of probability distribution over Ω×Ω with first marginal
α and second marginal β, i.e. Π(α, β) = {γ ∈ P(Ω ×Ω) | π1♯γ = α, π2♯γ = β}
where π1(x, y) = x and π2(x, y) = y. The optimal transport problem can be
seen as looking for a transportation plan minimizing the cost of displacing some
distribution of mass from one configuration to another. This problem indeed has
a solution in our setting (see for example [48, 53]). If α is absolutely continuous
and ∂Ω is α-negligible then the problem in (11) (called the Kantorovich problem)
has a unique solution and is equivalent to the following problem, called the Monge
problem,

W 2
2 (α, β) = min

T s.t. T♯α=β

∫
Ω

∥T (x)− x∥2 dα(x) (12)

and this problem has a unique solution T ⋆ linked to the solution γ⋆ of (11)
through γ⋆ = (id, T ⋆)♯α. Another equivalent formulation of the optimal transport
problem in this setting is the dynamical formulation ([5]). Here, instead of directly
pushing samples of α to β using T , we can equivalently displace mass, according
to a continuous flow with velocity vt : Rd → Rd. This implies that the density αt

at time t satisfies the continuity equation ∂tαt +∇ · (αtvt) = 0, assuming that
initial and final conditions are given by α0 = α and α1 = β respectively. In this
case, the optimal displacement is the one that minimizes the total action caused
by v :

W 2
2 (α, β) =min

v

∫ 1

0

∥vt∥2L2(αt)
dt (13)

s.t. ∂tαt +∇ · (αtvt) = 0, α0 = α, α1 = β

Instead of describing the density’s evolution through the continuity equation, we
can describe the paths ϕx

t taken by particles at position x from α when displaced
along the flow v. Here ϕx

t is the position at time t of the particle that was at
x ∼ α at time 0. The continuity equation is then equivalent to ∂tϕ

x
t = vt(ϕ

x
t ).

See chapters 4 and 5 of [48] for details. Rewriting the conditions as necessary,
Problem (13) becomes

W 2
2 (α, β) =min

v

∫ 1

0

∥vt∥2L2((ϕ·
t)♯α)

dt (14)

s.t. ∂tϕ
x
t = vt(ϕ

x
t ), ϕ·

0 = id, (ϕ·
1)♯α = β

and the optimal transport map T ⋆ that solves (12) is in fact T ⋆(x) = ϕx
1 for ϕ

that solves the continuity equation together with the optimal v⋆ from (14). The
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optimal vector field is related to the optimal map through v⋆t = (T ⋆− id)◦(T ⋆
t )

−1,
where T ⋆

t = (1− t)id + tT ⋆ and is invertible. This simply means that the points
move in straight lines and with constant speed from x to T ⋆(x). The W2(Ω)
space is a metric geodesic space, and the geodesic between α and β is the curve
αt found while solving (13). It is also given by αt = (πt)♯γ

⋆ = (T ⋆
t )♯α, where

πt(x, y) = (1− t)x+ ty. We refer to Section 5.4 of [48] for these results on optimal
transport.

Optimal transport maps have some regularity properties under some bound-
edness assumptions. We mention the following result from [17]:

Theorem 4. Suppose there are X,Y , bounded open sets, such that the densities
of α and β are null in their respective complements and bounded away from zero
and infinity over them respectively.
Then, if Y is convex, there exists η > 0 such that the optimal transport map T
between α and β is C0,η over X.
If Y isn’t convex, there exists two relatively closed sets A,B in X,Y respectively
such that T ∈ C0,η(X \A, Y \B), where A and B are of null Lebesgue measure.
Moreover, if the densities are in Ck,η, then C0,η can be replaced by Ck+1,η in the
conclusions above. In particular, if the densities are smooth, then the transport
map is a diffeomorphism.

A final result that we mention is the following, which says that the inverse of
the optimal transport map between α and β is the optimal transport map from
β to α,

Theorem 5. If α and β are absolutely continuous measures supported respec-
tively on compact subsets X and Y of Rd with negligible boundaries, then there
exists a unique couple (T, S) of functions such that the five following points hold

– T : X → Y and S : Y → X
– T#α = β and S#β = α
– T is optimal for the Monge problem from α to β
– S is optimal for the Monge problem from β to α

– T ◦ S β−a.s.
= id and S ◦ T α−a.s.

= id

B Background on Numerical Methods for ODEs

We refer to [45] for this quick background on numerical methods for ODEs.
Consider the Cauchy problem x′ = f(t, x) with initial condition x(t0) = x0 and
a subdivision t0 < t1 < .. < tN = t0 + T of [t0, t0 + T ]. Denote the time-steps
hn := tn+1− tn for 0 ≤ n < N and define hmax := maxhn. In a one-step method,
an approximation of x(tn) is xn given by

xn+1 − xn

hn
= ϕ(tn, xn, hn)

For ϕ(t, x, h) = f(t, x), we get Euler’s method: xn+1 = xn + hnf(tn, xn).
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Definition 2. (Consistency and order) For a one-step method, the consistency
errors en, for 0 ≤ n < N , are

en =
x(tn+1)− Φ(tn, x(tn), hn)

hn
=

x(tn+1)− x(tn)

hn
− ϕ(tn, x(tn), hn)

where x is solution. The local (truncation) errors are hnen. The method is
consistent if max |en| goes to zero as hmax goes to zero. For p ∈ N∗, the method
has order p if max |en| ≤ Chp

max for a constant C that depends on f, t0 and T .

Theorem 6. (Consistency criterion) If f and ϕ are continuous then the one-step
method is consistent if and only if ϕ(t, x, 0) = f(t, x) for all (t, x).

Theorem 7. (Order criterion) If f is Cp and ϕ is Cp in h then the one-step
method is of order p if and only if ∂k

hϕ(t, x, 0) =
1

k+1f
[k](t, x) for all (t, x) and

0 ≤ k < p where f [0] = f and f [k] = ∂tf
[k−1] + f∂xf

[k−1].

Corollary 1. (Consistency and order of Euler’s method) If f is continuous then
Euler’s method is consistent. If f is C1 then Euler’s method has order 1.

Definition 3. (Zero-stability) A one-step method is zero-stable (or stable) if
∃ S > 0 such that for all (xn)0≤n≤N , (x̃n)0≤n≤N and (εn)0≤n<N satisfying

xn+1 − xn

hn
= ϕ(tn, xn, hn)

and
x̃n+1 − x̃n

hn
= ϕ(tn, x̃n, hn) + ϵn

for 0 ≤ n < N , we have

max
n
∥x̃n − xn∥ ≤ S(∥x̃0 − x0∥+ T max

n
|ϵn|)

, where ϵn = εn/hn. The constant S is the stability constant of the method.

Theorem 8. (Zero-stability criterion) If ϕ is uniformly L-Lipschitz in its second
variable, then the one-step method is stable with constant eLT .

Corollary 2. (Zero-stability of Euler’s method) If f is Lipschitz in its second
variable, then Euler’s method is stable.

Definition 4. (Convergence) A numerical method converges if its global error
maxn ∥x(tn)− xn∥ goes to zero as hmax goes to zero.

Theorem 9. (Convergence criterion) If a method is consistent and stable with
stability constant S, then it converges and maxn ∥x(tn)− xn∥ ≤ ST max |en|. If
the method is of order p with constant C, then maxn ∥x(tn)− xn∥ ≤ STChp

max

Corollary 3. (Convergence of Euler’s method) Euler’s method converges if f is
C0 and Lipschitz in x. If f is also C1 then it converges with speed O(hmax).
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C Proofs

C.1 Proof of Theorem 1

Proof. A solution v to (5) exists and is linked to an optimal transport map T
that is a solution to (4) through vt = (T − id) ◦ T−1

t where Tt := (1− t)id+ tT
which is invertible (see Appendix A).

By Theorem 4 in Appendix A, being an optimal transport map, T is η-Hölder
on X. So for all a, b ∈ support(αt) and t ∈ [0, 1[, where αt = (ϕ·

t)♯α = (Tt)♯α
with ϕ solving (5) with v, we have

∥vt(a)− vt(b)∥ ≤ ∥T−1
t (a)− T−1

t (b)∥+ C∥T−1
t (a)− T−1

t (b)∥η

Since (αt)
1
t=0 is a geodesic between α and β = α1 = T♯α, then (αs)

t
s=0 is

a geodesic between α and αt (modulo reparameterization to [0, 1]). And since
αs = (Ts)♯α, the map Tt is an optimal transport map between α and αt. Therefore
its inverse T−1

t is an optimal transport map (see Theorem 5 in Appendix A) and
is ηt-Hölder with 0<ηt≤1 (being a push-forward by Tt, the support of αt satisfies
the conditions of Theorem 4 in Appendix A). Therefore, for all a, b ∈ support(αt)

∥vt(a)− vt(b)∥ ≤ Ct∥a− b∥ηt + CCη
t ∥a− b∥ηηt (15)

and for all a, b ∈ support(αtm)

∥rm(a)− rm(b)∥ ≤ ε+ Ctm∥a− b∥ηtm + CCη
tm∥a− b∥ηηtm (16)

by the hypothesis on r and the triangle inequality. Let K := maxm Ctm +
CCη

tm , ζ1 := ηminm ηtm and ζ2 := maxm ηtm . Then, we have the desired result
immediately from (16).

Remark 1. If the convexity hypothesis on the support Y of the target distribution
β is too strong, we still get the same results almost everywhere. More precisely,
if the set Y such that β is bounded away from zero and infinity on Y and is zero
on Y ∁ is open and bounded but not convex, then the solution map T is η-Hölder
almost everywhere on X (see Appendix A).

Remark 2. If the distributions α and β in Theorem 1 are Ck,η (i.e all derivatives
up to the k-th derivative are η-Hölder), then the optimal transport map T is
Ck+1,η. This means that the more regular the data, the more regular the network
we find.

C.2 Proof of Theorems 2 and 3

Proof. Since T−1
t (ϕx

t ) = x, we have for any a0, b0 ∈ X by the triangle inequality

∥rm(am)− rm(bm)∥ ≤ ∥rm(am)− rm(ϕa0
tm)∥+ ∥rm(ϕa0

tm)− vtm(ϕa0
tm)∥+

+ ∥vtm(ϕa0
tm)− vtm(ϕb0

tm)∥+ ∥rm(ϕb0
tm)− vtm(ϕb0

tm)∥+
+ ∥rm(bm)− rm(ϕb0

tm)∥
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So

∥rm(am)− rm(bm)∥ ≤ ε+ ∥a0 − b0∥+ C∥a0 − b0∥η+
+ L(∥am − ϕa0

tm∥+ ∥bm − ϕb0
tm∥)

where L = maxm Lm and Lm is the Lipschitz constant of rm (which is Lipschitz
being a composition of matrix multiplications and activations such as ReLU).
This the bound in Theorem 2.

In this bound, the term ∥am− ϕa0
tm∥ (and likewise ∥bm− ϕb0

tm∥) represents the
distance between the point am we get after m residual blocks (i.e. after m Euler
steps using the approximation r of v) and the point ϕa0

tm we get by following the
solution vector field v up to time tm. By the properties of the Euler method
(consistency and zero-stability, see Corollaries 1, 2 and 3 in Appendix B), under
more regularity conditions on v, it is possible to bound this term. Indeed, if v
is C1 and M -Lipschitz in x (this is not stronger than the regularity we get on
v through our regularization, because we still need to use (15)), we have for
constants R,S > 0,

∥ϕa0
tm − am∥ ≤ ∥ϕa0

tm − ãm∥+ ∥ãm − am∥ ≤ Sε+ SRh

where ãm comes from the Euler scheme with access to v (i.e. ãm+1:=ãm+hvtm(ãm)
and ã0:=a0), R is the consistency constant of the Euler method and S is its
zero-stability constant. Likewise, we get the same bound for ∥bm − ϕb0

tm∥.
If a0, b0 /∈ X, we need to introduce â0 := ProjX(ao) and b̂0 := ProjX(bo) to

apply (15). We now get

∥rm(am)− rm(bm)∥ ≤ ε+ ∥a0 − b0∥+ C∥a0 − b0∥η+

+ L(∥am − ϕâ0
tm∥+ ∥bm − ϕb̂0

tm∥)

Bounding the terms ∥am − ϕâ0
tm∥ and ∥bm − ϕb̂0

tm∥ now gives

∥ϕâ0
tm − am∥ ≤ ∥am − ãm∥+ ∥ãm − ϕâ0

tm∥ ≤ S(∥a0 − â0∥+ ε) + SRh

where ãm now comes from the Euler scheme with access to v that starts at â0
(meaning ãm+1:=ãm+hvtm(ãm) and ã0:=â0). Likewise, we get the same bound

for ∥bm − ϕb̂0
tm∥.

Since ∥a0 − â0∥ = dist(a0, X) and ∥b0 − b̂0∥ = dist(b0, X), we get the bound
in Theorem 3. Note that if we use the stability of the ODE instead of the
Euler method to bound ∥am − ϕâ0

tm∥ we get the same result. Indeed, if ãm
again comes from the Euler scheme with access to v that starts at a0 (meaning
ãm+1:=ãm+hvtm(ãm) and ã0:=a0), we can write, for some constant F > 0

∥ϕâ0
tm − am∥ ≤ ∥am − ãm∥+ ∥ãm − ϕa0

tm∥+ ∥ϕ
a0
tm − ϕâ0

tm∥
≤ Sε+ SRh+ F∥a0 − â0∥
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since

∥ϕa0
tm − ϕâ0

tm∥ ≤ ∥a0 − â0∥+
∫ tm

0

∥vs(ϕa0
s )− vs(ϕ

â0
s )∥ ds

≤ ∥a0 − â0∥+M

∫ tm

0

∥ϕa0
s − ϕâ0

s ∥ ds ≤ F∥a0 − â0∥

where we get the last line by Gronwall’s lemma.

D Additional Experiments

D.1 Adversarial Attacks

White-box attacks have access to the network’s weights and architecture. The
Fast Gradient Method (FGM) [19] takes a perturbation step in the direction of
the gradient that maximizes the loss. Projected Gradient Descent (PGD) [37] and
the Basic Iterative Method (BIM) [31] are iterative versions of FGM. We use the
Auto-PGD-CE [13] variant of PGD which has an adaptive step size. Two slower
but more powerful attacks are DeepFool (DF) [40], which iteratively perturbs an
input in the direction of the closest decision boundary, and Carlini-Wagner (CW)
[8], which solves an optimization problem to find the perturbation. AutoAttack
(AA) [13] is a combination of three white-box attacks (two variants of Auto-PGD
[13] and the FAB attack of [12]), and of the black-box Square Attack (SA) [4].
Black-box attacks don’t have any knowledge about the network and can only
query it. We use two such attacks: Hop-Skip-Jump (HSJ) [10], which estimates
the gradient direction at the decision boundary, and the Boundary Attack (BA)
[7], which starts from a large adversarial input and moves towards the boundary
decision to minimize the perturbation. We use a maximal perturbation of ϵ=0.03
for FGM, APGD, BIM and AA. We use the L2 norm for CW and HSJ and L∞
for the other attacks. We use ART [43] and its default hyper-parameter values
(except those mentioned) to generate the adversarial samples, except for AA for
which we use the authors’ original code. The number of iterations is 50 for HSJ,
5000 for BA, 10 for CW and 100 for APGD and DF.

D.2 Implementation Details

For ResNeXt50 [59] on CIFAR100 [30], we train for 300 epochs using SGD with
a learning rate of 0.1 (divided by ten at epochs 150, 225 and 250), Kaiming
initialization, a batch size of 128 and weight decay of 0.0001. For RCE training,
the only changes are that the learning rate is 0.05 and the initialization is
orthogonal with a gain of 0.05.

For ResNet110 [21] on CIFAR10 [30], we train for 300 epochs using SGD with
a learning rate of 0.1 (divided by ten at epochs 150, 225 and 250), orthogonal
initialization with a gain of 0.05, a batch size of 256, weight decay of 0.0001 and
gradient clipping at 5. For RCE training, the only change is that we don’t use
gradient clipping.
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For WideResNet [60] on TinyImageNet, we train for 300 epochs using SGD
with a learning rate of 0.1 (divided by ten at epochs 150, 225 and 250), orthogonal
initialization with a gain of 0.1, a batch size of 114 and weight decay of 0.0001.

For the magnitude parameter of the Mahalanobis detector, we try all the
values tried in their paper for the magnitude and we report the best results.

D.3 Adversarial detection training data

See Figure 3.

Fig. 3. Adversarial detection dataset creation. A∪B1∪B2 is the original dataset, where
A is the training set and B1∪B2 is the test set. We create a noisy version of B1∪B2
by adding random noise to each sample in B1∪B2 to get C1∪C2. Noisy samples are
considered clean (i.e. not attacked) in adversarial detection training. We create an
attacked version of B1∪B2 by creating an attacked image from each image in B1∪B2
to get D1∪D2. In the case of generalization to unseen attacks, Attack 2 used to create
D2 from B2 is different from Attack 1 used to create D1 from B1. Otherwise, Attack 1
and Attack 2 are the same. B1∪C1∪D1 is the adversarial detection training set and
B2∪C2∪D2 is the adversarial detection test set.
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D.4 Preliminary Experiments

We see in Figure 4 below that training deep ResNets without batch-normalization
is near impossible, whereas LAP-ResNets maintain the same performance and
stability without ResNets for up to 50 blocks. LAP-ResNets are also compared in
this regard to the small step method of [63], which simply adds a small weight h
of around 0.1 in front of the residue function to make ResNets more stable. The
Least Action Principle has the same improved stability when training without
batch-normalization in Figure 4 as this method, while also improving the test
accuracy when batch-normalization is used [26] which the small step method
does not claim.

Fig. 4. Test accuracy of ResNets of various depths without batch-normalization on
CIFAR10.

D.5 Detection of Seen Attacks

In the tables below, VAN corresponds to detectors trained on a vanilla network,
RCE on an RCE-network and LAP on a LAP-network.
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Table 3: Average adversarial detection accuracy of seen attacks and standard
deviation over 5 runs using ResNet110 on CIFAR10.

Attack

Det FGM APGD BIM DF

VAN T 97.1 ± 0.6 94.1 ± 0.4 97.5 ± 0.5 100 ± 0.5
RCE T 96.0 ± 0.5 95.3 ± 0.8 96.2 ± 0.6 99.9 ± 0.1
LAP T 98.7 ± 0.3 97.5 ± 0.4 99.3 ± 0.3 99.8 ± 0.1

VAN M 87.8 ± 4.2 82.1 ± 4.0 86.8 ± 4.7 91.5 ± 3.2
RCE M 93.0 ± 0.6 87.9 ± 0.5 92.3 ± 1.0 95.0 ± 0.4
LAP M 95.6 ± 0.6 90.7 ± 0.7 95.4 ± 0.5 96.7 ± 0.7

VAN N 94.6 ± 0.7 94.3 ± 0.5 95.0 ± 0.5 99.8 ± 0.1

Table 4: Average adversarial detection accuracy of seen attacks and standard
deviation over 5 runs using ResNet110 on CIFAR10.

Attack

Det CW AA HSJ BA

VAN T 98.0 ± 0.5 88.9 ± 1.3 99.9 ± 0.1 96.6 ± 0.6
RCE T 89.4 ± 0.5
LAP T 98.0 ± 0.4 94.1 ± 0.8 99.9 ± 0.1 97.0 ± 0.2

VAN M 85.6 ± 2.6 80.5 ± 2.2 85.5 ± 1.8 80.2 ± 2.1
RCE M 83.4 ± 0.5
LAP M 93.4 ± 0.6 90.0 ± 0.9 94.6 ± 0.4 89.6 ± 0.4

VAN N 93.9 ± 9.2 88.8 ± 1.4 99.7 ± 0.1 92.1 ± 0.5
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Table 5: Average adversarial detection accuracy of seen attacks and standard
deviation over 5 runs using ResNeXt50 on CIFAR100.

Attack

Det FGM PGD BIM AA

VAN T 97.3 ± 0.5 96.0 ± 0.5 98.0 ± 0.3 84.9 ± 0.7
RCE T 97.4 ± 0.4 97.0 ± 0.1 97.8 ± 0.2 50.1 ± 0.1
LAP T 98.3 ± 0.3 97.8 ± 0.5 98.9 ± 0.1 87.6 ± 0.6

VAN M 95.8 ± 0.5 93.9 ± 0.5 96.1 ± 0.6 83.9 ± 0.7
RCE M 96.5 ± 0.4 94.7 ± 0.4 96.6 ± 0.6 50.1 ± 0.1
LAP M 96.8 ± 0.4 94.6 ± 0.7 97.8 ± 0.5 86.6 ± 0.5

VAN N 94.7 ± 0.7 94.2 ± 1.0 94.7 ± 0.6 84.8 ± 0.8

Table 6: Average adversarial detection accuracy of seen attacks and standard
deviation over 5 runs using ResNeXt50 on CIFAR100.

Attack

Detector DF CW

VAN TR 99.80 ± 0.15 97.04 ± 0.88
RCE TR 99.04 ± 0.14 92.52 ± 0.34
LAP TR 99.58 ± 0.18 97.80 ± 0.18

VAN MH 97.30 ± 0.45 95.38 ± 0.56
RCE MH 97.64 ± 0.44 88.36 ± 0.62
LAP MH 97.12 ± 0.28 96.42 ± 0.42

VAN NS 99.56 ± 0.21 90.72 ± 1.39

Table 7: Average adversarial detection accuracy of seen attacks and standard
deviation over 5 runs using WideResNet on TinyImageNet.

Attack

Det FGM APGD BIM AA

VAN T 95.4 ± 0.4 95.2 ± 0.5 95.3 ± 0.5 81.4 ± 0.4
LAP T 95.1 ± 0.5 95.2 ± 0.7 95.1 ± 0.7 81.2 ± 0.5

VAN M 81.1 ± 1.1 79.7 ± 1.0 81.2 ± 1.3 78.4 ± 0.7
LAP M 85.3 ± 1.0 85.1 ± 0.6 82.5 ± 1.6 78.4 ± 1.0

VAN N 94.9 ± 0.7 94.9 ± 0.9 95.0 ± 0.6 81.3 ± 0.2
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D.6 Detection of Unseen Attacks

Table 8: Average adversarial detection accuracy of unseen attacks after training
on FGM and standard deviation over 5 runs using ResNet110 on CIFAR10.

Attack

Detector APGD BIM AA DF

VAN TR 89.3 ± 1.6 96.0 ± 0.7 85.1 ± 1.1 91.0 ± 0.9
RCE TR 91.8 ± 1.1 93.6 ± 1.1 50.0 ± 0.1 63.4 ± 1.1
LAP TR 92.8 ± 0.5 98.8 ± 0.4 84.2 ± 0.5 75.5 ± 1.2

VAN MH 77.3 ± 4.7 77.2 ± 4.8 72.1 ± 3.1 80.1 ± 3.4
RCE MH 81.5 ± 0.6 82.6 ± 1.3 50.0 ± 0.1 81.2 ± 0.7
LAP MH 87.9 ± 0.8 84.9 ± 0.4 81.9 ± 1.2 81.6 ± 0.7

VAN NS 92.1 ± 0.5 93.9 ± 0.4 51.8 ± 0.6 51.4 ± 0.58

Table 9: Average adversarial detection accuracy of unseen attacks after training
on FGM and standard deviation over 5 runs using ResNet110 on CIFAR10.

Attack

Detector CW HSJ BA

VAN TR 93.2 ± 1.0 93.0 ± 0.9 90.9 ± 0.6
RCE TR 60.5 ± 0.9 63.9 ± 1.0 52.5 ± 0.5
LAP TR 75.2 ± 1.0 76.8 ± 0.6 75.0 ± 0.4

VAN MH 79.9 ± 3.7 79.7 ± 3.0 79.3 ± 3.0
RCE MH 76.0 ± 0.9 81.6 ± 0.9 68.5 ± 1.2
LAP MH 81.5 ± 0.6 81.5 ± 0.3 81.4 ± 0.8

VAN NS 50.84 ± 1.1 52.1 ± 0.7 59.9 ± 5.4
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Table 10: Average adversarial detection accuracy of unseen attacks after training
on FGM and standard deviation over 5 runs using ResNeXt50 on CIFAR100.

Attack

Detector APGD BIM AA DF

VAN T 91.9 ± 0.8 95.0 ± 0.5 73.3 ± 1.0 85.2 ± 0.6
RCE T 87.7 ± 0.5 95.1 ± 0.9 50.0 ± 0.1 72.3 ± 0.4
LAP T 89.3 ± 0.8 97.7 ± 0.3 74.0 ± 1.3 76.0 ± 1.0

VAN M 90.9 ± 0.8 93.2 ± 0.3 73.1 ± 0.6 82.7 ± 0.9
RCE M 82.0 ± 0.7 88.6 ± 0.8 50.0 ± 0.1 74.1 ± 0.8
LAP M 86.7 ± 0.9 93.9 ± 0.4 80.0 ± 0.6 79.4 ± 1.6

VAN NS 92.2 ± 0.4 93.9 ± 1.0 51.3 ± 0.4 51.6 ± 0.5

Table 11: Average adversarial detection accuracy of unseen attacks after training
on FGM and standard deviation over 5 runs using ResNeXt50 on CIFAR100.

Attack

Detector CW HSJ BA

VAN T 78.2 ± 1.0 85.0 ± 0.4 92.1 ± 4.8
RCE T 61.9 ± 0.5 72.4 ± 0.4 57.7 ± 0.4
LAP T 74.7 ± 1.1 78.1 ± 3.4 71.9 ± 3.9

VAN M 76.4 ± 0.7 82.8 ± 1.2 84.5 ± 2.0
RCE M 63.0 ± 0.6 74.6 ± 0.3 63.2 ± 0.9
LAP M 80.9 ± 2.0 80.5 ± 3.7 78.2 ± 2.0

VAN NS 51.0 ± 0.4 52.0 ± 0.7 57.9 ± 7.5

Table 12: Average adversarial detection accuracy of unseen attacks after training
on FGM and standard deviation over 5 runs using WideResNet on TinyImageNet.

Attack

Detector APGD BIM AA

VAN TR 93.26 ± 0.60 94.66 ± 0.49 77.04 ± 0.74
LAP TR 93.48 ± 0.72 94.80 ± 0.56 76.58 ± 0.48

VAN MH 76.96 ± 0.94 77.02 ± 1.08 60.36 ± 0.62
LAP MH 77.96 ± 0.49 78.00 ± 0.77 61.96 ± 0.89

VAN NS 94.06 ± 0.61 94.62 ± 0.64 72.82 ± 1.98
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Table 13: Average adversarial detection accuracy of unseen attacks after training
on FGM and standard deviation over 5 runs using WideResNet on TinyImageNet.

Attack

Detector DF CW

VAN TR 90.62 ± 0.60 91.42 ± 1.06
LAP TR 90.12 ± 0.55 91.52 ± 0.89

VAN MH 73.18 ± 0.59 75.52 ± 0.82
LAP MH 73.98 ± 1.12 76.22 ± 0.83

VAN NS 71.96 ± 4.03 65.60 ± 2.20

D.7 Detection Rate of Successful Adversarial Samples

As in [33], we might be only concerned with detecting adversarial samples that
successfully fool the network and that are created from clean samples that are
correctly classified. We find that the detection rate of successful adversarial
samples is always very high and close to 100% on our detector. On seen attacks,
the results are in Table 14. On unseen attacks, the results are in Table 15.
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Table 14: Average detection rate of successful adversarial samples from seen
attacks over 5 runs on Network/LAP-Network.

Attack Detector
ResNet110
CIFAR10

ResNeXt50
CIFAR100

WideResNet
TinyImageNet

FGM
TR 97.7/98.6 98.2/98.6 95.4/95.9
MH 88.3/93.9 96.7/97.1 84.0/85.0
NS 95.9 95.0 94.4

APGD
TR 99.3/99.4 97.1/97.9 96.7/96.4
MH 85.9/86.8 95.8/92.7 82.7/84.8
NS 95.9 94.8 94.5

BIM
TR 98.3/99.6 98.6/99.2 95.0/96.1
MH 88.1/93.8 96.6/98.0 85.8/86.2
NS 96.4 94.6 94.3

AA
TR 100/100 100/100 100/100
MH 88.3/95.4 98.8/98.7 95.6/96.5
NS 99.9 99.9 99.9

DF
TR 100/99.9 99.9/99.4
MH 93.8/98.2 97.6/97.8
NS 99.9 99.3

CW
TR 98.6/98.7 99.9/99.6
MH 83.5/93.9 98.1/98.1
NS 99.9 100

HSJ
TR 100/99.9
MH 82.3/95.1
NS 99.7
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Table 15: Average detection rate of successful adversarial samples from unseen
attacks after training on FGM over 5 runs.

Attack Detector
ResNet110
CIFAR10

ResNeXt50
CIFAR100

WideResNet
TinyImageNet

APGD
TR 96.94 98.76 100.0
MH 79.80 90.86 79.16
NS 93.02 91.8 93.20

BIM
TR 98.68 98.56 100.0
MH 78.66 93.38 86.42
NS 94.24 93.8 93.98

AA
TR 98.54 74.06 91.06
MH 81.10 73.74 71.70
NS 10.22 8.32 54.5

DF
TR 93.42 75.14 95.00
MH 79.96 73.64 68.34
NS 8.12 8.06 50.80

CW
TR 92.22 72.90 96.00
MH 78.96 72.34 76.66
NS 8.76 7.38 51.96

HSJ
TR 93.22 75.42
MH 78.14 73.66
NS 9.60 8.94

BA
TR 93.38 91.04
MH 79.42 76.44
NS 25.50 21.90

D.8 False Positive Rate

We report here the false positive rate on seen (Table 16) and unseen (Table 17)
attacks of both detectors.
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Table 16: Average FPR of seen attacks over 5 runs on Network/LAP-Network.

Attack Detector
ResNet110
CIFAR10

ResNeXt50
CIFAR100

WideResNet
TinyImageNet

FGM
TR 3.3/1.5 3.4/1.9 3.7/5.2
MH 13.9/3.5 5.2/3.3 18.1/16.3
NS 5.4 5.0 4.5

APGD
TR 6.3/2 4.6/2.3 5.3/4.9
MH 18.7/4.7 6.3/3.6 17.5/16.9
NS 4.9 5.0 4.5

BIM
TR 2.7/0.8 2.5/1.9 3.6/4.6
MH 13.6/3.1 4.6/3.3 18.0/15.9
NS 4.8 4.8 4.2

AA
TR 1.9/1.5 4.0/4.1 6.8/7.0
MH 13.3/6.4 13.7/10.8 14.8/15.3
NS 2.9 5.1 7.4

DF
TR 0.1/0.2 0.2/0.3
MH 10.2/4.6 2.9/2.7
NS 0.4 0.2

CW
TR 2.6/2.8 0.3/0.4
MH 12.4/7.4 2.5/2.2
NS 2.3 2.8

HSJ
TR 0.1/0.1
MH 11.9/5.8
NS 0.3
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Table 17: Average FPR of unseen attacks after training on FGM over 5 runs.

Attack Detector
ResNet110
CIFAR10

ResNeXt50
CIFAR100

WideResNet
TinyImageNet

APGD
TR 6.70 8.96 9.44
MH 21.36 7.28 14.48

BIM
TR 6.02 7.10 9.44
MH 21.46 7.08 14.54

AA
TR 8.06 7.82 9.48
MH 23.36 7.90 14.48

DF
TR 6.34 3.74 9.44
MH 18.48 7.78 14.54

CW
TR 5.64 3.74 9.44
MH 18.86 7.68 14.82

HSJ
TR 6.70 4.86
MH 18.72 7.56

BA
TR 6.70 5.74
MH 19.10 7.90

D.9 AUROC

We report in Table 18 the AUROC of seen attacks, and in Table 19 the AUROC of
unseen attacks. Note that the AUROC is computed on the class-agnostic random
forest detector, not on the ensemble of the class-agnostic and the class-conditional
detectors.

Table 18: Average AUROC of seen attacks on Network/LAP-Network.

Attack Detector
ResNet110
CIFAR10

ResNeXt50
CIFAR100

WideResNet
TinyImageNet

AA
TR 94.91/99.95 99.86/99.70 82.58/82.95
MH 81.94/94.17 87.13/94.32 70.85/71.36

DF
TR 99.94/99.92 99.84/99.58
MH 89.60/94.17 86.88/91.82

CW
TR 98.77/99.96 99.85/99.61
MH 88.33/94.31 86.33/91.36

HSJ
TR 99.95/99.94
MH 86.01/93.45
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Table 19: Average AUROC of unseen attacks after training on FGM over 5 runs.

Attack Detector
ResNet110
CIFAR10

ResNeXt50
CIFAR100

WideResNet
TinyImageNet

AA
TR 82.70 71.53 9.48
MH 76.46 66.60 61.61

DF
TR 90.09 72.61 9.44
MH 82.25 66.00 71.72

CW
TR 88.84 71.89 9.44
MH 81.59 66.06 71.57

HSJ
TR 87.30 74.85
MH 75.89 67.07

D.10 Time Comparison

With a ResNeXt50 on CIFAR100 and a Tesla V100 GPU, it takes our method
(including the time to generate FGM attacks) 66 seconds to extract its features
from both the clean and the adversarial samples, while it takes the Mahalanobis
method 110 seconds. Mahalanobis also extracts some statistics from the training
set prior to adversarial detection training, which takes an additional 35 seconds.
Our feature vector is of size 32, compared to 5 for the Mahalanobis detector.
So our random forest takes only 4 more seconds to train than the Mahalanobis
one (7 vs 3 seconds). Computation of the features our detector uses (norms and
cosines) is in O(MD), where M is the number of residual blocks and D is the
largest embedding dimension inside the network.

D.11 Detection of Out-Of-Distribution Samples

Since our analysis applies to all out-of-distribution (OOD) samples, we test
detection of OOD samples in a similar setting to the Mahalanobis paper [33].
We use the same ResNet110 and ResNeXt50 models trained on CIFAR10 and
CIFAR100 respectively. Since the detectors need to be trained, we are in the
OOD setting where we have a first dataset for training the network (CIFAR10 in
Tables 20 and 21 and CIFAR100 in Tables 26 and 27) and a second dataset from
another distribution that is not the test OOD distribution to train the detector
on. This could be another dataset (CIFAR100 in Table 20), some images found in
the wild, or a perturbation of our dataset that we generate using an adversarial
attack (CW on CIFAR10 in Table 21, and AA and CW on CIFAR100 in Tables 26
and 27 respectively). Detectors can then be used by training them to distinguish
between these first two datasets, and then testing them on distinguishing between
the first dataset and a third unseen dataset (SVHN [41] in both tables). The
accuracy is in Tables 20 to 27. The AUROC is in Tables 22 to 29. The false
positive rate (FPR) at a fixed true positive rate (TPR) of 95% is in Tables 24 to
31. Our detector performs very well and better than the MH detector in three of
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the four experiments, and in the fourth case, the MH detector benefits from LAP
training by 8 percentage points (Table 26). Without any extra data available,
using the CW adversarial attack allows to detect OOD samples from an unseen
distribution with more than 90% accuracy and an FPR of less than 10% at a
fixed TPR of 95%. The choice of the attack is also important, as CW allows for
much better detection of unseen samples from SVHN than AA.

Table 20: Average OOD detection accuracy and standard deviation over 5 runs
using ResNet110 trained on CIFAR10.

Detector CIFAR100 (seen) SVHN (unseen)

VAN TR 98.30 ± 0.46 97.46 ± 0.49
RCE TR 98.42 ± 0.40 98.20 ± 0.39
LAP TR 98.30 ± 0.22 98.50 ± 0.47

VAN MH 86.88 ± 1.52 91.28 ± 0.92
RCE MH 94.82 ± 0.45 92.16 ± 0.57
LAP MH 94.84 ± 0.41 90.46 ± 1.45

Table 21: Average OOD detection accuracy and standard deviation over 5 runs
using ResNet110 trained on CIFAR10.

Detector CW-CIFAR10 (seen) SVHN (unseen)

VAN TR 97.42 ± 0.57 91.38 ± 0.95
RCE TR 91.54 ± 6.06 77.58 ± 6.72
LAP TR 97.28 ± 0.62 85.46 ± 2.64

VAN MH 81.80 ± 1.96 83.76 ± 1.13
RCE MH 76.74 ± 2.75 54.24 ± 3.46
LAP MH 89.68 ± 0.65 76.72 ± 1.73
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Table 22: Average OOD detection AUROC and standard deviation over 5 runs
using ResNet110 trained on CIFAR10.

Detector CIFAR100 (seen) SVHN (unseen)

VAN TR 99.64 ± 0.13 98.74 ± 0.47
RCE TR 99.61 ± 0.09 99.01 ± 0.25
LAP TR 99.73 ± 0.09 99.43 ± 0.28

VAN MH 92.74 ± 1.50 97.00 ± 0.80
RCE MH 97.97 ± 0.25 96.26 ± 0.40
LAP MH 98.06 ± 0.38 96.31 ± 0.75

Table 23: Average OOD detection AUROC and standard deviation over 5 runs
using ResNet110 trained on CIFAR10.

Detector CW-CIFAR10 (seen) SVHN (unseen)

VAN TR 99.32 ± 0.14 96.29 ± 0.71
RCE TR 96.53 ± 0.58 86.34 ± 3.98
LAP TR 99.31 ± 0.07 96.12 ± 0.59

VAN MH 88.38 ± 2.94 88.04 ± 4.03
RCE MH 88.28 ± 2.22 79.53 ± 3.78
LAP MH 95.22 ± 0.90 86.54 ± 3.60

Table 24: Average OOD detection FPR at 95% TPR and standard deviation over
5 runs using ResNet110 trained on CIFAR10.

Detector CIFAR100 (seen) SVHN (unseen)

VAN TR 1.16 ± 0.66 2.68 ± 1.05
RCE TR 1.16 ± 0.41 1.94 ± 0.86
LAP TR 1.02 ± 0.44 1.54 ± 0.56

VAN MH 36.42 ± 4.29 15.66 ± 1.69
RCE MH 7.34 ± 0.90 20.30 ± 4.45
LAP MH 6.98 ± 2.35 17.56 ± 5.76
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Table 25: Average OOD detection FPR at 95% TPR and standard deviation over
5 runs using ResNet110 trained on CIFAR10.

Detector CW-CIFAR10 (seen) SVHN (unseen)

VAN TR 2.71 ± 1.01 6.68 ± 0.98
RCE TR 19.2 ± 2.35 24.98 ± 5.43
LAP TR 2.70 ± 0.64 5.68 ± 1.12

VAN MH 49.46 ± 4.80 36.78 ± 6.97
RCE MH 41.94 ± 6.44 52.72 ± 7.71
LAP MH 23.06 ± 6.29 58.40 ± 14.42

Table 26: Average OOD detection accuracy and standard deviation over 5 runs
using ResNeXt50 trained on CIFAR100.

Detector AA-CIFAR100 (seen) SVHN (unseen)

VAN TR 84.48 ± 0.59 75.32 ± 0.62
RCE TR 50.04 ± 0.07 55.44 ± 5.76
LAP TR 87.10 ± 0.12 72.98 ± 2.72

VAN MH 83.44 ± 0.48 78.82 ± 0.48
RCE MH 50.04 ± 0.07 58.74 ± 2.36
LAP MH 86.04 ± 0.31 86.84 ± 0.68

Table 27: Average OOD detection accuracy and standard deviation over 5 runs
using ResNeXt50 trained on CIFAR100.

Detector CW-CIFAR100 (seen) SVHN (unseen)

VAN TR 95.82 ± 0.67 92.92 ± 1.36
RCE TR 76.48 ± 0.75 75.66 ± 0.68
LAP TR 95.94 ± 0.57 85.94 ± 2.88

VAN MH 94.96 ± 0.81 85.10 ± 1.50
RCE MH 76.20 ± 0.72 72.20 ± 1.47
LAP MH 94.82 ± 0.34 88.92 ± 1.26
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Table 28: Average OOD detection AUROC and standard deviation over 5 runs
using ResNeXt50 trained on CIFAR100.

Detector AA-CIFAR100 (seen) SVHN (unseen)

VAN TR 94.96 ± 0.38 78.77 ± 1.15
RCE TR 50.12 ± 0.05 50.30 ± 8.13
LAP TR 96.45 ± 0.08 76.28 ± 0.73

VAN MH 93.32 ± 0.41 85.02 ± 0.97
RCE MH 50.15 ± 0.08 58.04 ± 3.56
LAP MH 94.87 ± 0.24 92.76 ± 0.39

Table 29: Average OOD detection AUROC and standard deviation over 5 runs
using ResNeXt50 trained on CIFAR100.

Detector CW-CIFAR100 (seen) SVHN (unseen)

VAN TR 99.00 ± 0.13 95.17 ± 0.31
RCE TR 87.50 ± 1.65 79.99 ± 3.62
LAP TR 99.16 ± 0.28 94.84 ± 1.63

VAN MH 98.24 ± 0.32 93.07 ± 0.33
RCE MH 86.73 ± 2.03 77.42 ± 3.38
LAP MH 97.84 ± 0.20 95.92 ± 0.64

Table 30: Average OOD detection FPR at 95% TPR and standard deviation over
5 runs using ResNeXt50 trained on CIFAR100.

Detector AA-CIFAR100 (seen) SVHN (unseen)

VAN TR 27.68 ± 1.84 32.66 ± 1.41
RCE TR 96.12 ± 0.96 94.72 ± 3.10
LAP TR 21.62 ± 0.30 29.47 ± 0.59

VAN MH 29.75 ± 1.09 39.06 ± 0.96
RCE MH 95.28 ± 0.27 91.42 ± 1.26
LAP MH 24.74 ± 0.69 34.54 ± 1.16
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Table 31: Average OOD detection FPR at 95% TPR and standard deviation over
5 runs using ResNeXt50 trained on CIFAR100.

Detector CW-CIFAR100 (seen) SVHN (unseen)

VAN TR 5.42 ± 0.82 8.90 ± 1.20
RCE TR 44.12 ± 3.31 45.68 ± 2.01
LAP TR 4.90 ± 0.92 10.52 ± 3.61

VAN MH 8.02 ± 0.81 16.38 ± 0.82
RCE MH 45.12 ± 3.76 48.45 ± 4.55
LAP MH 8.10 ± 0.46 9.80 ± 1.21

D.12 Attacking the Detector

We consider here the case where the attacker also attacks the detector (adaptive
attacks). We try two such attacks on the TR and MH detectors on ResNet110
trained on CIFAR10. Both attacks are white-box with respect to the network.
The first is black-box with respect to the detector. It only knows if an adversarial
sample has been detected or not. The second has some knowledge about the
detector. It knows what features it uses and can attack it directly to find
adversarial features. We test these attacks by looking at the percentage of
detected successful adversarial samples that they turn into undetected successful
adversarial samples that fool both the network and the detector.

The first attack proceeds as follows. A strong white-box attack (CW) is used
on the network on image x that has label y. If it finds a successful adversarial
image x̃ that fools the network into predicting ỹ ̸= y but is detected by the
detector, the attacker will attempt to modify this image x̃ so that the network
and the detector are both fooled. For this, the image x̃ is used as the initialization
for an attack (HSJ with a budget of 50 iterations and 10000 evaluations) on a
black-box Network-Detector system. The attacker considers that the Network-
Detector behaves as follows: it outputs the class prediction of the network if the
detector does not detect an attack and outputs an additional ‘detected’ class if
the detector detects an attack. The attacker attacks this Network-Detector on
image x̃ targeting the ỹ label. This way the network makes a mistake and the
‘detected’ class is avoided. On the vanilla ResNet110, this attack turns 16.5%
of 1700 detected successful adversarial samples x̃ into undetected successful
adversarial samples on our detector, compared to 25.7% on the Mahalanobis
detector. These percentages are lower on the LAP-ResNet110 as they drop to
6.8% on our detector and 12.9% on the Mahalanobis detector. This shows that
LAP training improves the robustness of both adversarial detectors to being
attacked themselves, and that the Transport detector is more robust than the
MH detector.

The second attack is very similar to the adaptive attack used in [9] to break
the Kernel Density detector of [16]. It proceeds as follows. A strong white-box
attack (CW) is used on the network on image x that has label y. If it finds
a successful adversarial image x̃ that fools the network but is detected by the
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detector, the detection features z̃ that x̃ generates when run through the network
are used as the initialization for a black-box attack (HSJ with a budget of
50 iterations and 10000 evaluations) on the detector. If successful adversarial
detection features z∗ that fool the detector are found, the attacker has to find
an adversarial perturbation of x that still fools the network and that generates
these features z∗ (or close features that also fool the detector) when run through
the network. We do this as in [9] by solving the following optimization problem:

min
x∗
−L(N(x∗), y) + c1∥D(x∗)− z∗∥+ c2∥x∗ − x∥ (17)

where L is the cross-entropy loss, N is the network, and D is the (differentiable)
function that returns the detection features of its input. This optimization problem
is differentiable and we try differentiable optimization algorithms such as BFGS
and NR to solve it. The initial detected successful adversarial image x̃ is used as
initialization as in [9]. This attack turns 14% of detected successful adversarial
samples x̃ into undetected successful adversarial samples on our detector on the
LAP-ResNet110.

Given that initial detection rates of successful adversarial samples are almost
100% (see Appendix D.7), this shows that adaptive attacks do not (at least
not easily) circumvent the detector, as detection rates drop to 85% at worst.
Obviously, the second attack is stronger than the first one, but it can probably
still be improved by using a white-box attack that is specific to random forests for
attacking the detector such as [25] or [61], or a different loss than cross-entropy
such as the one used in the CW attack. However, the difficulty of combining
the attack on the network with that on the detector remains. It is the non-
differentiability of the random forest that forces either this separate treatment
of network and detector then the use of a proxy differentiable term for the
detector (here ∥D(x∗)− z∗∥ in (17)) to combine both, or the use of a black-box
method as in the first attack. Also, we did not consider here the ensemble of the
class-conditional detector and the general detector, which is the best performing
version of the detector (see Section 5.2), and should be even more robust to
adaptive attacks, as the attacker will have to fool two random forest detectors at
once and target a particular label, constraining further the optimization problem
he solves.


