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Abstract.

The main goal of this research is to develop a data-driven reduced order model (ROM) strategy
from high-fidelity simulation result data of a full order model (FOM). The goal is to predict at lower
computational cost the time evolution of solutions of Fluid-Structure Interaction (FSI) problems.
For some FSI applications like tire/water interaction, the FOM solid model (often chosen as quasi-
static) can take far more computational time than the HF fluid one. In this context, for the sake
of performance one could only derive a reduced-order model for the structure and try to achieve
a partitioned HF fluid solver coupled with a ROM solid one. In this paper, we present a data-
driven partitioned ROM on a study case involving a simplified 1D-1D FSI problem representing
an axisymmetric elastic model of an arterial vessel, coupled with an incompressible fluid flow. We
derive a purely data-driven solid ROM for FOM fluid - ROM structure partitioned coupling and
present early results.

Key words: Reduced order model, fluid-structure interaction, partitioned coupling, FOM-ROM
coupling, data-driven model.

1 Introduction

Fluid-structure interaction (FSI) is the class of mechanical problems dealing with
the coupling and interactions between a deformable solid body subject to a fluid
loading and a fluid flow. FSI simulations with strong two-way coupling are usually
computationally expensive, due to both kinematics and dynamics coupling of the
two systems, and the structure of the spatiotemporal dynamics. Although Full Order
Models (FOM) are available and can be discretized using popular numerical methods
(e.g. finite elements, finite volumes, particle methods ...), the computational cost
associated with the simulations is often very high and makes them intractable to
predict High-Fidelity (HF) solutions on long-term time periods. In this paper, we
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will especially focus on simulations based on moving fluid domain methods, the most
popular one being the Arbitrary Lagrangian-Eulerian (ALE) method [8].
When solving FSI problems, two main strategies arise, namely the partitioned and
monolithic approaches. In the monolithic approach, both the solid and fluid systems
are considered as a whole, and the governing equations for both the physics are solved
at once, each time step. While this approach is more robust to the nature of the
coupling, due to its abilities to satisfy the coupling conditions exactly [18, 1, 14,
10], they represent significant computational and mathematical difficulties, due to
the complexity of solving both fluid and solid equations simultaneously, while not
allowing for the use of well-validated existing structural and fluid solvers.
Partitioned approaches however tackle these challenges with strategies that involve
solving the different physics separately, allowing for the use and coupling of available
high-fidelity solvers, even in a black-box fashion [2]. Specifically, the solid and fluid
problems are solved at each time step, and the pressure, velocity and displacements
at the interface are communicated in-between to satisfy dynamic, kinematic and
geometric coupling conditions respectively. When dealing with situations where the
coupling is not very strong, i.e when the effect of one subproblem (e.g solid) on the
coupling is significantly less important than the other (e.g fluid), "explicit" schemes,
also called "loosely coupled schemes" solve each subproblem only once at each time
step, which proved to provide good results in numerous "mildly-coupled" problems
(e.g aeroelasticity) [16]. However, in situations that involve strong fluid-structure
coupling, these schemes may be unstable [19, 4, 9]. The coupling constraint needs to
be enforced more strongly in an implicit way, involving a fixed-point problem solved
using an inner loop of subiterations at each time step [6, 7, 2]. This pinpoints the
core reason why strongly coupled FSI simulations have a high computational cost.
Reduced Order Models (ROM) enable efficient computations by reducing large sys-
tems, and are now more and more used in industrial applications. The proper or-
thogonal decomposition (POD) is one of the most used ingredients in reduced order
modeling. The POD extracts low dimensional linear subspaces from HF data usually
obtained with HF simulation results. A ROM can then be built by projecting the
FOM equations on the low-order POD basis [21, 15, 3, 22]. Projections methods (e.g
POD-Galerkin projection) require knowledge of the governing equations. For that
reason, they are considered as Physics-based models. Technically speaking, the pro-
jection process requires the access of the source code. The code-intrusive feature of
projection-based ROMs can be a shortcoming of their applicability. Recently, some
non-intrusive ROMs have been used in FSI problems using different approaches, for
example linear interpolation of the POD modes and coefficients for parameterized
problems [20], or radial-basis function interpolation of POD coefficients in the con-
text of immersed-shell methods [25]. Hybrid methods combining machine learning
algorithms and POD were also used to construct ROMs for FSI [11, 12, 17].
In this work, we focus on cases where one solver (solid) has a significantly greater
computational cost than the other (fluid). This is true for example when the struc-
tural nonlinear problem is modeled as a quasi-static one (inertial effects neglected).
In these conditions, a large-scale nonlinear problem has to be solved several times
within a FSI fixed-point iterative loop at each time step. This needs the design of a
ROM-FOM coupling approach where a structural ROM predicts the response of the
FOM solver in a modular fashion, i.e communicating the displacement and/or the
velocity at the interface, from the fluid viscous and pressure forces taken as input.
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2 ROM-FOM fluid-structure interaction coupling

A general FSI problem involving an incompressible fluid flow under an ALE de-
scription, and an hyperelastic solid can be described by the following systems of
equations for each subproblem :

• incompressible Navier-Stokes in the ALE frame:
ρf
∂vvv

∂t |Ã
+ ρf [(vvv −www).∇]vvv +∇p− 2 divdivdiv(µfDDD(∇vvv)) = 0 in Ωf (t)

∇ · vvv = 0 in Ωf (t)

(2µfDDD(∇vvv)− pIII)nnnf = gggN,f in ΓN,f (t)

(1)

added with wall no slip boundary conditions, imposed velocity profile at inflow
boundary conditions and imposed pressure at outflow boundary conditions.

• the equilibrium and constitutive equations for a hyperelastic solid:

∇XXXPPP = 000 in Ωs

PPP =
∂W

∂FFF

uuu = 000 in ΓD,s

PPP ·NNN s = GGGN,s in ΓN,s

(2)

• the coupling conditions:vvv =
∂uuu

∂t
= www on Γ

J−1FFF TPPP · nnns + (2µfDDD(∇vvv)− pIII) · nnnf = 000 on Γfsi(t)
(3)

with ρf the fluid density, µf the fluid dynamic viscosity, vvv is the Eulerian fluid ve-
locity and DDD(∇vvv) is the fluid strain rate tensor. The fluid equations are described
on a moving domain (using the ALE moving frame) Ωf (t). The Neumann bound-
ary conditions are defined on the moving boundary ΓN,f (t) where nnnf represents its
exterior normal unit vector.
For the solid problem, the equations are written in the Lagrangian frame with ∇XXX ·
the gradient operator in the original configuration, FFF the deformation gradient and J
its determinant. The matrix PPP is the first Piola-Kirchoff stress tensor and ΓD,s

and ΓN,s are the Dirichlet and Neumann boundaries respectively, in the original
configuration as well, whereas nnns is the normal vector in the current configuration.
The vector field uuu is the solid displacement field and GGGN,s is the traction force in the
original configuration. The material model is described in the stored energy density
function W .
The notation Ã represents the ALE mapping from the reference domain (e.g the ini-
tial configuration) to the computational domain and www is the ALE velocity, and Γfsi

refers to the "wet interface", where coupling between the solid and fluid happens.
As already mentioned above, in this paper we only consider quasi-static solid con-
ditions meaning that the acceleration term is supposed to be negligible, so we get
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the elliptic solid problem (2). We consider situations where a quasi-static loading is
applied, resulting in steady-state nonlinear problems. In this context, the dynamics
of the solid do not affect the global FSI problem, and thus are neglected. The solid
displacement, however, still affects the strength of the FSI coupling.

In the context of partitioned FSI simulations, we will use the Dirichlet-Neumann
coupling formulation that allows a ’black-box’ FSI coupling. We represent the fluid
solver operation as F :

F : RN → RN ; uuu|Γfsi
→ fff |Γfsi

(4)

where uuu|Γfsi
is the displacement field and fff |Γfsi

represents the fluid viscous and
pressure forces at Γfsi:

fff |Γfsi
= (2µfDDD(∇vvv)− pIII) · nnnf |Γfsi

. (5)

Similarly, the solid operator is defined as:

S : RN → RN ; fff |Γfsi
→ uuu|Γfsi

. (6)

In fully implicit schemes, the coupling conditions can be enforced using a fixed-point
formulation of the problem (1)-(3):

(F ◦ S)(fff |Γfsi
) = fff |Γfsi

. (7)

One approach to solve (7) at each time step is to compute Picard iterations plus a
fixed-point acceleration using Quasi-Newton methods for the FSI problem:

(F ◦ S)(fff |Γfsi
)− fff |Γfsi

= 000 (8)

(We use here the interface-quasi-Newton with inverse Jacobian from a least-squares
model (IQN-ILS) as the acceleration method [6], along with the filtering method
used in [13]). We use the software library preCICE [5] as a coupling interface for the
simulations.

2.1 Non-intrusive model order reduction strategy

The goal of the ROMs used in this work is to reduce the overall computational cost
of the FSI problem through the order reduction of the solid subproblem only. Using
partitioned FSI schemes allows for the replacement of the "module" of the solid
solver S with a new ROM solver S ′ :

S ′
: RN → RN ; fff |Γfsi

→ ûuu|Γfsi
(9)

and thus achieving a non-intrusive implementation of the model reduction. In fact,
the suggested ROM will also be able to predict the full displacement field (and stress
and strain tensor fields) in addition to the interface displacement. But note that
only the interaction variables located at the FSI interface are needed to advance
the FSI solution in time. The fluid solver, as well as the other components of
the FSI algorithm (i.e implicit coupling, Quasi-Newton acceleration ...) remain the
same. This produces a non-intrusive ROM-FOM coupling scheme, with a reduced
computational cost than the original FOM-FOM coupling.
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It’s worth mentioning that this strategy can particularly achieve significant speedups
when the solid FOM is much more expensive than the fluid FOM. Moreover, we
assume that in online-computations, the average number of subiterations does not
increase compared to the FOM-FOM problem. As we will see in the numerical
experiments, this is the case when the solid ROM is accurate enough and stable
compared to the FOM.

2.1.1 Expected speedups

In this short section, we give an idea of the overall speedup (denoted by s) of the
partitioned FSI coupling if the solid ROM solver returns a speedup σ compared to
the solid FOM solver. As mentioned above we will assume that the number of fixed-
point subiterations does not vary between FOM-FOM and FOM-ROM strategies.
Let us denote by Tf (resp. Ts) the mean computational time taken by the FOM
fluid (resp. solid) solver during one time iteration of the FSI coupling. The total
FOM-FOM time over a time step is Tf +Ts while the FOM-ROM time is Tf +Ts/σ.
The FOM-ROM speedup is then

s =
Tf + Ts

Tf +
Ts
σ

=
1 + Ts/Tf

1 +
1

σ
Ts/Tf

.

Assume that Ts/Tf � 1. Then we get the speedup estimation

s ≈ Ts/Tf

1 +
1

σ
Ts/Tf

=
σ

1 + σ
Tf
Ts

. (10)

Equation (10) shows that a ’good’ solid ROM speedup should be of the order Ts/Tf .
Assume for example that σ = Ts/Tf , then one finds s = σ/2 and the efficiency of
the FOM-ROM FSI strategy is 1/2. More generally, if the solid ROM achieves a

solid speedup σ = α
Ts
Tf

with α > 0, then s ≈
(

1− 1

1 + α

)
Ts
Tf

. In particular, the

ratio
Ts
Tf

is an upper bound of FOM-ROM FSI speedup.

2.1.2 FOM-ROM algorithm

Since we are interested in solid problems with quasi-static behaviour only, we argue
that the solid ROM can ignore the dynamics effects and only take into account the
fluid loading at the interface.
The HF solution from the FOM-FOM coupling is first used to train our model. Ac-
cordingly, two snapshot matrices are created from the forces the interface FFF and the
full solid displacement field UUU , collecting snapshot solutions from all the subitera-
tions at each time step during the FOM computation. We note that the force field is
discretised on the solid mesh interface, meaning that we collect the force data after
the mesh mapping step during the FSI solution schemes.
The suggested ROM performs a dimensionality reduction of the input fff |Γfsi

and
output ûuu of the solver, and then solves a regression problem in the low-order latent
space. Specifically, we use the Principal Component Analysis (PCA) method to find
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the best subspace of rank r on which those fields are projected, we will refer to these
PCA modes as ΦΦΦf ∈ RN×rf and ΦΦΦu ∈ RNs×ru respectively, where Ns is the number
of displacement degrees of freedom in the solid domain. The regression problem on
the other hand can be solved using different existing methods:

I : Rrf → Rru ; f̃ff → ũuu (11)

where f̃ff = ΦΦΦT
f fff |Γfsi

and ũuu = ΦΦΦT
uuuu are the coordinates of the force field and the

displacement field in the reduced bases respectively. In our experiments, the re-
gression methods that provided the best accuracy are reduced basis function (RBF)
interpolation [23] and low-degree polynomial approximation (degree less than three).

In the offline step, ΦΦΦf ∈ RN×rf and ΦΦΦu ∈ RNs×ru are computed using the SVD of FFF
and UUU respectively, the numbers of modes kept rf and ru can be chosen using a
variance energy threshold (e.g keeping 99.99% of the energy). The coordinates of
the data points in the discrete reduced bases F̃FF = ΦΦΦT

fFFF and ŨUU = ΦΦΦT
uUUU respectively

will be used to learn the surrogate model I(F̃FF ) = ŨUU . Note that the numbers of
modes used will directly affect the quality of this regression model. In fact, keeping
too much modes might result in a too big of a dimensionality for the surrogate I(·)
to have a good predictive ability with the available data. Keeping too few modes
induces a loss of information both at the "encoding" and the "decoding" part of
the ROM. On the online phase, at each subiteration, the solid ROM receives a
new interface force fff |Γfsi,current, its projection on the reduced basis is computed
f̃ff current = ΦΦΦT

f fff |Γfsi,current . The regression model then rapidly predicts the coordi-
nates of the current displacement field on the reduced basis ũuucurrent = I(f̃ff current).
A reverse projection on the high-dimensional space then gives the full displacement
field ûuucurrent = ΦΦΦuũuucurrent .

2.2 Example 1: one-dimensional elastic arterial vessel model

The model of flexible tube and related HF partitioned solvers proposed by [7] are
used here. The fluid is assumed be incompressible with constant density ρ. Both
fluid mass and momentum conservation equations read∂ta+ ∂x(av) = 0,

∂t(av) + ∂x(av2) +
a

ρ
∂xp = 0, t > 0, x ∈ [0, L]

(12)

where v is the bulk velocity, a is the tube cross section and p is the pressure. From
the fluid side, the unknowns are both velocity and pressure. For the solid flexible
tube, an algebraic quasi-static model

a = a(p)

is used (retaining only the tube stress in the circumferential direction). The following
nonlinear elastic stress-strain law is used:

σϕϕ = 12500 εϕϕ if |εϕϕ| < ε0
σϕϕ = 2500 εϕϕ + 20 if εϕϕ ≥ ε0
σϕϕ = 2500 εϕϕ − 20 if εϕϕ ≤ −ε0

(13)
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Figure 1: Arterial vessel test case schematic explanation (from [7])

with ε0 = 2 10−3 for the numerical experiments. Figure 2.2 shows a schematic
explanation of this problem. A non-reflective boundary condition is used on the right
boundary as suggested in [7]. The prescribed inlet (left face) velocity is computed
using the solution of a nonlinear Duffing equation in order to produce a signal with
rather complex dynamics:

ü(t) = a u(t) + b u2(t) + c u3(t) + d+ p cos(ft) + e u̇(t) ∀t ∈ [0, T ]

u(0) = 10 ; u̇(0) = 0,

vinlet(t) = gu(t) + h.

(14)

We use T = 120 s and fix the coefficients

(a, b, c, d, e, g, p) = (−1, 0, −0.002, −1, −0.02, 1/60, 360).

We consider the parameter vector µµµ = (f , h)T for the generation of different fre-
quencies and amplitudes. In order to train the ROM model, a FOM-FOM com-
putation is done on a single inlet velocity case corresponding to µµµ1 = (2 , 6)T (see
Figure 2.2), for a simulation time period t ∈ [0, 18] s. The fluid flow equations
(12) are solved using a second order finite volume scheme with a constant time step
∆t = 0.1 s, and the solid section a(p) is computed at each iteration as the solu-
tion of a scalar minimization problem. Four modes are selected for both force and
displacement modes, and a thin plate spline kernel RBF interpolator is used [24].
After the ROM has been trained, we test the ROM-FOM coupling on the future
prediction of the problem at the same inlet velocity, and then we test it on a differ-
ent prescribed velocity corresponding to µµµ2 = (0.9 , 4)T . We can see the difference
between the two signals in Figure 2.2.. The results for theses two cases are shown
in Figures 2.2. and 2.2. respectively, compared to the HF FOM-FOM solution.
We can see a significant accuracy achieved by the suggested ROM. Moreover, we
show the stress-strain law reconstructed using the ROM-FOM simulation in Fig-
ure 2.2., showing that the proposed ROM approach can capture the solid problem
nonlinearities. Remarkably, we can also see that the ROM-FOM successfully pre-
dicted the tube response in an extrapolated region in the strain response (strain
region εϕϕ < −0.0055) even for this nonlinear constitutive law, although it should
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Figure 2: Inlet velocity signals corresponding to µµµ1 and µµµ2. For the training phase we use
µµµ1 in the t ∈ [0, 18s] time window. For the prediction, we use µµµ2 and µµµ1 for t ≥ 18s.

be noted that it only involves a linear extrapolation from the phase space seen in
the training.
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Figure 3: The inlet pressure solution using the FOM-FOM (green dashed line with cross
marks) and the ROM-FOM (blue solid line). Prescribed inlet velocity corresponding to µµµ1.
Training and prediction regimes. The vertical black line indicates the end of the training
time period.
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Figure 4: The inlet pressure solution using the FOM-FOM and the ROM-FOM. Prescribed
inlet velocity corresponds to µµµ2. Prediction regime.

Figure 5: Nonlinear elastic Stress-Strain law used for the vessel tube. The reconstructed
curve from the ROM-FOM prediction is plotted along with the FOM-FOM model. We can
also see the data points from the FOM-FOM simulation used for the ROM training.

3 Concluding remarks and perspectives

We have presented a ROM-FOM coupling strategy to reduce the computational cost
of partitioned FSI simulations, through the reduction of the solid quasi-static sub-
problem when the cost of the solid solver is predominant. The proposed approach can
be implemented in a totally non-intrusive way. Using POD for the dimensionality
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reduction of the fluid forces as well as the displacement field, then a regression
model between the two fields in the latent space, the solid ROM has been shown
to accurately predict the full displacement field online with a significant speedup.
We have demonstrated the ability of the proposed ROM strategy on the problem
of the FSI arterial vessel, where we show a significant accuracy even for complex
dynamics, these properties are also seen in an extrapolated region in both time and
parametric spaces.

In future works, we envision to apply this ROM-FOM strategy on more computa-
tionally heavy test cases for 2D and 3D problems. We have promising early results
on a 2D FSI coupling case between a quasi-static hyperelastic plane strain solid and
an incompressible flow facing a cylinder. A Reynolds number of Re = 250 was used
for training, although the testing can be done on different -though close- Reynolds
numbers, i.e Re plays the role of µµµ in the previous test case. As seen in Figure 6,
the presence of the cylinder induces a vortex street, making the fluid dynamics more
complex (chaotic), even in the absence of solid dynamical effects. We note that our
strategy can be extended quite naturally and with minimal to no modifications for
two-dimensional problems. In this case for example, the same quasi-Newton fixed
point algorithm is used, and a polynomial regression of the 2nd order was used as
interpolation. More fluid basis functions are typically needed for these problems to
capture the nonlinearities of the interfacial forces. Here, the solid FOM is 1.7 more

computationally expensive than the fluid FOM (
Ts
Tf

= 1.7), and the ROM strategy

returns a solid ROM speedup of σ ≈ 760, making the overall speedup s ≈ 1.69.
We expect a stronger speedup in the 3D case because of the computational cost of
nonlinear quasi-static structural models.

Figure 6: A snapshot of the FOM-ROM solution for the test case of FSI between a hyper-
elastic solid and an incompressible viscous flow. A rigid obstacle is included to generate
van Karman alleys and make the flow regime chaotic.
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