
HAL Id: hal-04120747
https://hal.science/hal-04120747v1

Submitted on 7 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

H-STREAM: Composing Microservices for Enacting
Stream and Histories Analytics Pipelines

Genoveva Vargas-Solar, Javier Espinosa-Oviedo

To cite this version:
Genoveva Vargas-Solar, Javier Espinosa-Oviedo. H-STREAM: Composing Microservices for Enact-
ing Stream and Histories Analytics Pipelines. 19th International Conference on Service-Oriented
Computing (ISOC 2021), Nov 2021, Online, United Arab Emirates. pp.867-874, �10.1007/978-3-030-
91431-8_64�. �hal-04120747�

https://hal.science/hal-04120747v1
https://hal.archives-ouvertes.fr

H-STREAM: Composing Microservices for
Enacting Stream and Histories

Analytics Pipelines

Genoveva Vargas-Solar1 and Javier A. Espinosa-Oviedo2

1 French Council of Scientific Research (CNRS), LIRIS, Lyon, France
genoveva.vargas-solar@liris.cnrs.fr

2 University of Lyon, ERIC-LAFMIA, Bron, France
javier.espinosa-oviedo@univ-lyon2.fr

Abstract. This paper introduces H-STREAM, a stream/data histories
processing pipelines enactment engine. H-STREAM is a framework that
proposes microservices to support the analytics of streams produced by
systems collecting data stemming from IoT (Internet of Things) environ-
ments. Microservices implement operators that can be composed for im-
plementing specific analytics pipelines as queries using a declarative lan-
guage. Queries (i.e., microservices compositions) can synchronise online
streams and histories to provide a continuous and evolving understand-
ing of the environments they come from. H-STREAM microservices can
be deployed on top of stream processing systems and data storage back-
ends, tuned according to the number of things producing streams, the
pace at which they produce them, and the physical computing resources
available for continuously processing and delivering them to consumers.
The paper summarises results of an experimental setting for studying
H-STREAM scale-up possibilities according to the number of thins and
production rate. Then it shows a proof of concept of H-STREAM in a
smart cities scenario.

Keywords: Stream processing · Cloud · microservices.

1 Introduction

The Internet of Things (IoT) is the network of physical devices enabling objects
to connect and exchange data. IoT enables the construction of smart environ-
ments (grids, homes, and cities) where streams are produced at different paces.
The status of these environments can be observed, archived and analysed online,
managing and processing streams. To have a thorough understanding, modelling
and predicting smart environments behaviour, processing, and analytics tasks
must combine streams and persistent historical data. For example, at ”9:00,
start computing the average number of people entering a shopping mall every
morning and identify points of interest in the mall according to peoples flow in
the last month”. Answering this query is challenging because it is necessary to
determine: (i) the streams that must be discarded or persist into histories (do we

2 G. Vargas-Solar et al.

store the average/hour or every event representing a person entering the mall? or
the person visiting an area in the mall?); (ii) how to properly combine histories
with streams within analytics tasks (do we combine the whole history with the
average observation/hour? do we compute POIs of the last month and correlate
them with new computed POIs observed online?). Existing stream platforms
provide efficient solutions for collecting and processing streams with parallel
execution backends for example Apache Flink 3, Kafka 4 and message-based in-
frastructures like Rabbit MQ 5. Programmers rely on these platforms to define
stream processing operations that consume ”mini”-batches of streams observed
through temporal windows thanks to query engines like Elasticsearch, Amazon
Athena, Amazon Redshift and Cassandra. These engines use a list of passive
queries to analyze and sequence data for storage or use by other processors. The
focus has been oriented to ensure performance since streams can be massive
and analytics computationally costly. The processing operations can be rather
complex and ad-hoc to target application requirements. Analytics-based appli-
cations must build ad-hoc programs that process postmortem data and streams
to perform online analytics tasks. Since programs are ad-hoc and queries are
passive, the use of specific processing operations (e.g., clustering, windowing,
aggregation) are (hard)coded, and they should be modified and calibrated if
new requirements come up.

Current advances in data processing and data analytics have shown that it
is possible to propose general operations as functions or operators that can be
called, similar to queries within databases applications (e.g. Spark programs).
Still, the stream/data processing operations remain embedded within programs,
and this approach hinders data-program independence that can imply high main-
tenance costs. Addressing this requirement often implies integrating data pro-
cessing systems and programming this kind of hybrid solution. We believe that
platforms with processing and analytics operators that can be agnostic to pro-
cessing streams and stored data histories are still to come. The challenge is
defining a platform that can wrap operators as self-contained services and com-
pose them into pipelines of analytics tasks as queries that can continuously de-
liver aggregated streams/historical data to target applications. This paper intro-
duces H-STREAM 6 an analytics pipelines’ enactment engine. It provides stream
processing microservices for supporting the analysis and exploration of streams
in IoT environments. A microservice is a software development technique that
structures an application as a collection of loosely coupled services. H-STREAM
combines stream processing and data storage techniques tuned depending on the
number of things producing streams, the pace at which they produce them, and
the physical computing resources available for processing them online and deliv-
ering them to consumers. H-STREAM deploys stream operators pipelines, called

3 https://flink.apache.org
4 https://kafka.apache.org/intro
5 https://www.rabbitmq.com
6 Here the Github address and a Youtube address of a demonstration of the system.

H-STREAM 3

stream queries, on message queues (Rabbit MQ) and data processing platforms
(Spark) to provide a performant execution environment.

The paper summarises results of an experimental setting for studying H-
STREAM scale-up possibilities according to the number of thins and production
rate. Then it shows a proof of concept of H-STREAM in a smart cities scenario.

Accordingly, the remainder of the paper is organised as follows. Section 2
introduces related work regarding stream processing. The section discusses some
limitations and underlines how our work intends to overcome certain limitations
concerning those solutions. Section 3 describes the general architecture of H-
STREAM with operators as microservices that are deployed on high-performance
underlying infrastructures. It also introduces the microservices composition lan-
guage for defining stream processing pipelines as queries. Section 4 introduces
the core of our contribution, a stream processing microservice. It also describes
the experimental scenario that applies series of microservices to evaluate scale
up in terms of the number of things and volume of streams. Section 5 introduces
a proof of concept use case for analysing connection logs in cities and show how
to define queries that have to synchronise histories with streams to analyse them
online using H-STREAM query language. Section 6 concludes the paper.

2 Related work

Streams can result from a fine-grained continuous reading of phenomena within
different environments. Observations are done in different conditions and with
different devices. Therefore, streams must be processed for extracting useful in-
formation. Stream processing refers to data processing in motion or computing
on data directly as it is produced or received. In the early 2000s, academic
and commercial approaches proposed stream operators for defining continuous
queries (windows, joins, aggregation) that dealt with streams [6, 10]. These op-
erators were integrated as extensions of database management systems. Streams
were often stored in a database, a file system, or other forms of mass stor-
age. Applications would query the data or compute over the data as needed.
These solutions evolved towards stream processors that receive and send the data
streams and execute the application or analytics logic. A stream processor en-
sures that data flows efficiently and the computation scales and is fault-tolerant.
Many stream processors adopt stateful stream processing [4, 3, 2, 11] that main-
tains contextual state used to store information derived from the previously-seen
events.

We analyse stream processing systems that emerged to process (i.e., query)
streams from continuous data providers (e.g. sensors, things). These systems are
designed to address scalability including (i) streams produced at a high pace
and from millions of providers; (ii) computationally costly processing tasks (an-
alytics operations); (iii) online consumption requirements. Apache Storm7 is a
distributed stream processing computation framework that is distributed, fault-
tolerant and guarantees data processing. A Storm application is designed as a

7 https://storm.apache.org

4 G. Vargas-Solar et al.

”topology” in the shape of a directed acyclic graph (DAG) with spouts and bolts
acting as the graph vertices. Edges on the graph represent named streams flows
and direct data from one node to another. Together, the topology acts as a data
transformation pipeline. Apache Flink is an open-source stateful stream pro-
cessing framework. Stateful stream processing integrates the database and the
event-driven/reactive application or analytics logic into one tightly integrated
entity. With Flink, streams from many sources can be ingested, processed, and
distributed across various nodes. Flink can handle graph processing, machine
learning, and other complex event processing. Apache Kafka is an open-source
publish and subscribe messaging solution. Services publishing (writing) events to
Kafka topics are asynchronously connected to other services consuming (reading)
events from Kafka - all in real-time. Kafka Streams lacks point-to-point queues
and falls short in terms of analytics. Spring Cloud Data Flow8 is a microservice-
based streaming and batch processing platform. It provides tools to create data
pipelines for target use cases. Spring Cloud Data Flows has an intuitive graphic
editor that makes building data pipelines interactive for developers. Amazon
Kinesis Streams9 is a service to collect, process, and analyse streaming data in
real-time, designed to get important information needed to make decisions on
time. Cloud Dataflow10 is a serverless processing platform designed to execute
data processing pipelines. It uses the Apache Beam SDK for MapReduce op-
erations and accuracy control for batch and streaming data. Apache Pulsar is
a cloud-native, distributed messaging and streaming platform. Apache Pulsar11

is a high-performance cloud-native, distributed messaging and streaming plat-
form that provides server-to-server messaging and geo-replication of messages
across clusters. IBM Streams12 proposes a Streams Processing Language (SPL).
It powers a Stream Analytics service that allows to ingest and analyse millions
of events per second. Queries can be expressed to retrieve specific data and cre-
ate filters to refine the data on your dashboard to dive deeper.Source13. Event
stream query engines like Elasticsearch, Amazon Athena, Amazon Redshift, Cas-
sandra define queries to analyze and sequence data for storage or use by other
processors. They rely on ”classic” ETL (extraction, transformation and loading)
processes and use query engines to execute online search and aggregation, for
example, in social media contexts (e.g., Elastichsearch) and SQL like queries on
streams (e.g. Amazon Athena, Redshift and Cassandra).

Discussion. The real-time stream processing engines rely on distributed pro-
cessing models, where unbounded data streams are processed. Much data are of
no interest, and they can be filtered and compressed by orders of magnitude [9,
12, 13]. Stream querying and analytics are often performed after the complete
scanning of representative data sets. This strategy is inconvenient for real-time

8 https://spring.io/projects/spring-cloud-dataflow
9 http://aws.amazon.com/kinesis/data-streams/

10 https://cloud.google.com/dataflow
11 https://pulsar.apache.org/
12 https://www.ibm.com/cloud/streaming-analytics
13 https://deepsource.io

H-STREAM 5

processing. Windowing mechanisms have emerged for processing data stream in
a predefined topology with a fixed number of operations such as join, aggregate,
filter, etc. The challenge is to define these filters in such a way that they do not
discard information and that process streams produced at high pace to fulfill
consumers requirements. Furthermore, online analysis techniques must process
streams on the fly and combine them with historical data to provide past and
current analytics of observed environments. Despite solid stream processing plat-
forms and query engines, solutions do not let programmers design their analytics
pipelines without considering the conditions in which streams are collected and
eventually stored. H-STREAM has been designed as a stream processing and
analytics cartridge for defining stream analytics pipelines and enacting them by
composing microservices that hide the underlying platforms dealing with low-
level tasks for collecting and storing streams.

3 H-STREAM for building querying pipelines for
analysing streams

We propose H-STREAM, an analytics’ pipelines enactment engine with mi-
croservices that can be composed for processing streams (see figure 1). H-STREAM
operators implement aggregation, descriptive statistics, filtering, clustering, and
visualisation wrapped as microservices. Microservices can be composed to de-
fine pipelines as queries that apply a series of analytics operations to streams
collected by stream processing systems and stream histories. H-STREAM relies
on (i) message queues for collecting streams online from IoT farms; and (ii) a
backend execution environment that provides a high-performance computing in-
frastructure (e.g., a virtual data centre [1], a cloud) with resources allocation
strategies necessary for executing costly processes.

Composing microservices. Microservices can work alone or be composed to imple-
ment simple or complex analytics pipelines (e.g., fetch, sliding window, average,
etc.). A query is implemented by composing microservices. For example, con-
sider observing download and upload speed variations within users’ connections
when working on different networks. Assume that observations are monitored
online but that previous observations are also stored before the query is issued.
A network analyst willing to determine if she obtains the expected bandwidth
according to her subscription to a provider can ask every two minutes give me
the fastest download speed of the last 8 minutes (see a) in Figure 2). Figure 2
b) shows the composition implementing this query example that starts calling
a Fetch, and a Filter operators that retrieve respectively the streams produced
online with a history filtering the download speed collected the last 8 minutes.
Results produced by these services are integrated by the operator MAX that
synchronises the streams with the history to look for the maximum speed. The
result is stored by a service Sink that contacts Grafana. This query is executed
every two minutes by an operator window. The operator Fetch interacts with a
RabbitMQ service that collects streams from devices and with a service that con-

6 G. Vargas-Solar et al.

Fig. 1. H-STREAM General Architecture.

tacts InfluxDB to store the streams for building a history. Finally, an operator
window triggers the execution of the query every two minutes.

Fig. 2. Microservices Composition Example.

The approach for composing microservices is based on a composition oper-
ation that connects them by expressing a data flow (IN/OUT data). We cur-
rently compose aggregation services (min, max, mean) with temporal windowing
services (landmark, sliding) that receive input data from storage support or a
continuous data producer. We propose connectors, namely Fetch and Sink mi-

H-STREAM 7

croservices that determine the way microservices exchange data from/to things,
storage systems, or other microservices.

Stream Processing Pipelines Query Language. We proposed a simple query lan-
guage with the syntax presented in figure 3, used to express:

– The frequency in which data will be consumed (EVERY(number:Integer, time-

Unit:{minutes, seconds, hours})).

– The aggregation function applies to an attribute of the input tuples (min,
max, mean).

– The observation window on top of which aggregation functions will perform.
The window can involve only streams produced online (the last 5 seconds)
or include historical data (the last 120 days).

Fig. 3. Taxonomy of queries that can be processed by composing microservices.

The observation can be done starting from a given instance in the past (start-

ing(number:Integer, timeUnit:{minutes, seconds, hours})) until something happens.
For example, from the instant in which the execution starts until the consumer
is disconnected. This corresponds to a landmark window [7]. It can also be done
continuously starting from a moving ”current instant” to several {minutes, sec-

onds, hours} before. This case corresponds to a sliding window. The expression
includes the logic names of the data producers that can be a store (Influx, Cas-

sandra) and/or a streaming queue provided by a message-oriented middleware
(e.g., RabbitMQ). A query expression is processed to generate a query-workflow
that implements it (see figure 2). Activities represent calls to microservices; they
are connected according to a control flow that defines the order they should be
executed (i.e., in sequence or parallel). The control flow respects a data flow
that defines data Input/Output dependencies. H-STREAM enacts the query-
workflow coordinating the execution of microservices, retrieving partial output
that serves as input or a result (see figure 2).

8 G. Vargas-Solar et al.

4 Stream processing microservice

Figure 4 shows the general architecture of a stream microservice. A microservice
consists of three main components, Buffer Manager, Fetch and Sink, and Operator-

Logic. The microservice logic is based on a scheduler that ensures the recurrence
rate in which the analytics operation implemented by the microservice is exe-
cuted. Stream processing is based on “unlimited” consumption of data ensured
by the component Fetch that works if a producer notifies streams. This specifi-
cation is contained in the logic of the components OperatorLogic and Fetch.

Fig. 4. Architecture of a stream processing microservice for processing data streams.

As shown in the figure, a microservice communicates asynchronously with
other microservices using a message-oriented middleware. As data is produced,
the microservice fetches and copies the data to an internal buffer. Then, depend-
ing on its logic, it applies a processing algorithm and sends it to the microser-
vices connected to it. The microservices adopt the tuple oriented data model as a
stream exchange model among the IoT environment producing streams and the
microservices. A stream is a series of attribute-value couples where values are
atomic (integer, string, char, float) from a microservice point of view. The general
architecture of a microservice is specialised in concrete microservices processing
streams using well-known window-based stream processing strategies: tumbling,
sliding and landmark [8, 7]. Microservices can also combine stream histories with
continuous flows of streams of the same type (the average number of connections
to the Internet by Bob of the last month until the next hour).

Since RAM assigned to a microservice might be limited, and in consequence,
its buffer, every microservice implements a data management strategy by col-
laborating with the communication middleware to exploit buffer space, avoiding
losing data and generating results on time. A microservice communicates asyn-
chronously with other microservices using a message-oriented middleware. As
data is produced, the microservice fetches and copies the data to an internal
buffer. Then, depending on its logic, it applies a processing algorithm and sends
it to the microservices connected to it. There are two possibilities: (i) on-line

H-STREAM 9

processing using tree window-based strategies [8, 7] (tumbling, sliding and land-
mark) well known in the stream processing systems domain; (ii) combine stream
histories with continuous flows of streams of the same type (the average number
of connections to the Internet by Bob of the last month until the next hour).

4.1 Interval oriented storage support for consuming streams

A microservice that aggregates historical data and streams includes a compo-
nent named HistoricFetch. This component is responsible for performing a one-
shot query for retrieving stored data according to an input query (for example,
by a user or application). As described above, we have implemented a gen-
eral/abstract microservice that contains a Fetch and Sink microservices. The
historical fetch component has been specialized to interact with two stores: In-
fluxDB14 and Cassandra15. The microservice HistoricFetch exports the following
interface:
def queryToHistoric(function: String, value: String,

startTimeInMillis: Long, endTimeInMillis: Long,

groupByTimeNumber: Int, groupByTimeTimeUnit: String) :
List[List[Object]]

The method queryToHistoric(), shown in the code above, implements the con-
nection to a data store or DBMS, sends queries and retrieves data. It returns
the results packaged in the Scala structure List[List[Row]] objects, where Row is
a tuple of three elements:

– Timestamp: Long, a timestamp in the format epoch;
– Count: Double, the number of tuples (rows) that were grouped;
– Result: Double, the result of the aggregation function.

As shown in the following code, a component HistoricFetch is created by the
microservice specifying the name of the store (historicProvider), the name of the
database managing the stream history (dbName.series) and the execution context.
The current version of our microservice runs on Spark, so the execution context
represents a Spark Context (sc).

val hf : HistoricFetch = new

HistoricFetch(historicProvider,dbName,series,sc)

The component HistoricFetch of the microservice creates an object HistoricProvider

(step 1) that is used as a proxy for interacting with a specific store (i.e., InfluxDB
or Cassandra). The store synchronously creates an object Connection (step 2).
The Connection object will remain open once the query has been executed and

14 InfluxDB is a time series system accepting temporal queries, useful for computing
time tagged tuples (https://www.influxdata.comis)

15 Cassandra is a key-value store that provides non-temporal read/write op-
erations that might be interesting for storing huge quantities of data
(http://cassandra.apache.org)

10 G. Vargas-Solar et al.

results received by HistoricFetch. Then, the component HistoricalFetch will use it
for sending a temporal query using its method queryToHistoric() (step 3). The
result is then received in the variable Result that is then processed (i.e., trans-
formed to the internal structure of the operator see below) and shared with the
other components through the Buffer of the microservice (step 4).

Consider the query introduced previously every two minutes give me the
fastest download speed of the last 8 minutes. It combines the history of obser-
vations of the last 8 minutes with those produced continuously and this every
two minutes. A particular situation to consider is how to synchronise the ob-
servations stored in the history with those fetched online. Figure 5 shows the
general principle of the functional logic of a microservice (MAX) dealing with
the streams harvested before the execution of the current query. The challenge
is double, first retrieve batches of historical data according to different temporal
filters. For example, the temporal filter for data produced the last 8 minutes
observed from time t1 is [t1-8, t1] whereas for time t1 + i is [t1 + i-8, t1 + i].
Second, successively combine these batches with incoming flows arriving at time
t1, .. t1 + i every 2 minutes (as stated in the query). In technical terms, the
query implies looking for the maximum down load speed by defining windows
of 8 minutes for observing the downlaod speed in the connections. To get the
fastest speed every 2 minutes (as stated in the query), we divide the 8 minutes
into buckets of 2 minutes (see Figure 5 (1)) and look within the window for the
max value, that is, the fastest download speed (i.e., the fastest speed within the
2 minutes buckets), and keep it as the “local” maximum speed. We combine ev-
ery bucket with the historical data filtered according to the corresponding time
interval (see Figure 5 (2)). This strategy is valid only if the production timeliness
of the stream producers and the operator microservice are synchronised. Finally,
the global max will be the maximum of all this set of local maximum speeds
that will be the fastest download speed in the last 8 minutes.

Historical
DB

2

Temporal
Buckets

Generator
buckets

Stream

1 3

Obtain the historical
information (temporal
query) then ”open the
flow”

Synchronize the data
production timelines
of both systems

Divide the time in equally
sized ”time buckets”, each

one representing a time
interval TimeSinceEpochInMillis % BucketSizeInMillis == 0

Fig. 5. Synchronizing stream windows with historic data for computing aggregations.

H-STREAM 11

4.2 Microservices execution

Microservices are executed on top of a Spark infrastructure deployed on a vir-
tual machine provided by the cloud provider Microsoft Azure (see Figure 6). As
shown in the Figure, a microservice exports two interfaces: the operator interface
as a SpepsIoT Component with methods to manage it (e.g., start/stop, bind/unbind)
and to produce results in a push/pull mode; the DB interface (queryToHistorc in
the upper part of the Figure) to connect and send temporal queries to a tem-
poral database management system (e.g., Cassandra, InfluxDB). The microser-
vice wraps the logic of a data processing operator that consumes time-stamped
stream collections represented as series of tuples. We assume that it is possible
to navigate through the tuple structure for accessing attribute values where one
of the tuple attributes corresponds to its time-stamp. The time-stamp repre-
sents the arrival time of the stream to the communication infrastructure (i.e.,
rabbitMQ queue). The operator logic is implemented as a Spark program. Spark
performs its parallel execution. Produced results can be collected by interacting
with the operator through its interface; it can be connected to another microser-
vice (e.g., the operator sink) as shown in the left part of the figure.

Fig. 6. Microservice execution.

A microservice running on top of the Spark platform processes streams con-
sidering the following hypothesis:

– There is a global time model for synchronizing different timelines (batch and
stream).

– We use the Spark timeline as a global reference in the implementation, and
we execute aggregations recurrently according to “time buckets”. The size
of the time bucket is determined by a query that defines an interval of ob-
servation (e.g. the average number of connections of the last 5 hours) and a
moving temporal reference (e.g., every 5 minutes, until “now” if “now” is a
moving temporal reference).

12 G. Vargas-Solar et al.

4.3 Experimental validation

We conducted experiments for validating the use of our microservices. For de-
ploying our experiment, we built an IoT farm using our Azure Grant16 and
implemented a distributed version of the IoT environment to test a clustered
version of Rabbit MQ. Therefore, we address the scaling-up problem regarding
the number of data producers (things) for our microservices. Using Azure Vir-
tual Machines (VM), we implemented a realistic scenario for testing scalability
in terms of: (i) Initial MOM (RabbitMQ) installed in the VM2 in figure 7. (ii)
Producers (Things) installed in the VM1 in figure 7. (iii) microservices installed
in the VM3 in figure 7.

dxlab1
(VM1)

dxlab2
(VM2)

Fetch Operator
Logic

Buffer

Sink

Single Fetch Micro-service consuming
From Single/Multiple Queues

dxlab3
(VM3)

network

network

Thing 1

Thing n

Rabbit node

Fig. 7. General experimental setting deployed on Windows Azure.

As shown in figure 7, in this experiment, microservices and testbeds were
running on separate VMs. This experiment leads to several cases scaling up to
several machines hosting until 800 things with a clustered version of Rabbit using
several nodes and queues that could consume millions of messages produced at
rates in the order of milliseconds see Figure 8).

Observations in figure 9 showed the behaviour of the IoT environment regard-
ing the message-based communication middleware when the number of things
increased, when the production rate varies and when it uses one or several queues
for each consuming microservice. We also observed the behaviour of the IoT en-
vironment when several microservices were consuming and processing the data.
Of course, the most agile behaviour is when nodes and virtual machines increase
independently of the number of things. Indeed, note that the performance of 800
things against 3 things does not change a lot by increasing nodes, machines and
queues. Note also that devoting one queue per thing does not lead to essential
changes in performance.

16 The MS Azure Grant was associated with a project to perform data analytics on
crowds flows in cities. It consisted of credits for using cloud resources for performing
high-performance data processing.

H-STREAM 13

dxlab1
(VM1)

Fetch Operator
Logic

Buffer

Sink

Single Fetch Operator consuming
From Single/Multiple Queues

dxlab3
(VM3)

3 Node

dxlab2
(VM2)

Thing 1

dxlab2
(VM2)

Thing 1
dxlab2
(VM2)

Thing 1

Message Queues

Q1

Message Queues

Q1

Message Queues

Q1

dxlab1
(VM1)

Fetch Operator
Logic

Buffer

Sink

Single Fetch Operator consuming
From Single/Multiple Queues

dxlab3
(VM3)

3 Node800 queues

dxlab2
(VM2)

800 Things

dxlab2
(VM2)

800 Things

dxlab2
(VM2)

800 Things

Message Queues

Q1

Message Queues

Q1

Message Queues

Q1

3 nodes 1 queue/node3 Things
1 t/m

3 nodes ca. 200 queue/node

800 Things
ca. 200 t/m

dxlab1
(VM1)

Fetch Operator
Logic

Buffer

Sink

Single Fetch Operator consuming
From Single/Multiple Queues

dxlab3
(VM3)

3 Node

Message Queues

Q1

Message Queues

Q1

Message Queues

Q1dxlab2
(VM2)

800 Things

dxlab2
(VM2)

800 Things

dxlab2
(VM2)

800 Things

800 Things
200 t/m 3 nodes 1 queue/node

Fig. 8. Scale up scenarios

Fig. 9. Scale up results

For our experiments, we varied the settings of the IoT environment accord-
ing to the properties characterising different scenarios. We used fewer things
and queues, and more nodes to achieve data processing in an agile way. In this
scenario, we assumed that there were few connected things with a high produc-
tion rate. This scenario concerns an experiment conducted in the Neuroscience
Laboratory at CINVESTAV Mexico (details can be found in [5]). Regarding con-
nectivity in cities (see Section 5), with many people willing to connect devices in
different networks available in different urban spaces, we configured more things
and queues and nodes for the second one.

14 G. Vargas-Solar et al.

5 Use Case: Analysing the behaviour of network services

The use case scenario gives insight into the way microservices can be composed
to answer continuous queries. For deploying our experiment, we used the IoT
farm on Azure (see Section 4) that we implemented to address the scaling-up
problem in terms of several data producers (things) to be consumed by our
microservices.

The experimental scenario aims at analyzing the connectivity of the con-
nected society. The data set used for the use case has been produced in the con-
text of the Neubot project17. It consists of network tests (e.g., download/upload
speed over HTTP) realized by different users in different locations using an appli-
cation that measures the network service quality delivered by different Internet
connection types18 The idea is that people install the Neubot application on

Data Acquisition
Continuous monitoring of connected society

Data Storage
Archival of data as files

o Connection speed of one internet provider
Am I receiving the network speed I am paying for all the time?

o Internet availability with different Internet providers:
Which are the periods of the day in which I can upload/download files at the highest speed using different network providers?

Attribute Description
Time Number of seconds elapsed after EPOCH
Asnum Internet provider’ ID.
Client_country Country where the test was conducted.
Connect_time Round-Trip Time
Download_speed Download speed (bytes/secs).
Lat Latitude of the GPS location
Latency Delay between the sent and reception
Lon Longitude of the GPS location
Mlabservername Name of the server
Platform User operative system
Upload_speed Upload speed (bytes/secs).

Project S2EUNET (EU-FP7 IRESES)
LIG, LAFMIA, Politecnico di Torino
http://s2eunet.org

www.neubot.org

publish()

pu
bl
is
h(
)

publish()

dispatch()

MOM Message Queues
Q1

Qn
...

Input Queue

dispatch()

MOM Message Queues
Q1

Qn
...

Input Queue

dispatch()

MOM Message Queues
Q1

Qn
...

Input Queue

Fig. 10. Analyzing the connectivity of connected society.

their computers and devices. Every time they connect to the Internet using dif-
ferent networks (4G, Ethernet, etc.), the application computes network quality
metrics. The data is used then to answer queries such as:
- Am I receiving the network speed I am paying for all the time?;
- Which are the periods of the day in which I can upload/download files at the
highest speed using different network providers? A first simple example of the
queries we tested is the following.

EVERY 2 minutes compute the max value of download_speed

of the last 8 minutes

FROM influxdb database neubot series speedtest and streaming

17 Neubot is a project devoted to measuring Internet from the edges by the Nexa Center
for Internet and Society at Politecnico di Torino (https://www.neubot.org/).

18 Here is the reference to the project that produced the dataset. We omit this infor-
mation to respect double-blinded evaluation requirements.

H-STREAM 15

RabbitMQ queue neubotspeed

The result of an H-STREAM query as a microservices composition can be seen
in the right lower part of Figure 2. It corresponds to a visualisation of the
data sunk on Grafana. One of the functions not directly integrated into existing
stream processing systems is the possibility of synchronising long-term historical
data (stored streams) with streams. The use case provides queries that combine
long histories with online streams for the complete validation of H-STREAM.
Through queries implemented by H-STREAM queries, we prove that it is pos-
sible to provide a hybrid post-mortem and online analytics.

EVERY 60 seconds compute the max value of download_speed

of the last 3 minutes

FROM cassandra database neubot series speedtests and streaming

rabbitmq queue neubotspeed

EVERY 30 seconds compute the mean value of upload_speed

starting 10 days ago

FROM cassandra database neubot series speedtests and streaming

rabbitmq queue neubotspeed

EVERY 5 minutes compute the mean of the download_speed

of the last 120 days

FROM cassandra database neubot series speedtests and streaming

rabbitmq queue neubotspeed

The microservices query data histories stored as post-mortem collections,
and they also connect to online producers observing their connections accord-
ing to the observation window size. Figure 11 compares the execution time of

Fig. 11. Queries execution time vs. deployment setting and history length.

these queries according to two settings: (1 in the figure) 800 things producing
streams through 3 queues: (2 in the figure 800 things and 1 queue deployed

16 G. Vargas-Solar et al.

on one node). The good news is that H-STREAM microservices can deal with
farms with many stream producers connected to few queues. The combination
of streams produced at recurrent paces combined with long histories is done in
a ”reasonable” execution time in the order of seconds. The query execution cost
depends on its recurrence and the history size. The overhead implied by the
streams’ production pace is delegated to the message passing middleware.

6 Conclusions and Future Work

This paper proposes H-STREAM that composes microservices deployed on high-
performance computing backends (e.g., cloud, HPC) to process data produced
by farms of things producing streams at different paces. Microservices composi-
tions can correlate online produced streams with post-mortem time series. This
synchronisation of past and present enables the discovery and model of phenom-
ena or behaviour patterns within intelligent environments. The advantage of this
approach is that there is no need for full-fledged data management services; mi-
croservices compositions can tailor data processing functions personalised to the
requirements of the applications and IoT environments.

Future work consists of developing a microservices composition language that
can be used for expressing the data processing workflows that can be weaved
within target application logics [1]. We are working on two urban computing
projects regarding the modelling and management of crowds and smart energy
management in urban clusters.

References

1. Akoglu, A., Vargas-Solar, G.: Putting data science pipelines on the edge. arXiv
preprint arXiv:2103.07978 (2021)

2. Alaasam, A.B., Radchenko, G., Tchernykh, A.: Stateful stream processing for
digital twins: Microservice-based kafka stream dsl. In: 2019 International Multi-
Conference on Engineering, Computer and Information Sciences (SIBIRCON). pp.
0804–0809. IEEE (2019)

3. Carbone, P., Ewen, S., Fóra, G., Haridi, S., Richter, S., Tzoumas, K.: State man-
agement in apache flink®: consistent stateful distributed stream processing. Pro-
ceedings of the VLDB Endowment 10(12), 1718–1729 (2017)

4. Cardellini, V., Nardelli, M., Luzi, D.: Elastic stateful stream processing in storm.
In: 2016 International Conference on High Performance Computing & Simulation
(HPCS). pp. 583–590. IEEE (2016)

5. Enrique Arriaga-Varela, Javier A. Espinosa-Oviedo, G.V.S., Pérez, R.D.: Support-
ing real-time visual analytics in neuroscience. In: Advanced vector architectures for
future applications - Book of abstracts. Barcelona Supercomputing Center (2017)

6. Fragkoulis, M., Carbone, P., Kalavri, V., Katsifodimos, A.: A survey on the evo-
lution of stream processing systems. arXiv preprint arXiv:2008.00842 (2020)

7. Golab, L., Özsu, M.T.: Data stream management. Synthesis Lectures on Data
Management 2(1), 1–73 (2010)

H-STREAM 17

8. Krämer, J., Seeger, B.: Semantics and implementation of continuous sliding window
queries over data streams. ACM Transactions on Database Systems (TODS) 34(1),
4 (2009)

9. Lyman, P., Varian, H.: How much information 2003? (2004)
10. Rao, T.R., Mitra, P., Bhatt, R., Goswami, A.: The big data system, components,

tools, and technologies: a survey. Knowledge and Information Systems 60(3), 1165–
1245 (2019)

11. To, Q.C., Soto, J., Markl, V.: A survey of state management in big data processing
systems. The VLDB Journal 27(6), 847–872 (2018)

12. Woo, M.Y.: What’s the big deal about big data. Engineering and Science 76(3),
16–23 (2013)

13. Zikopoulos, P., Eaton, C., et al.: Understanding big data: Analytics for enterprise
class hadoop and streaming data. McGraw-Hill Osborne Media (2011)

