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Abstract
Many scientific studies in recent years have been collecting data at a high frequency, which
can be considered as functional data. When both the response variable to be modelled and the
covariates are functions, we provide a novel and easy-to-implement method addressing function-
on-function linear modelling and obtain interpretable parameters. Two main types of models are
considered: the concurrent model which explains the response curve 𝑌𝑖(𝑡) at time 𝑡 from the
values at same time 𝑡 of the covariates 𝑋𝑙

𝑖 (𝑡); the (feed-forward) integral model which explains
𝑌𝑖(𝑡) based on the values of covariate curves 𝑋𝑙

𝑖 (𝑠) observed at any times 𝑠 ≤ 𝑡. A regularized
inference approach is proposed, which accurately selects an appropriate set of basis functions
that can be used for functional data reconstruction and at the same time provides smooth and
interpretable functional parameters. A functional confident interval procedure is also proposed
which uses the conformalization framework. Numerical studies on simulated data with different
scenarios illustrate the good performance our the method to capture the relationship between
covariates and response. The method is finally applied to the well-known data in order to
compare it to some existed competitors. On Canadian weather data with the problem of predicting
precipitations from temperature measurements and on Hawaii ocean data for predicting ocean
salinity from temperature, oxygen, chloropigments and density measurements, our method made
significant improvements on prediction error.

1. Introduction
Most of the machine learning problems encountered in various fields of applied sciences including economics,

finance, geosciences, medicine, . . . involve data that is no longer collected in its traditional form, i.e. a response Y ∈ ℝ
described by a finite number of covariates. X = (X1, … , X𝑝) ∈ ℝ𝑝. We instead observe several recordings (over
time), sometimes both for the response, Y ∶ T → ℝ, and covariates X ∶ T → ℝ𝑝. As a result, new tools are needed to
process and analyze this very fast growing resource of data. A quite natural idea that has emerged lately is to extend
classical tools from data analysis to a new paradigm called Functional Data Analysis (FDA). This new paradigm has
proved very successful at addressing the statistical analysis of data where at least one of the variables of interest need
to be treated as a function. Extension of linear regression to the functional setting has therefore naturally become a
major area of research in FDA. While the literature is too vast to cover here, the recommended references for this field
are Ramsay and Silverman (2005), Ramsay, Hooker and Graves (2009), Horváth and Kokoszka (2012), Kokoszka
and Reimherr (2017), which provide excellent introductions to FDA. Moreover Goldsmith, Bobb, Crainiceanu, Caffo
and Reich (2011) and Morris (2014) provide a broad overview of the methods of functional linear regression. In the
functional setting, different types of functional linear regression have been considered, depending on the functional
nature of the response and/or at least one of the covariates. Thus, using the convention that first term denotes response-
type and second term denotes covariate-type, the following regression models are all the possible options to consider:
function-on-scalar, scalar-on-function and function-on-function. The scalar-on-function linear regression models is
the most thoroughly studied model among the three models in the current literature. Some references include Cardot,
Ferraty and Sarda (1999) and Hastie and Tibshirani (1993).
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Most of the inference approaches for these models rely on a basis expansion assumption. For instance Besse and
Cardot (1996) and Ramsay and Silverman (2005) proposed spline-type approximations of the functional covariates
and then performed the estimation step by minimizing a least squares criterion. Among other useful references,
Antoch, Prchal, Rosaria De Rosa and Sarda (2010) uses B-spline expansions for both the functional parameters
and the functional covariates. The issue of possible non-identifiability was pursued in Scheipl and Greven (2016).
In theses approaches, the functional regression models become equivalent to a multivariate model on the basis
expansion coefficients. An alternative way is to consider Functional Principal Components Analysis (FPCA, Ramsay
and Silverman (2005)), possibly using smoothness promoting penalization (Silverman, 1996; Besse, Cardot and
Ferraty, 1997). Possible issues in determining the number of components to account for that seem to be still open.
Indeed, it was shown in Crainiceanu, Staicu and Di (2009) that the shape of the functional parameters can drastically
change as one or two additional principal components are included, making the process quite unstable and relatively
difficult to interpret.

In comparison with scalar-on-function problems, function-on-function models, that we address here, have been
much less studied in the literature. For instance, Ivanescu, Staicu, Scheipl and Greven (2015) proposes via the pffr
method to estimate a function-on-function regression model using a penalized mixed model. In this setting as well,
the main issue faced is not only the problem of accurately selecting the number of basis functions and the location
of the knots (Li and Ruppert, 2008), but also the possible interpretability of the obtained estimators (James, Wang
and Zhu, 2009). Signal compression approach (wSigcomp) designed by Luo, Qi and Wang (2016) which is another
way to address function-on-function models firstly apply wavelets transformation to covariates and with the functional
response and the obtained multivariate covariates, proposed a method to estimate the functional bivariate parameter
by characterize it as the solution of a generalized functional eigenvalue problem. The Optimal Penalized Function-on-
Function Regression (OPFFR) proposed by (Sun, Du, Wang and Ma, 2018), produce an estimator of the 2D functional
parameter as optimizer of a form of penalized least squares where the penalty enforces a certain level of smoothness.

In mathematical terms, the problem considered in the present paper is the one of estimating a linear relationship
between functional covariates and functional response based on the 𝑛-sample(

Y𝑖(𝑡), X𝑖(𝑡) =
(
X1
𝑖 (𝑡),… ,X𝑝

𝑖 (𝑡)
)⊤

, 𝑡 ∈ [0,T], 𝑖 = 1,… , 𝑛

)

where the output variable Y(𝑡) and the 𝑝 input variables (X𝑙(𝑡))1≤𝑙≤𝑝 are assumed to belong to the separable Hilbert
L2([0; T]). In the sequel, we focus in particular on the following two functional linear models:

Y𝑖(𝑡) = 𝛽0(𝑡) +
𝑝∑

𝑙=1

𝛽𝑙(𝑡) X𝑙
𝑖(𝑡) + 𝜀𝑖(𝑡) =

(
1, X𝑖(𝑡)

)⊤𝛽(𝑡) + 𝜀𝑖(𝑡) , (1)

Y𝑖(𝑡) = 𝛾0(𝑡) +
𝑝∑

𝑙=1
∫

𝑡

0
𝛾𝑙(𝑠, 𝑡) X𝑙

𝑖(𝑠) d𝑠 + 𝜀𝑖(𝑡) = 𝛾0(𝑡) + ∫

𝑡

0
X𝑖(𝑠)⊤𝛾(𝑠, 𝑡) d𝑠 + 𝜀𝑖(𝑡) (2)

where 𝛽(𝑡) =
(
𝛽0(𝑡), 𝛽1(𝑡), … , 𝛽𝑝(𝑡)

)⊤, 𝛾(𝑠, 𝑡) = ( 𝛾0(𝑡), 𝛾1(𝑠, 𝑡), 𝛾2(𝑠, 𝑡), … , 𝛾𝑝(𝑠, 𝑡)
)⊤ are the unknown

functional parameters and are assumed to be square integrable; 𝜀𝑖(𝑡) is the model error and is a sample of centered
random variables with variance 𝜎2𝑖 , specific to the 𝑖𝑡ℎ individual (Ramsay and Silverman (2005), Chapter 13); 𝜀𝑖(𝑡) and
X𝑖(𝑡) are assumed to be uncorrelated. The noise functions 𝜀𝑖(𝑡) can be rigorously defined using white noise theory as
presented in Hida, Hui-Hsiung, Potthoff and Streit (1993). In our context, we will only use the fact that when sampled
at various times from a finite set  , the vector (𝜀𝑖(𝑡))𝑡∈ can be expressed as a sum of a vector with i.i.d. components
and a vector with prescribed covariance matrix, i.e. a vector with constant components in the simplest case. Model
(1), known as the "concurrent model" , assumes that the response function at time 𝑡, Y𝑖(𝑡), is explained by covariate
functions X𝑙

𝑖(𝑡), at exactly the same time 𝑡, the functional parameters being allowed to vary with 𝑡 as well. The second
model (2), called the “integral model", represents Y𝑖(𝑡) using the values of the covariates curves X𝑙

𝑖(𝑠) for all the
observed times 𝑠 ≤ 𝑡. Clearly, Model (2) is more general and richer than Model (1). Exploring the “concurrent model"
further at the first step is of great interest because, as mentioned in Hastie and Tibshirani (1993), any functional linear
model can be reduced to this form.
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In this paper, we firstly develop an efficient approach named PenFFR (or FFR for the non penalized version) for
estimating the functional parameters 𝛽(𝑡) of the concurrent model (1) and 𝛾(𝑠, 𝑡) of the integral model (2). For this
purpose, we use cubic B-spline basis expansion for both functional covariates and functional parameters. We propose
penalized estimator of the corresponding functional basis coefficients. As will be shown in the sequel, our approach
allows to simply choose equispaced knots and a sufficient number of basis functions to capture the main features of
the covariates. Overfitting will be naturally avoided by penalizing roughness via controlling the second derivatives
of the functional parameters which are being maximized. Secondly, we propose a method to build confident intervals
of the predictions gives by the method. To achieve this, we drawn a functional quantile regression by perturbing
the standard linear regression and computed functional quantiles by optimal transport. This functional quantile
regression is then combined to the conformalized method to build a functional conformalized quantiles regression.
Indeed, confidence intervals are one way to guarantee how good are the predictions we made and it is acknowledged
by several authors in the literature. They also help for assess statistical significance, model validation or decision
making. That’s why in some practical situations the final inference goal is generally the estimation of a confidence
interval of the predictions. To build confident intervals with desirable properties such as distribution-freeness or non-
asymptoticity, conformal prediction is paramount in modern machine learning for providing reliable measures of
prediction uncertainty. A comprehensive development of this topic is originally presented in Vovk, Gammerman and
Shafer (2005) and Lei, G’Sell, Rinaldo, Tibshirani and Wasserman (2016). Angelopoulos and Bates (2023) proposes
a comprehensive overview, Tibshirani, Foygel Barber, Candes and Ramdas (2019) present a weighted version which
can be used for problems where the test and training covariate distributions differ.

Plan of the paper. The paper is organized as follows: Section 2 shows, how under the assumption of functional
basis expansion, the concurrent and integral models are transformed into mixed matrix models and Section 3 the
estimation scheme which consists of two steps. The first one addresses recovering of the functional nature of the
covariates, by approximating them into a functional basis. The second step consists of penalized estimation of the
functional regression coefficients, which are themselves decomposed in another functional basis. Section 4 developed
the functional quantile regression model by perturbing linear regression in order to provide conformal predictions.
Section 5 contains a simulation based exploration of the method which confirms the efficiency of the proposed
approach. Section 6 presents an illustration of the method on two real data sets. The first one is the well-known Canadian
weather data set, in which the goal is to explain the precipitation as a function of the temperatures in different Canadian
cities. The second one is the Hawaii ocean data set in which salinity is explained as a function of four functional
covariates. Finally, Section 7 concludes the paper.

2. Linear models for function-on-function regression
In this section, it is shown how the functional models (1) and (2) can be, under the basis expansion assumption of

covariates and parameters, reduce to a linear mixed model onto the discrete observations of the functional response
and functional covariates.
2.1. Functional concurrent model

Linear regression for a functional response involving one or more functional covariates in the concurrent model
is a well-known problem. The main issue is to estimate an infinite dimensional parameter 𝛽(𝑡) through a finite sample
of observations. As shown in Hastie and Tibshirani (1993), Model (1), also called the varying coefficient model, is
interesting because any functional model can be reduced to this form. Chapter 14 in Ramsay and Silverman (2005)
describes how this model can be fitted by minimizing an unweighted least squares criterion. The method proposed in
this paper addresses the estimation problem using a penalized function-on-function regression as proposed in Ivanescu
et al. (2015), where the problem is represented as a mixed model. Nevertheless, our work differs by the choice of the
penalization criterion enforced on the functional parameter. The parameter 𝛽(𝑡) is expanded in functional basis using
𝑞
𝛽

basis functions to get back to a classical mixed model for which the estimations of the parameters are well known.
Furthermore, we allow to choose the number of basis functions 𝑞

𝛽
to be large enough to capture any desired variations

of 𝛽(𝑡), and we add a roughness penalty term to get a smooth solution for the parameter at the end. As a first step of
our modelling, we recover the underlying functional process, by using penalized cubic B-splines expansion for all the
functional covariates.
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2.1.1. Functional basis expansion of covariates and model parameters
In practice, we do not properly observe a continuous curve for each realization of both the response variable Y𝑖(𝑡)

and the covariate variables
(
X𝑙
𝑖(𝑡)
)
1≤𝑙≤𝑝

. In indeed, as opposed to the ideal observation setting, we only have access
to a set of noisy observations at a finite number of points on a grid. As a result, the functional data can be presented as
a numerical vector. In order to recover the continuous form, which generally belongs to an infinite dimensional space
(e.g. Hilbert separable space 𝐿2([0, 𝑇 ])), one efficient way to proceed is by expanding the considered functions in a
functional basis. The functional response, which is assumed in model (1) even in model (2) to be written as a linear
combination of these predictors, is not necessary to be pre-processed. The advantage of this approach is the fact that by
truncating the series at a given level 𝑞

𝑙
, we obtain an approximation of the covariate function X𝑙

𝑖(𝑡) in a 𝑞
𝑙

dimensional
space.

So for all the 𝑝 covariates X𝑙(𝑡), we can therefore recover a representation in cubic B-splines functional basis. As
indicated by Li and Ruppert (2008), the choice of the number of knots depends on the complexity of the variable and
should be large enough to capture the patterns of the variable. It is reasonable to suppose that this number and, thus, the
number of basis functions depends on the covariate. So to distinguish the basis functions of each covariate, although
they just differ by their number, we will adopt in the rest of this article the system

(
B𝑙
1(𝑡), B

𝑙
2(𝑡), … , B𝑙

𝑞X𝑙
(𝑡)
)

as the
basis function of X𝑙(𝑡). Then, any functional covariate can be written as:

X𝑙
𝑖(𝑡) =

𝑞x𝑙∑
𝑗=1

𝑥𝑙𝑖𝑗 B
𝑙
𝑗(𝑡) = B𝑙(𝑡)⊤ 𝑥𝑙𝑖 with 1 ≤ 𝑙 ≤ 𝑝. (3)

The basis functions B𝑙
𝑗(𝑡) being prescribed, the estimation of coefficients 𝑥𝑙𝑖𝑗 is done as a preliminary step (Li and

Ruppert, 2008; Ruppert, 2002; Ramsay and Silverman, 2005).
Similarly as for functional covariates, we expand all the functional parameters (𝛽𝑙(𝑡))𝑙 of the concurrent model in

functional basis. The number of basis functions 𝑞
𝛽𝑙

must be chosen as sufficiently large to capture the patterns of any
𝛽𝑙(𝑡):

𝛽𝑙(𝑡) =
𝑞𝛽𝑙∑
𝑗=1

𝑏𝑙𝑗 𝜙
𝑙
𝑗(𝑡) = 𝜙𝑙(𝑡)⊤ 𝑏𝑙 with 0 ≤ 𝑙 ≤ 𝑝. (4)

Using the expressions (3) and (4), the components in Model (1) become:

𝛽(𝑡) =


𝛽0(𝑡)
𝛽1(𝑡)
⋮

𝛽𝑝(𝑡)

 =


𝜙0(𝑡)⊤ 𝑏0
𝜙1(𝑡)⊤ 𝑏1

⋮
𝜙𝑝(𝑡)⊤ 𝑏𝑝

 =


𝜙0(𝑡)⊤ 0 … 0
0 𝜙1(𝑡)⊤ … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝜙𝑝(𝑡)⊤


⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(𝑝+1,
∑

𝑙 𝑞𝛽𝑙 ) - matrix


𝑏0
𝑏1
⋮
𝑏𝑝


⏟⏟⏟∑
𝑙 𝑞𝛽𝑙 - vect.

= Φ(𝑡) 𝑏 ,

and

X𝑖(𝑡) =


1

X1
𝑖 (𝑡)
⋮

X𝑝
𝑖 (𝑡)

 =


1

B1(𝑡)⊤ 𝑥1𝑖
⋮

B𝑝(𝑡)⊤ 𝑥𝑝𝑖

 =


1 0 … 0
0 B1(𝑡)⊤ … 0
⋮ ⋮ ⋱ ⋮
0 0 … B𝑝(𝑡)⊤


⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(𝑝+1,
∑

𝑙 𝑞X𝑙 ) - matrix


1
𝑥1𝑖
⋮
𝑥𝑝𝑖


⏟⏟⏟∑
𝑙 𝑞X𝑙 - vect.

= B(𝑡) 𝑥𝑖.

By plugging-in these expressions into Model (1), we get:
Y𝑖(𝑡) = 𝑥⊤𝑖 B(𝑡)

⊤Φ(𝑡) 𝑏 + 𝜀𝑖(𝑡) = R𝑖(𝑡)⊤𝑏 + 𝜀𝑖(𝑡) (5)
with R𝑖(𝑡) = Φ(𝑡)⊤ B(𝑡) 𝑥𝑖 which is used as design matrix and 𝑏 the unknown parameters to be estimated.
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2.1.2. Functional concurrent model on the observations
The concurrent model implicitly assumes that the functional covariates and the functional response are observed

at the same timestamps. The observation grid will consist of 𝑚 points {𝑡1,… , 𝑡𝑚}. In mathematical terms we have:
Y𝑖(𝑡𝑗) = R𝑖(𝑡𝑗)⊤𝑏 + 𝜀𝑖(𝑡𝑗) with 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚. (6)

One very specific issue to take care of is that the successive values of the observation noise 𝜀𝑖(𝑡1),… , 𝜀𝑖(𝑡𝑚) can not
be assumed independent.

One way to address the question of dependency is to use a linear mixed model (LMM, Wood (2006)). We thus
assume that the model error can be decomposed as 𝜀𝑖(𝑡𝑗) = U𝑖 + 𝜂𝑖𝑗 , with 𝜂𝑖𝑗 a Gaussian white noise and U𝑖 a random
variable which takes into account the random effect in each individual 𝑖 = 1,… , 𝑛. To summarize, our model consists
of a LMM with fixed effects 𝑏 and random effect U𝑖. In matrix form we get:

Y = R⊤𝑏 + ZU + 𝜂, (7)
where Y =

(
Y1(𝑡1), … , Y1(𝑡𝑚), Y2(𝑡1), … , Y𝑛(𝑡𝑚)

)⊤, R =
(
R𝑖(𝑡𝑗)

)
𝑖,𝑗

the design matrix of dimension 𝑞
𝛽
×𝑛𝑚 with

𝑞
𝛽
=
∑

𝑙 𝑞𝛽𝑙 , U =
(
U1, U2, ⋯ , U𝑛

)⊤
∼  (𝟎,Γ), 𝜂 = (𝜂𝑖𝑗)𝑖,𝑗 ∼  (𝟎, 𝜎2𝕀𝑛𝑚) and

Z =


1𝑚×1 0𝑚×1 … 0𝑚×1
0𝑚×1 1𝑚×1 … 0𝑚×1
⋮ ⋮ ⋱ ⋮

0𝑚×1 0𝑚×1 … 1𝑚×1


⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(𝑛𝑚×𝑛) - matrix

.

The specific notations we used are the matrices 0𝑘×𝑙 and 1𝑘×𝑙 of size 𝑘 × 𝑙, which are composed of zeros and ones,
respectively; The notations 𝟎 refers to the corresponding null vector and Γ the unknown covariance matrix of the
random effects.
The parameters are then the fixed effects vectors 𝑏 and the variance components 𝜎2 and Γ. We describe how to perform
the inference in Section 3.
2.2. Functional integral model

The integral Model (2) assumes cumulative effects of covariates. More clearly, the model we proposes use
observations of covariates up until time 𝑡 to predict the response at time 𝑡. It is important to note that in most models
found in the literature (Ramsay and Silverman, 2005; Horváth and Kokoszka, 2012), when both covariates and response
have the same domain, consider that the response at any time 𝑡 depends on the influence of the covariates on the whole
domain. Such model implicitly assumes that the covariates at any time 𝑡 + 𝑠 can influence the response variable at
time 𝑡. However, in the integral model, the functional parameters are bivariate functions 𝛾𝑙(𝑠, 𝑡), except for the constant
of the model, which remains univariate. In this section, we start by expanding the parameters in a finite-dimensional
functional basis and then plug this expression into the model.
2.2.1. Functional basis expansion of covariates and model parameters
The functional parameters are therefore expanded in a bivariate basis which may or may not have the same number of
basis functions on each of the two dimensions. Without loss of generality and for the sake of simplicity, we assume
that the number of basis functions is the same in the two dimensions. This leads to the following expression:

𝛾𝑙(𝑡, 𝑠) =

𝑞
𝛾𝑙∑

𝑗,𝑘=1

𝑎𝑙𝑗𝑘 B
𝑙
1𝑗(𝑡) B

𝑙
2𝑘(𝑠) (8)

where (B𝑙
1𝑗(𝑡)

)
1≤𝑗≤𝑞

𝛾𝑙
and (B𝑙

2𝑗(𝑡)
)
1≤𝑗≤𝑞

𝛾𝑙
are the basis functions and (𝑎𝑙𝑗𝑘)1≤𝑗,𝑘≤𝑞

𝛾𝑙
the unknown basis coefficients to

be estimated. We can rewrite this expression in matrix form by:
𝛾𝑙(𝑡, 𝑠) = 𝑎𝑙

⊤ 𝐁𝑙
1(𝑡) B

𝑙
2(𝑠) (9)
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with
𝑎𝑙 =

(
𝑎𝑙11 … 𝑎𝑙1𝑞𝛾𝑙 𝑎𝑙21 … … 𝑎𝑙𝑞𝛾𝑙1 … 𝑎𝑙𝑞𝛾𝑙 𝑞𝛾𝑙

)⊤
,

𝐁𝑙
1(𝑡) = 𝐝𝐢𝐚𝐠

(
B𝑙
11(𝑡), … , B𝑙

1𝑞𝛾𝑙
(𝑡), … , … ,B𝑙

11(𝑡), … , B𝑙
1𝑞𝛾𝑙

(𝑡)
)
,

B𝑙
2(𝑠) =

(
B𝑙
21(𝑠) … B𝑙

21(𝑠) … … B𝑙
2𝑞𝛾𝑙

(𝑠) … B𝑙
2𝑞𝛾𝑙

(𝑠)
)⊤

.

The functional constant being univariate, it can thus be written as in (4) in the form:

𝛾0(𝑡) =

𝑞
𝛾0∑

𝑗=1

𝑎0𝑗 B
0
𝑗 (𝑡) = B0(𝑡)⊤𝑎0.

2.2.2. Functional integral model on the observations
By plugging covariates and parameters functional basis expansion in the integral Model (2), we get:

Y𝑖(𝑡) = 𝛾0(𝑡) +
𝑝∑

𝑙=1
∫

𝑡

0
𝑥𝑙

⊤

𝑖 B𝑙(𝑠) B𝑙
2(𝑠)

⊤ 𝐁𝑙
1(𝑡)

⊤ 𝑎𝑙 d𝑠 + 𝜀𝑖(𝑡)

= 𝛾0(𝑡) +
𝑝∑

𝑙=1

𝑥𝑙
⊤

𝑖

(
∫

𝑡

0
B𝑙(𝑠) B𝑙

2(𝑠)
⊤ d𝑠

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐁𝑙
2(𝑡)

𝐁𝑙
1(𝑡)

⊤ 𝑎𝑙 + 𝜀𝑖(𝑡)

= 𝛾0(𝑡) +
𝑝∑

𝑙=1

𝑥𝑙
⊤

𝑖 𝐁𝑙
2(𝑡)𝐁

𝑙
1(𝑡) 𝑎

𝑙 + 𝜀𝑖(𝑡)

= B0(𝑡)⊤𝑎0 +
𝑝∑

𝑙=1

Q𝑙
𝑖(𝑡)

⊤𝑎𝑙 + 𝜀𝑖(𝑡) ,

with Q𝑙
𝑖(𝑡) = 𝐁𝑙

1(𝑡)
⊤ 𝐁𝑙

2(𝑡)
⊤ 𝑥𝑙𝑖. Finally we obtain:

Y𝑖(𝑡) = Q𝑖(𝑡)⊤𝑎 + 𝜀𝑖(𝑡) (10)

with 𝑎 = (𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑝)⊤ and Q𝑖(𝑡) =
(
B0(𝑡)⊤, Q1

𝑖 (𝑡)
⊤, Q2

𝑖 (𝑡)
⊤, … , Q𝑝

𝑖 (𝑡)
⊤
)⊤ two vectors of length

𝑞
𝛾
= 𝑞

𝛾0
+

𝑝∑
𝑙=1

𝑞2
𝛾𝑙
.

Once again, we are faced with the problem of lack of independence of the different measured values for the same
individual. We will proceed exactly in the same way as with the concurrent model using a linear mixed model with
fixed effects given by the vector 𝑎 and random effects given by the random vector U = (U𝑖)𝑖. The model will therefore
be written as a LMM given by:

Y = Q⊤𝑎 + ZU + 𝜂, (11)
with Z, U and 𝜂 define similarly to (7). Q =

(
Q𝑖(𝑡𝑗)

)
𝑖,𝑗

the design matrix of dimension 𝑞
𝛾
× 𝑛𝑚.

As in the concurrent model, the parameters we need to estimate are the fixed effects vectors 𝑎 and the variance
components 𝜎2 and Γ. The inference scheme is described in Section 3.
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3. B-spline-based penalized estimator
In both the concurrent and the integral models presented in Section 2.1 and Section 2.2 respectively, we have used

the decomposition of the infinite-dimensional functional covariates and parameters into a truncated functional basis
depending on the chosen number of basis functions. These values naturally needed to be correctly selected in order to
avoid over- or under-fitting. Nevertheless, precise adjustment of these values often induces a high computational effort.
In the case of the B-spline basis, even more parameters have to be properly tuned such as the choice of the spline order
and the location of the knots. In order to reduce the expected cost of such a computationally demanding procedure, we
made the choice of choosing a sufficiently large a priori value for 𝑞

𝛽
(or 𝑞𝛾 ) and then apply a roughness penalty. This

approach brings the benefit of reducing the overall computational cost, and of possibly improving the interpretability
of the estimated functional coefficients. This last point is very interesting in the case of the linear model because as
we already know, the interpretation of the predictors-response relationship becomes more difficult as the shape of the
functional parameter 𝛽 (or 𝛾) does not have any simple structure.

Various approaches to regularize the parameter shape have been proposed in the literature. In our setting of interest,
the main idea is oftentimes to enhance the model performance and interpretability by adding a roughness penalty.
Leurgans, Moyeed and Silverman (1993) is among the first to explore the functional penalization and show that the
obtained estimator 𝛽(𝑡) (resp. 𝛾̂(𝑠, 𝑡)) becomes less sensitive to the rather subjective choice of the number of basis
functions 𝑞

𝛽
(resp. 𝑞𝛾 ). More recently, James et al. (2009) proposed a method called Functional Linear Regression

That is Interpretable (FLiRTI) which addresses the issue of choosing relevant penalties. Based on variable selection
ideas such as the Lasso penalty, they produce accurate, flexible and highly interpretable estimates of the functional
parameters. The main idea in James et al. (2009) is, instead of enforcing sparsity on the function themselves, to enforce
sparsity of the derivatives instead. Using the notation 𝛽(𝑙)(𝑡) for the 𝑙th derivative of 𝛽(𝑡), we may deduce that 𝛽(0)(𝑡) = 0
guarantees X(𝑡) has no effect on Y(𝑡) at 𝑡; 𝛽(1)(𝑡) = 0 implies that 𝛽(𝑡) is constant at 𝑡; 𝛽(2)(𝑡) = 0 means that 𝛽(𝑡) is
linear at 𝑡 and so on. The FLiRTI approach also combine sparsity enforcing penalties for more than one derivative at
a time, which can be useful for smooth parameters that may even vanish on some intervals.

Instead of the Lasso penalty applied in the FLiRTI method, where choosing the derivatives remains a difficult
computational issue, our approach uses a Ridge penalty on the second derivative of the functional parameters. The
choice of penalizing the second derivative is mainly motivated by the desire to obtain a possibly locally linear
relationship if needed. Moreover, the use the Ridge penalty is motivated by the lack of exact sparsity observed in
real problems and the clear benefits of getting a closed form formula for the estimators.

3.1. Penalized estimator for the concurrent model
Let us first consider the concurrent model in the classical mixed model form as in (7). In order to obtain an

interpretable estimator, we will use a roughness penalty in the form of a Ridge-type penalty on the second derivatives,
as advocated for in the previous paragraph. The objective function is the penalized log-likelihood function given by

𝑝𝑒𝑛(𝑏, Γ) = - 2(𝑏, Γ Y) +
𝑝∑

𝑙=0

Pen(𝛽𝑙) ; (12)

with,
(𝑏, Γ Y) = -1

2

(
𝑛𝑚 log(2𝜋) + logV + (Y − R⊤𝑏)⊤V-1(Y − R⊤𝑏)

)
(13)

using that V = Var(ZU + 𝜂) and the penalty

Pen(𝛽𝑙) = 𝜆𝑙 ∫ 𝛽
′′

𝑙 (𝑡)
2 𝑑𝑡 = 𝜆𝑙∫

⌊ 𝑞𝛽𝑙∑
𝑗=1

𝑏𝑙𝑗𝜙
𝑙ε
𝑗 (𝑡)

⌋2
𝑑𝑡 = 𝜆𝑙

𝑞𝛽𝑙∑
𝑠,𝑘=1

𝑏𝑙𝑠𝑏
𝑙
𝑘Φ

𝑙
𝑠𝑘,

with Φ𝑙
𝑠𝑘 = ∫ 𝜙𝑙ε

𝑠 (𝑡)𝜙
𝑙ε
𝑘 (𝑡) 𝑑𝑡.

When 𝜆𝑙 is too large, the estimation of 𝛽𝑙(.) will be too smooth, and we will not be able to account for the possible
variations of the regression coefficients. When, instead, 𝜆𝑙 is too small, the estimators might become too rough and
overfitting might occur.
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For a given value 𝜆𝑙, the estimation of (𝛽𝑙(𝑡))0≤𝑙≤𝑝 is obtained by solving:

min
𝑏,Γ

𝑝𝑒𝑛(𝑏, Γ) = min
𝑏,Γ

- 2(𝑏, Γ Y) +
𝑝∑

𝑙=0

𝜆𝑙

𝑞𝛽𝑙∑
𝑠,𝑘=1

𝑏𝑙𝑠𝑏
𝑙
𝑘Φ

𝑙
𝑠𝑘

= min
𝑏,Γ

- 2(𝑏, Γ Y) + 𝑏⊤(𝜆P) 𝑏 , (14)

where 𝜆P ∈ ℝ𝑞𝛽×𝑞𝛽 is given by:

𝜆P =


𝜆0Ψ0 0𝑞

𝛽0
×𝑞

𝛽1
… 0𝑞

𝛽0
×𝑞

𝛽𝑝

0𝑞
𝛽1

×𝑞
𝛽0

𝜆1Ψ1 … 0𝑞
𝛽1

×𝑞
𝛽𝑝

⋮ ⋮ ⋱ ⋮
0𝑞

𝛽𝑝
×𝑞

𝛽0
0𝑞

𝛽𝑝
×𝑞

𝛽1
… 𝜆𝑝Ψ𝑝

 with Ψ𝑙 =


Φ𝑙

11 Φ𝑙
12 … Φ𝑙

1𝑞𝛽𝑙
Φ𝑙

21 Φ𝑙
22 … Φ𝑙

2𝑞𝛽𝑙
⋮ ⋮ ⋱ ⋮

Φ𝑙
𝑞𝛽𝑙1

Φ𝑙
𝑞𝛽𝑙2

… Φ𝑙
𝑞𝛽𝑙 𝑞𝛽𝑙

.

Here, 0𝑞1×𝑞2 is the standard notation for the null matrix of size 𝑞1×𝑞2. As Ψ𝑙 is a symmetric positive-definite matrix for
any 0 ≤ 𝑙 ≤ 𝑝, we can easily find its Cholesky decomposition, which can be efficiently leveraged in the implementation.

We first rewrite Model (7) in the form :
Y = R⊤𝑏 + 𝜀∗,

with 𝜀∗ = ZU+ 𝜂 and V = Var(𝜀∗) = ZΓZ⊤ + 𝜎2I. By setting the partial derivatives with respect to 𝑏 and V to 0 and
then solving the resulting linear system, we get:

𝑏̂𝜆 =
(
R⊤V̂-1R + 𝜆P

)-1
R⊤V̂-1Y. (15)

(see Appendix 8.2 for more details).
Let us now address the problem of choosing the smoothing parameters 𝜆 = (𝜆𝑙)0≤𝑙≤𝑝. The correct choice will make
great use of the observed accuracy of the prediction. For this purpose, for a fixed value of 𝜆, we resort to a leave-one-out
cross-validation type approach and compute 𝑏̂(-𝑖)𝜆 based on the sample except for the 𝑖𝑡ℎ observation. We then compute
the prediction Ŷ(-𝑖)

𝜆 at observation 𝑖. Finally, we can compute the prediction error or cross-validation score associated
with the parameter 𝜆 as

𝑛(𝜆) =
1
𝑛

𝑛∑
𝑖=1

(
Y𝑖 − Ŷ(-𝑖)

𝜆

)2
.

The value of 𝜆 that achieves the lowest estimated risk will be selected.
3.2. Penalized estimator for the integral model
For the integral model, we can also optimize the penalized log-likelihood function as in (12). However, the main
difference lies in the specific form of the penalty. The log-likelihood of the model will thus have the expression:

(𝑎,Γ Y) = 𝑛𝑚 log(2𝜋) + logV + (Y − Q⊤𝑎)⊤V-1(Y − Q⊤𝑎) (16)
using V = Var(ZU + 𝜂), and the penalized log-likelihood:

𝑝𝑒𝑛(𝑎, Γ Y) = - 2(𝑎, Γ Y) + Pen(𝛾0) +
𝑝∑

𝑙=1

Pen(𝛾𝑙), ; (17)

For this model, the parameters 𝛾𝑙 will be bivariate functions except for 𝛾0, which is univariate. The penalties for bivariate
parameters will take the following expression:

Pen(𝛾𝑙) = 𝜆𝑙 ∫ ∫ 𝐇𝛾𝑙 (𝑡, 𝑠)
2
𝑑𝑠 𝑑𝑡 = 𝜆𝑙∫ ∫

 𝜕2𝛾𝑙(𝑡,𝑠)
𝜕𝑡2

𝜕2𝛾𝑙(𝑡,𝑠)
𝜕𝑡 𝜕𝑠

𝜕2𝛾𝑙(𝑡,𝑠)
𝜕𝑠 𝜕𝑡

𝜕2𝛾𝑙(𝑡,𝑠)
𝜕𝑠2

 2

𝑑𝑠 𝑑𝑡.
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Here 𝐇𝑓 (𝑡, 𝑠) denotes the Hessian matrix of the bivariate function 𝑓 and ⋅ is as is standard the Frobenius norm. To
simplify expressions we will use the notation: 𝜕

2𝛾𝑙(𝑡, 𝑠)
𝜕𝑡 𝜕𝑠

≡ 𝛾 𝑡𝑠𝑙 (𝑡, 𝑠), and then we have

Pen(𝛾𝑙) = 𝜆𝑙∫ ∫
(
𝛾 𝑡𝑡𝑙 (𝑡, 𝑠)

2 + 2 𝛾 𝑡𝑠𝑙 (𝑡, 𝑠)
2 + 𝛾𝑠𝑠𝑙 (𝑡, 𝑠)2

)
𝑑𝑠 𝑑𝑡. (18)

We know from (9) that

𝛾𝑙(𝑡, 𝑠)2 =
(
𝑎𝑙

⊤𝐁1(𝑡)B2(𝑠)
)2

=

( 𝑞𝛾𝑙∑
𝑖,𝑗=1

𝑎𝑙𝑖𝑗𝐁
𝑙
1𝑖(𝑡)B

𝑙
2𝑗(𝑠)

)2

=

𝑞𝛾𝑙∑
𝑖,𝑗,𝑘,𝑚=1

𝑎𝑙𝑖𝑗𝑎
𝑙
𝑘𝑚𝐁

𝑙
1𝑖(𝑡)𝐁

𝑙
1𝑘(𝑡) B

𝑙
2𝑗(𝑠)B

𝑙
2𝑚(𝑠),

so we then have the following expressions for the partial derivatives:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫ ∫ 𝛾 𝑡𝑡𝑙 (𝑡, 𝑠)
2 𝑑𝑠 𝑑𝑡 =

𝑞𝛾𝑙∑
𝑖,𝑗,𝑘,𝑚=1

𝑎𝑙𝑖𝑗𝑎
𝑙
𝑘𝑚 ∫ 𝐁𝑙′′

1𝑖 (𝑡)𝐁
𝑙′′
1𝑘(𝑡) 𝑑𝑡 ∫ B𝑙

2𝑗(𝑠)B
𝑙
2𝑚(𝑠) 𝑑𝑠

=
𝑞𝛾𝑙∑

𝑖,𝑗,𝑘,𝑚=1

𝑎𝑙𝑖𝑗𝑎
𝑙
𝑘𝑚Φ𝑙′′

1,𝑖𝑘Φ
𝑙
2,𝑗𝑚 ;

∫ ∫ 𝛾 𝑡𝑠𝑙 (𝑡, 𝑠)
2 𝑑𝑠 𝑑𝑡 =

𝑞𝛾𝑙∑
𝑖,𝑗,𝑘,𝑚=1

𝑎𝑙𝑖𝑗𝑎
𝑙
𝑘𝑚 ∫ 𝐁𝑙′

1𝑖(𝑡)𝐁
𝑙′
1𝑘(𝑡) 𝑑𝑡 ∫ B𝑙′

2𝑗(𝑠)B
𝑙′
2𝑚(𝑠) 𝑑𝑠

=
𝑞𝛾𝑙∑

𝑖,𝑗,𝑘,𝑚=1

𝑎𝑙𝑖𝑗𝑎
𝑙
𝑘𝑚Φ𝑙′

1,𝑖𝑘Φ
𝑙′
2,𝑗𝑚 ;

∫ ∫ 𝛾𝑠𝑠𝑙 (𝑡, 𝑠)2 𝑑𝑠 𝑑𝑡 =
𝑞𝛾𝑙∑

𝑖,𝑗,𝑘,𝑚=1

𝑎𝑙𝑖𝑗𝑎
𝑙
𝑘𝑚 ∫ 𝐁𝑙

1𝑖(𝑡)𝐁
𝑙
1𝑘(𝑡) 𝑑𝑡 ∫ B𝑙′′

2𝑗(𝑠)B
𝑙′′
2𝑚(𝑠) 𝑑𝑠

=
𝑞𝛾𝑙∑

𝑖,𝑗,𝑘,𝑚=1

𝑎𝑙𝑖𝑗𝑎
𝑙
𝑘𝑚Φ𝑙

1,𝑖𝑘Φ
𝑙′′
2,𝑗𝑚 .

with the notation Φ𝑙′
𝑢,𝑠𝑘 = ∫ B𝑙′

𝑢𝑠(𝑡)B
𝑙′
𝑢𝑘(𝑡) 𝑑𝑡.

Back to the problem of minimizing the penalized log-likelihood (17), for fixed values (𝜆𝑙)0≤𝑙≤𝑝, the estimation of(
𝛾0(𝑡), 𝛾1(𝑡, 𝑠), … , 𝛾𝑝(𝑡, 𝑠)

) is obtained by solving the problem:

min
𝑎, Γ

𝑝𝑒𝑛(𝑎, Γ) = min
𝑎, Γ

- 2(𝑎, Γ Y) + 𝜆0

𝑞𝛾0∑
𝑠,𝑘=1

𝑎0𝑠𝑎
0
𝑘Φ

0
𝑠𝑘 +

𝑝∑
𝑙=1

𝜆𝑙

𝑞𝛾𝑙∑
𝑖,𝑗,𝑘,𝑚=1

𝑎𝑙𝑖𝑗𝑎
𝑙
𝑘𝑚

(
Φ𝑙′′

1,𝑖𝑘Φ
𝑙
2,𝑗𝑚 + 2Φ𝑙′

1,𝑖𝑘Φ
𝑙′
2,𝑗𝑚 + Φ𝑙

1,𝑖𝑘Φ
𝑙′′
2,𝑗𝑚

)
.

The penalty term for any bivariate parameter 𝛾𝑙(𝑡, 𝑠) can be seen as the tensor product between the three following
terms: the (𝑎𝑖𝑗)1≤𝑖,𝑗≤𝑞𝛾𝑙 matrix, the 4𝑡ℎ order square tensor of dimension 𝑞𝛾 𝑙 and the matrix (𝑎𝑘𝑚)1≤𝑘,𝑚≤𝑞𝛾𝑙 . We can
rearrange this tensor product as a matrix product by flattening the matrix to a vector and the 4𝑡ℎ order tensor to a
matrix. So we get a matrix product between the row vector of length 𝑞2𝛾 𝑙 , the square matrix of dimension 𝑞2𝛾 𝑙 × 𝑞2𝛾 𝑙 and
the column matrix of length 𝑞2𝛾 𝑙 . The minimization problem can be written in matrix form:

min
𝑎, Γ

𝑝𝑒𝑛(𝑎, Γ) = min
𝑎, Γ

- 2(𝑎, Γ Y) + 𝑎⊤(𝜆P) 𝑎 , (19)
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where 𝜆P the matrix of dimension 𝑞𝛾 × 𝑞𝛾 with 𝑞𝛾 = 𝑞𝛾0 +
∑𝑝

𝑙=1 𝑞
2
𝛾 𝑙 defined as in (14). The main difference lies in the

expression of the block matrix Ψ𝑙 for 𝑙 > 0 given by:

Ψ𝑙 =

(
Φ𝑙′′

1,𝑖𝑘Φ
𝑙
2,𝑗𝑚 + 2Φ𝑙′

1,𝑖𝑘Φ
𝑙′
2,𝑗𝑚 + Φ𝑙

1,𝑖𝑘Φ
𝑙′′
2,𝑗𝑚

)
1≤𝑖,𝑗,𝑘,𝑚≤𝑞𝛾𝑙

.

With this expression, we proceed in the same way as in the concurrent model to obtain the penalized estimator of 𝑎
and then

(
𝛾̂𝑙(𝑡, 𝑠)

)
𝑙
.

4. Conformal prediction
Conformal prediction (Vovk et al., 2005) is a framework that provides valid measures of confidence for individual

predictions. It aims to quantify the uncertainty associated to predictions made by machine learning models, allowing
users to assess the reliability of the model’s predictions. The key idea of the method is to construct prediction regions
around individual predictions such that, with a certain level of confidence, the true value of the response falls within
these regions. The resulting interval has desirable properties such as distribution freeness and non-asymptoticity.
Despite these good properties, classical conformal methods leads to intervals of constant or weakly varying length
across the input space. Romano, Patterson and Candes (2019) proposed a fully adaptive method to heteroscedasticity
named Conformalized Quantile Regression (CQR) that combines conformal prediction to quantile regression inheriting
the advantages of the both method. We adapt the CQR method to function-on-function regression.

4.1. Functional conformalized quantile regression
In its original formulation, conformal prediction works with methods of point prediction such like, linear regression

but also decision trees, support vector, boosting, neural networks. Based on the prediction given by the model,
compute a nonconformity measure, which measures how unusual an example looks relative to previous examples,
and the conformal prediction algorithm turns this nonconformity measure into prediction regions. The CQR extension
constructs prediction intervals around the quantile estimates, allowing users to assess the reliability of the model’s
predictions at different quantile levels. Quantile regression attempt to learn the 𝜏-conditional quantile of 𝑌 (𝑡)𝑋(𝑡) =
𝑥(𝑡) for any possible value of 𝑥(𝑡). Since 𝑌 (𝑡)𝑋(𝑡) = 𝑥(𝑡) < 𝑞0.05(𝑥(𝑡)) with probability 5% and 𝑌 (𝑡)𝑋(𝑡) = 𝑥(𝑡) >
𝑞0.95(𝑥(𝑡)) with probability 5%, then [𝑞0.05(𝑥(𝑡)) ; 𝑞0.95(𝑥(𝑡))] is a valid interval with 90% coverage.
For a given labelled dataset {(X𝑖(𝑡𝑗),Y𝑖(𝑡𝑗)), 1 ≤ 𝑖 ≤ 𝑛 1 ≤ 𝑗 ≤ 𝑚}, CQR works as follows:

• fit two conditional quantiles regression functions q̂𝜏0
(
X𝑖(𝑡𝑗)

)
and q̂𝜏1

(
X𝑖(𝑡𝑗)

)
with 𝜏0 < 𝜏1 on a proper training

set 1.
• On the calibration set 2, compute a conformity scores 𝐸𝑖 given by:

𝐸𝑖 ∶=

(
max

(
q̂𝜏0
(
X𝑖(𝑡𝑗)

)
− Y𝑖(𝑡𝑗) ; Y𝑖(𝑡𝑗) − q̂𝜏1

(
X𝑖(𝑡𝑗)

)))
1≤𝑗≤𝑚

∈ ℝ𝑚 for 𝑖 ∈ 2

• Finally, the prediction interval of a new observation Ŷ𝑛+1(𝑡𝑗), of X𝑛+1(𝑡𝑗) is given by

𝐶
(
X𝑛+1(𝑡𝑗)

)
=

⌊
q̂𝜏0
(
X𝑛+1(𝑡𝑗)

)
−𝑄1−𝜏 (2) ; q̂𝜏1

(
X𝑛+1(𝑡𝑗)

)
+𝑄1−𝜏 (2)

⌋
(20)

Where 𝑄1−𝜏 (2) is the (1 − 𝜏)-quantile of the multivariate errors 𝐸𝑖.Romano et al. (2019) establish that by assuming that the sample {
(
X𝑖(𝑡𝑗),Y𝑖(𝑡𝑗)

)
, 1 ≤ 𝑖 ≤ 𝑛 + 1} are exchangeable

and conformity scores 𝐸𝑖 almost surely distinct, the predictive interval (20) satisfies
1 − 𝜏 ≤ ℙ

(
Ŷ𝑛+1(𝑡𝑗) ∈ 𝐶

(
X𝑛+1(𝑡𝑗)

))
≤ 1 − 𝜏 + 1

2 + 1
.

As describe in steps of the method, we need to build functional quantile regression 𝑞𝜏 (.) and the quantile of multivariate
conformity scores 𝐸𝑖. It is the target of the two next subsections.
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4.2. Multivariate quantiles
Multivariate quantiles extend the concept of univariate quantiles to multivariate data, allowing for the characteriza-

tion of the joint distribution of several random variables. But unlike in the 1-dimensional space ℝ, the 𝑑-dimensional
space ℝ𝑑 (with 𝑑 ≥ 2) is not canonically ordered. So the strong order-related notions as quantile and also rank,
signs and distribution are not quite natural and still an open problem. Hallin, del Barrio, Cuesta-Albertos and Matrán
(2021) proposed a center-outward definition of multivariate distribution and quantile functions based on measure
transportation introduced by Chernozhukov, Galichon, Hallin and Henry (2017) for the so-called Monge-Kantorovitch
problem. These definitions are made under the assumption of nonvanishing density support and the main advantage
is the fact that it satisfy desirable properties as distribution-freeness and the maximal invariance property that make
univariate quantile be successful tools for statistical inference.
Given a discrete 𝑛-sample (empirical) distribution 𝜇 represented by a set of points𝑍(𝑛)

1 ,… , 𝑍(𝑛)
𝑛 inℝ𝑑 and a augmented

uniform grid distribution 𝜈. The goal of the optimal transport is to find the map𝐓 between the sample and to the uniform
grid that minimizes the total transportation cost. It is also the most efficient way to redistribute mass from the sample
points to the grid points while minimizing the 𝐿2 distance. Mathematically, the optimal 𝐿2 transport map can be
defined as:

𝐓 ∶= argmin
𝑇∈ (𝜇,𝜈)∫

𝑥 − 𝑇 (𝑥)2𝑑𝜇(𝑥) (21)

where  (𝜇, 𝜈) is the set of all transports mapping 𝜇 to 𝜈.
Optimal transport can be used to estimate multivariate quantiles in a robust manner, particularly in the presence of
heterogeneous data. In the context of multivariate distributions, quantiles represent values that partition the distribution
into segments of equal probability mass. In a similar way, optimal transport can be used to estimate multivariate
quantiles by minimizing the transportation cost required to redistribute mass from the distribution tails to the quantile
levels. To define multivariate quantiles using optimal transport, we firstly consider a reference distribution 𝜈. The
common choice is the uniform distribution on the unit ball. We also have the empirical distribution 𝜇 derived from the
data. Now denote by 𝐓 the optimal transport that pushes 𝜇 forward to 𝜈 : 𝐓#𝜇 = 𝜈. The second step is to reduce the
radius of the unit ball with the aim to exclude a 𝜏-probability to be in the crown delimited by the unit ball and the ball
of radius 𝑟. The third step is dedicated to defined the 𝜏-quantile by simply choose to point with lower rank among the
data points excludes by the reduction of the radius of the unit ball.
4.2.1. Construct the uniform grid on the unit ball

Since most of the volume of a unit ball is concentrated in a thin layer near its surface in high dimensional space, it
is not so trivial to generate a grid uniformly in the unit ball. For this, it is prior to ensure that the resulting distribution
must match with volume of crowns. In 𝑑-dimensional space, the volumes of the unit ball and the ball of radius 𝑟 are
given respectfully by

V𝑑 = 𝜋𝑑∕2

Γ( 𝑑2 + 1)
and V𝑑,𝑟 =

𝜋𝑑∕2

Γ( 𝑑2 + 1)
𝑟𝑑 .

So the volume of the crown will be : V𝑟 = V𝑑 − V𝑑,𝑟 = V𝑑(1 − 𝑟𝑑).
And the probability of being in this crown, for the generated distribution, are

𝑝
𝑟

= 𝑟
V𝑑

= 1 − 𝑟𝑑 .

With this result, we can derive the probability distribution function (and the density function) of the random variable
R of the radii of balls required to be in the crown:

F
R
(𝑟) = 1 − ℙ(𝑅 > 𝑟) = 1 − (1 − 𝑟𝑑) = 𝑟𝑑 and 𝑓

R
(𝑟) = 𝑑 𝑟𝑑-1

So, we propose the following algorithm to generate a uniform grid on the unit ball
1. simulate a set of 𝑑-dimensional points according to the normal distribution
2. normalize the simulated points
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3. simulate as many radii 𝑟 as points generated to the distribution F
R

. Then
𝑟 = exp

(
log(𝑢)
𝑑

)
with 𝑢 ∼  ([0; 1]).

4. Finally, each normalized point is multiplied by a simulated radius
With this process, we ensure that generated distribution will respect the geometry and the distribution of volumes in
high dimensional spaces.
4.2.2. Find the radius 𝑟 that exclude 𝜏-probability points

We answer in this part the question: "By how much should the radius of the unit ball be reduced so that the excluded
volume represents 𝜏% of the total volume ?"
In this context, 𝜏 represents the ratio of the volume of the crown formed by the unit ball and the ball of radius 𝑟 to the
volume of the unit ball.

𝜏 =
V𝑟
V𝑑

= 1 − 𝑟𝑑 ⟺ 𝑟 = exp
( 𝑙𝑜𝑔(1 − 𝜏)

𝑑

)
(22)

Then to exclude 𝜏% of the total volume, we can reduce the radius of the unit ball from 1 to 𝑟.
4.2.3. Define the multivariate quantile

Once we have understood how to properly construct an uniform grid on the 𝑑-dimensional unit ball and how to
reduce the radius of this ball to extract a well-defined volume, the final step is to determine the empirical multivariate
𝜏-quantile of the set of points 𝑍(𝑛)

1 ,… , 𝑍(𝑛)
𝑛 in ℝ𝑑 . The empirical 𝜏-quantile is obtained via an optimal transport 𝐓 of

the sample distribution to the deterministic uniform grid on the unit ball. By reducing the radius of that ball from 1
to 𝑟 according to formula (22), the 𝜏-quantile given by the convex enclosure of the observations excluded by radius
reduction.

4.3. Quantile function-on-function regression by perturbation
Quantile regression introduced by Koenker and Bassett (1978) offers a convincing solution by estimating

conditional quantiles, which provides a more complete understanding of the distribution of the response variable. In
FDA, the main difficulty relies on the fact that it is hard to design an equivalent to the pinball loss for functional output
variables. In the scalar-on-function setup, we can mention works from Ferraty, Rabhi and Vieu (2005) and Cardot,
Crambes and Sarda (2005) which estimate conditional quantiles using nonparametric estimation and spline estimators
respectively. For function-on-scalar and function-on-function setups, Liu, Li and Morris (2020) proposed a Bayesian
framework by developing a scalable Gibbs sampler for an asymmetric Laplace likelihood distribution for the functional
basis coefficients. Beyaztas, Shang and Saricam (2024) designed a pointwise pinball loss and a quadratic roughness
penalty to estimate the model. Rather than using these techniques, we propose to use an alternative technique which
does not require the assumption of continuity.

We developed a function-on-function quantile regression by perturbing linear function-on-function regression
repeatedly. As any resampling methods such as bootstrap, jacknife and so on, we generates artificial sample of
predictions of the linear regression. Our resulting quantile regression will simply be the multivariate quantiles of
that perturbing predictions. Originally, the use of perturbation in statistics can be found at least back to Gauss
(1809) who used them to linearize a non linear problem. Later Stewart (1990)’s work examined the application of
matrix perturbation theory for solving least squares regression problems, when the design matrix is contaminated by
random errors. Our work is mostly inspired by Minnier, Tian and Cai (2011) in which an interesting innovative and
robust perturbation approach for regularized regression estimation is proposed which is particularly useful for high
dimensional data. The idea of the method is to create a series of perturbed datasets using them to estimate the variability
of the regression coefficients. Specifically, for a given dataset (X(𝑡),Y(𝑡)), create perturbed datasets (X(𝑡),Y(𝑡) + 𝜀),
where 𝜀 is a small random perturbation drawn from a specified distribution (e.g., normal with mean 0 and small variance
or exponential with parameter 1).
Let 𝑁𝑝 the number of perturbed datasets we want to create. Let define the perturbed response by

Y(𝓁)
𝑖 (𝑡𝑗) = Y𝑖(𝑡𝑗) + 𝜀(𝓁)𝑖𝑗 with 𝜀(𝓁)𝑖𝑗 ∼ (1) and 1 ≤ 𝓁 ≤ 𝑁𝑝
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With these new response variable, we can apply the PenFFR algorithm for any of models (1) or (2) depending to
the initial model we work with. Based on the predictions given by each perturbed regression, the computation of
multivariate quantiles lead to the functional quantile regression.

5. Simulation study
The aim of this section is firstly dedicated to illustrate and validate the estimation and predictive capabilities of the

proposed PenFFR algorithm described in Sections 3 and 4 through a series of Monte Carlo simulations in the framework
of “perfectly controlled" data, i.e. in the set-up where the assumptions about the distribution are the ones underlying
our theory. Secondly, we will compare on the simulated datasets, the performance of our PenFFR method to pffr. The
main properties of interest are accuracy, interpretability and smoothness of the estimated parameters, prediction quality
and coverage of confident intervals. Only the concurrent model is considered in this section, but similar results have
been obtained for the integral model.
5.1. Data generation process

We will first simulate the covariates and then use them as input to our regression model in order to simulate the
corresponding response. The 𝑝 = 5 functional covariates are simulated at 𝑚 = 50 equidistant viewpoints (𝑡𝑗)𝑗 over the
domain T = [0, 1] according the following procedure :

X𝑙
𝑖(𝑡𝑗) = 𝜉𝑙𝑖,1 +

(
log(10 + 𝑡𝑗)

)𝜉𝑙𝑖,2 + 𝜉𝑙𝑖,3 sin
(
2𝜋𝑡𝑗
𝜉𝑙𝑖,4

)
(23)

where 𝜉𝑙𝑖,𝑟 is drawn from 
(
[-2, 2]) (1 ≤ 𝑟 ≤ 4). We can see this data in Figures (1a)-(1e) inside Figure 1 for one

randomly chosen individual (blue dots).
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Figure 1: Simulated predictors (blue dots for raw data and red lines for functional recovery) and functional
(concurrent) response for a randomly chosen individual.

Before estimating the model, we first compute the underlying expansion into a basis of B-Splines. We obtain the
red curves in Figure 1 using K = 10 basis functions and equidistant distributed nodes. The functional parameters
𝛽(𝑡) =

(
𝛽0(𝑡), 𝛽1(𝑡), … , 𝛽𝑝(𝑡)

) are chosen as follows: 𝛽0(𝑡𝑗) =
(
log(10 − 2𝜋𝑡𝑗)

)𝜌0 and 𝛽𝑙(𝑡𝑗) = 𝜌𝑙1 sin
(
4𝜋𝑡𝑗
𝜌𝑙2

)
with
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𝜌0, 𝜌𝑙1, 𝜌
𝑙
2 some constants given in Appendix 8.1. Figure 2 shows the corresponding representations of the functional

parameters.
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Figure 2: Functional parameters in the concurrent model.

Given the proposed functional covariates and functional parameters, we can now compute the functional response using
the concurrent Model (1), for two different sampling sizes 𝑛 ∈ {200; 500}. In this experiment, 𝜀𝑖(𝑡) is a Gaussian noise
with mean 0 and two levels of variance 𝜎2 ∈ {1; 4}. Table 1 list the 4 simulation scenarios. For each configuration,
we run 𝑁 = 50 Monte Carlo simulations.

Scenarios number of observations: 𝑛 variance : 𝜎2

S1 200 1
S2 200 4
S3 500 1
S4 500 4

Table 1: The four scenarios of the simulation study

5.2. Assessment criteria
The performance of our estimation procedure is assessed with two criteria: prediction accuracy and estimation error
for the model parameters. We extend to the functional framework the well-known Mean Relative Prediction Error
(MRPE), which is used to quantify the distance between the actual and the predicted value of the functional response:

MRPE = 1
𝑚

𝑚∑
𝑗=1

(∑𝑛
𝑖=1

(
Y𝑖(𝑡𝑗) − Ŷ𝑖(𝑡𝑗)

)2∑𝑛
𝑖=1 Y𝑖(𝑡𝑗)2

)
. (24)

We also define one extension of the determination coefficient, which consists of a simple arithmetic average of the
classical determination coefficient along the time observation of the functional response. This determination coefficient
noted R̃2 is defined as follows:

R̃2 = 1
𝑚

𝑚∑
𝑗=1

(
1 −

∑𝑛
𝑖=1

(
Y𝑖(𝑡𝑗) − Ŷ𝑖(𝑡𝑗)

)2
∑𝑛

𝑖=1

(
Y𝑖(𝑡𝑗) − Y𝑖(𝑡𝑗)

)2
)
, (25)
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where Ŷ𝑖(𝑡𝑗) is the predicted output of the sample 𝑖 at time 𝑡𝑗 and Y𝑖(𝑡𝑗) the mean function of the output sample at time
𝑡𝑗 .To evaluate the performance of the estimation parameters, we compare the actual functional parameters with those
provided by our models using the Mean Square Error (MSE) given by:

MSE = 1
𝑝 + 1

𝑝∑
𝑙=0

⌊
1
𝑚

𝑚∑
𝑗=1

(
𝛽𝑙(𝑡𝑗) − 𝛽𝑙(𝑡𝑗)

)2⌋1∕2
. (26)

In addition, to assess the goodness of produced confident intervals, we use the coverage proportion. It is the
proportion of actual data that fall in the predicted confident interval. The ideal situation for level 𝜏 is (1 − 𝜏). The
coverage proportion denoted by CovP is given by the formula

CovP = 1
𝑛𝑚

𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝕀∣∣𝑎𝐿𝑖 (𝑡𝑗 )≤Y𝑖(𝑡𝑗 )≤𝑎𝑈𝑖 (𝑡𝑗 )
∥∥, (27)

where 𝑎𝐿𝑖 (𝑡𝑗) (resp. 𝑎𝑈𝑖 (𝑡𝑗)) are the lower (resp. upper) bound of the confident interval for the observation 𝑖 at time 𝑡𝑗 .
5.3. Simulation results

Figure 3 compares the boxplots of MSE (26) of the estimated parameters over Monte Carlo repetitions of the 4
scenarios of the FFR method. As expected, for any parameters, the MSE decreases as the number of observations
increases (S1 vs S3) and it also decrease when we have smaller variance of the model error (S2 vs S4). For a more
specific comparison, Figure 4 represents for three of the six, actual parameters and the estimated ones given by FFR,
PenFFR and pffr methods for all the Monte Carlo repetitions in the S3 scenario. We noted for any of them (less for the
intercept) a good estimation of parameters and we can also noticed a substantial reduction of the random fluctuations
of penalized parameters compared to the non-penalized one.
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Figure 3: Boxplots of MSE of estimated parameters over the 𝑁 = 50 Monte Carlo repetitions for the non
penalized method.
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Figure 4: Estimated parameters vs actual ones in the simulated scenario 3 for the methods.

Prediction accuracy : We have generated a test sample with 𝑛test = 2000 observations, and we compare the
difference between the actual values of the functional response and the prediction given by each method in the 4
scenarios through the MRPE. Table 2 shows in its first column the average and standard deviation of MRPE. As in the
parameter estimation, the MRPE decreases as the number of observations in the train set increases, but the additive
noise has a more greater impact. In any scenario, PenFFR has slightly better performances than FFR which have better
performances than pffr.
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Test set MRPE
(×103)

R̃2 CovP MSE

S1
FFR 55.86 (0.25) 0.922 (0.0016) 11.8% (0.036) 0.109 (0.006)

PenFFR 55.48 (0.33) 0.906 (0.0007) 10.6% (0.058) 0.088 (0.003)
pffr 91.70 (0.07) 0.882 (0.0003) - 0.085 (0.002)

S2
FFR 54.59 (0.20) 0.925 (0.0004) 13.4% (0.058) 0.079 (0.007)

PenFFR 53.78 (0.17) 0.912 (0.0006) 11.7% (0.101) 0.073 (0.009)
pffr 91.65 (0.06) 0.883 (0.0001) - 0.074 (0.001)

S3
FFR 54.52 (0.13) 0.924 (0.0008) 2.6% (0.005) 0.077 (0.004)

PenFFR 54.45 (0.07) 0.909 (0.0004) 4.9% (0.029) 0.070 (0.006)
pffr 91.48 (0.05) 0.883 (0.0001) - 0.074 (0.001)

S4
FFR 54.00 (0.07) 0.926 (0.0003) 9.0% (0.013) 0.058 (0.003)

PenFFR 53.88 (0.09) 0.921 (0.0003) 8.6% (0.015) 0.054 (0.005)
pffr 91.35 (0.02) 0.883 (0.0001) - 0.074 (0.001)

Table 2: Average and standard deviation of accuracy criteria for the 4 simulated scenarios.

The functional determination coefficient R̃2 computed over all the scenarios is also presented in Table 2. From this
table, we observe that when the additive noise increases (S1 vs S2 and S3 vs S4), the coefficient of determination gets
smaller. By increasing the sample size (S1 vs S3 and S2 vs S4), we improves the determination coefficient.
The CovP criterion given in Table 1 show a better coverage when the noise level decreases (S1 vs S2 and S3 vs S4).
Finally, Figure 5 illustrate for two randomly chosen observations, the actual values (black dots), the predictive curves
given by PenFFR method (red curve) and the 95% confident interval of the PenFFR prediction.
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Figure 5: Actual values (black dots) and PenFFR predictive curves (red lines) of the functional response for two
randomly chosen individuals.

To sum up, the presented results shows the superior performance of PenFFR. The FFR method, while effective
in certain contexts, often struggles with overfitting due to its lack of regularization, which can lead to less reliable
estimates, especially when dealing with complex or noisy data. On the other hand, the pffr method offers more flexibility
by incorporating smoothness in both the functional predictor and response, also faster results but it may not fully address
the issue of controlling model complexity. As a result, PenFFR consistently provides better predictive accuracy and
stability, making it the most robust and reliable choice among the three methods.

6. Application to real data
In this section, we apply the proposed methodology for function-on-function regression (FFR and PenFFR) for

concurrent and integral models. These models are applied to two well-known data sets in FDA: Canadian Weather
(CW) data available in the R package fda and Hawai Ocean (HO) data available in the R package FRegSigComp. We
compare the prediction accuracy obtained using our method with the accuracy obtained with other existing methods:
integral and concurrent Penalized Function-on-Function Regression (pffr, Ivanescu et al. (2015)) implemented in the
R package refund; the signal compression approach (wSigcomp) designed by Luo et al. (2016) for the integral model
and implemented in the R packages FRegSigComp; the Optimal Penalized Function-on-Function Regression (OPFFR)
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for the integral model (Sun et al., 2018), the Functional Principal Component Analysis (FPCA) and Functional Data
Analysis method (FDA) also for the integral model (Ramsay and Silverman, 2005). Due to the unavailability of code
for the OPFFR approach, we simply use the published results as presented in their paper (Sun et al., 2018).
Hyper-parameter tuning For our methods (FFR and PenFFR), we consider cubic B-splines basis functions for
both functional predictors and regression coefficients. On the CW data set, we use 100 basis functions to address
the functional and complex nature of the predictors and on HO data set, we use 40 basis functions. This choice is
motivated by the fact that on the raw data, predictors on CW data set has 365 measurements while predictors in the HO
data set have 200 measurements. The number of basis functions of parameters is set to 15 on CW data, both for integral
and the concurrent models. For the HO data, based on the fact that we have 4 functional predictors and we know that
the number of features of design matrix depends on the squared of the number of basis functions in the integral model.
So for this complexity, we choose 40 basis functions for the concurrent model and only 6 for the integral model. The
penalty parameters 𝜆𝑙 of any predictor is selected using cross-validation on a predefined grid of values (10 equispaced
values between 0.1 and 2.0).
For the PFFR method we used the default settings prescribed in the software and only set the number of basis functions
for both the functional parameters and predictors. To correctly compare to our proposed method, we also used a cubic
splines basis for both the functional predictors and parameters for the two (CW and HO) data sets. We use as our
method the same number of basis functions to recover the functional nature of the predictors and on parameters.
For the wSigcomp method designed for the integral model, the default settings of the software are also used. For the
HO data set which is tested by authors in their package description, the number of basis functions is set to 40 for the
functional parameters and 20 for predictors. For the CW data, we slightly change but in the same proportion these value
and set the number of basis functions involved for the functional parameters to 80 and the predictors to 40. We have
detailed the choices of the hyperparameters but it should be noted that the performance of all these methods remains
slightly sensitive to a reasonable variation of these values.

Canadian Weather Data Hawaii ocean data
Methods Type of basis 𝑋𝓁

𝑖 (𝑡) 𝛽𝓁(𝑡) Type of basis 𝑋𝓁
𝑖 (𝑡) 𝛽𝓁(𝑡)

Integral PenFFR / FFR cubic B-splines 100 10 cubic B-splines 40 6
Concurrent PenFFR / FFR cubic B-splines 100 40 cubic B-splines 40 20
Integral PFFR cubic B-splines 100 10 cubic B-splines 40 6
Concurrent PFFR cubic B-splines 100 40 cubic B-splines 40 20
wSigcomp wavelets + SVD 40 80 wavelets + SVD 20 40
OPFFR / / / / / /
FDA Cubic B-splines / 10 / / /
FPCA SVD / / / / /

Table 3: Number of basis functions for the regression coefficients 𝛽𝓁(𝑡) and the covariates 𝑋𝓁
𝑖 (𝑡)

6.1. Canadian weather data
The data set consists of 𝑚 = 365 daily temperature measurements (average over the years 1961 to 1994) at 𝑛 = 35
weather stations in Canada and their corresponding daily precipitation (in log scale). The weather stations are located
in K = 4 climate zones: Atlantic, Pacific, Continental and Arctic and the aim is to use the daily temperature to predict
the precipitation at each station.
Figure 6 gives the daily average over the years 1961 to 1994 (temperature on the left, precipitation on the right). Note
that the stations in the Pacific zone have the highest precipitation values, and stations from this zone also have the
highest temperatures in the winter. The same can be said about the stations in the Arctic zone for low temperatures and
precipitation. A positive relationship between temperature and precipitation can therefore be suspected.
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Figure 6: 35 daily mean temperature (a) and precipitation (b) measurement curves.

Our methods (FFR and PenFFR) for the concurrent model (1) and integral model (2) are compared with the PFFR,
OPFFR, FPCA, FDA and wSigcomp methods. As previously mentioned, we use for the OPFFR, FDA and FPCA
methods, the results presented in Sun et al. (2018) in terms of prediction accuracy over the 365 days of the year
through the leave-one-out cross-validation integrated square error (ISE) given by:

ISE𝑖 = ∫

365

0

(
Y𝑖(𝑡) − 𝛽(-𝑖) X𝑖(𝑡)

)2
𝑑𝑡

where the predictor X𝑖(.) derives from the noisy daily temperature measurements; the functional response Y𝑖(.) is the
log daily precipitation and 𝛽(-𝑖) is the functional parameter estimated in the data set of all the observations except for
the 𝑖𝑡ℎ observation.
For sake of reducing the computational burden, instead of the ISE, the L2-norm between the actual and prediction
values on a grid of values 𝑡 is used as a surrogate. It is given by:

ÎSE𝑖 =
365∑
𝑗=1

(
Y𝑖(𝑗) − 𝛽(-𝑖) X𝑖(𝑗)

)2
. (28)

The average and standard deviation values of ÎSE𝑖 over the leave-one-out models for the different models are given in
Table 4. They show the numerical advantage of our proposed PenFFR method over the other methods. We also note
that the variance observed in our predictions remains quite high for the different models. This is due to the quality
of the input data. For recall that we are trying to predict precipitation from temperature on a dataset of only 35 very
different weather stations with daily measurement for each of them.

Methods ÎSE
Integral PenFFR 𝟑𝟑.𝟔𝟔 (𝟐𝟐.𝟗𝟗)
Concurrent PenFFR 36.40 (40.42)
Integral FFR 34.63 (26.03)
Concurrent FFR 36.50 (40.51))
Integral pffr 41.37 (48.91)
Concurrent pffr 89.31 (52.03)
wSigcomp 45.37 (52.45)
OPFFR 40.28 (45.76)
FDA 44.16 (56.95)
FPCA 45.51 (45.78)

Table 4: The average (and standard deviation) of ÎSE for the Canadian Weather data set. The best result is in
boldface.

Figure 7 show for a randomly choosen weather station the predictive curve given by the PenFFR method. We can
also observe the good coverage of the 95% confident interval given by our functional conformal prediction method.
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Figure 8 shows the prediction obtained using the integral model (since it appeared to be the best model for this data
set) with FFR, PenFFR, pffr. The prediction is given for two randomly chosen weather stations (Churchill and Inuvik)
and are compared with the actual precipitation. Similar results are illustrated by Figure 14 in the appendix for the
concurrent model.
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Figure 7: Prediction (red curve), actual data (black dots) and confident interval (cyan region) for the Churchill
station given by the PenFFR method.
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Figure 8: Prediction on two randomly chosen stations.

6.2. Hawaii ocean data
This data set is one of those used by Luo et al. (2016) to apply their wSigcomp approach. The data set includes

physical and biochemical oceanographic observational data from the Hawaii Ocean Time-series (HOT) Program,
including thermosalinograph, Conductivity, Temperature and Depth (CTD), bottle and biochemical data. The HOT
program makes repeated observations of the physics, biology and chemistry at a site approximately 100 km north of
Oahu, Hawaii. In the data set, five variables: Salinity, Potential Density, Temperature, Oxygen and Chloropigment,
are observed every two meters between 0 and 200 meters below the sea surface on 116 different days. This data set is
available from the R package "FRegSigComp", under the name Ocean data. It consists of 5 functional variables with
116 individuals, each having 101 measurement points. Here, we consider the function-on-function regression model
with the salinity curves as the response variable Y(𝑡) and (Potential Density, Temperature, Oxygen, Chloropigment)
curves as functional predictors X(𝑡) = (X1(𝑡),X2(𝑡),X3(𝑡),X4(𝑡)

). We split the full data set into two train/test sub-data
sets where the training data consists of the 50 first days (observations) only.
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First of all, we expand all the functions considered into a cubic B-spline basis with 40 basis functions. Figure 9
displays the sample curves for these variables.
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Figure 9: Original sample curves of predictors expanded by cubic B-splines basis with 40 basis functions.

Our FFR and PenFFR methods is compared with pffr and wSigcomp in the setting of integral models. We also
consider PenFFR and pffr for the concurrent model. The others previous competitors such as OPFFR, FPCA and
FDA cannot use here due to the availability of code. Figure 10 and 11 show the estimated parameters 𝛾̂0(𝑡) and
𝛾̂𝑗(𝑡, 𝑠), 1 ≤ 𝑗 ≤ 4 obtained for the three methods in the case of the integral model. We first notice that the shape
of the estimated parameters is smooth for our method (third column). In addition, Figure 15 in the appendix shows the
estimates 𝛽𝑗(𝑡), 0 ≤ 𝑗 ≤ 4 of the concurrent model with the PenFFR and pffr methods.
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Figure 10: Estimates 𝛾̂𝑗(𝑠, 𝑡), 1 ≤ 𝑗 ≤ 4 for the three methods: wSigcomp (left column), integral PFFR (middle
column) and integral PenFFR (right column).
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Figure 11: Estimates 𝛾̂0(𝑡), 1 ≤ 𝑗 ≤ 4 for the three methods: wSigcomp (left column), integral pffr (middle
column) and integral PenFFR (right column).

Prediction accuracy using ÎSE on a test set of size 66 is shown in Table 5. Since the number of individuals for this
data (116) is larger than the size of the previous data set, we evaluate the performance on a single test set rather than
using cross-validation in order to circumvent the potentially heavy computational burden. Our method is seen once
again to outperform all other methods as illustrated in Figure 12 which shows predictions on two randomly chosen
individuals.

Methods ÎSE (×102)
Integral PenFFR 𝟎.𝟓𝟕 (𝟎.𝟕𝟒)
Concurrent PenFFR 1.83 (0.88)
Integral pffr 2.37 (1.55)
Concurrent pffr 0.52 (0.26)
wSigcomp 4.79 (4.46)

Table 5: The average (and standard deviation) of ÎSE for the Hawaii ocean data set. The best result is in
boldface.
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Figure 12: Prediction given by the three methods for integral model on two randomly chosen observations in
the test sample: PenFFR in blue, PFFR in green and wSigcomp in red. Black dots are the true values.

7. Conclusion
In this article, we have presented a new estimation process for the linear regression model with functional responses

and functional covariates. We approach the problem via expanding the functions onto a common B-spline basis,
hence allowing the reduction of the functional model to a linear mixed model. Adaptation to unknown smoothness
is performed by adding a roughness penalty on second derivatives. Unlike any estimator based on basis functions, our
estimates have a smooth shape and sufficient flexibility to capture the encountered variability in various experiments
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with real-world data sets. We also design a framework for producing confident interval bands for functional predictions.
The method drawn a functional quantile regression by perturbing the standard linear regression and computed
functional quantiles by optimal transport. This functional quantile regression is then combined to the conformalized
method to build a functional conformalized quantiles regression. We then illustrate the performance of our proposed
estimation process in terms of prediction accuracy and parameter interpretability on simulated and real data sets. As
perspectives for future work, confidence bounds for predictions can be obtained in a functional mixture-of-Experts
regression framework Tamo Tchomgui, Jacques, Fraysse, Barriac and Chretien (2024). While these models offer
flexibility and strong predictive performance, quantifying the uncertainty of their predictions remains a challenging
and unexplored area. Another avenue for future investigations is to explore.
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8. Appendix
8.1. Simulation parameters

The values of the chosen constants is drawn from uniform law between -5 and 5. The values is given by: 𝜌0 = 0.439,
𝜌11 = -3.562, 𝜌21 = -1.058, 𝜌31 = -2.955, 𝜌41 = -0.585, 𝜌51 = -0.298, 𝜌12 = 0.228, 𝜌22 = 2.641, 𝜌32 = 4.462, 𝜌42 = 2.757
and 𝜌52 = 2.283.
8.2. Mixed model estimator

We first rewrite the model in the form :
Y = R⊤𝑏 + 𝜀∗, (29)

with 𝜀∗ = ZU + 𝜂, from which we get V = 𝕍ar(𝜀∗) = ZΓZ⊤ + 𝜎2I. We aim to estimate the fixed effects 𝑏 and the
error variance V from the observed data. The most popular estimation methods for the parameters in Model (7) are
maximum likelihood (ML) and restricted maximum likelihood (ReML) as described in Lindstrom and Bates (1988).
The log-likelihood of the model is written as:

𝑝𝑒𝑛(𝑏, V) = 𝑛𝑚 log(2𝜋) + logV + (Y − R⊤𝑏)⊤V-1(Y − R⊤𝑏) + 𝑏⊤(𝜆P) 𝑏 (30)

First order condition: 𝜕
𝜕𝑏

(
𝑝𝑒𝑛(𝑏, V)

)
= 0.

𝜕𝑝𝑒𝑛

𝜕𝑏
= 𝜕

𝜕𝑏

((
Y⊤ − (R⊤𝑏)⊤

)
V-1(Y − (R⊤𝑏)

)
+ 𝑏⊤(𝜆P) 𝑏

)

= 𝜕
𝜕𝑏

((
Y⊤V-1Y − Y⊤V-1R⊤𝑏 − (R⊤𝑏)⊤V-1Y + (R⊤𝑏)⊤V-1R⊤𝑏

)
+ 𝑏⊤(𝜆P) 𝑏

)
= - (Y⊤V-1R⊤)⊤ − RV-1Y + 2RV-1R⊤𝑏 + 2 (𝜆P) 𝑏
= - 2RV-1Y + 2 (RV-1R⊤ + 𝜆P) 𝑏.

and by equalizing to 0, i.e. 𝜕𝑝𝑒𝑛

𝜕𝑏
= 0, we get:

𝑏̂(V) =
(
RV-1R⊤ + 𝜆P

)-1RV-1Y. (31)
By replacing 𝑏 by its estimator in the likelihood expression, we get the profiled log-likelihood given by:

𝑝(V) = −1
2

(
𝑁 log(2𝜋) + logV +

(
Y − R⊤(RV-1R⊤)-1RV-1Y

)⊤
V-1

(
Y − R⊤(RV-1R⊤)-1RV-1Y

))

= −1
2

(
𝑁 log(2𝜋) + logV +

(
Y⊤V-1 − Y⊤V-1R⊤(RV-1R⊤)-1RV-1)

(
Y − R⊤(RV-1R⊤)-1RV-1Y

))

= −1
2

(
𝑁 log(2𝜋) + logV + Y⊤V-1Y − Y⊤V-1R⊤(RV-1R⊤)-1RV-1Y −

Y⊤V-1R⊤(RV-1R⊤)-1RV-1Y +

Y⊤V-1R⊤(RV-1R⊤)-1RV-1R⊤(RV-1R⊤)-1RV-1Y
)
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= −1
2

(
𝑁 log(2𝜋) + logV + Y⊤V-1Y − Y⊤V-1R⊤(RV-1R⊤)-1RV-1Y

)

𝑝(V) = −1
2

(
𝑁 log(2𝜋) + logV + Y⊤V-1(I − R⊤(RV-1R⊤)-1RV-1)Y).

On the other hand, there holds V = 𝕍ar(𝜀∗) = 𝜎2UZZ⊤ + 𝜎2I , and thus, 𝑝(V) = 𝑝(𝜎2U, 𝜎
2). It is obviously not easy

to derive this likelihood which no longer depends on 𝑏. Moreover, maximizing this last function gives the MLE which
is nevertheless biased. For these reasons, and in order to account for the degrees of freedom of the fixed effects in the
model, we propose to use the Restricted Maximum Likelihood (ReML) which reads:

𝑅(V) = 𝑝(V) −
1
2
logRV-1R⊤ (32)

From a numerical viewpoint, we obtain the estimator V̂ of the variance V by maximizing this last likelihood from
which we finally deduce the value of Û given by:∣∣∣∣∣ 𝑏̂ = (R⊤V̂-1R + 𝜆P)-1R⊤V̂-1Y,

Û = 𝜎2Z⊤V̂-1(Y − R⊤𝑏̂).
(33)

8.3. Parameter representation on simulated data
In each scenario, we estimate the functional parameters with cubic B-splines basis, regular knots over the grid and

L𝛽𝑙 = 50 basis functions. The parameters we obtain with our model are close to the true parameters. However, we note
that estimation of 𝛽0(𝑡) is noised by the two large number of basis functions considered. This confirms the previously
mentioned concerns about interpretability (smoothness) of the estimated parameters without regularization. Figure 13
also confirms that estimation accuracy increases with the number of observations.
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Figure 13: Estimated and actual parameters for the concurrent model over the 4 scenarios of simulation.
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8.4. Prediction on concurrent models for Canadian Weather data
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Figure 14: Prediction on two randomly chosen stations. For each figure, the black points are the actual data,
the red two-dashed line is the prediction given by our concurrent PenFFR and the magenta dashed line is the

prediction given by the concurrent PFFR method.

8.5. Parameters estimation for concurrent models on Hawaii Ocean Data
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Figure 15: Estimates 𝛽𝑗(𝑡), 0 ≤ 𝑗 ≤ 4 for the two methods (pffr and PenFFR) on concurrent model. The first
row shows the estimation provided by our PenFFR method. The second row shows the estimation provided by

the pffr method.
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