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Abstract

Many scientific studies in recent years have been collecting data at a high frequency, which
can be considered as functional data. When both the response variable to be modelled and
the covariates are functions, we provide a novel and easy-to-implement method addressing
function-on-function linear modelling and obtain interpretable parameters. Two main types
of models are considered: the concurrent model which explains the response curve Yi(t) at
time t from the values at same time t of the covariates X l

i(t); the (feed-forward) integral
model which explains Yi(t) based on the values of covariate curves X l

i(s) observed at any
times s ≤ t. A regularized inference approach is proposed, which accurately selects an
appropriate set of basis functions that can be used for functional data reconstruction and at
the same time provides smooth and interpretable functional parameters. Numerical studies
on simulated data with different scenarios illustrate the good performance our the method to
capture the relationship between covariates and response. The method is finally applied to the
well-known data in order to compare it to some existed competitors. On Canadian weather
data with the problem of predicting precipitations from temperature measurements and on
Hawaii Ocean data for predicting ocean salinity from temperature, oxygen, chloropigments
and density measurements, our method made significant improvements on prediction error.

Keywords: Functional data analysis, function-on-function regression, penalized splines, Canadian
weather data.
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1 Introduction

In the last few decades, data sets collected with new, fast and sometimes accurate sensors have

become very common in various fields of applied sciences including economics, finance, geosciences,

medicine, etc. As a result, new tools are needed to process and analyze this very fast growing

resource of data. A quite natural idea that has emerged lately is to extend classical tools from data

analysis to a new paradigm called Functional Data Analysis (FDA). This new paradigm has proved

very successful at addressing the statistical analysis of data where at least one of the variables of

interest need to be treated as a function. Extension of linear regression to the functional setting

has therefore naturally become a major area of research in FDA. While the literature is too

vast to cover here, the recommended references for this field are Ramsay and Silverman (2005),

Ramsay et al. (2009), Horváth and Kokoszka (2012), Kokoszka and Reimherr (2017), which provide

excellent introductions to FDA. Moreover Goldsmith et al. (2011) and Morris (2014) provide a

broad overview of the methods of functional linear regression. In the functional setting, different

types of functional linear regression have been considered, depending on the functional nature of

the response and/or at least one of the covariates. Thus, using the convention that first term

denotes response-type and second term denotes covariate-type, the following regression models

are all the possible options to consider: function-on-scalar, scalar-on-function and function-on-

function. The scalar-on-function linear regression models is the most thoroughly studied model

among the three models in the current literature. Some references include Cardot et al. (1999)

and Hastie and Tibshirani (1993).

Most of the inference approaches for these models rely on a basis expansion assumption. For

instance Besse and Cardot (1996) and Ramsay and Silverman (2005) proposed spline-type ap-

proximations of the functional covariates and then performed the estimation step by minimizing

a least squares criterion. Among other useful references, Antoch et al. (2010) uses B-spline ex-

pansions for both the functional parameters and the functional covariates. The issue of possible

non-identifiability was pursued in Scheipl and Greven (2016). In theses approaches, the functional

regression models become equivalent to a multivariate model on the basis expansion coefficients.

An alternative way is to consider Functional Principal Components Analysis (FPCA, Ramsay and

Silverman (2005)), possibly using smoothness promoting penalization (Silverman, 1996; Besse

et al., 1997). Possible issues in determining the number of components to account for that seem
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to be still open. Indeed, it was shown in Crainiceanu et al. (2009) that the shape of the functional

parameters can drastically change as one or two additional principal components are included,

making the process quite unstable and relatively difficult to interpret.

In comparison with scalar-on-function problems, function-on-function models, that we address

here, have been much less studied in the literature. For instance, Ivanescu et al. (2015) proposes to

estimate a function-on-function regression model using a penalized mixed model. In this setting as

well, the main issue faced is not only the problem of accurately selecting the number of basis func-

tions and the location of the knots (Li and Ruppert, 2008), but also the possible interpretability of

the obtained estimators (James et al., 2009). Signal compression approach (wSigcomp) designed

by Luo et al. (2016) which is another way to address function-on-function models firstly apply

wavelets transformation to covariates and with the functional response and the obtained multivari-

ate covariates, proposed a method to estimate the functional bivariate parameter by characterize

it as the solution of a generalized functional eigenvalue problem. The Optimal Penalized Function-

on-Function Regression (OPFFR) proposed by (Sun et al., 2018), produce an estimator of the 2D

functional parameter as optimizer of a form of penalized least squares where the penalty enforces

a certain level of smoothness.

In mathematical terms, the problem considered in the present paper is the one of estimating

a linear relationship between functional covariates and functional response based on the n-sample{
Yi(t), Xi(t) =

(
X1

i (t), . . . ,X
p
i (t)
)⊤

, t ∈ [0,T]

}
i = 1, . . . , n, where the output variable Y(t) and the p input variables (Xl(t))1≤l≤p are assumed to

belong to the separable Hilbert L2
(
[0; T]

)
. In the sequel, we focus in particular on the following

two functional linear models:

Yi(t) = β0(t) +

p∑
l=1

βl(t)X
l
i(t) + εi(t) =

(
1, Xi(t)

)⊤
β(t) + εi(t) , (1)

Yi(t) = γ0(t) +

p∑
l=1

∫ t

0

γl(s, t)X
l
i(s) ds+ εi(t) = γ0(t) +

∫ t

0

Xi(s)
⊤γ(s, t) ds+ εi(t) (2)

where β(t) =
(
β0(t), β1(t), . . . , βp(t)

)⊤
, γ(s, t) =

(
γ0(t), γ1(s, t), γ2(s, t), . . . , γp(s, t)

)⊤
are the unknown functional parameters and are assumed to be square integrable; εi(t) is the model

error and is a sample of centered random variables with variance σ2
i , specific to the ith individual
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(Ramsay and Silverman (2005), Chapter 13); εi(t) and Xi(t) are assumed to be uncorrelated. The

noise functions εi(t) can be rigorously defined using white noise theory as presented in Hida et al.

(1993). In our context, we will only use the fact that when sampled at various times from a finite

set T , the vector (εi(t))t∈T can be expressed as a sum of a vector with i.i.d. components and a

vector with prescribed covariance matrix, i.e. a vector with constant components in the simplest

case.

Model (1), known as the “concurrent model” , assumes that the response function at time

t, Yi(t), is explained by covariate functions Xl
i(t), at exactly the same time t, the functional

parameters being allowed to vary with t as well. The second model (2), called the “integral

model”, represents Yi(t) using the values of the covariates curves Xl
i(s) for all the observed times

s ≤ t. Clearly, Model (2) is more general and richer than Model (1). Exploring the “concurrent

model” further at the first step is of great interest because, as mentioned in Hastie and Tibshirani

(1993), any functional linear model can be reduced to this form.

In the present paper, we develop an efficient approach for estimating the functional parameters

β(t) of the concurrent model (1) and γ(s, t) of the integral model (2). For this purpose, we use cubic

B-spline basis expansion for both functional covariates and functional parameters. We propose

penalized estimator of the corresponding functional basis coefficients. As will be shown in the

sequel, our approach allows to simply choose equispaced knots and a sufficient number of basis

functions to capture the main features of the covariates. Overfitting will be naturally avoided by

penalizing roughness via controlling the second derivatives of the functional parameters which are

being maximized.

Plan of the paper. The paper is organized as follows: Section 2 presents the two types

of models we focus on and Section 3 the estimation scheme. Our estimation scheme consists

of two steps. The first one addresses recovering of the functional nature of the covariates, by

approximating them into a functional basis. The second step consists of penalized estimation of

the functional regression coefficients, which are themselves decomposed in another functional basis.

Section 4 contains a simulation based exploration of the method which confirms the efficiency of

the proposed approach. Section 5 finally presents an illustration of the method on two real data

sets. The first one is the well-known Canadian weather data set, in which the goal is to explain

the precipitation as a function of the temperatures in different Canadian cities. The second one is
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the Hawaii ocean data set in which salinity is explained as a function of four functional covariates.

Finally, Section 6 concludes the paper.

2 Linear models for function-on-function regression

In this section, it is shown how the functional models (1) and (2) can be, under the basis expan-

sion assumption of covariates and parameters, reduce to a linear mixed model onto the discrete

observations of the functional response and functional covariates.

2.1 Functional concurrent model

Linear regression for a functional response involving one or more functional covariates in the

concurrent model is a well-known problem. The main issue is to estimate an infinite dimensional

parameter β(t) through a finite sample of observations. As shown in Hastie and Tibshirani (1993),

Model (1), also called the varying coefficient model, is interesting because any functional model can

be reduced to this form. Chapter 14 in Ramsay and Silverman (2005) describes how this model can

be fitted by minimizing an unweighted least squares criterion. The method proposed in this paper

addresses the estimation problem using a penalized function-on-function regression as proposed

in Ivanescu et al. (2015), where the problem is represented as a mixed model. Nevertheless, our

work differs by the choice of the penalization criterion enforced on the functional parameter. The

parameter β(t) is expanded in functional basis using q
β
basis functions to get back to a classical

mixed model for which the estimations of the parameters are well known. Furthermore, we allow

to choose the number of basis functions q
β
to be large enough to capture any desired variations of

β(t), and we add a roughness penalty term to get a smooth solution for the parameter at the end.

As a first step of our modelling, we recover the underlying functional process, by using penalized

cubic B-splines expansion for all the functional covariates.

2.1.1 Functional basis expansion of covariates and model parameters

In practice, we do not properly observe a continuous curve for each realization of both the re-

sponse variable Yi(t) and the covariate variables
(
Xl

i(t)
)
1≤l≤p

. In indeed, as opposed to the ideal

observation setting, we only have access to a set of noisy observations at a finite number of points
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on a grid. As a result, the functional data can be presented as a numerical vector. In order to

recover the continuous form, which generally belongs to an infinite dimensional space (e.g. Hilbert

separable space L2([0, T ])), one efficient way to proceed is by expanding the considered functions

in a functional basis. The functional response, which is assumed in model (1) even in model (2) to

be written as a linear combination of these predictors, is not necessary to be pre-processed. The

advantage of this approach is the fact that by truncating the series at a given level q
l
, we obtain

an approximation of the covariate function Xl
i(t) in a q

l
dimensional space.

So for all the p covariates Xl(t), we can therefore recover a representation in cubic B-splines

functional basis. As indicated by Li and Ruppert (2008), the choice of the number of knots depends

on the complexity of the variable and should be large enough to capture the patterns of the variable.

It is reasonable to suppose that this number and, thus, the number of basis functions depends on

the covariate. So to distinguish the basis functions of each covariate, although they just differ by

their number, we will adopt in the rest of this article the system
{
Bl

1(t), Bl
2(t), . . . , Bl

q
Xl
(t)
}

as

the basis function of Xl(t). Then, any functional covariate can be written as:

Xl
i(t) =

q
xl∑

j=1

xl
ij B

l
j(t) = Bl(t)⊤ xl

i with 1 ≤ l ≤ p. (3)

The basis functions Bl
j(t) being prescribed, the estimation of coefficients xl

ij is done as a preliminary

step (Li and Ruppert, 2008; Ruppert, 2002; Ramsay and Silverman, 2005).

Similarly as for functional covariates, we expand all the functional parameters
(
βl(t)

)
l
of the

concurrent model in functional basis. The number of basis functions q
βl

must be chosen as suffi-

ciently large to capture the patterns of any βl(t):

βl(t) =

q
βl∑

j=1

blj ϕ
l
j(t) = ϕl(t)⊤ bl with 0 ≤ l ≤ p. (4)

Using the expressions (3) and (4), the components in Model (1) become:

β(t) =


β0(t)

β1(t)
...

βp(t)

 =


ϕ0(t)⊤ b0

ϕ1(t)⊤ b1

...

ϕp(t)⊤ bp

 =


ϕ0(t)⊤ 0 . . . 0

0 ϕ1(t)⊤ . . . 0
...

...
. . .

...

0 0 . . . ϕp(t)⊤


︸ ︷︷ ︸

(p+1,
∑

l qβl ) - matrix


b0

b1

...

bp


︸ ︷︷ ︸∑
l qβl - vect.

= Φ(t) b ,
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and

Xi(t) =


1

X1
i (t)
...

Xp
i (t)

 =


1

B1(t)⊤ x1
i

...

Bp(t)⊤ xp
i

 =


1 0 . . . 0

0 B1(t)⊤ . . . 0
...

...
. . .

...

0 0 . . . Bp(t)⊤


︸ ︷︷ ︸

(p+1,
∑

l qXl ) - matrix


1

x1
i

...

xp
i


︸ ︷︷ ︸∑
l qXl - vect.

= B(t)xi.

By plugging-in these expressions into Model (1), we get:

Yi(t) = x⊤
i B(t)

⊤Φ(t) b+ εi(t) = Ri(t)
⊤b+ εi(t) (5)

with Ri(t) = Φ(t)⊤ B(t)xi which is used as design matrix and b the unknown parameters to be

estimated.

2.1.2 Functional concurrent model on the observations

The concurrent model implicitly assumes that the functional covariates and the functional response

are observed at the same timestamps. The observation grid will consist of m points {t1, . . . , tm}.

In mathematical terms we have:

Yi(tj) = Ri(tj)
⊤b+ εi(tj) with 1 ≤ i ≤ n and 1 ≤ j ≤ m. (6)

One very specific issue to take care of is that the successive values of the observation noise

εi(t1), . . . , εi(tm) can not be assumed independent.

One way to address the question of dependency is to use a linear mixed model (LMM, Wood

(2006)). We thus assume that the model error can be decomposed as εi(tj) = Ui + ηij, with ηij

a Gaussian white noise and Ui a random variable which takes into account the random effect in

each individual i = 1, . . . , n. To summarize, our model consists of a LMM with fixed effects b and

random effect Ui. In matrix form we get:

Y = R⊤b + ZU + η, (7)

where Y =
(
Y1(t1), . . . , Y1(tm), Y2(t1), . . . , Yn(tm)

)⊤
, R =

(
Ri(tj)

)
i,j

the design matrix of di-

mension q
β
×nm with q

β
=
∑

l qβl , U =
(
U1, U2, · · · , Un

)⊤
∼ N (0,Γ), η = (ηij)i,j ∼ N (0, σ2Inm)
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and

Z =


1m×1 0m×1 . . . 0m×1

0m×1 1m×1 . . . 0m×1

...
...

. . .
...

0m×1 0m×1 . . . 1m×1


︸ ︷︷ ︸

(nm×n) - matrix

.

The specific notations we used are the matrices 0k×l and 1k×l of size k × l, which are composed

of zeros and ones, respectively; The notations 0 refers to the corresponding null vector and Γ the

unknown covariance matrix of the random effects.

The parameters are then the fixed effects vectors b and the variance components σ2 and Γ. We

describe how to perform the inference in Section 3.

2.2 Functional integral model

The integral Model (2) assumes cumulative effects of covariates. More clearly, the model we

proposes use observations of covariates up until time t to predict the response at time t. It is

important to note that in most models found in the literature (Ramsay and Silverman, 2005;

Horváth and Kokoszka, 2012), when both covariates and response have the same domain, consider

that the response at any time t depends on the influence of the covariates on the whole domain.

Such model implicitly assumes that the covariates at any time t + s can influence the response

variable at time t. However, in the integral model, the functional parameters are bivariate functions

γl(s, t), except for the constant of the model, which remains univariate. In this section, we start

by expanding the parameters in a finite-dimensional functional basis and then plug this expression

into the model.

2.2.1 Functional basis expansion of covariates and model parameters

The functional parameters are therefore expanded in a bivariate basis which may or may not have

the same number of basis functions on each of the two dimensions. Without loss of generality and

for the sake of simplicity, we assume that the number of basis functions is the same in the two
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dimensions. This leads to the following expression:

γl(t, s) =

q
γl∑

j,k=1

aljk B
l
1j(t) B

l
2k(s) (8)

where
{
Bl

1j(t)
}
1≤j≤q

γl

and
{
Bl

2j(t)
}
1≤j≤q

γl

are the basis functions and (aljk)1≤j,k≤q
γl

the unknown

basis coefficients to be estimated. We can rewrite this expression in matrix form by:

γl(t, s) = al
⊤
Bl

1(t) B
l
2(s) (9)

with

al =
(
al11 . . . al1q

γl
al21 . . . . . . alq

γl
1 . . . alq

γl
q
γl

)⊤
,

Bl
1(t) = diag

(
Bl

11(t), . . . , B
l
1q

γl
(t), . . . , . . . ,Bl

11(t), . . . , B
l
1q

γl
(t)
)
,

Bl
2(s) =

(
Bl

21(s) . . . Bl
21(s) . . . . . . Bl

2q
γl
(s) . . . Bl

2q
γl
(s)
)⊤

.

The functional constant being univariate, it can thus be written as in (4) in the form:

γ0(t) =

q
γ0∑

j=1

a0j B
0
j(t) = B0(t)⊤a0.

2.2.2 Functional integral model on the observations

By plugging covariates and parameters functional basis expansion in the integral Model (2), we

get:

Yi(t) = γ0(t) +

p∑
l=1

∫ t

0

xl⊤

i Bl(s) Bl
2(s)

⊤Bl
1(t)

⊤ al ds+ εi(t)

= γ0(t) +

p∑
l=1

xl⊤

i

(∫ t

0

Bl(s) Bl
2(s)

⊤ ds
)

︸ ︷︷ ︸
Bl

2(t)

Bl
1(t)

⊤ al + εi(t)

= γ0(t) +

p∑
l=1

xl⊤

i Bl
2(t)B

l
1(t) a

l + εi(t)

= B0(t)⊤a0 +

p∑
l=1

Ql
i(t)

⊤al + εi(t) ,

with Ql
i(t) = Bl

1(t)
⊤ Bl

2(t)
⊤ xl

i. Finally we obtain:

Yi(t) = Qi(t)
⊤a+ εi(t) (10)
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with a = (a0, a1, a2, . . . , ap)⊤ and Qi(t) =
(
B0(t)

⊤, Q1
i (t)

⊤, Q2
i (t)

⊤, . . . , Qp
i (t)

⊤
)⊤

two vectors of

length qγ = q
γ0

+

p∑
l=1

q2
γl
.

Once again, we are faced with the problem of lack of independence of the different measured

values for the same individual. We will proceed exactly in the same way as with the concurrent

model using a linear mixed model with fixed effects given by the vector a and random effects given

by the random vector U = (Ui)i. The model will therefore be written as a LMM given by:

Y = Q⊤a + ZU + η, (11)

with Z, U and η define similarly to (7). Q =
(
Qi(tj)

)
i,j

the design matrix of dimension qγ × nm.

As in the concurrent model, the parameters we need to estimate are the fixed effects vectors a

and the variance components σ2 and Γ. The inference scheme is described in Section 3.

3 B-spline-based penalized estimator

In both the concurrent and the integral models presented in Section 2.1 and Section 2.2 re-

spectively, we have used the decomposition of the infinite-dimensional functional covariates and

parameters into a truncated functional basis depending on the chosen number of basis functions.

These values naturally needed to be correctly selected in order to avoid over- or under-fitting.

Nevertheless, precise adjustment of these values often induces a high computational effort. In the

case of the B-spline basis, even more parameters have to be properly tuned such as the choice

of the spline order and the location of the knots. In order to reduce the expected cost of such

a computationally demanding procedure, we made the choice of choosing a sufficiently large a

priori value for q
β
(or qγ) and then apply a roughness penalty. This approach brings the benefit

of reducing the overall computational cost, and of possibly improving the interpretability of the

estimated functional coefficients. This last point is very interesting in the case of the linear model

because as we already know, the interpretation of the predictors-response relationship becomes

more difficult as the shape of the functional parameter β (or γ) does not have any simple structure.

Various approaches to regularize the parameter shape have been proposed in the literature.

In our setting of interest, the main idea is oftentimes to enhance the model performance and

interpretability by adding a roughness penalty. Leurgans et al. (1993) is among the first to
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explore the functional penalization and show that the obtained estimator β̂(t) (resp. γ̂(s, t))

becomes less sensitive to the rather subjective choice of the number of basis functions q
β
(resp.

qγ). More recently, James et al. (2009) proposed a method called Functional Linear Regression

That is Interpretable (FLiRTI) which addresses the issue of choosing relevant penalties. Based

on variable selection ideas such as the Lasso penalty, they produce accurate, flexible and highly

interpretable estimates of the functional parameters. The main idea in James et al. (2009) is,

instead of enforcing sparsity on the function themselves, to enforce sparsity of the derivatives

instead. Using the notation β(l)(t) for the lth derivative of β(t), we may deduce that β(0)(t) = 0

guarantees X(t) has no effect on Y(t) at t; β(1)(t) = 0 implies that β(t) is constant at t; β(2)(t) = 0

means that β(t) is linear at t and so on. The FLiRTI approach also combine sparsity enforcing

penalties for more than one derivative at a time, which can be useful for smooth parameters that

may even vanish on some intervals.

Instead of the Lasso penalty applied in the FLiRTI method, where choosing the derivatives

remains a difficult computational issue, our approach uses a Ridge penalty on the second derivative

of the functional parameters. The choice of penalizing the second derivative is mainly motivated

by the desire to obtain a possibly locally linear relationship if needed. Moreover, the use the Ridge

penalty is motivated by the lack of exact sparsity observed in real problems and the clear benefits

of getting a closed form formula for the estimators.

3.1 Penalized estimator for the concurrent model

Let us first consider the concurrent model in the classical mixed model form as in (7). In order

to obtain an interpretable estimator, we will use a roughness penalty in the form of a Ridge-type

penalty on the second derivatives, as advocated for in the previous paragraph. The objective

function is the penalized log-likelihood function given by

Lpen(b, Γ) = - 2L(b, Γ |Y) +

p∑
l=0

Pen(βl) ; (12)

with,

L(b, Γ |Y) = nm log(2π) + log |V|+ (Y − R⊤b)⊤V-1(Y − R⊤b) (13)
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using that V = Var(ZU + η) and the penalty

Pen(βl) = λl

∫
β

′′

l (t)
2 dt = λl

∫ [ q
βl∑

j=1

bljϕ
l”

j (t)

]2
dt = λl

q
βl∑

s,k=1

blsb
l
kΦ

l
sk,

with Φl
sk =

∫
ϕl”

s (t)ϕ
l”

k (t) dt.

When λl is too large, the estimation of βl(.) will be too smooth, and we will not be able to

account for the possible variations of the regression coefficients. When, instead, λl is too small,

the estimators might become too rough and overfitting might occur.

For a given value λl, the estimation of
(
βl(t)

)
0≤l≤p

is obtained by solving:

min
b,Γ

Lpen(b, Γ) = min
b,Γ

- 2L(b, Γ |Y) +

p∑
l=0

λl

q
βl∑

s,k=1

blsb
l
kΦ

l
sk

= min
b,Γ

- 2L(b, Γ |Y) + b⊤(λP) b , (14)

where λP ∈ Rq
β
×q

β is given by:

λP =


λ0Ψ

0 0q
β0

×q
β1

. . . 0q
β0

×q
βp

0q
β1

×q
β0

λ1Ψ
1 . . . 0q

β1
×q

βp

...
...

. . .
...

0q
βp

×q
β0

0q
βp

×q
β1

. . . λpΨ
p

 with Ψl =


Φl

11 Φl
12 . . . Φl

1q
βl

Φl
21 Φl

22 . . . Φl
2q

βl

...
...

. . .
...

Φl
q
βl
1 Φl

q
βl
2 . . . Φl

q
βl
q
βl

.

Here, 0q1×q2 is the standard notation for the null matrix of size q1 × q2. As Ψl is a symmetric

positive-definite matrix for any 0 ≤ l ≤ p, we can easily find its Cholesky decomposition, which

can be efficiently leveraged in the implementation.

We first rewrite Model (7) in the form :

Y = R⊤b + ε∗,

with ε∗ = ZU+ η and V = Var(ε∗) = ZΓZ⊤ + σ2I. By setting the partial derivatives with respect

to b and V to 0 and then solving the resulting linear system, we get:

b̂λ =
(
R⊤V̂-1R+ λP

)-1
R⊤V̂-1Y. (15)

(see Appendix 7.2 for more details).
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Let us now address the problem of choosing the smoothing parameters λ = (λl)0≤l≤p. The correct

choice will make great use of the observed accuracy of the prediction. For this purpose, for a

fixed value of λ, we resort to a leave-one-out cross-validation type approach and compute b̂
(-i)
λ

based on the sample except for the ith observation. We then compute the prediction Ŷ
(-i)
λ at

observation i. Finally, we can compute the prediction error or cross-validation score associated

with the parameter λ as

Vn(λ) =
1

n

n∑
i=1

(
Yi − Ŷ

(-i)
λ

)2
.

The value of λ that achieves the lowest estimated risk will be selected.

3.2 Penalized estimator for the integral model

For the integral model, we can also optimize the penalized log-likelihood function as in (12).

However, the main difference lies in the specific form of the penalty. The log-likelihood of the

model will thus have the expression:

L(a,Γ |Y) = nm log(2π) + log |V|+ (Y −Q⊤a)⊤V-1(Y −Q⊤a) (16)

using V = Var(ZU + η), and the penalized log-likelihood:

Lpen(a, Γ |Y) = - 2L(a, Γ |Y) + Pen(γ0) +

p∑
l=1

Pen(γl), ; (17)

For this model, the parameters γl will be bivariate functions except for γ0, which is univariate.

The penalties for bivariate parameters will take the following expression:

Pen(γl) = λl

∫ ∫ ∥∥∥Hγl(t, s)
∥∥∥2 ds dt = λl

∫ ∫ ∥∥∥∥∥
∂2γl(t,s)

∂t2
∂2γl(t,s)
∂t ∂s

∂2γl(t,s)
∂s ∂t

∂2γl(t,s)
∂s2


∥∥∥∥∥

2

ds dt.

Here Hf (t, s) denotes the Hessian matrix of the bivariate function f and ∥ · ∥ is as is standard the

Frobenius norm. To simplify expressions we will use the notation:
∂2γl(t, s)

∂t ∂s
≡ γts

l (t, s), and then

we have

Pen(γl) = λl

∫ ∫ (
γtt
l (t, s)

2 + 2 γts
l (t, s)

2 + γss
l (t, s)2

)
ds dt. (18)
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We know from (9) that

γl(t, s)
2 =

(
al

⊤
B1(t)B2(s)

)2
=

( q
γl∑

i,j=1

alijB
l
1i(t)B

l
2j(s)

)2

=

q
γl∑

i,j,k,m=1

alija
l
kmB

l
1i(t)B

l
1k(t) B

l
2j(s)B

l
2m(s),

so we then have the following expressions for the partial derivatives:

∫ ∫
γtt
l (t, s)

2 ds dt =

q
γl∑

i,j,k,m=1

alija
l
km

∫
Bl′′

1i(t)B
l′′

1k(t) dt

∫
Bl

2j(s)B
l
2m(s) ds

=

q
γl∑

i,j,k,m=1

alija
l
kmΦl′′

1,ik Φ
l
2,jm ;

∫ ∫
γts
l (t, s)

2 ds dt =

q
γl∑

i,j,k,m=1

alija
l
km

∫
Bl′

1i(t)B
l′

1k(t) dt

∫
Bl′

2j(s)B
l′

2m(s) ds

=

q
γl∑

i,j,k,m=1

alija
l
kmΦl′

1,ik Φ
l′
2,jm ;

∫ ∫
γss
l (t, s)2 ds dt =

q
γl∑

i,j,k,m=1

alija
l
km

∫
Bl

1i(t)B
l
1k(t) dt

∫
Bl′′

2j(s)B
l′′

2m(s) ds

=

q
γl∑

i,j,k,m=1

alija
l
kmΦl

1,ik Φ
l′′
2,jm .

with the notation Φl′

u,sk =

∫
Bl′

us(t)B
l′

uk(t) dt.

Back to the problem of minimizing the penalized log-likelihood (17), for fixed values (λl)0≤l≤p, the

estimation of
(
γ0(t), γ1(t, s), . . . , γp(t, s)

)
is obtained by solving the problem:

min
a, Γ

Lpen(a, Γ) = min
a, Γ

- 2L(a, Γ |Y) + λ0

qγ0∑
s,k=1

a0sa
0
kΦ

0
sk +

p∑
l=1

λl

q
γl∑

i,j,k,m=1

alija
l
km

(
Φl′′

1,ik Φ
l
2,jm + 2Φl′

1,ik Φ
l′

2,jm + Φl
1,ik Φ

l′′

2,jm

)
.

The penalty term for any bivariate parameter γl(t, s) can be seen as the tensor product between

the three following terms: the (aij)1≤i,j≤q
γl
matrix, the 4th order square tensor of dimension qγl and

the matrix (akm)1≤k,m≤q
γl
. We can rearrange this tensor product as a matrix product by flattening

14



the matrix to a vector and the 4th order tensor to a matrix. So we get a matrix product between

the row vector of length q2
γl , the square matrix of dimension q2

γl × q2
γl and the column matrix of

length q2
γl . The minimization problem can be written in matrix form:

min
a, Γ

Lpen(a, Γ) = min
a, Γ

- 2L(a, Γ |Y) + a⊤(λP) a , (19)

where λP the matrix of dimension qγ × qγ with qγ = qγ0 +
∑p

l=1 q
2
γl defined as in (14). The main

difference lies in the expression of the block matrix Ψl for l > 0 given by:

Ψl =

(
Φl′′

1,ik Φ
l
2,jm + 2Φl′

1,ik Φ
l′

2,jm + Φl
1,ik Φ

l′′

2,jm

)
1≤i,j,k,m≤q

γl

.

With this expression, we proceed in the same way as in the concurrent model to obtain the

penalized estimator of a and then
(
γ̂l(t, s)

)
l
.

3.3 Prediction interval

We know, based on earlier works of Ruppert et al. (2003) and Wood (2006), that the variance of

our estimators and joint and point wise confidence intervals in the mixed effects model can easily

be obtained. The penalized estimator of fixed effects and variance components is given by: b̂λ = (R⊤V̂-1R + λP)-1R⊤V̂-1Y,

Û = σ2Z⊤V̂-1(Y − R⊤b̂λ) ;

where λ is the smoothing parameter. Since the above expressions depend on the variance compo-

nents, they can only be calculated if they are known.

With a model of the form Y = R⊤b + ε∗ with ε∗ = ZU + η, we have ε∗ ∼ N (0,V) with

V = ZΓZ⊤ + σ2Inm and then Y ∼ N (R⊤b, V). Thus:

Cov(Y,U) = Cov(R⊤b+ ZU + η,U)

= Cov(R⊤b, U) + ZVar(U) + Cov(η, U)

= ZΓ
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We can thus deduce that E(U |Y) = ΓZ⊤V-1(Y − R⊤b), and since Y ∼ N (R⊤b, V) holds,

Var(̂bλ) = Var

((
R⊤V̂-1R+ λP

)-1
R⊤V̂-1Y

)
=

(
R⊤V̂-1R+ λP

)-1
R⊤V̂-1 Var(Y) V̂-1R

(
R⊤V̂-1R+ λP

)-1
=

(
R⊤V̂-1R+ λP

)-1
R⊤V̂-1V̂ V̂-1R

(
R⊤V̂-1R+ λP

)-1
=

(
R⊤V̂-1R+ λP

)-1
R⊤V̂-1R

(
R⊤V̂-1R+ λP

)-1
where one assumes that V̂ is fixed and does not depend on Y. Therefore, the diagonal elements of

this matrix are considered as estimates of Var(b̂λ,j)j even though it is known to often underestimate

it target. With these ideas in hand, we get

b̂λ,j ± z1−α/2

√
Var(̂bλ)jj gives an approximate 100(1− α)% confidence interval of b̂λ,j.

Based on this confidence interval of b̂ we can easily build a pointwise confidence interval of

the prediction Ŷi(.) at any desired time t.

4 Simulation study of functional models

The aim of this section is to illustrate and validate the estimation procedure described in Section

3 in the framework of “perfectly controlled” data, i.e. in the set-up where the assumptions about

the distribution are the ones underlying our theory. The main properties of interest are accuracy,

interpretability and smoothness of the estimated parameters, as well as the prediction quality.

Hence, we will first conduct a simulation study without penalization of the functional parameters

in order to assess the relevance of the method based on prediction accuracy. Secondly, another

simulation experiment compares unpenalized parameter estimation with its penalized counterpart.

Only the concurrent model is considered in this section, but similar results are expected for the

integral model.

4.1 Data simulation process

The framework of the linear model we are considering in the present work can be helpful to explain

the variations of a functional response variable through a set of controlled factors, which are the
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covariates or explanatory variables. In order to illustrate the relevance of our model, we are going

to simulate an artificial data set and evaluate if the parameters are correctly recovered. For this

purpose, we will first simulate the covariates and then use them as input to our regression model

in order to simulate the corresponding response.

The p = 5 functional covariates are simulated at m = 50 equidistant viewpoints (tj)j over the

domain T = [0, 1] according the following procedure :

Ul
i(tj) = ξli,1 +

(
log(10 + tj)

)ξli,2
+ ξli,3 sin

(
2πtj
ξli,4

)
(20)

where ξli,r is drawn from U
(
[-1, 1]

)
(1 ≤ r ≤ 4). This data, as we can see in Figures (1a)-(1e) inside

Figure 1 for one randomly chosen individual, is generated at discrete timestamps over T = [0, 1]

(blue dots).
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Figure 1: Simulated functional predictors and functional (concurrent) response for a randomly

chosen individual.

Before estimating the model, we first compute the underlying expansion into a basis of B-Splines.

We obtain the red curves in Figure 1 using K = 25 basis functions and equidistant distributed

nodes. In other words, we observe Ul
i(t) with 1 ≤ l ≤ p and 1 ≤ i ≤ n, and the functional
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covariates Xl
i(t) are obtained as:

Ul
i(t) = Xl

i(t) + δli(t) with Xl
i(t) =

K∑
j=1

xl
ij bj(t) and δi(t) ∼ N (0, u2

i ).

The functional parameters β(t) =
(
β0(t), β1(t), . . . , βp(t)

)
are chosen as follows: β0(tj) =(

log(10+ tj)
)ρ0

and βl(tj) = ρl1 sin
(

2πtj
ρl2

)
with ρ0, ρ

l
1, ρ

l
2 some constants given in Appendix 7.1.

Figure 2 shows the corresponding representations of the functional parameters.

(a) β0(t) (b) β1(t) (c) β2(t)

(d) β3(t) (e) β4(t) (f) β5(t)

Figure 2: Functional parameters in the concurrent model.

Given the proposed functional covariates and functional parameters, we can now compute the

functional response using the concurrent Model (1), for two different sampling rates n ∈ {200; 500}.

In this experiment, εi(t) is a Gaussian noise with mean 0 and two levels of variance σ2 ∈ {1; 4}.

For each configuration, we run N = 50 Monte Carlo simulations.

4.2 Assessment criteria

We assess the performance of our estimation procedure. Two criteria are considered: prediction

accuracy and estimation error for the model parameters. We extend to the functional framework

the well-known Mean Relative Prediction Error (MRPE), which is used to quantify the distance
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between the actual and the predicted value of the functional response:

MRPE =
1

m

m∑
j=1

(∑n
i=1

(
Yi(tj)− Ŷi(tj)

)2∑n
i=1 Yi(tj)2

)
. (21)

We also define one extension of the determination coefficient, which consists of a simple arithmetic

average of the classical determination coefficient along the time observation of the functional

response. This determination coefficient noted R̃2 is defined as follows:

R̃2 =
1

m

m∑
j=1

(
1−

∑n
i=1

(
Yi(tj)− Ŷi(tj)

)2
∑n

i=1

(
Yi(tj)− Yi(tj)

)2
)
, (22)

where Ŷi(tj) is the predicted output of the sample i at time tj and Yi(tj) the mean function of

the output sample at time tj.

To evaluate the performance of the estimation parameters, we compare the actual functional

parameters with those provided by our models using the Mean Square Error (MSE) given by:

MSE
(
βl(.)

)
=

[
p∑

l=0

1

m

m∑
j=1

(
βl(tj)− β̂l(tj)

)2]1/2
. (23)

4.3 Simulation results

Figure 3 compares the boxplots of the Mean Square Error (23) of the estimated parameters.

As expected, the MSE decreases as the number of observations increases. This is the case in

the scenarios when we have either a small or a high variance of the model error. Additional

information about the results, the estimated functional coefficients versus the actual ones, are

available in Appendix 7.3 in Figure 13.
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Figure 3: Boxplots of Mean Square Error of estimated parameters over the N = 50 Monte Carlo

simulation when n = 200 (red) and n = 500 (blue).

The functional determination coefficient computed over all the scenarios is presented in Table 1.

From this table, we observe that when the additive noise increases, the coefficient of determination

gets smaller, and increasing the sample size improves the coefficient of determination.

Scenarios R̃2

n = 200, σ2 = 4 0.868 (0.0065)

n = 500, σ2 = 4 0.878 (0.0040)

n = 200, σ2 = 1 0.946 (0.0022)

n = 500, σ2 = 1 0.947 (0.0013)

Table 1: Functional determination coefficient R̃2 over all the repetitions of any scenarios of simu-

lation.

Let us now turn to our main objective, which is performance in prediction. We generate a test

sample with n = 2000 observations, and we compare the difference between the actual values of

the functional response and the prediction given for each model in a Monte Carlo simulation when

n = 200 and n = 500. Accuracy is measured by the Mean Relative Prediction Error (MRPE). The
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boxplots for our four simlutation setups are given in Figure 4 while Figure 5 gives the actual values

and the prediction over time. The simulations corroborate our expectations that our prediction

scheme is able to cope with large variations in the functional response.
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Figure 4: MRPE on a test sample of length n = 2000 in all the scenarios of simulation for Monte

Carlo simulation
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Figure 5: Prediction and actual values of the functional response for two randomly chosen indi-

viduals. The red curves is the obtained prediction and the blue dot is the actual data
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4.4 Effect of regularization

A close observation of the results shows that the basis expansion of β0(t) requires a large number

of zero coefficients, which makes the estimation problem difficult to address in the small sample

setting. As a notable consequence, estimation for this parameter may become unreliable for

insufficiently large samples. Since the choice of the number of basis functions Lβ strongly affects

the estimation of the functional parameters, our subsequent strategy will rely on introducing a

regularization term. As explained in Section 3, regularization is a flexible and often robust way to

adjust the number of basis functions. In order to illustrate the potential positive impact of using

regularization, we propose a simulation study with p = 3 functional predictors whose parameters

are constant (or linear) in some region and present high variability in other regions. We compare

the unpenalized setting with the penalized setting when Lβ is chosen arbitrarily large. More

precisely, we investigate the three following scenarios: Lβ = 50 without regularization, Lβ = 50

with regularization and Lβ = 5 without regularization.

The following functional parameters are considered: β0(t) = 8t, β2(t) = β1(1− t) and

β1(t) =

 0 if t ≤ 0.4 ,

1.44 sin
(

2πt
0.38

)
otherwise.

; β3(t) =

 8t if t ≤ 0.4 ,

3.2 + 1.44 sin
(

2πt
0.38

)
otherwise.

For the proposed model, Lβ = 50 basis functions is most certainly too large a number. Therefore,

in addition to the prediction accuracy for these three models, we focus on the interpretability

of the obtained functional parameters. The objective is to have a parameter that fits very well

both in the regions where the function is constant as well as where the function undergoes high

variability.
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Figure 6: Estimated parameters vs actual ones in the 3 scenarios for any parameters in one of the

N = 50 simulations. Lβ = 5 without penalization in cyan ; Lβ = 50 without penalization in red ;

Lβ = 50 with penalization in green which is completely hidden by the actual parameter in black.

Figure 6 plots one random instance, among the N = 50 simulations, of the functional param-

eters β0(t), β1(t), β2(t) and β3(t) in our three scenarios. Table 2 shows the average MSE (and

standard deviation) between actual parameters and the estimated ones in the three considered

scenarios. For the β0(t) parameter, which has a linear shape, the best fit comes from Scenario 1

where we have a small number of basis functions. The penalization process (Scenario 3) does not

have the best performance on this parameter, but it has an acceptable shape as compared with the

non-penalized process for the same number of basis functions (Scenario 2). The unpenalized esti-

mator does not perform well especially at the start and at the end of the domain, while Scenario

1 does provide a sufficient number of basis functions to cope with the more complex behaviour in

the very non-linear areas. Our main observation in this setup is that Scenario 3 is globally the

best approach among the three since it is the only one that correctly adjusts its complexity to the

23



oscillations of the function to estimate.

Mean Square Error β0(t) β1(t) β2(t) β3(t)

Scenario 1: Lβ = 5 without penalization 0.20(0.04) 0.77(0.001) 0.77(0.000) 0.82(0.001)

Scenario 2: Lβ = 50 without penalization 166.58(9.1) 4.09(3.0) 4.46(3.4) 3.61(2.77)

Scenario 3: Lβ = 50 with penalization 0.38(0.002) 0.06(0.002) 0.06(0.002) 0.06(0.002)

Table 2: Average (and standard errors) obtained over the N = 50 repetitions we performed of

MSE between estimated parameters and actual ones in the three different scenarios.

An additional important observation is that choosing equispaced knots seems a sufficient strategy

for most of the estimation problems we encountered. Sticking to this strategy allows avoiding the

cumbersome task of selecting the locations of the knots using cross-validation.

5 Application to real data

In this section, we apply the proposed methodology for function-on-function regression (subse-

quently denoted by PenFFR which stands for “penalized function-on-function regression” and

by FFR for “(unpenalized) function-on-function regression” ) for concurrent and integral mod-

els. These models are applied to two well-known data sets in FDA: Canadian Weather (CW)

data available in the R package fda and Hawai Ocean (HO) data available in the R package

FRegSigComp. We compare the prediction accuracy obtained using our method with the accuracy

obtained with other existing methods: integral and concurrent Penalized Function-on-Function

Regression (PFFR, Ivanescu et al. (2015)) implemented in the R package refund; the signal

compression approach (wSigcomp) designed by Luo et al. (2016) for the integral model and imple-

mented in the R packages FRegSigComp; the Optimal Penalized Function-on-Function Regression

(OPFFR) for the integral model (Sun et al., 2018), the Functional Principal Component Analysis

(FPCA) and Functional Data Analysis method (FDA) (Ramsay and Silverman, 2005). Due to the

unavailability of code for the OPFFR approach, we simply use the published results as presented

in their paper (Sun et al., 2018).
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Hyper-parameter tuning For our methods (FFR and PenFFR), we consider cubic B-splines

basis functions for both functional predictors and regression coefficients. On the CW data set, we

use 100 basis functions to address the functional and complex nature of the predictors and on HO

data set, we use 40 basis functions. This choice is motivated by the fact that on the raw data,

predictors on CW data set has 365 measurements while predictors in the HO data set have 200

measurements. The number of basis functions of parameters is set to 15 on CW data, both for

integral and the concurrent models. For the HO data, based on the fact that we have 4 functional

predictors and we know that the number of features of design matrix depends on the squared of

the number of basis functions in the integral model. So for this complexity, we choose 40 basis

functions for the concurrent model and only 6 for the integral model. The penalty parameters λl

of any predictor is selected using cross-validation on a predefined grid of values (10 equispaced

values between 0.1 and 2.0).

For the PFFR method we used the default settings prescribed in the software and only set the

number of basis functions for both the functional parameters and predictors. To correctly compare

to our proposed method, we also used a cubic splines basis for both the functional predictors and

parameters for the two (CW and HO) data sets. We use as our method the same number of basis

functions to recover the functional nature of the predictors and on parameters.

For the wSigcomp method designed for the integral model, the default settings of the software

are also used. For the HO data set which is tested by authors in their package description, the

number of basis functions is set to 40 for the functional parameters and 20 for predictors. For

the CW data, we slightly change but in the same proportion these value and set the number of

basis functions involved for the functional parameters to 80 and the predictors to 40. We have

detailed the choices of the hyperparameters but it should be noted that the performance of all

these methods remains slightly sensitive to a reasonable variation of these values.
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Canadian Weather Data Hawaii ocean data

Methods Type of basis Xℓ
i (t) βℓ(t) Type of basis Xℓ

i (t) βℓ(t)

Integral PenFFR / FFR cubic B-splines 100 10 cubic B-splines 40 6

Concurrent PenFFR / FFR cubic B-splines 100 40 cubic B-splines 40 20

Integral PFFR cubic B-splines 100 10 cubic B-splines 40 6

Concurrent PFFR cubic B-splines 100 40 cubic B-splines 40 20

wSigcomp wavelets + SVD 40 80 wavelets + SVD 20 40

OPFFR / / / / / /

FDA Cubic B-splines / 10 / / /

FPCA SVD / / / / /

Table 3: Number of basis functions for the regression coefficients βℓ(t) and the covariates Xℓ
i (t)

5.1 Canadian weather data

The data set consists of m = 365 daily temperature measurements (average over the years 1961

to 1994) at n = 35 weather stations in Canada and their corresponding daily precipitation (in log

scale). The weather stations are located in K = 4 climate zones: Atlantic, Pacific, Continental

and Arctic and the aim is to use the daily temperature to predict the precipitation at each station.

Figure 7 gives the daily average over the years 1961 to 1994 (temperature on the left, precipitation

on the right). Note that the stations in the Pacific zone have the highest precipitation values,

and stations from this zone also have the highest temperatures in the winter. The same can be

said about the stations in the Arctic zone for low temperatures and precipitation. A positive

relationship between temperature and precipitation can therefore be suspected.
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Figure 7: 35 daily mean temperature (a) and precipitation (b) measurement curves.

Our methods (FFR and PenFFR) for the concurrent model (1) and integral model (2) are

compared with the PFFR, OPFFR, FPCA, FDA and wSigcomp methods. As previously men-

tioned, we use for the OPFFR, FDA and FPCA methods, the results presented in Sun et al.

(2018) in terms of prediction accuracy over the 365 days of the year through the leave-one-out

cross-validation integrated square error (ISE) given by:

ISEi =

∫ 365

0

(
Yi(t)− β̂(-i) Xi(t)

)2
dt

where the predictor Xi(.) derives from the noisy daily temperature measurements; the functional

response Yi(.) is the log daily precipitation and β̂(-i) is the functional parameter estimated in the

data set of all the observations except for the ith observation.

For sake of reducing the computational burden, instead of the ISE, the L2-norm between the actual

and prediction values on a grid of values t is used as a surrogate. It is given by:

ÎSEi =
365∑
j=1

(
Yi(j)− β̂(-i) Xi(j)

)2
. (24)

The average ÎSEi values for the different models are given in Table 4. They show the numerical

advantage of our proposed PenFFR method over the other methods. We also note that the variance

observed in our predictions remains quite high for the different models. This is due to the quality

of the input data. For recall that we are trying to predict precipitation from temperature on a

dataset of 35 very different weather stations
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Methods ÎSE

Integral PenFFR 33.66 (22.99)

Concurrent PenFFR 36.40 (40.42)

Integral FFR 34.63 (26.03)

Concurrent FFR 36.50 (40.51))

Integral PFFR 41.37 (48.91)

Concurrent PFFR 89.31 (52.03)

wSigcomp 45.37 (52.45)

OPFFR 40.28 (45.76)

FDA 44.16 (56.95)

FPCA 45.51 (45.78)

Table 4: The average (and standard deviation) of ÎSE for the Canadian Weather data set. The

best result is in boldface.

Also shown in Figure 8 is the prediction obtained using the different methods. We restrict our

attention to the integral model since it appeared to be the best model for this data set, inde-

pendent of the estimation method (PenFFR, PFFR and wSigcomp). The prediction is given for

two randomly chosen weather stations (Iqaluit and Arvida) and are compared with the actual

precipitation. Similar results are illustrated by Figure 14 in the appendix for the concurrent

model.
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Figure 8: Prediction on two randomly chosen stations. For each figure, the black points are the

actual data, the red two-dashed line represents the prediction given by our integral PenFFR, the

magenta dashed line is the prediction given by the integral PFFR method, and the long-dashed

green line is the prediction given by the wsigcomp method.

5.2 Hawaii ocean data

This data set is one of those used by Luo et al. (2016) to apply their wSigcomp approach. The

data set includes physical and biochemical oceanographic observational data from the Hawaii

Ocean Time-series (HOT) Program, including thermosalinograph, Conductivity, Temperature and

Depth (CTD), bottle and biochemical data. The HOT program makes repeated observations of

the physics, biology and chemistry at a site approximately 100 km north of Oahu, Hawaii. In

the data set, five variables: Salinity, Potential Density, Temperature, Oxygen and Chloropigment,

are observed every two meters between 0 and 200 meters below the sea surface on 116 different

days. This data set is available from the R package "FRegSigComp", under the name Ocean

data. It consists of 5 functional variables with 116 individuals, each having 101 measurement

points. Here, we consider the function-on-function regression model with the salinity curves as

the response variable Y(t) and (Potential Density, Temperature, Oxygen, Chloropigment) curves

as functional predictors X(t) =
(
X1(t),X2(t),X3(t),X4(t)

)
. We split the full data set into two

train/test sub-data sets where the training data consists of the 50 first days (observations) only.

First of all, we expand all the functions considered into a cubic B-spline basis with 40 basis
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functions. Figure 9 displays the sample curves for these variables.
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Figure 9: Original sample curves of predictors expanded by cubic B-splines basis with 40 basis

functions.

Our PenFFR method is compared with PFFR and wSigcomp in the setting of integral models.

We also consider PenFFR and PFFR for the concurrent model. Figure 10 and 11 show the

estimated parameters γ̂0(t) and γ̂j(t, s), 1 ≤ j ≤ 4 obtained for the three methods in the case

of the integral model. We first notice that the shape of the estimated parameters is smooth

for our method (third column). In addition, Figure 15 in the appendix shows the estimates

β̂j(t), 0 ≤ j ≤ 4 of the concurrent model with the PenFFR and PFFR methods.
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Figure 10: Estimates γ̂j(s, t), 1 ≤ j ≤ 4 for the three methods: wSigcomp (left column), integral

PFFR (middle column) and integral PenFFR (right column).
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Figure 11: Estimates γ̂0(t), 1 ≤ j ≤ 4 for the three methods: wSigcomp (left column), integral

PFFR (middle column) and integral PenFFR (right column).

Prediction accuracy using ÎSE on a test set of size 66 is shown in Table 5. Since the number

of individuals for this data (116) is larger than the size of the previous data set, we evaluate the

performance on a single test set rather than using cross-validation in order to circumvent the

potentially heavy computational burden. Our method is seen once again to outperform all other

methods as illustrated in Figure 12 which shows predictions on two randomly chosen individuals.

Methods ÎSE (×102)

Integral PenFFR 0.57 (0.74)

Concurrent PenFFR 4.83 (2.88)

Integral PFFR 2.49 (2.82)

Concurrent PFFR 496.68 (612.18)

wSigcomp 4.79 (4.46)

Table 5: The average (and standard deviation) of ÎSE for the Hawaii ocean data set. The best

result is in boldface.
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Figure 12: Prediction given by the three methods for integral model on two randomly chosen

observations in the test sample: PenFFR in blue, PFFR in green and wSigcomp in red. Black

dots are the true values.

6 Conclusion

In this article, we have presented a new estimation process for the linear regression model with

functional responses and functional covariates. We approach the problem via expanding the

functions onto a common B-spline basis, hence allowing the reduction of the functional model

to a linear mixed model. Adaptation to unknown smoothness is performed by adding a roughness

penalty on second derivatives. Unlike any estimator based on basis functions, our estimates have a

smooth shape and sufficient flexibility to capture the encountered variability in various experiments

with real-world data sets. We then illustrate the performance of our proposed estimation process

in terms of prediction accuracy and parameter interpretability on simulated and real data sets.

Perspectives for future work on this model are manifold. First, prediction confidence bounds

can be obtained using various methods such as conformal prediction (Angelopoulos and Bates,

2022), which can handle black box models and could be adapted to our setting as well. Another

avenue for future investigations is to explore mixture function-on-function models. This type of

mixture model can be safely expected to be extremely relevant when heterogeneous clusters are

present in the population (DeSarbo and Cron (1988)). Mixture of experts can also be explored as

an additional extension which could prove very efficient in predictive modelling; see Chamroukhi

et al. (2022), where a new family of FME is proposed, albeit restricted to scalar responses.
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7 Appendix

7.1 Simulation parameters

The values of the chosen constants is drawn from uniform law between -5 and 5. The values is

given by: ρ0 = 0.439, ρ11 = -3.562, ρ21 = -1.058, ρ31 = -2.955, ρ41 = -0.585, ρ51 = -0.298, ρ12 = 0.228,

ρ22 = 2.641, ρ32 = 4.462, ρ42 = 2.757 and ρ52 = 2.283.

7.2 Mixed model estimator

We first rewrite the model in the form :

Y = R⊤b + ε∗, (25)

with ε∗ = ZU + η, from which we get V = Var(ε∗) = ZΓZ⊤ + σ2I. We aim to estimate the fixed

effects b and the error variance V from the observed data. The most popular estimation methods

for the parameters in Model (7) are maximum likelihood (ML) and restricted maximum likelihood

(ReML) as described in Lindstrom and Bates (1988). The log-likelihood of the model is written

as:

Lpen(b, V) = nm log(2π) + log |V|+ (Y − R⊤b)⊤V-1(Y − R⊤b) + b⊤(λP) b (26)

First order condition:
∂

∂b

(
Lpen(b, V)

)
= 0.

∂Lpen

∂b
=

∂

∂b

((
Y⊤ − (R⊤b)⊤

)
V-1
(
Y − (R⊤b)

)
+ b⊤(λP) b

)

=
∂

∂b

((
Y⊤V-1Y − Y⊤V-1R⊤b− (R⊤b)⊤V-1Y+ (R⊤b)⊤V-1R⊤b

)
+ b⊤(λP) b

)
= - (Y⊤V-1R⊤)⊤ − RV-1Y+ 2RV-1R⊤b + 2 (λP) b

= - 2RV-1Y + 2 (RV-1R⊤ + λP) b.

and by equalizing to 0, i.e.
∂Lpen

∂b
= 0, we get:

b̂(V) =
(
RV-1R⊤ + λP

)-1
RV-1Y. (27)
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By replacing b by its estimator in the likelihood expression, we get the profiled log-likelihood given

by:

Lp(V) = −1

2

(
N log(2π) + log |V|+

(
Y − R⊤(RV-1R⊤)-1RV-1Y

)⊤
V-1

(
Y − R⊤(RV-1R⊤)-1RV-1Y

))

= −1

2

(
N log(2π) + log |V|+

(
Y⊤V-1 − Y⊤V-1R⊤(RV-1R⊤)-1RV-1

)
(
Y − R⊤(RV-1R⊤)-1RV-1Y

))

= −1

2

(
N log(2π) + log |V|+Y⊤V-1Y − Y⊤V-1R⊤(RV-1R⊤)-1RV-1Y −

Y⊤V-1R⊤(RV-1R⊤)-1RV-1Y+

Y⊤V-1R⊤(RV-1R⊤)-1RV-1R⊤(RV-1R⊤)-1RV-1Y

)

= −1

2

(
N log(2π) + log |V|+Y⊤V-1Y − Y⊤V-1R⊤(RV-1R⊤)-1RV-1Y

)

Lp(V) = −1

2

(
N log(2π) + log |V|+Y⊤V-1

(
I− R⊤(RV-1R⊤)-1RV-1

)
Y

)
.

On the other hand, there holds V = Var(ε∗) = σ2
UZZ⊤ + σ2I , and thus, Lp(V) = Lp(σ

2
U, σ

2). It is

obviously not easy to derive this likelihood which no longer depends on b. Moreover, maximizing

this last function gives the MLE which is nevertheless biased. For these reasons, and in order

to account for the degrees of freedom of the fixed effects in the model, we propose to use the

Restricted Maximum Likelihood (ReML) which reads:

LR(V) = Lp(V)−
1

2
log |RV-1R⊤| (28)

From a numerical viewpoint, we obtain the estimator V̂ of the variance V by maximizing this last

likelihood from which we finally deduce the value of Û given by: b̂ = (R⊤V̂-1R + λP)-1R⊤V̂-1Y,

Û = σ2Z⊤V̂-1(Y − R⊤b̂).
(29)
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7.3 Parameter representation on simulated data

In each scenario, we estimate the functional parameters with cubic B-splines basis, regular knots

over the grid and Lβl = 50 basis functions. The parameters we obtain with our model are close

to the true parameters. However, we note that estimation of β0(t) is noised by the two large

number of basis functions considered. This confirms the previously mentioned concerns about

interpretability (smoothness) of the estimated parameters without regularization. Figure 13 also

confirms that estimation accuracy increases with the number of observations.
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Figure 13: Estimated and actual parameters for the concurrent model over the 4 scenarios of

simulation.
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7.4 Prediction on concurrent models for Canadian Weather data
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Figure 14: Prediction on two randomly chosen stations. For each figure, the black points are the

actual data, the red two-dashed line is the prediction given by our concurrent PenFFR and the

magenta dashed line is the prediction given by the concurrent PFFR method.
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7.5 Parameters estimation for concurrent models on Hawaii Ocean
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Figure 15: Estimates β̂j(t), 0 ≤ j ≤ 4 for the two methods (pffr and PenFFR) on concurrent

model. The first row shows the estimation provided by our PenFFR method. The second row

shows the estimation provided by the pffr method.

42


