
HAL Id: hal-04120525
https://hal.science/hal-04120525v1

Submitted on 31 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhancing Fault Awareness and Reliability of a
Fault-Tolerant RISC-V System-on-Chip

Douglas Almeida dos Santos, André Martins Pio de Mattos, Douglas Melo,
Luigi Dilillo

To cite this version:
Douglas Almeida dos Santos, André Martins Pio de Mattos, Douglas Melo, Luigi Dilillo. Enhancing
Fault Awareness and Reliability of a Fault-Tolerant RISC-V System-on-Chip. Electronics, 2023, 12
(12), pp.2557. �10.3390/electronics12122557�. �hal-04120525�

https://hal.science/hal-04120525v1
https://hal.archives-ouvertes.fr


This is a self-archived version of an original article.
This reprint may differ from the original in pagination and typographic detail.

Title: Enhancing Fault Awareness and Reliability of a Fault-Tolerant RISC-V System-on-Chip

Author(s): Douglas A. Santos, André M. P. Mattos, Douglas R. Melo, Luigi Dilillo

Document version: Post-print version (Final draft)

Please cite the original version:
Santos, Douglas A., et al. ”Enhancing Fault Awareness and Reliability of a Fault-Tolerant RISC-V System-on-Chip.”
Electronics 12.12 (2023): 2557.

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of
any of the repository collections is not permitted, except that material may be duplicated by you for your research
use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or
print copies may not be offered, whether for sale or otherwise to anyone who is not an authorized user.



Enhancing Fault Awareness and Reliability of a
Fault-Tolerant RISC-V System-on-Chip

Douglas A. Santos∗, André M. P. Mattos∗, Douglas R. Melo†, and Luigi Dilillo∗

∗IES, University of Montpellier, CNRS, Montpellier, France
†LEDS, University of Vale do Itajaı́, Itajaı́, Brazil

{douglas.santos, andre.martins-pio-de-mattos}@umontpellier.fr, drm@univali.br, luigi.dilillo@umontpellier.fr

Abstract

ecent research has shown interest in adopting the RISC-V processors for high-reliability electronics, such as
aerospace applications. The openness of this architecture enables the implementation and customization of the proces-
sor features to increase their reliability. Studies on hardened RISC-V processors facing harsh radiation environments
apply fault tolerance techniques in the processor core and peripherals, exploiting system redundancies. In prior work,
we present a hardened RISC-V System-on-Chip (SoC), which could detect and correct radiation-induced faults with
limited fault awareness. Therefore, in this work, we propose solutions to extend the fault observability of the SoC
implementation by providing error detection and monitoring. For this purpose, we introduce observation features in the
redundant structures of the system, enabling the report of valuable information that supports enhanced radiation testing
and support the application to perform actions to recover from critical failures. Thus, the main contribution of this work is a
solution to improve fault awareness and the analysis of the fault models in the system. In order to validate this solution,
we performed complementary experiments in two irradiation facilities, comprehending atmospheric neutrons and a
mixed-field environment, in which the system proved to be valuable for analyzing the radiation effects on the processor
core and its peripherals. In these experiments, we were able to obtain a range of error reports that allowed us to gain a
deeper understanding of the faults mechanisms, as well as improve the characterization of the SoC.ecent research has
shown interest in adopting the RISC-V processors for high-reliability electronics, such as aerospace applications. The
openness of this architecture enables the implementation and customization of the processor features to increase their
reliability. Studies on hardened RISC-V processors facing harsh radiation environments apply fault tolerance techniques
in the processor core and peripherals, exploiting system redundancies. In prior work, we present a hardened RISC-V
System-on-Chip (SoC), which could detect and correct radiation-induced faults with limited fault awareness. Therefore,
in this work, we propose solutions to extend the fault observability of the SoC implementation by providing error detection
and monitoring. For this purpose, we introduce observation features in the redundant structures of the system, enabling
the report of valuable information that supports enhanced radiation testing and support the application to perform
actions to recover from critical failures. Thus, the main contribution of this work is a solution to improve fault awareness
and the analysis of the fault models in the system. In order to validate this solution, we performed complementary
experiments in two irradiation facilities, comprehending atmospheric neutrons and a mixed-field environment, in which
the system proved to be valuable for analyzing the radiation effects on the processor core and its peripherals. In these
experiments, we were able to obtain a range of error reports that allowed us to gain a deeper understanding of the
faults mechanisms, as well as improve the characterization of the SoC.R

Index Terms

RISC-V; System-on-Chip; dependability; radiation effects; radiation testing; neutrons; mixed-field

I. INTRODUCTION

The increasing dependence on electronic systems developing complex and critical tasks in modern technologies
creates several challenges related to reliability requirements. Many systems are based on powerful processing units that
must be fail-safe and guarantee continuous service delivery. Each application sector must comply with standards and
guidelines to meet such requirements as seen in the automotive [1], aerospace [2], [4], and military [5] industries. With
the introduction of the RISC-V architecture, several projects and research efforts were initiated to adopt these novel
RISC-based processors in many application domains. In particular, the open and modular nature of the architecture
provided traction for its adoption in high reliability and critical systems [6].

Within these application domains, several reliability requirements are derived from the environmental conditions, in
which these systems are exposed: temperature variations, pressure profile, mechanical stress, and ionizing radiation.
For avionics flying in high altitudes or in orbit, ionizing radiation seriously threatens the dependable operation of such
systems [7], [8]. The interaction of ionizing particles with electronic devices generates a plethora of effects. Single-Event
Effects (SEEs) are an important phenomena, which induce transient, intermittent, and permanent faulty behaviors [9].
For processors, these effects can be observed as corrupted bits, wrong calculations, and transients, which may result
in application output error, data corruption, unexpected termination, and hangs [10].

The authors would like to acknowledge the support given by both irradiation facilities staff. Notably, Carlo Cazzaniga and Maria Kastriotou
from ChipIr, and Salvatore Danzeca and Andrea Coronetti from CERN, for CHARM facility. In addition, we would like to thank Ivan Slipukhin
(UM/CERN), Antonio Scialdone (UM/CERN), and Pablo Aviles (UC3M), for the support in the execution of the experiments.



In order to ensure the dependability of these processing systems, several fault tolerance techniques are applied to the
processors’ architecture and the surrounding peripherals. These techniques exploit temporal, spatial, and informational
redundancies [11]. Recent work explored and analyzed the effectiveness of these techniques applied to the RISC-V
architecture with fault injection campaigns, implemented as soft-core modules inside Field-Programmable Gate Array
(FPGA) devices. In [12], [13], the authors explore different approaches for improving the architectural elements of
the processor. In [14], [15], RISC-V cores with Triple Modular Redundancy (TMR) were implemented and validated,
achieving significant reliability improvements but with a high resource utilization penalty. As seen in [16], the design of
a lockstep RISC-V was proposed to address safety-critical applications. Other works presented hybrid solutions with
similar strategies to find an optimal trade-off between performance, resource utilization, and reliability, such as [17],
[18], [19]. In prior work, we proposed a fault-tolerant implementation of a RISC-V system [20], [21] designed for FPGAs,
known as HARV-SoC, where hybrid architectural redundancy techniques were applied, compared, and evaluated.

These fault-tolerant designs are usually validated through fault injection campaigns, either with simulation environ-
ments, emulation strategies, software frameworks, or real stimuli (e.g., exposition to radiation in particle accelerators).
All those strategies offer valuable data to enable the reliability assessment of complex systems [10], [22]. For application
domains with demanding dependable systems (i.e., aerospace, military), performing fault injection campaigns with real
stimuli is a mandatory step to meet standards criteria [4]. These campaigns are mostly adopted during the development
and validation phases of new systems. For this, designers instrument their systems with observation points [21] and
prepare meaningful benchmarks [23] to enable observation and measuring of the system’s fault sensitivity. However,
most fault-tolerant RISC-V implementations explored in the literature focus mainly on tolerating faults, making in-
depth reliability analysis complicated due to the lack of information. As a result, this approach leads to a limited
understanding of these complex systems in harsh radiation environments. However, implementing observation structures
is a challenging task, given that hard-core processors do not have customization capabilities, and soft-core processors
in FPGAs require additional configuration structures that are also susceptible to failures.

In this work, we propose a strategy targeting enhanced error tracking in the HARV-SoC by extending the fault
observability of the SoC implementation through runtime error detection. For this purpose, we monitor critical structures
of the SoC architecture to report relevant information about the errors triggered by radiation-induced events. This
solution allows a better understanding of the underlying impacts of SEEs in the design compared to alternative strategies.
Furthermore, it enables more efficient use of the hardening countermeasures and provides the means for the application
to perform actions to recover in case of critical failures. To implement and validate the concept, we instrument the
HARV-SoC with this solution and evaluate the observability effectiveness through neutron and mixed-field irradiation
campaigns. It is worth mentioning that this solution presented many technical challenges since many internal structures
had to be prepared for this purpose. Furthermore, prior field expertise was important in guiding the definition of the
information to be monitored and reported in an effective manner.

The remaining of the paper is structured as follows: Section II presents the related work; Section III describes key
aspects of our RISC-V implementation and its fault tolerance and awareness features; Section IV presents the proposed
experimental strategy; Section V presents the results and analysis; Section VI discusses these results and outcomes;
and Section VII concludes the work.

II. RELATED WORK

Recent studies explored fault tolerance techniques to improve the reliability of RISC-V systems but provided a
superficial analysis of the reported errors. Table I presents and compares the different approaches for the detection and
observation of errors found for RISC-V systems in the literature. We grouped the works using horizontal lines in the table
based on their fault injection strategy: simulation, emulation, or radiation, respectively. Moreover, six categories were
defined for comparison: 1. core architecture, providing the used RISC-V core implementation; 2. hardening strategy,
showing the different fault tolerance techniques applied; 3. configuration memory check, to evidence its impact in the
injection campaign; 4. evaluation coverage, showing the observed elements; 5. output classification, to compare the
provided execution classification; and 6. error analysis, in which the types of analyses are described.

For simulation-based validations [16], the authors perform initial validation of their systems and only provide func-
tional analysis. This approach provides full information on internal components and faulty behavior but uses limited fault
models. When emulation is used [13], [12], [24], authors often use dedicated components to inject and monitor errors
in the configuration memory of the target FPGA. In some cases, more high-level techniques are employed to inject
faults during the software execution [19]. Nevertheless, emulations are similar to simulations, in other words, they are
as good as the used fault models are realistic, i.e., in correlation to the real phenomena generation the faults.

For injections using radiation experiments [14], [15], [18], [21], authors attempt to provide a description of the
observed errors and their possible impact on their systems. Then, the main goal is to assess and correlate the
observed phenomena with known fault models and measure the sensitivity of the systems to the specific tested radiation
source. Despite that, this approach is prone to limited availability of information, leading to conclusions with error rates
uncorrelated with architectural elements or inconclusive behavioral trends.

Therefore, this work contributes with solutions that provide additional information during irradiation test campaigns.
The proposed technique is capable of reporting the errors intervening in protected internal structures. Then, in a
RISC-V implementation with the employment of hardening techniques in the entire SoC or in the critical elements,
the main architecture-related errors can be reported. With the combination of multiple observation points and report
generation in runtime, the experiment can be better monitored, allowing posterior enhanced analysis with coherent
and resourceful execution logs. This supports the cross-analysis of the phenomena from different perspectives and
increases the correlation between the observed hardware errors and software behavior. Notably, the experiments
reported on [14], [15], [18] would greatly benefit from the observation strategy adopted in this work, since more



valuable outcomes and conclusions could be reported, even enhancing the opportunities for architectural and hardening
techniques comparisons.

TABLE I: Summary of RISC-V fault tolerance and awareness in related work.

III. FAULT TOLERANCE AND AWARENESS

In prior work, we introduced the processor core, which presented reliability improvements in its RISC-V organiza-
tion [25]. Following that, we extended it to a System-on-Chip, containing a bus implementation with peripherals, whose
reliability was also evaluated through simulations [20]. After that, we focused on the characterization and analysis of
the SoC under neutron irradiation [21].

This work presents results from a new fault injection campaign with atmospheric neutron irradiation, detailing the
improvements proposed for our fault-tolerant architecture at the processor and SoC levels.

A. RISC-V Processor Core
In previous test campaigns, we identified that error counters could quantify the number of radiation-induced faults

detected by the implemented fault tolerance techniques. These techniques were TMR at the control and Arithmetic
Logic Unit (ALU) and Error Correcting Code (ECC) with Single Error Correction and Double Error Detection (SECDED)
in the processor core registers and the data memory. In this implementation, the errors were detected and corrected
in the background, not affecting the application execution time.

Although the error counting technique was effective, the information provided about each detected error was very
scarce, comprising only the number of occurrences for each error, which was later reported by the application. Therefore,
in this work, we propose a solution that makes use of more processor assets to provide further information in execution
time. The solution consists of implementing an error handler component in the processor core that requests traps
when errors are detected. It monitors the signals from the fault-tolerant structures, saving relevant information about
the detected errors, as presented in Figure 1. The trap controller handles the request as an exception, ensuring that
the processor will handle this error as soon as possible.

Error handler

External errors

Register File ECC

Program Counter

Instruction Register

ECC

ECC

Arithmetic Logic Unit

Control TMR Error ID

Error PC

Error instruction

Error cycle

Context info

TMR Trap controller

Exception

Er
ro

r m
on

ito
r

Trap request

Fig. 1: Error handler implementation.

The detectable errors in the error handler include the following errors of the processor: Program Counter (PC)
single- and double-bit upsets, Instruction Register (IR) single- and double-bit upsets, register file single- and double-bit
upsets, control TMR error, and ALU TMR error. The detected errors are all reported through exceptions, regardless of
their correctability. Besides reporting errors in the processor core, the error handler design also includes the external
error input, which is available as a processor core input signal. The purpose of this signal is to enable the SoC to report
errors in its structures, such as interconnections and peripherals.

The error handler has a set of registers that store information upon detecting an error. These registers are imple-
mented in the error handler component and are mapped in the memory. This way, we save the data at the moment the
error was detected and provide additional information regarding the error details. The basic error information comprises
the error identifier, a register in which each bit corresponds to one type of error. The application must clear this register
to indicate that the error has been handled, and the execution should continue. Further information that supports
additional analysis of the error is provided such as the values from the ALU output, PC, IR, and cycle register. For



bit-upset errors, the encoded data with the bit upset and its ECC are recorded. Besides that, the application context is
provided. The error handler has a number of registers that store the PC whenever a function is called, which is cleared
when it returns. This part is implemented by a rotating queue, which increments the queue pointer when a function is
called and decrements it when it returns. With this information, it is possible to identify the context in which the error
has occurred.

B. RISC-V System-on-Chip
The implementation of the error handler provides more details on the errors occurring in the RISC-V processor.

However, errors are also prone to appear at the SoC level. For that, we improved the reliability of the SoC by adding
additional logic to the bus master controller, which now has the ability to identify a timeout for bus accesses. Furthermore,
we changed the memory, which was previously implemented with FPGA internal resources, to an external Synchronous
Dynamic Random-Access Memory (SDRAM). This implementation enables more complex applications since the size
of memory available increases significantly. We implement an exclusive error handler to provide observability at the
SoC level, which requests traps to the error handler through the external error input.

This separation of core and SoC handlers simplified the design for the processor core error handler since it does not
need to consider all different kinds of errors that may be implemented for different SoC designs. In addition, it provides
more flexibility for the SoC error handler since designs may require more complex error handling. An overview of the
HARV-SoC implementation is shown in Figure 2, in which the SoC error handler monitors errors from the bus master
and the memory controller, signaling to the core when an error has occurred.

HARV

AMBA
Bus

WDT
Timer

FlashUART

TMR
ALU

TMR
Control

H
A
R
V-
So
C

Error handler

Register File ECC

PC
INSTR ECC

ECC

Instruction
Fetch

SoC error
handler

SDRAMECC
controller

Fig. 2: RISC-V SoC architecture.

The following subsections describe the integration of an external SDRAM into the design, including its memory
controller that adds error correction and detection capabilities, and the implementation of the SoC error handler,
respectively.

1) SDRAM EDAC Controller: Neither the SDRAMs nor the standard SDRAM controllers provide Error Detection
and Correction (EDAC) for the stored values. Therefore, we extended the implementation of Microchip’s SDRAM
controller by adding components that equip it with EDAC capabilities. For that, we provide SECDED for each 32-
bit word, and we store both the data and ECC in the memory. Considering the size of 7 bits of the ECC and 32 bits
for the word, we separated the first three-quarters of the memory for the data and the last quarter for the correcting
code. This way, the data will have its equivalent ECC address calculated by dividing the data address by 4 and adding
three-quarters of the memory size as an offset.

Three components were required to extend the support of this controller: bus bridge, unaligned access converter,
and ECC adapter. The bus bridge interfaces the memory access to be supported through the bus. The unaligned access
converter modifies unaligned memory accesses to aligned accesses, transforming one access into two when required.
This converter simplifies the ECC adapter logic. The ECC adapter is responsible for reading from the SDRAM controller
and performing error correction and detection. When an error is detected, this component has an output interface that
reports the detected single- and double-bit upsets to the SoC error handler.

2) SoC Error Handler: The SoC error handler requests exceptions directly to the core error handler through
the external errors input, enabling the software application to identify when errors originated from the SoC. The errors
implemented for our SoC error handler are bus access timeout and memory single- and double-bit upsets. Besides this
register, it also provides additional information for the data memory itself, such as the memory address in which the
error was found, the address of the ECC information related to this word, the encoded data with the uncorrected word,
and the previous address upset.

Furthermore, SDRAM memories have power-on values that are not necessarily all zeroes, then it is required to
initialize the memory if ECC-valid values to avoid several exceptions in the initialization. For that, the exception for
memory errors is controlled by an enable register, which is disabled only until the memory is initialized with zeroes and
enabled as soon as it is done. This enable register is implemented with TMR.

In related work, it was identified that SDRAM might be prone to stuck bits [26], which would cause the software
application to stay in a permanent loop, reporting the same error repeatedly. Therefore, we save the two last upset
addresses, and each reported memory error is compared to these. If the new error’s upset address is equal to both
of these, the error is ignored in order to continue the application execution. In addition, the SoC error handler also
provides a bus access timeout error report. This error is reported by the bus master controller, which timeouts if a bus
access takes too long to respond.



IV. RADIATION EXPERIMENTS

We performed irradiation test campaigns in order to validate the proposed approach for enhancing error observation.
For that, we used a complementary approach in which the experiments investigated distinct radiation sources and
explored different aspects of fault awareness. The following subsections present the irradiation facilities, experimental
setup, and test execution.

A. Irradiation Facilities
Two radiation experiments were conducted: the first in ChipIr beamline, part of the ISIS Neutron and Muon Source,

at the Rutherford Appleton Laboratory, United Kingdom; and the second in the CHARM mixed-field environment, part
of the European Organization for Nuclear Research (CERN), Switzerland.

ChipIr generates a neutron beam with a spectrum that is representative of atmospheric environments [27]. The
facility is capable of generating neutron irradiation with fluxes that are several orders of magnitude higher than those
found at ground level on Earth, which enables an accelerated characterization of devices and systems. The beam flux
is 5× 106 cm−2/s for energies higher than 10 MeV.

CHARM provides a high-penetrating radiation environment with different particle spectra and fluxes, mainly depend-
ing on the shielding and location. For our experiment, we selected a configuration that is mostly concerned with higher
energy neutrons and protons, but many other particle species are present with less SEE impact (e.g., electrons, muons).
It also accumulated a significant total dose. The facility monitored and reported the irradiation in four main categories:
Thermal Neutrons (ThN), which are composed of neutrons with lower energies; High-Energy Hadrons (HEH), including
all particle types with energy higher than 20 MeV in an equivalent measure; N1MeV, for 1 MeV neutrons; and Total
Ionizing Dose (TID), showing the accumulated degradation. For this study, the particles species and spectra of interest
for SEE characterization are represented as HEH, which present an estimated flux of 8×109 cm−2/day for the selected
configuration.

B. Experimental Setup
The experiments consisted of system-level evaluation setups made of identical boards, in which six Systems Under

Test (SUTs) boards were used in ChipIr and two boards in CHARM. These boards host a flash-based FPGA device: the
Microchip’s SmartFusion2 M2S010. Each board includes an SDRAM memory, used as system memory for the SoC.
Serial connections were used to transmit the logs generated in the SUTs to a host computer outside the irradiation
room. For that, custom transceiver boards were used to extend these serial interfaces. The setup is fixed in a frame
containing the mentioned test boards and logging transceivers. Each test board has independent and monitored power
supply lines. Figure 3 presents the prepared setups for these irradiation campaigns. The SUTs and logging interfaces
used for this work are highlighted in both images, and the other boards belong to different experiments.

(a) (b)

Fig. 3: Experimental setups prepared for irradiation campaigns. (a) ChipIr: six test boards, in two layers, and
logging interfaces (highlighted). (b) CHARM: two test boards, in parallel, and logging interfaces (highlighted).

These setups offer a compact and effective testing platform for HARV-SoC. In particular, regarding the configuration
memory, the flash-based FPGA provides high immunity to SEEs [28], improving the platform’s availability for the
experiment. Also, the usage of a custom transceiver solution mitigated logging errors that could affect post-irradiation
analysis, since they are based on a robust industrial protocol that reduces the amount of complex and sensitive
components in the irradiation room (e.g., serial to USB converters, USB extenders).



C. Benchmarks and Test Execution
To homogeneously sensitize the SoC, two workloads were used during the experiment: CoreMark [29] and Embench

[30]. CoreMark is an industry-standard performance benchmark composed of four algorithms: list processing, matrix
manipulation, state machines, and Cyclic Redundancy Check (CRC). CRC is employed not only as a workload but also
provides a self-checking capability for the inner steps of the benchmark execution. Embench is another performance
benchmark and intends to provide a broader set of operations, resulting in twenty-two algorithms. We used a custom
subset of these algorithms due to memory size constraints.

Using the proposed error handler policy and exception triggers, the application handles the radiation-induced events
and can continue the execution accordingly. For example, in the case of an uncorrectable error, the application might
continue its execution, it can restart the execution, or even trigger its methods for recovery before the error leads
to a possible execution failure. For the proposed experiment, we focused on reporting the errors instead of triggering
specific countermeasures. Thus, the benchmarks are cyclically executed until errors are detected. During execution, the
exception handling routine reports all the available information, it corrects or ignores the detected error depending on
the hardening configuration, and it returns to the previous context (i.e., normal benchmark execution). The benchmarks
provide a final result that includes a pass and fail criteria.

For ChipIr, each FPGA hosted a RISC-V SoC running CoreMark cycling between two configurations of the system:
hardened and baseline, in this order. The hardened configuration consists of the RISC-V SoC with all the fault tolerance
techniques enabled, while the baseline disables the processor core ECC and TMR corrections. Similarly, for CHARM,
CoreMark and Embench were used with the specified hardening configurations. In addition, we monitored the power
consumption of each board separately to ensure proper operation and safety throughout the entire campaign.

V. RESULTS

This section discusses first the design implementation results, including the resource usage and execution time
overheads. After, the section analyzes the results obtained during the irradiation campaigns performed at the ChipIr
and CHARM facilities.

A. Synthesis
Table II presents a resource usage comparison between the previous work [31], and this work’s baseline (with

hardening disabled) and the different hardened configurations of the HARV-SoC. The design presented in this paper
has several architectural improvements compared to the previous work, both in the processor core and the SoC. As
a result of these modifications, the Logic Element (LE) resource usage of the baseline processor increased by 37.8%
(from 4649 to 6471), and the frequency improved by 38.6% (from 33.71 MHz to 46.76 MHz).

TABLE II: Resource usage comparison of different configurations of HARV-SoC in the flash-based FPGA: Microchip’s
SmartFusion2 M2S010.

Error Handler Hardening 4LUT DFF LEs 1 LEs Usage Usage
Overhead

Fmax

n.a. 2 disabled 4344 2150 4649 38.47 % - 33.71 MHz
disabled disabled 5922 2799 6471 53.55 % 1× 46.73 MHz
disabled enabled 8382 3131 8957 74.12 % 1.38× 33.34 MHz
enabled enabled 9730 4471 10596 87.69 % 1.64× 33.27 MHz

1 The LE (Logic Element) report combines the 4-input Look-Up Tables (4LUTs) and DFFs (D-type Flip-Flops); 2 not applicable for HARV-SoC
version presented in [31].

Implementing the fault tolerance and observability structures also increases resource usage, showing an overhead
of 38% when only the redundant blocks are included and 64% when the error handler block is also included (column
‘Usage overhead’). Because the error handler block is implemented the resource usage increases since it requires
several registers to store the trap details and the processor interfacing logic.

As a result of the hardening implementation, the critical path increased, causing a reduction in the maximum
operating frequency (Fmax), which became around 33 MHz for both hardened versions. The maximum frequencies
of the hardened versions were similar because the error handler block did not affect the critical path. Nonetheless,
the processor’s multicycle implementation allows for a higher actual maximum operating frequency, running at 50 MHz
during validation and experiments.

B. Performance Overhead
Besides the overhead in resource usage of the FPGA, the handling of the errors introduces an execution time

overhead. We measured the handling of each error report and obtained an average of approximately 30 ms. Considering
the experiments in the mixed-field environment, which has an accelerated irradiation environment, the overhead in
execution time is negligible.

Within the handling routine, the step that takes longer to execute is reporting the error information through the serial
interface. Actual applications will not be required to externally report the details from the traps, simplifying the error
handler and reducing the execution overhead even further.



C. ChipIr: Atmospheric Neutrons
For this experiment, we focused on the errors in the processor architecture, which were presented with limited

understanding in prior work. It reached a total accumulated fluence of 3.64×1011 n/cm2. In order to provide a comparison
basis, according to the device characterization [28] and the obtained fluence, we calculated that 43 upsets were expected
in critical system registers, those protected by ECC. However, it was also expected to have fewer observed errors than
the provided by this estimation, since to be observed and tracked as an error, the register must be actually used by
the application and affect its execution. For instance, temporary registers usually hold values only for a short period of
time, while the stack pointer register retains important values at all times, hence being more susceptible to bit upsets.
Thus, as expected, the detected errors in the processor core were single-bit upsets from the register file, which was
the most likely to present errors since it is the monitored structure with the largest amount of registers. In addition, no
upsets were detected in the PC and instruction registers.

1) Errors Classification: Besides the detected errors, there were processor execution failures, in which the origin
could not be identified. These failures appeared as load exception faults, more specifically, memory accesses to invalid
addresses. In total, we identified processor core traps in 17 runs distributed across all the boards used for the experiment.
Between these, 14 traps were related to single-bit upsets in the register file and 3 to load exception faults.

Regarding the identified errors, we could gather the error details previously mentioned. The errors were recognized
as single-bit upsets, recognizable by reading the error identifier register. We also provided further information for all
detected errors using the implemented error handler solution. In one run, for example, we reported the encoded data
with the bit upset, and the application could recognize the upset in the 30th bit. Besides that, we also provided additional
information that supports the error analysis, such as the PC, instruction register, mcycle register, and ALU output.

Throughout the test campaign, no errors were detected in more than 99.9% executions, and the CoreMark execution
ran perfectly. Only a few executions presented error traps, which is expected considering the previously mentioned
analysis on the number of upsets. We classified the errors for each tested processor configuration according to the
ability to correct and observe it (Table III). Most of the errors were correctable in the hardened configuration since they
were single-bit upsets. There were a few errors that could not be corrected by the hardened processor configuration,
which were identified as load access fault exceptions. On the other hand, the baseline configuration does not correct
single-bit upsets, which were classified as not correctable errors. It is worth noticing that, in one case, the baseline
configuration experienced an error classified as correctable, which was an upset in the ECC part of the data that did
not affect the execution.

TABLE III: Classification of errors in the neutron experiment.

Error Classification Baseline Hardened

Correctable error 14.29% 55.56%
Not correctable error 71.42% 11.11%
Non-recognized error 14.29% 33.33%

Although most of the errors were detected, there were a few executions for which the system could not recognize
the cause. These errors were detected as timeouts by the Watchdog Timer (WDT) reset mechanism, which restarted
the processor execution by resetting the entire SoC. Considering the processor architecture, these errors are most
likely caused by faulty interconnect or peripheral components, which resulted in the processor waiting indefinitely for
bus transactions.

2) Execution Context: Using the error handler enables the application to identify the context in which the error
has occurred. In one of the runs, for example, using the report we could identify that the upset occurred while executing
the multiplication function of the compiler standard library, which was called by the CoreMark’s matrix multiplication
routine. The application could identify the entire path taken by the application flow, identifying the context in which the
upset has occurred. Figure 4 presents the most common contexts in which error traps were triggered. The functions
recognized as the most common to have errors were the core init state and core list mergesort, which correspond
to the functions in the Coremark benchmark operation that were taking the longest to execute, making them more likely
to be affected by errors. Following that, the matrix test was affected in 16.67% of the errors. There were a few errors
(16.67%) in which it was not possible to identify the context in which the error appeared because these errors occurred
in unprotected parts of the SoC. Lastly, the puts r and core init matrix functions had 11.11% of the errors each.



Function

Fr
eq

ue
nc

y 
of

 E
rr

or
s

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

co
re_

ini
t_s

tat
e

co
re_

lis
t_m

erg
es

ort

matr
ix_

tes
t

Unk
no

wn

_p
uts

_r

co
re_

ini
t_m

atr
ix

Fig. 4: Errors triggered per function.

3) Failure Characterization: In order to correlate the failures based on the fluence in the radiation environment,
we estimated the Mean Fluence to Failure (MFTF) and the failure cross section (XS). We consider a failure, when the
device requires a power cycle to recover the processor operation, where the hardening techniques and soft resets do
not work. The MFTF metric is the mean of the fluences that lead to critical failures in the experiment, and the cross
section is a calculation of the failure rate of the device based on the fluence, given in cm2/device.

Table IV presents the summary of MFTF and failure cross section results for each tested board, with respect to
the fluence of neutron particles. It is worth noting that all the boards were tested in the same conditions, with a beam
homogeneity lower than 10%.

TABLE IV: Summary of MFTF and cross section per board.

Board MFTF [n/cm²] Neutron Failure XS [cm²/device]

#B1 1.66× 1010 6.03× 10−11

#B2 1.85× 1010 5.42× 10−11

#B3 2.19× 1010 4.56× 10−11

#B4 2.15× 1010 4.66× 10−11

#B5 1.89× 1010 5.29× 10−11

#B6 2.60× 1010 3.84× 10−11

MFTF: Mean Fluence to Failure.

Also, we defined two applications to provide specific estimations for Mean Time To Failure (MTTF) based on their
target environments: terrestrial, with reference to New York sea level, and avionics, at a typical avionic cruising altitude,
about 300× the sea level flux, as discussed in [32], [33] based on the NASA-Langley model. For the first environment,
the expected MTTF is about 180,566 years. For the second, it is estimated in 601 years. These results provide sufficient
safety margins for the operation of most commercial systems.

D. CHARM: Mixed-Field Environment
The experiment performed in CHARM was a follow-up of the neutrons campaign. In this second characterization,

we were interested in extending the validation of the observability technique. To achieve that, we provided the same
execution classification based on the reported errors and investigated other aspects to demonstrate the error reporting
capabilities. In addition, this campaign allowed the evaluation of the system under another radiation source. The reported
total fluence for both boards during the experiment was approximately 9.61×1011 HEH/cm2, and the total accumulated
dose was about 3.62× 101 krad.

1) Errors Classification: Table V presents the classification of errors for the CHARM experiment. We classified
the errors for each processor and benchmark configuration according to the SoC’s ability to correct and observe them.
Thus, it includes the percentage of correctable, not correctable, and non-recognized errors. These errors enabled the
application to observe and report important information about the effects caused by the radiation in the SoC. Only a
few processor execution failures were observed, in which the origin could not be identified. The majority of failures
were identified and traceable, mainly in the fully hardened version. Among those, the most common were single-bit
upsets in the register file, single- and double-bit upsets in the memory, and the least common were double-bit upsets
in the PC. Besides these errors, load and store exception faults also caused errors during the execution, which were
not correctable errors, and triggered soft-resets of the processor to recover its execution.



TABLE V: Classification of errors in the mixed-field experiment.

Error Classification Baseline Hardened

Correctable error 39.02% 60.00%
Not correctable error 43.90% 37.14%
Non-recognized error 17.07% 2.86%

Most of the errors were correctable in the hardened configuration since they were single-bit upsets. There were a
few errors that could not be corrected for the hardened processor configuration, which were identified as load access
fault exceptions. On the other hand, the baseline configuration, which had a single-bit upset correction in the memory
still enabled, presented mainly register and bus errors as not correctable errors.

2) Failure Characterization: Similar to the ChipIr campaign, we performed a failure characterization by reporting
the MFTF and cross section for the different boards. The failure of these metrics is also considered a critical failure
that requires a device power cycle. Table VI presents these results, indicating the rates with respect to the fluence of
HEH particles.

TABLE VI: Summary of MFTF and cross section per board in the mixed-field experiment.

Board HEH MFTF [H/cm²] HEH Failure XS [cm²/device]

#B1 1.31× 1011 5.20× 10−12

#B2 1.31× 1011 5.20× 10−12

MFTF: Mean Fluence to Failure.

3) Error Analysis: The reports and data from the error handler enabled a meticulous analysis of the errors detected
during the experiment. This thorough examination enabled us to gain a comprehensive understanding of these errors.

Table VII presents a summary of the errors detected in the mixed-field experiment regardless of processor config-
uration. The most common errors were from the memory, responsible for approximately 78% of all the errors, followed
by single-bit upsets from the register file, store/access fault exceptions, and finally, a PC double-bit upset.

Furthermore, the reports enabled a calculation of the cross section for each different error. These cross sections
provide valuable information for the estimation of the number of errors in actual radiation environments.

TABLE VII: Reported errors in the mixed-field experiment.

Error #Errors Percentage HEH XS [cm²/device]

Memory single-bit upset 71 52.21% 7.38× 10−11

Memory double-bit upset 35 25.74% 3.64× 10−11

Register file single-bit upset 21 15.44% 2.18× 10−11

Load access fault 6 4.41% 6.24× 10−12

Store access fault 2 1.47% 2.08× 10−12

Program counter double-bit upset 1 0.74% 1.04× 10−12

For further analysis of the detected errors details, we compiled a summary of the instructions that were interrupted to
handle exceptions. Table VIII presents the number of error occurrences per instruction, with an overall percentage. We
notice that the most common instructions are memory access, consistent with the previously reported errors. However,
besides the errors from memory access functions, 10 errors were during flow control and arithmetic instructions.

The operation made by these instructions is related to the triggered error. Most memory access instructions, for
example, were interrupted due to errors in the data memory. While the flow control and arithmetic are more likely to
be affected by errors in registers. Besides that, this table also presents the cross section for each different instruction,
which enables a correlation between fluence and instruction with an error.

TABLE VIII: Instructions in reported errors.

Class Instruction #Occurrences Percentage HEH XS [cm²/device]

Memory access

lbu 78 57.35% 8.11× 10−11

sw 31 22.79% 3.22× 10−11

lw 10 7.35% 1.04× 10−11

sb 4 2.94% 4.16× 10−12

lh 2 1.47% 2.08× 10−12

lb 1 0.74% 1.04× 10−12

Flow control jalr 4 2.94% 4.16× 10−12

Arithmetic addi 3 2.21% 3.12× 10−12

add 3 2.21% 3.12× 10−12



4) Detected Block Error Event: Here, we describe one of the most notable errors that occurred while the
processor was executing a CoreMark with the hardened configuration. In a short span of time, several traps were
reported due to multiple single- and double-bit upsets from the SDRAM memory in neighboring addresses. In total 72
errors were reported sequentially, including 42 single-bit upsets and 34 double-bit upsets. Thus, we identified this error
as a memory block error, which occurs in SDRAM memories [26].

Despite the block error, the execution continued, and the CoreMark benchmark result was still correct. To further
analyze this behavior, we ran a simulation and compared the expected data at those addresses with a fault-free
execution. We identified that the simulation and reported addresses actually stored the same values, indicating that
multiple-bit upsets occurred in the ECC memory section.

Figure 5 presents a visualization of the block error in a logical bitmap representation of the memory. The block error
is enlarged and highlighted since it only affected a small area of the memory. Bits are represented in vertical lines of
16 bits (i.e., word size) and horizontal positions represent each memory address. It is worth mentioning that the actual
block error may be larger than the detected, but the remaining part of the block error was not accessed during the
execution.

Fig. 5: Logical bitmap representation of the SDRAM memory showing the block error.

5) Error Propagation: We also performed an analysis of the error’s impact on the execution of the benchmarks.
The main objective was to find the proportion of errors capable of interfering with the execution for each processor
hardening configuration. Even for the hardened configuration, some errors can be masked within the execution or not
present an impact on the final benchmark result. Thus, we were interested in the improvement obtained on the hardened
configuration related to this difference.

Another interesting outcome was in the baseline processor configuration, in which the error correction was disabled.
In this configuration, since the errors are only reported but not corrected, we noticed that some errors led to further
errors and consequent failures. In a particular case, for example, a single-bit upset in the register file led to a load access
fault, causing a failure in the processor execution due to access to an invalid memory address. Four occurrences of
this type of propagation were identified, of which three single-bit upsets on the register file itself and a double-bit upset
in the program counter. As expected, this same error propagation was not observed in the hardened configuration.

In Table IX, we present the different error propagations for the baseline and hardened processor versions. The
#Errors column shows the total number of that specific error, while the #Propagated errors reports the number of those
errors that actually resulted in an error in the benchmark execution. It is worth noting that this number of propagated
errors is closely related to the benchmark algorithms and will have different results for different algorithms. Besides the
number of detected errors, we also report the HEH cross section for the propagated errors.



TABLE IX: Error propagation.

Configuration Error #Errors #Propagated
Errors

Error Propagation HEH XS [cm²/device]

Baseline
Register file single-bit upset 13 3 3.12× 10−12

PC double-bit upset 1 1 1.04× 10−12

Load access fault 4 4 4.16× 10−12

Hardened Store access fault 2 2 2.08× 10−12

Memory double-bit upset 1 1 1.04× 10−12

VI. DISCUSSION

The acquired information on the errors proved to be useful in identifying and understanding the SoC behavior in
radiation environments. More specifically, the information provided details such as the application context, error origin,
affected structure, and corrupted data. We were able to characterize the system for each environment, complementing
the classification of the types of errors and investigating their impact on the system. For instance, for the ChipIr campaign,
we performed an MFTF analysis, showing the robustness of the system, and an execution classification with further
description at the software level. For CHARM, we provided a deeper analysis of the errors’ cross sections, discussed
fault-masking, and investigated a block error in detail.

For protected elements of the processor core, this observation mechanism supported fault awareness at the appli-
cation level, which could be applied to improve the system’s reliability, since it enables the implementation of recovery
routines that consider the affected element within the application. With these details, the application could mitigate
the impact of uncorrectable errors (e.g., double-bit upsets, load/store access fault) in execution time by preventing
error propagation. For instance, this hardware-level information could be used to implement software rollback routines,
resulting in hybrid hardening solutions. The rollbacks would restore the processor context, using a non-corrupted state,
when these uncorrectable errors are detected by the error handler.

With the reported information, we noticed that the recovery capabilities from errors originating on the bus interconnect
structure should be improved since some load/store access faults were detected and led to execution errors. Moreover,
due to the analysis performed on the observed block error, we could identify that the memory error handling should be
improved. For that, a possible solution is to implement early block error identification based on monitoring the number
of memory errors over time and, when a certain threshold is achieved, triggering a recovery procedure.

Considering the many alternatives for exploiting the proposed observability features, one of the most important
achievements is the possibility of operating a proper SEE characterization with enhanced analysis. This is not a trivial
endeavor and the proposed solution greatly supports this effort, as presented in the results section. In addition, it is
worth mentioning that identifying errors and reporting them through exceptions is not a novel concept, but applying this
approach to radiation-induced faults provides many new opportunities for processors and SoC evaluation, contributing
to the research community. Notably, as exemplified for the MTTF in avionic applications, the system not only provided
enough reliability to be used as part of critical avionic systems, but also could be characterized and validated in more
detail to meet safety requirements.

Finally, another outcome of the performed experiments is a comparison between the irradiation campaigns. From the
critical error cross sections, it is possible to observe a significant difference in sensitivity for each campaign. Performing
the average of the cross sections of all boards for ChipIr, we obtained 4.97 × 10−11 cm2/device, and for CHARM
considering the HEH, 5.20 × 10−12 cm2/device. As expected, different particles and energy spectra can induce very
distinct error rates. In this case, we observed an order of magnitude difference in which the SoC, in combination with
the FPGA, suggests more sensitivity to atmospheric neutrons than the tested mixed-field environment.

VII. CONCLUSIONS

This work presents fault awareness and reliability improvements in a fault-tolerant RISC-V SoC (HARV-SoC) by
implementing a solution to observe errors in the processor architecture and SoC. This solution provides detailed
information on the application errors in execution time. This way, the application can discern the errors’ origin and
impact on the processor’s structures.

We validated the implementation by using fault injection in irradiation facilities, in which we could identify various
errors occurring at the processor core. It is worth mentioning that real radiation environments cause effects that are
not easily predictable and depend on several factors, which are limited in simulation and emulation-based experiments.
As a result, we identified the radiation-induced events and provided information that could point the application to the
compromised structure.

In future work, we intend to perform further radiation characterizations of the processor by using other particle types
(e.g., proton and heavy ions that are representative of the space radiation environment). Moreover, we forecast further
improvements in the recovery capabilities of the application upon detecting uncorrectable errors and block errors.

REFERENCES

[1] Xie, G.; Li, Y.; Han, Y.; Xie, Y.; Zeng, G.; Li, R. Recent Advances and Future Trends for Automotive Functional Safety Design
Methodologies. IEEE Trans. Ind. Inform. 2020, 16, 5629–5642. https://doi.org/10.1109/TII.2020.2978889.

https://doi.org/10.1109/TII.2020.2978889


[2] Schwierz, A.; Forsberg, H. Assurance Benefits of ISO 26262 Compliant Microcontrollers for Safety-Critical Avionics. In
Proceedings of the SAFECOMP 2018: The 37th International Conference on Computer Safety, Reliability and Security, Västerås,
Sweden, 19–21 September 2018; Gallina, B.; Skavhaug, A.; Bitsch, F., Eds.; Springer International Publishing: Cham, Switzerland,
2018; pp. 27–41. https://doi.org/10.1007/978-3-319-99130-6 3.

[3] G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of Lipschitz-Hankel type involving products of Bessel functions,”
Phil. Trans. Roy. Soc. London, vol. A247, pp. 529–551, April 1955.

[4] European Cooperation for Space Standardization. Description, Implementation and General Requirement.
Technical Report ECSS-S-ST-00C Rev.1, European Space Agency, 2020. Available online: https://ecss.nl/home/
ecss-s-st-00c-rev-1-description-implementation-and-general-requirement-15-june-2020/ (accessed on 5 June 2023).

[5] Gangl, E.C. A case study on U.S. government military standard development. IEEE Aerosp. Electron. Syst. Mag. 2013, 28, 40–45.
https://doi.org/10.1109/MAES.2013.6559380.

[6] Di Mascio, S.; Menicucci, A.; Gill, E.; Furano, G.; Monteleone, C. Leveraging the Openness and Modularity of RISC-V in Space.
J. Aerosp. Inf. Syst. 2019, 16, 454–472. https://doi.org/10.2514/1.I010735.

[7] Cannon, P.; Angling, M.; Barclay, L.; et al. Chapter 7 and 9—Radiation impacts on satellites and Ionising radiation impacts on
avionics and ground systems. In Extreme Space Weather: Impacts on Engineered Systems and Infrastructure; Royal Academy
of Engineering: London, UK, 2013.

[8] Boudenot, J.C. Radiation space environment. In Radiation Effects on Embedded Systems; Springer: Dordrecht, The Netherlands,
2007; pp. 1–9.

[9] Yang, M.; Hua, G.; Feng, Y.; Gong, J. Fault-Tolerance Techniques for Spacecraft Control Computers, 1st ed.; Wiley Publishing:
Hoboken, NJ, USA, 2017.

[10] Cho, H.; Mirkhani, S.; Cher, C.Y.; Abraham, J.A.; Mitra, S. Quantitative Evaluation of Soft Error Injection Techniques for Robust
System Design. In Proceedings of the 50th Annual Design Automation Conference, DAC ’13, Austin, TX, USA, 29 May–7 June
2013. https://doi.org/10.1145/2463209.2488859.

[11] Sorin, D.J. Fault tolerant computer architecture. Synth. Lect. Comput. Archit. 2009, 4, 1–104. https://doi.org/10.2200/
S00192ED1V01Y200904CAC005.

[12] Ramos, A.; Ullah, A.; Reviriego, P.; Maestro, J.A. Efficient Protection of the Register File in Soft-Processors Implemented on
Xilinx FPGAs. IEEE Trans. Comput. 2018, 67, 299–304. https://doi.org/10.1109/TC.2017.2737996.

[13] Ramos, A.; Toral, R.G.; Reviriego, P.; Maestro, J.A. An ALU Protection Methodology for Soft Processors on SRAM-Based FPGAs.
IEEE Trans. Comput. 2019, 68, 1404–1410. https://doi.org/10.1109/TC.2019.2907238.

[14] Wilson, A.E.; Wirthlin, M. Neutron Radiation Testing of Fault Tolerant RISC-V Soft Processor on Xilinx SRAM-based FPGAs. In
Proceedings of the 2019 IEEE Space Computing Conference (SCC), Pasadena, CA, USA, 30 July–1 August 2019; pp. 25–32.
https://doi.org/10.1109/SpaceComp.2019.00008.

[15] Wilson, A.E.; Larsen, S.; Wilson, C.; Thurlow, C.; Wirthlin, M. Neutron Radiation Testing of a TMR VexRiscv Soft Processor on
SRAM-Based FPGAs. IEEE Trans. Nucl. Sci. 2021, 68, 1054–1060. https://doi.org/10.1109/TNS.2021.3068835.

[16] Sim, M.T.; Zhuang, Y. A Dual Lockstep Processor System-on-a-Chip for Fast Error Recovery in Safety-Critical Applications.
In Proceedings of the IECON 2020 the 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 18–21
October 2020; pp. 2231–2238. https://doi.org/10.1109/IECON43393.2020.9255188.

[17] Gupta, S.; Gala, N.; Madhusudan, G.S.; Kamakoti, V. SHAKTI-F: A Fault Tolerant Microprocessor Architecture. In Proceedings
of the 2015 IEEE 24th Asian Test Symposium (ATS), Mumbai, India, 22–25 November 2015; pp. 163–168. https://doi.org/10.
1109/ATS.2015.35.

[18] de Oliveira, A.B.; Tambara, L.A.; Benevenuti, F.; Benites, L.A.C.; Added, N.; Aguiar, V.A.P.; Medina, N.H.; Silveira, M.A.G.;
Kastensmidt, F.L. Evaluating Soft Core RISC-V Processor in SRAM-Based FPGA Under Radiation Effects. IEEE Trans. Nucl.
Sci. 2020, 67, 1503–1510. https://doi.org/10.1109/TNS.2020.2995729.

[19] Li, J.; Zhang, S.; Bao, C. DuckCore: A Fault-Tolerant Processor Core Architecture Based on the RISC-V ISA. Electronics 2022,
11, 122. https://doi.org/10.3390/electronics11010122.

[20] Santos, D.A.; Luza, L.M.; Dilillo, L.; Zeferino, C.A.; Melo, D.R. Reliability analysis of a fault-tolerant RISC-V system-on-chip.
Microelectron. Reliab. 2021, 125, 114346. https://doi.org/10.1016/j.microrel.2021.114346.

[21] Santos, D.A.; Mattos, A.M.P.; Luza, L.M.; Cazzaniga, C.; Kastriotou, M.; Melo, D.R.; Dilillo, L. Neutron Irradiation Testing and
Analysis of a Fault-Tolerant RISC-V System-on-Chip. In Proceedings of the 2022 IEEE International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), Austin, TX, USA, 19–21 October 2022; pp. 1–6. https:
//doi.org/10.1109/DFT56152.2022.9962335.

[22] Entrena, L.; Garcia-Valderas, M.; Fernandez-Cardenal, R.; Lindoso, A.; Portela, M.; Lopez-Ongil, C. Soft Error Sensitivity
Evaluation of Microprocessors by Multilevel Emulation-Based Fault Injection. IEEE Trans. Comput. 2012, 61, 313–322.
https://doi.org/10.1109/TC.2010.262.

[23] Quinn, H.; Robinson, W.H.; Rech, P.; Aguirre, M.; Barnard, A.; Desogus, M.; Entrena, L.; Garcia-Valderas, M.; Guertin, S.M.; Kaeli,
D.; et al. Using Benchmarks for Radiation Testing of Microprocessors and FPGAs. IEEE Trans. Nucl. Sci. 2015, 62, 2547–2554.
https://doi.org/10.1109/TNS.2015.2498313.

[24] Aranda, L.A.; Wessman, N.J.; Santos, L.; Sánchez-Macián, A.; Andersson, J.; Weigand, R.; Maestro, J.A. Analysis of the Critical
Bits of a RISC-V Processor Implemented in an SRAM-Based FPGA for Space Applications. Electronics 2020, 9, 175. https:
//doi.org/10.3390/electronics9010175.

[25] Santos, D.A.; Luza, L.M.; Zeferino, C.A.; Dilillo, L.; Melo, D.R. A Low-Cost Fault-Tolerant RISC-V Processor for Space Systems.
In Proceedings of the 2020 15th Design Technology of Integrated Systems in Nanoscale Era (DTIS), Marrakech, Morocco,
1–3 April 2020; pp. 1–5. https://doi.org/10.1109/DTIS48698.2020.9081185.

[26] Luza, L.M.; Söderström, D.; Pio de Mattos, A.M.; Bezerra, E.A.; Cazzaniga, C.; Kastriotou, M.; Poivey, C.; Dilillo, L. Technology
Impact on Neutron-Induced Effects in SDRAMs: A Comparative Study. In Proceedings of the 2021 16th International Conference
on Design & Technology of Integrated Systems in Nanoscale Era (DTIS), Montpellier, France, 28–30 June 2021; pp. 1–6.
https://doi.org/10.1109/DTIS53253.2021.9505143.

[27] Cazzaniga, C.; Frost, C.D. Progress of the Scientific Commissioning of a fast neutron beamline for Chip Irradiation. J. Phys.
Conf. Ser. 2018, 1021, 012037. https://doi.org/10.1088/1742-6596/1021/1/012037.

[28] Dsilva, D.; Wang, J.J.; Rezzak, N.; Jat, N. Neutron SEE Testing of the 65nm SmartFusion2 Flash-Based FPGA. In Proceedings
of the 2015 IEEE Radiation Effects Data Workshop (REDW), Boston, MA, USA, 13–17 July 2015; pp. 1–5. https://doi.org/10.
1109/REDW.2015.7336722.

[29] Gal-On, S.; Levy, M. Exploring CoreMark a Benchmark Maximizing Simplicity and Efficacy; Embedded Microprocessor Benchmark
Consortium: Hillsboro, OR, USA, 2012.

https://doi.org/10.1007/978-3-319-99130-6_3
https://ecss.nl/home/ecss-s-st-00c-rev-1-description-implementation-and-general-requirement-15-june-2020/
https://ecss.nl/home/ecss-s-st-00c-rev-1-description-implementation-and-general-requirement-15-june-2020/
https://doi.org/10.1109/MAES.2013.6559380
https://doi.org/10.2514/1.I010735
https://doi.org/10.1145/2463209.2488859
https://doi.org/10.2200/S00192ED1V01Y200904CAC005
https://doi.org/10.2200/S00192ED1V01Y200904CAC005
https://doi.org/10.1109/TC.2017.2737996
https://doi.org/10.1109/TC.2019.2907238
https://doi.org/10.1109/SpaceComp.2019.00008
https://doi.org/10.1109/TNS.2021.3068835
https://doi.org/10.1109/IECON43393.2020.9255188
https://doi.org/10.1109/ATS.2015.35
https://doi.org/10.1109/ATS.2015.35
https://doi.org/10.1109/TNS.2020.2995729
https://doi.org/10.3390/electronics11010122
https://doi.org/10.1016/j.microrel.2021.114346
https://doi.org/10.1109/DFT56152.2022.9962335
https://doi.org/10.1109/DFT56152.2022.9962335
https://doi.org/10.1109/TC.2010.262
https://doi.org/10.1109/TNS.2015.2498313
https://doi.org/10.3390/electronics9010175
https://doi.org/10.3390/electronics9010175
https://doi.org/10.1109/DTIS48698.2020.9081185
https://doi.org/10.1109/DTIS53253.2021.9505143
https://doi.org/10.1088/1742-6596/1021/1/012037
https://doi.org/10.1109/REDW.2015.7336722
https://doi.org/10.1109/REDW.2015.7336722


[30] Bennett, J.; Garlati, C.; Madhusudan, G.S.; Mudge, T.; Patterson, D. Embench™: An Evolving Benchmark Suite for Embedded
IoT Computers from an Academic-Industrial Cooperative; In Proceedings of the RISC-V Workshop Zurich Proceedings,
Zurich, Switzerland, 11–13 June, 2019.

[31] Santos, D.A.; Luza, L.M.; Kastriotou, M.; Cazzaniga, C.; Zeferino, C.A.; Melo, D.R.; Dilillo, L. Characterization of a RISC-V System-
on-Chip under Neutron Radiation. In Proceedings of the 2021 16th International Conference on Design Technology of Integrated
Systems in Nanoscale Era (DTIS), Montpellier, France, 28–30 June 2021; pp. 1–6. https://doi.org/10.1109/DTIS53253.2021.
9505054.

[32] Lei, F.; Clucas, S.; Dyer, C.; Truscott, P. An atmospheric radiation model based on response matrices generated by detailed
Monte Carlo Simulations of cosmic ray interactions. IEEE Trans. Nucl. Sci. 2004, 51, 3442–3451. https://doi.org/10.1109/TNS.
2004.839131.

[33] Goldhagen, P.; Reginatto, M.; Kniss, T.; Wilson, J.; Singleterry, R.; Jones, I.; Van Steveninck, W. Measurement of the energy
spectrum of cosmic-ray induced neutrons aboard an ER-2 high-altitude airplane. Nucl. Instrum. Methods Phys. Res. Sect. A
2002, 476, 42–51. https://doi.org/10.1016/S0168-9002(01)01386-9.

https://doi.org/10.1109/DTIS53253.2021.9505054
https://doi.org/10.1109/DTIS53253.2021.9505054
https://doi.org/10.1109/TNS.2004.839131
https://doi.org/10.1109/TNS.2004.839131
https://doi.org/10.1016/S0168-9002(01)01386-9

	Introduction
	Related Work
	Fault Tolerance and Awareness
	RISC-V Processor Core
	RISC-V System-on-Chip
	SDRAM EDAC Controller
	SoC Error Handler


	Radiation Experiments
	Irradiation Facilities
	Experimental Setup
	Benchmarks and Test Execution

	Results
	Synthesis
	Performance Overhead
	ChipIr: Atmospheric Neutrons
	Errors Classification
	Execution Context
	Failure Characterization

	CHARM: Mixed-Field Environment
	Errors Classification
	Failure Characterization
	Error Analysis
	Detected Block Error Event
	Error Propagation


	Discussion
	Conclusions
	References

