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Abstract
Dopaminergic therapies dominate the treatment of the motor and non-motor symptoms of Parkinson’s disease (PD) but 
there have been no major advances in therapy in many decades. Two of the oldest drugs used appear more effective than 
others—levodopa and apomorphine—but the reasons for this are seldom discussed and this may be one cause for a lack of 
progress. This short review questions current thinking on drug action and looks at whether adopting the philosophy of ex-US 
Secretary of State Donald Rumsfeld reveals ‘unknown’ aspects of the actions of levodopa and apomorphine that provide 
clues for a way forward. It appears that both levodopa and apomorphine have a more complex pharmacology than classical 
views would suggest. In addition, there are unexpected facets to the mechanisms through which levodopa acts that are either 
forgotten as ‘known unknowns’ or ignored as ‘unknown unknowns’. The conclusion reached is that we may not know as 
much as we think about drug action in PD and there is a case for looking beyond the obvious.
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Introduction

The treatment of Parkinson's disease (PD) remains domi-
nated by the use of dopaminergic agents because of their 
undoubted effectiveness in improving the major motor and 
some non-motor symptoms of this disorder (Chaudhuri 

and Schapira 2009; Mao et al. 2020). Since the introduc-
tion of levodopa in the 1960s (Fahn 2008), we have seen 
the development of dopamine agonist compounds (includ-
ing ergot based and non-ergot-based drugs), adjuncts to the 
use of levodopa (DDC, COMT and MAO-B inhibitors) and 
a move away from the classical oral administration used 
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in PD (including intraduodenal administration, subcuta-
neous infusion and transdermal application) (Armstrong 
and Okun 2020a, b; Bloem et al. 2021; Kalia and Lang 
2015; Poewe and Mahlknecht 2020; Poewe et al. 2017). 
However, it remains the case that despite these advances, 
levodopa is still considered to be the most effective com-
pound for treating PD and recently there has been a return 
to using it as first-line therapy that reverses the later use, 
levodopa sparing and levodopa phobia concepts of the past 
(Agid et al. 1999; Katzenschlager and Lees 2002; Olanow 
2019). Whilst the dopamine agonists provide an alternative 
strategy for therapy, none of the orally used dopamine ago-
nist compounds (largely ropinirole and pramipexole) are 
attributed with the same efficacy as levodopa (Tolosa et al. 
1998). In contrast, the intermittent subcutaneous injection 
of apomorphine and its subcutaneous infusion—a drug 
that lacks oral bioavailability—is considered by some as 
being as effective on acute and repeated administration 
as levodopa for reasons that we will explore later in this 
paper (see for example Castillo-Torres et al. 2023; Dewey 
et al. 2001).

The overall picture is that whilst advances have been 
made and more options for symptomatic treatment are 
available and adverse events have been addressed, there 
have not been the milestone developments of novel drug 
therapies that have supplanted the activity of the older 
drugs in clinical practise. We must ask ourselves why we 
have not seen the progress in symptom control that might 
have been expected from the research and development 
effort which has been put into producing novel ‘dopamin-
ergic’ approaches to therapy. Why do apomorphine and 
levodopa stand out from other dopaminergic treatments 
in a way which has stood the test of time? We must ask 
whether we understand how these drugs work or are we 
being presumptive about the way in which they influence 
neuronal function to cause improvement in PD.

It is not the objective of this review to revisit the anat-
omy, physiology and pharmacology of the dopaminergic 
system or to reiterate the reasons for the changes in dopa-
minergic function which take place in PD and underlie the 
efficacy and adverse effects of current drug treatment (see 
Beaulieu and Gainetdinov 2011; Fuxe et al. 2015; Has-
san and Thakar 1988; Kaasinen et al. 2021; Missale et al. 
1998; Strange 1993). The object of this paper is to merely 
stimulate thought about the way in which apomorphine 
and levodopa produce their effects in PD and to that end 
we have turned to an unlikely source for inspiration namely 
the former US Secretary of State Donald Rumsfeld who 
was widely quoted with the following in relation to a ques-
tion over the lack of evidence linking the government of 
Iraq with the supply of weapons of mass destruction to ter-
rorist groups (There are unknown unknowns—Wikipedia):

‘Reports that say that something hasn’t happened are 
always interesting to me, because as we know, there are 
known knowns; there are things we know we know. We 
also know there are known unknowns; that is to say, we 
know there are some things we do not know. But there 
are also unknown unknowns—the ones we don’t know 
we don’t know’.

Rumsfeld had adopted the argument from one based on a 
philosophy widely used by intelligence agencies and in project 
management known as the Johari window. In a film based 
his life, Rumsfeld initially defines “unknown knowns” as “the 
things you think you know, that it turns out you did not”, and 
toward the end of the film, he defines the term as “things that 
you know, that you don't know you know” [Krogerus, Mikael 
(2012). The Decision Book: Fifty Models for Strategic Think-
ing. Roman Tschäppeler, Jenny Piening (1st American ed.). 
New York: W.W. Norton & Co. pp. 86–87; Girard, John; 
Girard, JoAnn A Leader’s Guide to Knowledge Management: 
Drawing on the Past to Enhance Future Performance. Busi-
ness Expert Press. pp. 55]. Beyond these three categories, 
there is a fourth that has been added, ‘the unknown known, 
that which one intentionally refuses to acknowledge that one 
knows’.

Adopting the Rumsfeld matrix to look at drug action in 
PD, we will discuss the actions of apomorphine and levodopa 
and examine some of the apparently ‘known unknowns’ and 
‘unknown unknowns’ that affect the actions of levodopa. The 
objectives are to initially refresh your knowledge of some 
aspects of dopamine receptor pharmacology, then to explore 
the pharmacology of apomorphine and levodopa and to sug-
gest that there are ‘unknowns’ that explain why we do not 
fully understand how these drugs work. Perhaps importantly, 
we look at bits of the pharmacology of levodopa that usually 
get forgotten (‘the unknown known’) but which illustrate the 
incompleteness of our knowledge.

Setting the dopaminergic scene 
in Parkinson’s disease

The first thing to emphasise is the complexity of PD not 
only from the perspective of its symptomatology but 
also from the diversity of the pathological and biochemi-
cal changes that take place both within the basal ganglia 
and throughout the rest of the brain and in the peripheral 
nervous system involving both dopaminergic and non-
dopaminergic neuronal systems (Alexander 2004; Arm-
strong and Okun 2020b; Berg et al. 2021; Bloem et al. 
2021; Dauer and Przedborski 2003; Jankovic and Tan 
2020; Kalia and Lang 2015; Lees et al. 2009; MacMahon 
Copas et al. 2021; Poewe et al. 2017; Schapira et al. 2017; 
Titova et al. 2017). This complexity which underlies the 
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motor and non-motor symptoms of PD highlights a need to 
restore neuronal function more widely in brain rather than 
limiting the pharmacological approaches to treatment to 
basal ganglia and to the loss of dopaminergic innervation 
(Lang and Obeso 2004).

However, it is the dopaminergic system to which we 
attribute most of the effects of drugs such as levodopa 
and apomorphine. Multiple dopamine receptor subtypes 
have been described, cloned and characterised and divided 
into the two main families—the D-1-like (D-1 and D-5 
receptors) and the D-2-like (D-2, D-3 and D-4 receptors) 
dopamine receptors—and not surprisingly, dopamine 
interacts with all these receptor subtypes (Beaulieu et al. 
2015). Although there has been an era of dopamine recep-
tor biochemistry, pharmacology and behavioural analysis, 
there has been little exploitation of the specific role of the 
various subtypes in either neurology or psychiatry that has 
translated to man despite much preclinical endeavour (see 
Giorgioni et al. 2021; Kiss et al. 2021; Torrisi et al. 2023; 
Yang et al. 2020). In PD, there has been particular inter-
est in utilising dopamine agonists that interact with D-2-
like receptors (Ferraiolo and Hermans 2023; Juza et al. 
2023)—as D-1-like receptors were in this era blamed for 
the adverse event profile of levodopa, notably dyskine-
sia (see Bastide et al. 2015). But even today, we have no 
drugs which selectively interact with the D-1-like family 
of receptors and through which there might be much to be 
gained as detailed below. We also seek to avoid the D-3 
receptor as this has associations with the impulse control 
disorders common in dopamine agonist drug use and with 
dyskinesia expression or onset (Chagraoui et al. 2022; 
Lanza and Bishop 2021; Seeman 2015).

In PD, dopamine receptors are invariably considered 
in relation to basal ganglia function but in reality, there 
is a widespread distribution of dopamine receptors in 
cortical and sub-cortical brain areas with a differential or 
topographical distribution of subtypes within each of these 
regions [dopamine receptors (diff.org)] (Beaulieu and 
Gainetdinov 2011; Hall et al. 1994; Missale et al. 1998). 
Novel dopaminergic systems are still being described that 
are relevant to Parkinson’s disease—for example, thalamic 
dopaminergic pathways (Monje et al. 2020)—and it should 
be remembered that in terms of dopaminergic drugs, these 
act on all areas of the brain and their effects are not limited 
to the basal ganglia or to the brain since they are widely 
found in the peripheral nervous system (Amenta et al. 
2002). Within the basal ganglia, dopamine receptors are 
classically portrayed as being present within the striatum 
and many of the concepts of the effect and side-effects 
of dopaminergic drugs in PD are wedded to this belief. 
But in fact, dopamine receptors are present in all major 
nuclei of the basal ganglia (caudate nucleus, putamen, glo-
bus pallidus, subthalamic nucleus) and all subtypes are 

present within each of these bodies with both presynaptic 
and post-synaptic localisations on a range of dopaminer-
gic and non-dopaminergic neurones (Rommelfanger and 
Wichmann 2010). The function of most of these dopamine 
receptors is poorly understood and in particular, the func-
tion of those dopamine receptors located in non-striatal 
areas. In a similar way, dopamine innervation from the 
substantial nigra is normally portrayed as innervating the 
striatum. However, this is not correct as collaterals from 
the nigro-striatal pathway also innervate all other major 
basal ganglia nuclei and the thalamus (Hadipour-Niktarash 
et al. 2012; Lindvall and Bjorklund 1979; Rommelfanger 
and Wichmann 2010). These pathways also degenerate in 
PD, but little thought is given to the role they play in the 
expression of the symptomatology of the disease or indeed 
to the pattern in which these pathways degenerate over the 
course of the illness (Freeman et al. 2001).

Whilst the focus on dopamine agonists has been on 
those possessing D-2-like receptor activity, it is important 
to remember that both D-1 and D-2 receptors contribute to 
motor activity. D-1-like receptors are limited to a post-syn-
aptic localisation whereas D-2-like receptors are found both 
on presynaptic terminals and on the post-synaptic membrane 
and both control dopaminergic transmission (Beaulieu and 
Gainetdinov 2011)—but this breaks down with the onset of 
PD. Similarly, in the normal brain, D-1 and D-2 receptors 
work in harmony to control motor function but in the den-
ervated brain, D-1 and D-2 receptors work independently 
of one another (Arnt 1985; Arnt and Hyttel 1984). What 
this indicates is that stimulating both D-1 and D-2 recep-
tors is a means to maximise motor activity from dopamine 
receptor stimulation. This might explain why currently used 
oral dopamine agonist drugs which are selective for D-2-like 
receptors appear in general to be of lower efficacy then levo-
dopa as all receptors would be physiologically stimulated 
by dopamine in the normal brain. Attempts to selectively 
stimulate D-1-like receptors in PD and improve motor func-
tion have shown the efficacy of this approach in preclinical 
models of PD but have so far failed in man because of poor 
bioavailability and the onset of rapid tolerance due to D-1-
like receptor downregulation—a phenomenon that may also 
affect D-2-like receptor stimulation in advanced PD (Keba-
bian et al. 1992; Shiosaki et al. 1996; Smith et al. 2002; 
Temlett et al. 1989).

Apomorphine—just a dopamine agonist?

Apomorphine is the oldest drug used in the treatment of 
PD having a history going back thousands of years for its 
ritualistic use. As reviewed elsewhere, apomorphine was 
suggested for use in PD in the 1800’s, was forgotten until 
the early part of the 1900’s, revived in the 1960’s but only 
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exploited in the 1980’s onwards when overcoming its lack of 
oral bioavailability was solved (Auffret et al. 2018a; Djam-
shidian and Poewe 2016; Kim et al. 2017). Its clinical effi-
cacy by subcutaneous administration has been consistently 
demonstrated ever since but it is still underused (Castillo-
Torres et al. 2023; Poewe and Wenning 2000). Apomorphine 
differs from the oral dopamine agonist drugs in that the qual-
ity of the motor response appears to be virtually indistin-
guishable from that of levodopa. In clinical studies, apomor-
phine produced greater than 90% of UPDRS response seen 
with levodopa and in the US pivotal study, apomorphine 
increased hand tapping speed to the same degree as levodopa 
(Dewey et al. 2001; Jenner and Katzenschlager 2016; Kemp-
ster et al. 1990). So, the question is why is apomorphine a 
better dopamine agonist than other drugs?

From a structural perspective, apomorphine is an ergoline 
that bears a strong resemblance to dopamine, but it is the 
receptor profile of apomorphine that may provide clues to 
its greater efficacy when compared to the oral non-ergoline 
dopamine agonists, ropinirole and pramipexole (Auffret 
et al. 2018a, 2018b, 2019; Jenner 1995, 2002; Jenner and 
Katzenschlager 2016; Kvernmo et al. 2006). The actions 
of the latter drugs are restricted to the D-2-like receptors 
whilst apomorphine interacts with both D-1-like and D-2-
like receptor populations (De Keyser et al. 1995; Fici et al. 
1997; Jenner 2002; Lam 2000; Lataste 1984). Apomorphine 
may also act to inhibit MAO-A and MAO-B and through this 
action potentiate the effects of dopamine and other monoam-
ine neurotransmitters (Grunblatt et al. 1999).

This means that apomorphine has a broad-spectrum 
receptor profile which more closely resembles that of dopa-
mine than observed with the other agonist compounds. It is 
worth noting that apomorphine does not show the selectivity 
for D-3 receptors shown by drugs such as pramipexole and 
this may explain, in part, why its use is associated with a 
low incidence of impulse control disorders (Barbosa et al. 
2017). In addition, apomorphine interacts with a range of 
other monoaminergic receptors—adrenergic and seroto-
ninergic receptors—again unlike the oral agonists which 
have a more restricted profile (Jenner and Katzenschlager 
2016). This is clearly important as both noradrenergic and 
serotoninergic activity are disrupted in PD and contribute 
to both the motor and non-motor symptomatology of the 
illness (Lang and Obeso 2004). For example, the interaction 
of apomorphine with 5-HT2A receptors might explain the 
low incidence of visual hallucinations seen with the drug 
(Borgemeester et al. 2016).

To summarise, apomorphine interacts with all dopamine 
receptor subtypes and it is not just a dopamine agonist as it 
also alters noradrenergic and serotoninergic transmission. As 
a consequence, apomorphine acts on multiple neurotransmit-
ter systems that are altered in PD and functions as a ‘multi-
modal drug’. Apomorphine may be a pioneer in this area of 

‘dirty drug’ pharmacology, but the concept in itself is inter-
esting as in PD we have shied away from ‘multimodal’ drugs 
in favour of highly focussed single action compounds lead-
ing to a situation where polypharmacy is commonly used to 
control the myriad of symptoms evident in the disease. This 
trend may be reversing as other ‘multimodal’ compounds are 
now being recognised as being of value in treating PD—for 
example amantadine, safinamide, and zonisamide (Murata 
2010; Pagonabarraga et al. 2021; Rascol et al. 2021). An 
easy way to assess the value of apomorphine as a multi-
modal drug is to ask a pharmacologist because here apomor-
phine is viewed as the archetypal dopamine agonist drug, 
as evidenced by its prolific use in the pharmacological lit-
erature of the 1960–1990’s. Apomorphine is effective in all 
experimental models of PD—apomorphine-induced locomo-
tor activity, apomorphine-induced stereotypy, apomorphine-
induced climbing behaviour, apomorphine-induced circling 
behaviour (see for example Butcher and Anden 1969). In 
these scenarios, apomorphine is the drug of choice simply 
because it is a more reliable and effective pharmacological 
tool than the other more selective dopamine agonist drugs.

Levodopa—a complex pharmacological 
conundrum

Now we come to what is probably the biggest conundrum 
in understanding the action of drugs in PD namely levodopa 
whose superior action has been unsurpassed in over 60 years 
(for a perspective on levodopa use see Fahn 2008, 2018; 
Gerlach et al. 2005; Lees et al. 2015; Olanow 2019; Olanow 
et al. 2008; Olanow and Stocchi 2018; Tolosa et al. 1998). 
Despite its undoubted success, levodopa would probably not 
be developed or approved today. It is not active itself being 
a prodrug, it lacks potency and a high dose is required. The 
drug has poor oral absorption, extensive metabolism, a short 
duration of effect and poor penetration into brain. It produces 
significant adverse events in man and insufficient toxicology 
of a modern standard was carried out in the era in which it 
was developed. For this day and age, insufficient placebo-
controlled clinical trials have been undertaken that demon-
strate its efficacy in PD (for an exception see Fahn 1999, 
2006a, b). Had it not been for the development of peripheral 
decarboxylase inhibitors (which allowed for a reduction in 
dosage and the avoidance of peripheral side-effects), it is 
likely that levodopa would have been abandoned (Cotzias 
1971). Similarly other types of enzyme inhibitors (COMTi, 
MAO-Bi) have been introduced to maximise the effects of 
each dose of levodopa by preventing its peripheral metabo-
lism and that of dopamine produced from levodopa (see for 
example Nissinen and Mannisto 2010; Tan et al. 2022).

The general view is that levodopa acts through its con-
version to dopamine and that dopamine then interacts with 
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dopamine receptors. This reverses the dopamine deficiency 
that underpins PD. Certainly, the mainstay of that argument 
is correct, at least based on animal studies, but the dopamine 
derived from levodopa presumably interacts with all sub-
types of dopamine receptors and as such produces a more 
physiological dopamine receptor stimulation that would be 
seen with the oral dopamine agonist drugs. In particular, it 
will, of course, stimulate both D-1-like and D-2-like recep-
tors and from a pharmacological perspective, this would be 
expected to result in a more pronounced anti-parkinsonian 
effect than through stimulation of either individual receptor 
population. But even taking into account the short plasma 
half-life of the drug, the pulsatility of its effect and the 
changes which occur in its storage and buffering in dopamin-
ergic neurones over the course of the disease, we struggle to 
understand the undoubted superiority of levodopa in treating 
symptoms of the illness compared to other pharmacologi-
cal approaches and even to more modern technology-based 
therapies, such as deep brain stimulation.

However, the actions of levodopa are not restricted to its 
effects on the dopaminergic system and there is evidence of 
both direct and indirect noradrenaline and 5-HT involve-
ment in levodopa’s actions—making it fit with the concept 
of a ‘multimodal drug’. Both noradrenergic and serotonin-
ergic fibre pathways innervate the basal ganglia, they are 
involved in the control of motor function and both degener-
ate in PD (Lang and Obeso 2004). Although largely for-
gotten, there have been extensive studies of the effects of 
levodopa on noradrenergic transmission. Dopamine formed 
from levodopa is converted to noradrenaline by dopamine 
beta-hydroxylase and inhibition of noradrenaline synthesis 
decreases motor activity produced by levodopa in experi-
mental models of PD (Dolphin et al. 1976). In a similar vein, 
serotoninergic neurones are implicated in the induction of 
levodopa-induced dyskinesia. Levodopa is decarboxylated to 
dopamine in serotoninergic neurones which is then released 
with serotonin in a non-physiological manner. This is why 
5-HT1A or 5HT1B receptor agonists can suppress levodopa-
induced dyskinesia—as these receptors control the firing of 
serotoninergic neurones and the release of neurotransmitter 
(Corsi et al. 2021; Pinna et al. 2023). The overall conclu-
sion is that both noradrenaline and 5-HT are involved in the 
actions of levodopa and the control of motor function.

In addition to its effects on the dopaminergic, noradren-
ergic and serotoninergic systems, levodopa has been pro-
posed as a neurotransmitter in its own right—although this 
is largely the view of one research group and this needs veri-
fication by others (see for review Misu and Goshima 1993). 
Levodopa fulfilled all the criteria for functioning as a neuro-
transmitter or neuromodulator. Levodopa immune-positive 
but aromatic amino acid decarboxylase immuno-negative 
neurones were identified in brain. Levodopa as the intact 
amino acid was shown to alter glutamate, acetylcholine 

and noradrenergic responses in the striatum. Motor activity 
to levodopa was reported to occur following inhibition of 
both central and peripheral dopa decarboxylase activity. If 
this view is correct, then we may have ignored something 
that is fundamentally important to the actions of this drug. 
However, one of our own studies is not in total agreement 
with these findings. We showed that blocking central dopa 
decarboxylase activity using NSD 1015 did not alter levo-
dopa-induced rotation in 6-hydroxydopamine lesioned rats 
(Treseder et al. 2001)—suggesting an action of levodopa 
itself was responsible as previously proposed. But NSD 1015 
treatment did not decrease striatal dopamine levels as might 
have been expected and appeared to reduce dopamine turno-
ver. Since NSD 1015 can also act as an MAO-B inhibitor, it 
may have been this action which is responsible for the motor 
activity that was observed.

One further level of complexity needs to be considered 
as contributing to the response to levodopa in PD. There are 
two components to the drug’s activity—there is a short-dura-
tion response which in early disease is the immediate short-
term effect seen after minutes to few hours after administra-
tion of each dose of levodopa and there is a long-duration 
response which takes days to weeks to become apparent 
(Albin and Leventhal 2017; Anderson and Nutt 2011; Nagao 
et al. 2019; Nutt et al. 2002). There is dispute over how 
disease progression impacts on the response to levodopa as 
far as these components are concerned. The long-duration 
response initially represents 30–50% of the total motor 
response but was reported to decline with disease progres-
sion (Stocchi et al. 2010). More recently, this view has been 
challenged and investigations of the effects of daily levodopa 
treatment on the progression of motor disability in overnight 
‘off’ periods over 2 years have shown that the long-duration 
response persists independently of disease duration even in 
the most advanced stages of the illness (Cilia et al. 2020).

Whatever the truth, the long-duration response is clearly 
a key component of levodopa’s action. Whether the long-
duration response also contributes to the actions of dopa-
mine agonist drugs is less well studied and less clear (but 
see Barbato et al. 1997; Stocchi et al. 2001). This is good 
example of a ‘known unknown’ in understanding drug 
action in PD as the mechanisms responsible for the long-
duration response are poorly understood and under investi-
gated. It seems to involve some adaptive change in the motor 
response to levodopa, it could involve fundamental processes 
such as LTP/LDP (see for relevance to levodopa’s actions 
Calabresi et al. 2015), but nobody knows. Estimating the 
duration of any long-term response to levodopa represents 
a significant clinical challenge and changes in dopamine 
receptor sensitivity in response to more pulsatile or more 
continuous drug delivery may induce dynamic changes that 
affect its measurement (Cilia et al. 2020). It is not even clear 
whether the long-duration response is seen in the actions 
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of the drug in experimental models of PD or whether it is 
a component of drug action restricted to the use in man, 
as the long-duration response was not observed in rat and 
monkey models, and they only presented the short-duration 
response and levodopa-induced dyskinesia (personal obser-
vation; Kuoppamaki et al. 2007)—this is a matter of debate. 
Solving this component of levodopa’s action might go a long 
way to developing novel more effective treatments for motor 
symptoms. This may not be through improving the bioavail-
ability of levodopa as the short-duration response appears to 
reflect the plasma levels of levodopa, but the long-duration 
response is post-synaptic in nature and probably non-dopa-
minergic in origin (Barbato et al. 1997; Kuoppamaki et al. 
2007).

Levodopa—the ‘unknown unknowns’

Then we come to the parts of the action of levodopa and 
aspects of its mechanism of effect that are overlooked, 
forgotten or thought to be of little interest but which may 
represent key components of the drug’s action—and where 
ignoring the blindingly obvious may hinder the development 
of novel approaches to the treatment of PD. The examples 
given below are merely illustrations of perhaps how little 
we know about a drug which has been used routinely in PD 
for over 60 years. They centre around the metabolism of the 
drug (and even these do not take into account the potential 
generation of trace amines and other potential metabolites 
(for example, trihydroxyphenylalanine quinone and tetrahy-
droisoquinolines) that have been proposed as contributing to 
the actions and/or toxicity of levodopa (see for an example 
McNaught et al. 1998).

3-O-Methyldopa (3-OMD) is a major metabolite of levo-
dopa in both the periphery and in brain (Nissinen and Man-
nisto 2010) but receives scant attention when considering 
the effects of levodopa. It is a terminal metabolite of the 
actions of catechol O-methyl transferase (COMT) that is not 
a substrate for dopa decarboxylase—and it is not metabo-
lised further as far as we are aware although this may not 
have been investigated. A little-known fact is that peripheral 
inhibition of dopa decarboxylase, as is routinely used in the 
treatment of PD, diverts more levodopa into the catechol 
O-methyltransferase pathway and so elevates plasma levels 
of 3-0MD even further (Dingemanse et al. 1997). 3-OMD 
has a long plasma half-life (12–15 h) and as a consequence, 
accumulates in the periphery and in brain tissue. There is 
some evidence that 3-OMD may compete with levodopa for 
the active uptake process that transports the drug into brain, 
but this has not been extensively studied (Benetello et al. 
1997). Whilst no adverse effects of 3-OMD have been dem-
onstrated in man, how extensively this has been examined 
is not clear. Nor has the potential role that this compound 

plays in either the actions or adverse events of levodopa 
being fully evaluated or indeed, whether these are alleviated 
if levodopa is used in combination with a COMT inhibitor. 
Controversy exists over 3-OMD’s ability to reduce levodo-
pa’s motor effects, the expression of dyskinesia and in the 
genesis of ‘wearing off’ (Fabbrini et al. 1987; Gervas et al. 
1983; Nutt et al. 1987; Wade and Katzman 1975). There 
is some evidence to suggest that 3-OMD has the potential 
to inhibit locomotor activity, to decrease dopamine turno-
ver, and to inhibit the dopamine transporter—but nothing 
sufficient to say that this occurs in man (Lee et al. 2008). 
At a pathogenic level, 3-OMD can induce oxidative stress, 
decrease mitochondrial membrane potential and potential 
cell death, all of which are thought to be components of cell 
death in Parkinson’s disease—at least in preclinical studies. 
It may be that 3-OMD is completely inert and a diversion but 
until we evaluate its role in the actions of levodopa and its 
role in its own right, we will not know the role played by this 
major metabolite of the most commonly used drug in PD.

There are further examples which illustrate either lack 
of knowledge or a failure to understand other events linked 
to the metabolism of levodopa of relevance to PD. Only 
recently, have potentially important changes in periph-
eral dopa decarboxylase activity been uncovered—and in 
all probability, most people are unaware of these. In three 
independent cohorts of patients with PD or parkinsonism 
on levodopa plus a decarboxylase inhibitor, elevated levels 
of dopa decarboxylase (L-aromatic amino acid decarboxy-
lase) enzyme activity were present in 82% of patients in this 
population (van Rumund et al. 2021). Those patients with 
elevated enzyme activity had a longer disease duration and 
were on higher doses of levodopa leading to the sugges-
tion that these changes might contribute to the decrease in 
levodopa effectiveness and the need for higher doses with 
disease progression. But, so far, this is merely an observation 
and the mechanism underlying the increase in decarboxylase 
activity, and its clinical consequences remain unknown. In 
a similar manner, alterations in the gut microbiome leading 
to changes in the decarboxylation of levodopa by bacterial 
tyrosine decarboxylases alter the bioavailability of levodopa 
and its effectiveness in PD (Maini Rekdal et al. 2019)—and 
this also requires further investigation as these enzymes are 
not blocked by the peripheral decarboxylase inhibitors used 
in PD.

One final example illustrates our failure to question the 
actions of compounds routinely used in the treatment of 
PD. We tend to accept as fact the classical definitions of 
their activity and this becomes truth by repetition. A good 
example is again looking at the peripheral decarboxylase 
inhibitors where it is commonly accepted that these do not 
penetrate into brain—but this is not entirely true. They are 
selective inhibitors of the peripheral enzyme but not spe-
cific in their actions and at higher doses may affect brain 
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decarboxylase activity—which would prevent dopamine 
formation. In fact, there has been very little examination of 
the specificity of the decarboxylase inhibitors in general—as 
they were developed in an era where this was not routinely 
undertaken. For example, in a study that we undertook, we 
showed that both carbidopa and benserazide blocked central 
MAO-B activity (Treseder et al. 2003). One interpretation of 
this would be that it complicates how we think about the role 
in potentiating of the decarboxylase inhibitors in potentiat-
ing the effects of levodopa. Whilst we continue to use some 
of the older tools in the toolbox without question, it could 
be that what we are doing is adopting a blinkered approach 
that stops progress.

All of this raises the question of whether we really under-
stand how levodopa’s actions are manifest in PD. This is of 
fundamental significance as everything we strive to achieve 
currently is based on the simplistic view that levodopa yields 
dopamine that then interacts with striatal dopamine recep-
tors and that is what we should try to emulate in devising 
new approaches to treatment.

Is there a way forward?

The conclusion of all this is that perhaps Donald Rumsfeld 
is right even though he received a degree of ridicule when he 
gave this particular statement. Perhaps we do not understand 
precisely how established drugs for the treatment of PD pro-
duced their clinical effects, but do we question why drugs 
like levodopa and apomorphine appear more effective than 
others? Should we look beyond the dopamine system for 
answers? We need to reinvest pharmacological studies and 
conduct again “basic” studies to better understand how these 
drugs work. In recent times, there has been a lack of sound 
studies exploring the pharmacokinetics and pharmacody-
namics of these drugs in humans—and very few patients 
with PD ever have their plasma drug profiles measured. 
There are probably ‘unknown unknowns’ that we chose to 
ignore. Poking life in the eye with a sharp stick is often a 
productive way of making progress.
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