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Abstract: In this paper, an analytical and numerical analysis of the species separation in a binary
mixture is performed. The main objective is to study the influence of the thickness and the nature
of the bounding plates of the thermogravitational column (TGC) on species separation. The theory
of Furry, Jones and Onsager is extended to the cases where bounding conducting walls enclose the
TGC. The governing 2-dimensional equations are solved numerically using COMSOL Multiphysics
software. A good agreement is found between the analytical and the numerical results. It is shown
that the determination of the thermal diffusion coefficient, DT, from the measurement of the vertical
mass fraction gradient of binary solutions, does not depend on the temperature difference imposed
on the vertical column either on the outer walls of the cavity or on the inner walls in contact with the
binary solutions. However, it is found that this result is no longer valid in the case of a binary gas. To
our knowledge, in all earlier studies, dealing with the measurement of Soret coefficients in binary
fluids, the nature and the thickness of the bounding walls were not considered.

Keywords: convection; Soret effect; thermogravitational columns; species separation

1. Introduction

When an initially homogeneous solution consisting of at least two chemical species is
subjected to a thermal gradient, then mass transfer of the constituents occurs leading to
heterogeneity of the solution. This separation effect is known as thermodiffusion or the
Soret effect. In addition to the usual expression for the mass flux J given by Fick’s law, an
extra part due to the temperature gradient is added, so that

J = −ρD∇C− ρD′T∇T,

where D is the mass diffusion coefficient, ρ is the density, and C is the mass fraction of the
denser component. Here, D′T = F(C)DT where DT is the thermodiffusion coefficient and
F(C) is a particular function of C satisfying both F(C = 0) = 0 and F(C = 1) = 0. Most often
one uses the function F(C) = C (1 − C) and, for small variations of the mass fraction C, it
is assumed that C (1 − C) ≈ C0 (1 − C0,), where C0 the initial value of the mass fraction.
Reviews of heat and mass diffusion in porous media have been performed by Nield and
Bejan [1], Ingham and Pop [2], Vasdasz [3] and in the “Handbook of Porous Media” (edited
by Vafai) [4]. The Soret effect in liquid mixtures was reviewed by Köhler and Morozov [5];
this seminal paper includes numerous referencies and deals with thermodiffusion in both
the binary and ternary liquid mixtures.

Under the gravity field, the coupling between convection and thermodiffusion, called
thermogravitational diffusion, may lead to an important species separation. Thermogravi-
tational separation was studied widely due to its fundamental and (potential) industrial
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applications. To name just some industrial applications: the migration of moisture in
fibrous insulation, the transport of contaminants in saturated soil, and drying processes or
solute transfer in the mushy layer during the solidification of binary alloys.

In 1939, a theory was developed by Furry, Jones and Onsager (FJO) [6]. To obtain the
analytical solution of this problem, it was assumed that the term of volumic gravity forces
depends only on the temperature T and not on the mass fraction C. This is what is called
“the hypothesis of the forgotten effect”.

In 1959, Lorenz and Emery [7] considered a thermogravitational column (TGC), con-
sisting of a porous medium, which was saturated by a binary fluid, in order to have a
greater thickness of the cell and to obtain a larger quantity of the separated product.

In 1982, Costeseque [8] carried out a basic experimental study on thermodiffusion in
porous media, a subject of the doctoral thesis, defended at the University of Toulouse. In
1992, Jamet et al. [9] has presented a modeling approach for the analysis of experimental
work, carried out within the framework of Costeseque’s Ph.D. thesis.

After the 2000s, a number of investigations have been carried out, in order either to
measure the thermodiffusion coefficients or to increase the species separation in vertical
and inclined columns.

Dutrieux et al. [10] reported the two independent techniques used to measure positive
Soret coefficients. With one method, the thermodiffusion coefficient, DT, was determined
by a 5-point sampling process in a TGC. Another method consists of velocity measurements
of a transient natural convective state where the velocity measurements are obtained by
laser Doppler velocimetry (LDV).

Platten et al. [11] showed that the species separation between the top and the bottom
in a TGC can be substantially increased by inclining the column. This result was obtained
by experiments performed with a water–ethanol system.

Charrier-Mojtabi et al. [12] presented an analytical and numerical stability analysis of
Soret-driven convection in a porous horizontal cavity saturated by a binary fluid. Both the
mechanical equilibrium solution and the monocellular flow obtained for particular ranges
of the physical parameters of the problem were considered.

Mohammad et al. [13] considered the effect of conducting boundaries on the onset
of convection in a porous layer which is heated from below by internal heating. Ouattara
et al. [14] studied the effect of conducting boundaries on the onset of convection in a
binary fluid-saturated porous horizontal layer. In this study, both analytical and numerical
stability analyses were performed. The equilibrium solution was found to lose its stability
via either a stationary bifurcation or via a Hopf bifurcation depending on the values of the
dimensionless parameters of the problem.

Mojtabi and Rees [15] conducted a theoretical study of the effect of conducting bound-
ing plates on the onset of Horton–Roger–Lapwood convection using both linear and
nonlinear stability analyses. Rees and Mojtabi [16] considered the effect of conducting
bounding plates on the onset of convection and on the identity of the preferred weakly
nonlinear post-critical convection planform. It was shown that convection with a square
planform is preferred when the conductivity of the bounding plates is low. Mojtabi et al. [17]
presented an analytical and numerical study of species separation in a porous horizontal
layer saturated by a binary mixture in the presence of two bounding plates subjected to a
constant heat flux. An analytical solution of the unicellular flow which may appear in the
cell and realized an optimization of the dimensional separation gradient was developed.

Legros [18] carried out studies in microgravity in order to measure the Soret coefficients
in the absence of convective disturbances in Earth gravity. The results were compared with
the experimental values obtained on the Earth. Mojtabi [19] presented a new process for
the determination of the Soret coefficient of a binary mixture under microgravity.

In the present paper, the influence of the bounding plates on species separation in a
vertical TGC is investigated. The objective of this study is to analyze whether the results
of the experiments, carried out so far, are sufficiently accurate for the determination of
the thermal diffusion coefficients. Indeed, the determination of DT from the measurement
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of the vertical mass fraction gradient in the TGC used relationships that were obtained
without considering the effect of the bounding walls [8,10,11].

2. Mathematical Formulation

A parallelepipedic vertical TGC is bounded by vertical and impermeable plates of
uniform thickness es. The external surfaces of these plates are maintained at the constant
hot and cold temperatures, Th and Tc, respectively; see Figure 1. The horizontal walls
(y = 0 , y = H) are impermeable and insulated. All the boundaries are assumed to be rigid
and impermeable. The geometrical dimensions of the cell and the characteristics of the
binary mixtures, used in this study, correspond to those considered by Šeta et al. [20].

The thermo-physical characteristics of the walls in [20] are not specified but the
characteristics correspond to highly conductive materials. Therefore, three cases (quartz,
copper and stainless steel) of wall materials that are found in many experiments [8,10,20]
are considered here.

Experimental observations have shown that the flow in TGCs is unicellular. Under
these conditions, and whatever the binary fluid considered, the heat transfer within the
fluid layer is purely conductive in almost all columns. Once the thickness and the nature
of the walls are known, the values of the temperature difference of the internal faces in
contact with the binary fluid, ∆T′ = T′h − T′c with T′h< Th and T′c. < Tc may be deduced.
The determination of the thermodiffusion coefficient DT using the FJO approach and the
measurement of the vertical mass fraction gradient require the knowledge of ∆T′ and not
of the outer temperature difference, ∆T = Th − Tc.

The thermophysical properties of the binary fluid are considered to be constant except
for the density in the buoyancy term, which varies linearly with the local temperature T
and the mass fraction C:

ρ = ρ0[1− βT(T − T0)− βC(C− C0)], (1)

where βT and βC are the thermal and mass expansion coefficients of the binary fluid,
respectively, and both the temperature, T0, and the concentration, C0, correspond to the
reference state. The value ρ0 is the fluid mixture reference density at T = T0 and C = C0.
Under these conditions, the governing conservation equations for mass, momentum, energy
and chemical species for the bulk read:

∇.V = 0,[
∂V
∂t + (V.∇)V

]
= −∇P

ρ0
− [1− βT(T2 − T0)− βC(C− C0)]gy + ν∇2∇,

∂T2
∂t + V.∇T2 = ∇.(a∇T2),

∂C
∂t + V.∇C = ∇.[D∇C + DTC0(1− C0)∇T2],

(2)

where V is the fluid velocity, T2 is the temperature inside the bulk, ν is the kinematic
viscosity, and a is the thermal diffusivity. For the two plates bounding the bulk, the
conduction heat transfer equations read:{

∂T1
∂t = as∇2T1,

∂T3
∂t = as∇2T3,

(3)

where T1 and T3 are the temperatures within the two vertical plates, respectively, and as
their common thermal diffusivities. Thus, it is assumed that the bounding plates are made
from the same material and are also of equal thickness, es.
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By considering the continuity of the temperatures and the heat fluxes at the solid/porous
interfaces, x = 0 and x = e f , the full set of dimensionless boundary and interface conditions
become: 

x = −es , T1 = Th,
x = 0, T1 = T2, ∂T1

∂x = 1
d

∂T2
∂x ,

x = e f , T2 = T3, ∂T3
∂x = 1

d
∂T2
∂x ,

x = e f + es, T3 = Tc,

(4)

where d = λs/λ f is the thermal conductivity ratio of the solid bounding plates and the
binary fluid. The binary fluid velocity field verifies:

∀M ∈ ∂Ω, V = 0, (5)

where ∂Ω denotes the solid part delimiting the binary fluid and Ω is the volume, occupied
by the fluid; see Figure 1.

Figure 1. Geometrical configuration of the vertical thermogravitational column (TGC). See text
for details.

3. Analytical Solution of the Unicellular Flow
3.1. Analytical Solution of the Thermal and Dynamic Field in the TGC

For the limiting case of a narrow cavity, H >> e f , we considered the parallel flow
approximation which is often used (see, e.g., [15]) to determine the velocity and the tem-
perature and mass fraction fields. For this analytical study, it is assumed here that the
temperature fields, T1, T2, T3, within the two solid walls and in the fluid do not depend on
the variable y in a large part of the vertical column except for the immediate neighborhoods
of y = 0 and y = H. This hypothesis is justified by the numerical simulations carried out in
this study. The stationary 2-dimensional unicellular flow is then given as follows:

V= W(x)y, T2 = f2(x), C = my + h(x), T1 = f1(x),T3 = f3(x), (6)

where
→
V has only the component W(x)y except in the vicinity of the lower and upper

boundaries. The functions W(x) and fi(x), i = 1, 2, 3, depend solely on the x-component,
and m is a yet-unknown constant, representing the mass fraction gradient in the y-direction.
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With the above-made assumptions and for the steady state, the system (3) and the
heat transport equation for the binary fluid are reduced to the following set of equations:

∂2 f1
∂x2 = 0,
∂2 f2
∂x2 = 0,
∂2 f3
∂x2 = 0.

(7)

Using the boundary conditions (4), one obtains the following expressions for the
temperature fields in the two solid walls and in the fluid layer:

T1 =
(
−(Th − Tc)x + (Th + Tc)es + Thde f

)
/
(

de f + 2es

)
,

T2 =
(
−(Th − Tc)xd + (Th + Tc)es + Thde f

)
/
(

de f + 2es

)
,

T3 =
(
−(Th − Tc)x + (Th + Tc)es + ((d− 1)Tc + Th)e f + Thde f

)
/
(

de f + 2es

)
.

(8)

The temperature drop between the different faces of the TGC then is:

∆T1 = (Th−Tc)es
de f +2es

= T1(x = −es)− T1(x = 0) = Th − T′h,

∆T2 =
(Th−Tc)de f

de f +2es
= T2(x = 0)− T2

(
x = e f

)
= T′h − T′c ,

∆T3 = (Th−Tc)es
de f +2es

= T3

(
x = e f

)
− T2

(
x = e f + es

)
= T′c − Tc .

(9)

These temperature drops across the column may also be expressed in terms of thermal
resistance ratios of the solid walls, Rs = es/λs, of the fluid layer, R f = e f /λ f , and of
the total thermal resistance of the TGC, Rt = 2es/λs + e f /λ f , where the expressions

es
de f +2es

= Rs/Rt and
de f

de f +2es
= R f /Rt denote thermal resistance ratios.

From the above, one finds:

∆T′ = T′h − T′c =
(

R f
Rt

)
(Th − Tc) =

(
R f
Rt

)
∆T. (10)

The temperature difference ∆T′, felt directly by the binary fluid, verifies that ∆T′ � ∆T
if the thermal resistance ratio satisfies R f /Rt << 1 condition. The resistance, Rs, increases
as the wall thickness increases and as the thermal conductivity decreases.

By considering the results on the temperature field in the TGC, the system (2) re-
duces to: 

P = P(z),
g(βT

∂T2
∂x + βC

∂h
∂x ) + ν ∂3W

∂x3 = 0,
mW(x) = D ∂2h

∂x2 .
(11)

In 1939, Furry, Jones, and Onsager [6] established the conservation equations of the
balance sheet to describe the thermal gravitational diffusion process for a binary mixture
of gas confined within a differentially heated, vertical rectangular cavity. However, in
this study, the role of the mass fraction in the gravity force term was ignored because
the temperature field was considered to establishe itself in the enclosure faster than the
mass fraction field was doing. This hypothesis is often called “the forgotten effect”. The
Navier–Stokes equation then becomes:

gβT
∂T2

∂x
+ ν

∂3W
∂x3 = 0. (12)

By replacing ∂T2
∂x with its value, − (Th−Tc)d

de f +2es
=−∆T′, in Equation (11), and considering

that the mass flow through each horizontal section of the cavity satisfies the zero-vertical-
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flux condition:
∫ e f

0 Wdx = 0, one obtains the solution of the differential equation (11) once
the boundary conditions are taken into account:

W = −
gβT∆T′x

(
e f − x

)(
2x− e f

)
12νe f

. (13)

Note that as soon as one takes into account the influence of the walls, the fluid
velocity is slightly lower then when the temperature drop is not taken into account:

W/W0 = ∆T′/∆T=
de f

de f +2es
, where W0 corresponds to the velocity W when the influence of

the walls is absent.
If this velocity is put in dimensionless form by using the velocity scale based on the

thermal diffusivity of the binary mixture (α/e f ) with the thickness, e f , of the column as the
length scale, the following non-dimensional expression of the velocity is obtained:

W = −RaTx(1− x)(2x− 1)
12

, (14)

where W, x are the velocity and the non-dimensional coordinate, respectively, and RaT is
the thermal Rayleigh number. The intensity of the vertical velocity is therefore proportional
to the thermal Rayleigh number.

3.2. Analytical Solution of the Mass Fraction Field in the TGC

By replacing W (x) with its expression given in the last equation of system (13),
one obtains:

h(x) = −mgβT∆T′

12νe f D

(
x5

10
−

e f x4

4
+

e f
2x3

6

)
+ n1x + n2. (15)

The expression (15) contains three constants (m, n1, n2) to be determined, in order to
obtain an expression for the mass fraction field C in the TGC. These three constants may be
found by applying the following three conditions:

1. Zero mass flux on one of the vertical walls, J.xx=0 = 0.
2. Mass flow through any horizontal section is zero once the stationary states have

reached:
∫ e f

0 (WC− D ∂C
∂x )dx = 0.

3. Each component in the TGC is assumed to be conserved,
∫ H

0 dy
∫ e f

0 Cdx = C0He f .

Then, the expressions for the constants n1 and n2 read:

n1 = −DTC0(1− C0)∆T′

De f
, n2 =

mgβT∆T′e f
4 + 720ν(D(2C0 −mH) + DTC0(1− C0)∆T′

1440Dν
,

and the mass fraction gradient is:

m =
504gβTν∆T′2e f

2DTC0(1− C0)

(gβT∆T′e f
3)2 + 362880(Dν)2 . (16)

The mass fraction gradient now depends on the characteristics of the binary fluid being
studied (DT , D, ν, βT), on the thickness, e f , and on the imposed thermal gradient, ∆T′.
Thus, m does not admit an extremum according to the two parameters (e f , ∆T′). Indeed,
the system, {

∂m
∂e f

= 0,
∂m

∂∆T′
= 0

}
(17)

admits only solutions {e f = 0, ∆T′} and {e f , ∆T′ = 0}. On the other hand, for ∆T′ fixed, one
obtains:

eopt = 2(2835)1/6(Dν/gβT∆T′)1/3, (18)
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and for a fixed e f there is a trivial solution, ∆T′ = 0, given the minimum and maximum
values of m, independent of ∆T′, which is quickly reached for a low value of ∆T′; see
Figure 2.

Figure 2. Variation of the mass fraction gradient m according to the temperature difference ∆T′ for
the binary solution toluene methanol and the thickness e f = 10−3 mm.

From the optimal thickness eopt, one obtains the optimal mass fraction gradient:

mopt =
1051/3(Dνg2βT

2D∆T′2)
2/3

DTC0(1− C0)

90gνgβT D2 . (19)

Equation (16) leads to an expression for the thermodiffusion coefficient DT of the
present binary mixture:

DT =
m(gβT∆T′e f

3)
2
+ 362880(Dν)2

504gβTν∆T′2e f
2C0(1− C0)

. (20)

Equation (20) shows that the value of the thermodiffusion coefficient, DT , obtained
from the measurement of the vertical mass fraction gradient, m, depends not only on ∆T
but also on the temperature difference of the internal faces that are in contact with the
binary fluid.

For the different mixtures of binary solutions studied, the second term, 362880(Dν)2 of
the denominator of Equation (16) is negligible compared with the first term, (gβT∆T′e f

3)
2.

In the case of the binary water (60.88 wt%)–ethanol (39.12 wt%) mixture at a mean tempera-
ture of 22.5 ◦C, the second term, 362880(Dν)2 =4.995627615·10−25, which is much smaller
than the first term, (gβT∆T′e f

3)
2
=5.945427764·10−21. Similar results are found here for

the two binary solutions studied by Šeta et al. [20]. In this case, one obtains a simplified
form for the mass fraction gradient to replace Equation (16):

msimpl ≈
504νDTC0(1− C0)

gβTe f
4 . (21)

Under these conditions msimpl does not depend on ∆T′, anymore what agrees with
the experimental results for binary solutions.
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The full expression for the mass fraction gradient m depends on ∆T′ in the case of
binary gas mixtures. Indeed, for several varieties of binary gas mixtures, such as (He,
CO2) and (He, N2), it is the second term in the denominator of Equation (16), namely
362880(Dν)2, which dominates the first term, (gβT∆T′e f

3)
2. It follows, therefore, that

Equation (16) may only be used for the determination of the thermodiffusion coefficient
for binary gas mixtures. The physical interpretation of this result can be summarized
as follows: the importance of species separation in TGC depends on the good match
between the physical time associated with the flow velocity and the mass diffusion time.
For example, some experimenters have used porous TGC [7,9] to reduce the velocity of
convective flow.

Equation (13) shows that the velocity W in TGC is proportional to βT∆T
ν . The kinematic

diffusivity of liquids is of the same order of magnitude as the one for gases (it is the case of
water and air). On the other hand, the thermal expansion coefficient of gases is two orders
of magnitude greater than that for liquids. It follows that, within the same TGC subjected
to the same temperature difference, the convective velocity in the binary gas mixture is
much greater than the velocity in the liquid mixture. A modification of the temperature
difference imposed on the column therefore leads to a greater variation in the mass fraction
in the case of gas mixtures compared to the one in liquid mixtures.

In vertical TGCs, the species separation of a binary mixture, ∆C, is defined by the
difference between the mass fraction at the bottom of the column, Cb and at the top of the
column, Ct, for a positive separation factor DT :

∆C = Cb − Ct = mH. (22)

The analytical and numerical results obtained in this study can be illustrated by
restricting ourselves to the experimental values of the thermophysics parameters of the
toluene (18.9 wt%)–methanol (81.1 wt%) mix [20]. The values of the thermophysical
properties of the two binary mixtures at the average temperature T = 22 ◦C are given in
Table 1.

Table 1. Properties for toluene–methanol mixtures at a mean temperature of 23 ◦C and C0 = 18.9 wt%.
See text for details.

D[m2s−1] DT[m2s−1K−1] βc βT[K−1] α[m2s−1] ρ0[kg·m−3] ν[m2s−1]

2.49 × 10−9 8.6 × 10−12 0.00923 1.189 × 10−3 1.029 × 10−7 800.495 7.02 × 10−7

Figure 3 shows the variation of the species separation as a function of the thickness
of the vertical toluene–methanol layer of height H = 30 mm and for the temperature
difference ∆T′ = 6 ◦C, a configuration which is similar to that studied by Šeta et al. [20].



Physics 2022, 4 59

Figure 3. Variation of the species separation dependence on the thickness e f of the toluene–methanol
layer of height H = 30 mm, the initial value of the mass fraction C0 = 18.9 wt%, and ∆T′ = 6 ◦C.

4. Comparisons between Analytical and Numerical Calculations
4.1. Dimensional Nnumerical Simulation

The dimensional sets of equations and boundary conditions obtained from systems
(2) and (3) were solved numerically using the commercial finite element code, COMSOL
Multiphysics [21], with a uniform rectangular mesh. The time-dependent solver and the
set of equations (incompressible Navier–Stokes, thermal and mass diffusion equations)
in transient form were used. The condition of conservation of the average mass fraction
in the cavity was imposed on each of the iterations. Direct numerical simulations were
then performed for vertical thermogravitational column with the dimensions, H = 30 mm,
e f = 0.5 mm and es = 1 and 2 mm.

The rectangular spatial resolutions were used: 15–200 up to 20–300 for the solid plates
and 25–200 up to 30–300 for the fluid domain. The passage, in the fluid column of thickness
e f and height H, from the quadrangle mesh 30–300 to a finer mesh 40–400, gives the same
results.

4.2. Consideration of the Characteristics of the Walls on the Temperature Field in a TGC

For the analytical model, developed in this study, it is assumed that the height, H, of
the TGC is much larger than the thickness of the binary fluid layer, e f . Due to the reversal
of the fluid flow at the horizontal walls y = 0 and y = H, this theoretical model does not
allow us accessing the temperature of the binary fluid in the vicinity of y = 0 and y = H.

a. Temperature as a function of x for y = 15 mm in a TGC with es = 1 mm and
e f = 0.5 mm.

Figure 4 shows that the heat transfer on almost the entire central part of the TGC is
purely conductive within the binary fluid.
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Figure 4. Temperature variation as a function of x for y = 15 mm in the TGC which is maintained at
Th = 26◦C, Tc = 20 ◦C and containing the binary fluid toluene–methanol. Numerical calculations are
shown by black dots and analytical results are given by red line.

b. Temperature as a function of y for x = 0 and x = e f = 0.5 mm.

The results of direct numerical simulation show (Figure 5) that the temperature at the
level of the binary solid-fluid interface (x = 0) is not isothermal in the vicinity of the two
horizontal surfaces y = 0 and y = 0.03 m.

Figure 5. Temperature at the solid interface, for a toluene–methanol binary fluid at x = 0. The
analytical solution is shown in red and the numerical calculations are given in green.

The results of direct numerical simulation show (Figure 6) that the temperature at the
level of the binary solid-fluid interface (x = 5·10−4 m) is not isothermal in the vicinity of
the two horizontal surfaces y = 0 and y = 0.03 m
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Figure 6. Temperature at the solid interface for a toluene–methanol binary fluid at x = e f = 5·10−4 m.
The analytical solution is given in red and the numerical calculation is shown in green.

4.3. Mass Fraction Field in a TGC
4.3.1. Mass Fraction Field without Consideration of the Walls

When the influence of the walls is not taken into account, it must be noted that the
numerical and analytical results obtained here are in good agreement. In Table 2, the
numerical and analytical results, calculated here from m and msimpl , are compared to those,
obtained by Šeta et al. [20] for a TGC of height H = 30 mm and thickness e f = 0.5 mm. The
numerical and theoretical solutions for ∆T = 6 ◦C and ∆T = 10 ◦C lead to ∆C = 0.0152 are
in good agreement. However, the findings in [20] lead to ∆C = 0.0142 . The differences
between the results of the current study and those of Šeta et al. [20] for ∆T = 10 ◦C are
partly due to the fact that the current calculations are given with four decimals while those
of [20] are performed with three decimals.

Table 2. Mass fraction values, C( x = 0.25 mm, y = (3, 27) mm), obtained at the steady state, in
the vertical TGC with toluene–methanol mixtures, for Th = 26 ◦C, Tc = 20 ◦C and for Th = 28 ◦C,
Tc = 18 ◦C.

∆T ◦C C Ref. [20] Numerical
Results

Analytical Results
m[m−1] msimpl[m−1]

6 Cy=0.003 0.1964 0.1965 0.1961 0.1962
6 Cy=0.027 0.1818 0.1813 0.1809 0.1808

10 Cy=0.003 0.196 0.1967 0.1958 0.1959
10 Cy=0.027 0.182 0.1813 0.1806 0.1805

4.3.2. Mass Fraction Field with Consideration of the Wall Characteristics

The walls used in TGCs are usually made of copper or stainless steel [8,10,11] to avoid
corrosion problems; in Šeta et al. [20], quartz walls were used.

When the plates are made of stainless steel 1 mm thick, the values of the tempera-
tures at the interfaces bounding the binary mixture namely, ∆T′ =5.7 ◦C and 9.5 ◦C, are
very close to the temperatures which are applied to the exterior walls, ∆T = 6 ◦C and
10 ◦C, respectively. However, in the case of the quartz walls, used by Šeta et al. [20], the
difference between ∆T′ and ∆T for each interface is more important: ∆T′ = 8.4 ◦C, for
∆T = 10 ◦C and es = 2 mm. As indicated in Table 2, the differences between the values of
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C obtained analytically by taking into account the characteristics of the walls and those
obtained without taking them into account are very small. This result is in accordance with
theoretical considerations (Equation (21)), indicating that in the case of binary solutions,
the mass fraction gradient is independent of the temperature difference applied to the
thermogravitational columns.

On the other hand, considering the characteristics of the walls for a TGC with
H = 30 mm and ∆T = 6 ◦C, the numerical simulations provide less important species
separation, ∆C = 0.010, compared to the analytical result, ∆C = 0.019 . For the TGC
with the same geometrical and physical characteristics but with a height 10 times as large,
H = 300 mm, numerically ∆C = 0.102 and analytically ∆C = 0.19 are found. These results
show that the species separation is proportional to the height of the TGC.

The plot of the mass fraction C as a function of y for x = 0.25 mm (Figure 7), for ∆T = 6
and H = 30 mm, obtained at the steady state, in the vertical TGC with a toluene/methanol
mixture, shows good agreement between the analytical calculations (red line) and the direct
numerical simulation results (black dots) in the central part of the TGC.

Figure 7. Mass fraction values, C
(

x = 2.5·10−4 m
)

as a function of height y, for toluene–methanol
binary fluid. Analytical solution is shown by red line and numerical calculations are given by
black dots.

In order to explain the slight difference between the numerical and analytical results
on species separation, the steam function, the iso-mass fraction lines and mass fraction field
are plotted for the upper (Figure 8a) and for the lower (Figure 8b) parts of TGC. Figure 8c
presents the thermal field inside the TGC and its bounding plates, in its lower part and the
steam function in the binary fluid slot, in the case of toluene–methanol with ∆T = 6 ◦C
(Th = 26 ◦C, Tc = 20 ◦C)
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Figure 8. Stream function, the iso-mass fraction lines and mass fraction field: upper (a) and lower (b)
parts of the TGC and inside the binary fluid. (c) Thermal field in the cell and the bounding plates,
in the lower part of the TGC and streamlines inside the binary fluid toluene–methanol. (d) Mass
fraction field scale. ∆T = 6 ◦C (Th = 26 ◦C, Tc = 20 ◦C).

As one can see from Figure 8a,b, giving the mass fraction field scale presented in
Figure 8d, the mass fraction C is around 0.180 at the upper part of the cavity and around
0.198 at its lower part. These results agree with those, shown in Figure 7. However, at
the vicinity of the horizontal walls, the velocity of the binary fluid is very weak, which
is not a condition used for the determination of the analytical solution (parallel flow
approximation).

5. Conclusions

In this paper, the theory of Furry, Jones and Onsager (FJO) [6] is extended to the
cases where bounding conducting walls encircle the thermogravitational column (TGC), a
situation which will arise necessarily in experimental work, and for which the influence of
the characteristics of the walls delimiting the TGC was not considered earlier. A study of
the influence of the thickness and of the thermal properties of the bounding plates on the
species separation in a TGC is presented here.

An analytical solution is developed under the hypotheses of the “forgotten effect” and
the parallel flow approximation. The temperature distribution within the binary fluid and
the two bounding plates is determined, as well as the velocity and the mass fraction fields
within the binary fluid. The direct numerical simulations, without these two hypotheses,
led to almost identical analytical results outside the immediate vicinity of the horizontal
walls of the TGC.

By using the expression for the vertical mass fraction gradient, m, obtained, it is found
that the magnitude of the thermodiffusion coefficient depends on ∆T′ = T′h − T′c, i.e., on
the temperature difference across the binary fluid layer rather than across the TGC itself.
However, for most experiments, performed with binary liquids solutions, m is replaced by
msimpl which does not depend on the temperature difference.

So, for binary liquids, the theory of FJO predicts that the species separation is in-
dependent of the temperature difference ∆T = Th − Tc. This result is also corroborated
numerically and analytically by analyzing the species separation in a column without
considering the influence of the walls. It is also observed that for gas mixtures, this result is
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no longer valid., i.e., the vertical mass fraction gradient does depend on the temperature
difference.

The obtained analytical results, based on a TGC of infinite vertical extension, and the
numerical results, which did not consider the thickness of the walls, are found to be in good
agreement with the results obtained numerically and experimentally by Šeta et al. [20].
However, when the thermophysical characteristics of the walls delimiting the TGC of
finite height are taken into account in the numerical simulations, a slightly weaker species
separation is found compared to the analytical results, obtained in the case where the TGC
was assumed to have infinite vertical extension.
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