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Abstract
Parallel implementations of Krylov subspace methods often help to accelerate the procedure of finding an approximate
solution of a linear system. However, such parallelization coupled with asynchronous and out-of-order execution
often makes more visible the non-associativity impact in floating-point operations. These problems are even amplified
when communication-hiding pipelined algorithms are used to improve the parallelization of Krylov subspace methods.
Introducing reproducibility in the implementations avoids these problems by getting more robust and correct solutions.
This paper proposes a general framework for deriving reproducible and accurate variants of Krylov subspace methods.
The proposed algorithmic strategies are reinforced by programmability suggestions to assure deterministic and accurate
executions. The framework is illustrated on the preconditioned BiCGStab method and its pipelined modification, which
in fact is a distinctive method from the Krylov subspace family, for the solution of non-symmetric linear systems with
message-passing. Finally, we verify the numerical behaviour of the two reproducible variants of BiCGStab on a set of
matrices from the SuiteSparse Matrix Collection and a 3D Poisson’s equation.
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1 Introduction

Solving large and sparse linear systems of equations appears
in many scientific applications spanning from circuit and
device simulation, quantum physics, large-scale eigenvalue
computations, and up to all sorts of applications that
include the discretization of partial differential equations
(PDEs) Barrett and et al. (1994). In this case, Krylov
subspace methods fulfill the roles of standard linear algebra
solvers Saad (2003). The Conjugate Gradient (CG) method
can be considered as a pioneer of such iterative solvers
operating on symmetric and positive definite (SPD) systems.
Other Krylov subspace methods have been proposed
to find the solution of more general classes of non-
symmetric and indefinite linear systems. These include
the Generalized Minimal Residual method (GMRES) Saad
and Schultz (1986), the Bi-Conjugate Gradient (BiCG)
method Fletcher (1976), the Conjugate Gradient Squared
(CGS) method Sonneveld (1989), and the widely used BiCG
stabilized (BiCGStab) method by Van der Vorst van der Vorst
(1992) as a smoother converging version of the above two.
Moreover, preconditioning is usually incorporated in real
implementations of these methods in order to accelerate the
convergence of the methods and improve their numerical
features.

One would expect that the results of the sequential and
parallel implementations of Krylov subspace methods to
be identical, for instance, in the number of iterations, the
intermediate and final residuals, as well as the sought-
after solution vector. However, in practice, this is not often
the case due to different reduction trees – the Message
Passing Interface (MPI) libraries offer up to 14 different
implementations for reduction –, data alignment, instructions

used, etc. Each of these factors impacts the order of floating-
point operations, which are commutative but not associative,
and, therefore, violates reproducibility. We aim to ensure
identical and accurate outputs of computations, including
the residuals/ errors, as in our view this is a way to ensure
robustness and correctness of iterative methods. In this
case, the robustness and correctness have a threefold goal:
reproducibility* of the results with the accuracy guarantee as
well as sustainable (energy-efficient) algorithmic solutions.

The implementation of Krylov subspace methods on mas-
sively parallel systems reveals their scalability problems.
Mainly, because the synchronization of global communica-
tions, especially the reductions, delays parallel executions.
The most common solution has been the developments of
communication-avoiding methods and, also, the use of new
MPI functions to hide the communications, overlapping
their execution with the computation of iterative methods.
In Cools and Vanroose (2017), the authors propose a general
framework for deriving pipelined Krylov subspace methods,
in which the recurrences are reformulated to make the
parallelization easier. Again, these changes impact on the
robustness and correctness of the iterative methods.
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In general, Krylov subsbpace methods are built from
three components: sparse-matrix vector multiplication Ax
(SPMV), DOT product between two vectors (x, y), and
scaling a vector by a scalar with the following addition of
two vectors y := αx+ y (AXPY). If a block data distribution
is used, only AXPY is performed locally, while SPMV
needs to get some elements from the other processes,
using point to point or MPI Alltoallw collective MPI
operations, before completing the computation, and DOT
products requires communication and computation, e.g. via
the MPI Allreduce() collective, among MPI processes.
Although SPMV has the highest amount of floating-point
operations (flops), at large scale DOT products become
the most time-consuming component of Krylov subspace
methods due to the required global communication. This
justifies the use of pipelined versions of Krylov subspace
methods.

In this paper, we aim to re-ensure reproducibility of
Krylov subspace methods in parallel environments. Our
contributions are the following:

• We propose a general framework for deriving repro-
ducible Krylov subspace methods. We follow the
bottom-up approach and ensure reproducibility of
Krylov subspace methods via reproducibility of their
components, including the global communication. We
build our reproducible solutions on the ExBLAS Col-
lange and et al. (2015) approach and its lighter version.

• Even when applying our reproducible solutions, we
particularly stress the importance of arranging compu-
tations carefully to be executed deterministically, e.g.
avoid possibly replacements by compilers of a ∗ b+ c
in the favor of fused multiply-add (fma) operation
or postponing divisions in case of data initialization
(i.e. divide before use). For instance, we provide
customized AXPY(-like) operations using fma, which
reduces round-offs to one or two per AXPY(-like) oper-
ation. We refer to the 30-year-old but still up-to-date
guide “What every computer scientist should know
about floating-point arithmetic” by Goldberg Goldberg
(1991).

• We verify the applicability and performance of
the proposed methodology on the preconditioned
BiCGStab (PBiCGStab) and the pipelined PBiCGStab
method. We derive two reproducible variants of each
method and test them on a set of SuiteSparse matrices
and a 3D Poisson’s equation.

• We optimize the SPMV implementation to avoid
MPI Allgatherv() and dot product in the repro-
ducible versions to rely upon only one collective
operation, namely MPI Allreduce().

This paper is structured as follows. Section 2 reviews sev-
eral aspects of computer arithmetic as well as the ExBLAS
approach. Section 3 proposes a general framework for con-
structing reproducible Krylov subspace methods. Section 4
introduces the PBiCGStab and the pipelined PBiCGStab
methods, describing their MPI implementation in detail.
Later, we evaluate the two reproducible implementations of
PBiCGStab and pipelined PBiCGStab in Section 5. Finally,

Section 6 reviews related work, while Section 7 draws
conclusions and outlines future directions.

2 Background
At first, we briefly introduce the floating-point arithmetic that
consists in approximating real numbers by numbers that have
a finite, fixed-precision representation. These are composed
of a significand, an exponent, and a sign:

x = ±x0.x1 . . . xM−1︸ ︷︷ ︸
mantissa

×be, 0 ≤ xi ≤ b− 1, x0 ̸= 0,

where b is the basis (2 in our case), M is the precision, and e
stands for the exponent that is bounded (emin ≤ e ≤ emax).

The IEEE 754 standard IEEE Computer Society (2008),
created in 1985 and then revised in 2008 and in 2019, has led
to a considerable enhancement in the reliability of numerical
computations by rigorously specifying the properties of
floating-point arithmetic. This standard is now adopted by
most processors, thus leading to a much better portability
of numerical applications. The standard specifies floating-
point formats, which are often associated with precisions
like binary16, binary32, and binary64, see Table 1. Floating-
point representation allows numbers to cover a wide dynamic
range that is defined as the absolute ratio between the number
with the largest magnitude and the number with the smallest
non-zero magnitude in a set. For instance, binary64
(double-precision) can represent positive numbers from
4.9× 10−324 to 1.8× 10308, so it covers a dynamic range
of 3.7× 10631.

The IEEE 754 standard requires correctly rounded results
for the basic arithmetic operations (+,−,×, /,

√
, fma).

It means that they are performed as if the result was first
computed with an infinite precision and then rounded to
the floating-point format. The correct rounding criterion
guarantees a unique, well-defined answer, ensuring bit-
wise reproducibility for a single operation; but correct
rounding alone is not necessary to achieve reproducibility.
Emerging attention to reproducibility strives to draw more
careful attention to the problem by the computer arithmetic
community. It has led to the inclusion of error-free
transformations (EFTs) for addition and multiplication – to
return the exact outcome as the result and the error – to
assure numerical reproducibility of floating-point operations,
into the revised version of the 754 standard in 2019. These
mechanisms, once implemented in hardware, will simplify
our reproducible algorithms – like the ones used in the
ExBLAS Collange and et al. (2015), ReproBLAS Demmel
and Nguyen (2015), OzBLAS Mukunoki et al. (2019)
libraries – and boost their performance.

There are two approaches that enable the addition of
floating-point numbers without incurring round-off errors
or with reducing their impact. The main idea is to keep
track of both the result and the error during the course of
computations. The first approach uses EFT to compute
both the result and the rounding error, storing them in a
floating-point expansion (FPE). This is an unevaluated sum
of p floating-point numbers, whose components are ordered
in magnitude with minimal overlap to cover the whole
range of exponents. Typically, FPE relies upon the use of
the traditional EFT for addition that is twosum Knuth

Prepared using sagej.cls



3

Table 1. Parameters for three IEEE arithmetic precisions.

Type Size Significand Exponent Rounding unit Range
half 16 bits 11 bits 5 bits u = 2−11 ≈ 4.88× 10−4 ≈ 10±5

single 32 bits 24 bits 8 bits u = 2−24 ≈ 5.96× 10−8 ≈ 10±38

double 64 bits 53 bits 11 bits u = 2−53 ≈ 1.11× 10−16 ≈ 10±308

(1969) and for multiplication that is twoprod Ogita
et al. (2005). The code of these two operations are,
respectively, shown in Algorithm 1 and Algorithm 2. The
second approach projects the finite range of exponents
of floating-point numbers into a long vector so called
a long (fixed-point) accumulator and stores every bit
there. For instance, Kulisch Kulisch and Snyder (2011)
proposed to use a 4288-bit long accumulator for the exact
DOT product of two vectors composed of binary64
numbers; such a large long accumulator is designed to cover
all the severe cases without overflows in its highest digit.

Algorithm 1: Error-free transformation for the
summation of two floating-point numbers.
Input: a, b are two floating-point numbers.
Output: r, s are the result and the error, resp.
Function [r, s] = twosum (a, b)

r := a+ b
z := r − a
s := (a− (r − z)) + (b− z)

Algorithm 2: Error-free transformation for the
product of two floating-point numbers.
Input: a, b are two floating-point numbers.
Output: r, s are the result and the error, resp.
Function [r, s] = twoprod (a, b)

r := a ∗ b
s := fma(a,b,−r)

The ExBLAS project Iakymchuk et al. (2015) is an
attempt to derive a fast, accurate, and reproducible BLAS
library by constructing a multi-level approach for these
operations that are tailored for various modern architectures
with their complex multi-level memory structures. On one
side, this approach is aimed to be fast to ensure similar
performance compared to the non-deterministic parallel
versions. On the other side, the approach is aimed to preserve
every bit of information before the final rounding to the
desired format to assure correct-rounding and, therefore,
reproducibility. Hence, ExBLAS combines together long
accumulator and FPE into algorithmic solutions as well
as efficiently tunes and implements them on various
architectures, including conventional CPUs, Nvidia and
AMD GPUs, and Intel Xeon Phi co-processors (for details
we refer to Collange and et al. (2015)). Thus, ExBLAS
assures reproducibility through assuring correct-rounding.

The corner stone of ExBLAS is the reproducible parallel
reduction, which is at the core of many BLAS routines.
The ExBLAS parallel reduction relies upon FPEs with the
twosum EFT and long accumulators, so it is correctly
rounded and reproducible. In practice, the latter is invoked
only once per overall summation that results in the little
overhead (less than 8%) on accumulating large vectors. Our
interest in this paper is the DOT product of two vectors,

which is a crucial fundamental BLAS operation. The EXDOT
algorithm is based on the reproducible parallel reduction and
the twoprod EFT: the algorithm accumulates the result and
the error of twoprod EFT to same FPEs and then follows
the reduction scheme. We derive its distributed version with
two FPEs underneath (one for the result and the other for the
error) that are merged at the end of computations. These and
the other routines – such as matrix-vector product, triangular
solve, and matrix-matrix multiplication – are distributed in
the ExBLAS library† .

3 General framework for reproducible
Krylov solvers

This section provides the outline of a general framework
for deriving a reproducible version of any traditional
Krylov subspace method. The framework is based on
two main concepts: 1) identifying the issues caused by
parallelization and, hence, the non-associativity of floating-
point computations; 2) carefully mitigating these issues
primarily with the help of computer arithmetic techniques
as well as programming guidelines. The framework was
implicitly used for the derivation of the reproducible variants
of the Preconditioned Conjugate Gradient (PCG) method
Iakymchuk and et al. (2020a,b).

The framework considers the parallel platform to consist
of K processes (or MPI ranks), denoted as P1, P2, . . . , PK .
In this framework, the coefficient matrix A is partitioned into
K blocks of rows (A1, A2, . . ., Ak), where each Pk stores
one row-block with the k-th distribution block Ak ∈ Rpk×n,
and n =

∑K
k=1 pk. Additionally, vectors are partitioned and

distributed in the same way as A. For example, the residual
vector r is partitioned as r1, r2, . . ., rK and rk is stored in
Pk. Besides, scalars are replicated on all K processes.

3.1 Identifying sources of non-reproducibility
The first step is to identify sources of non-associativy

and, thus, non-reproducibility of the Krylov subspace
methods in parallel environments. As it can be verified
in Figure 1, there are four common operations as well as
message-passing communication patterns associated with
them: sparse matrix-vector product (SPMV) which requires
some communications, via Alltoallw collective, so that
each process has the needed elements to compute the
computation, DOT product with the Allreduce collective,
scaling a vector with the following addition of two
vectors (AXPY and AXPY-like), and the application of the
preconditioner. Hence, we investigate each of them.

In general, associativity and reproducibility are not
guaranteed when there is perturbation of floating-point
operations in parallel execution. For instance, while invoking

†ExBLAS repository: https://github.com/riakymch/exblas
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while (τ > τmax)

Step Operation Kernel Communication
S1 : d := Ap SPMV Alltoallw
S2 : ρ := β/⟨p, d⟩ DOT product Allreduce
S3 : x := x+ ρp AXPY –
S4 : r := r − ρd AXPY –
S5 : y :=M−1r Apply preconditioner depends
S6 : α := β scalar operation –
S7 : β := y′ ∗ r DOT product Allreduce
S8 : τ :=

√
⟨r, r⟩ DOT product + sqrt Allreduce

S9 : α := β/α scalar operation –
S10 : p := y + αp AXPY-like –

end while

Figure 1. Preconditioned Conjugate Gradient method with annotated BLAS kernels and
message-passing communication.

the MPI Allreduce() collective operation cannot ensure
the same result (its execution path) as it depends on the
data, the network topology, and the underlying algorithmic
implementation. Under these assumptions, AXPY(-like) and
SPMV are associativity-safe as they are performed locally
on local slices of data. The application of preconditioner
can also be considered safe, e.g. the Jacobi preconditioner,
until all operations are reduction-free; more complex
preconditioners will certainly raise an issue. Thus, the main
issue of non-determinism emerges from parallel reductions
(steps S2, S7 and S8 in Figure 1).

3.2 Re-assuring reproducibility
We construct our approach for reassuring reproduci-

bility by primarily targeting DOT products and parallel
reductions. Note that the non-deterministic implementation
of the Krylov subspace method utilizes the DOT routine
from a BLAS library like Intel MKL followed by
MPI Allreduce(). Thus, we propose to refine this
procedure into three steps:

• exploit the ExBLAS and its lighter FPE-based versions
to build reproducible and correctly-rounded DOT
products;

• extend the ExBLAS- and FPE-based DOT
products to distributed memory by employing
MPI Allreduce(). This collective acts on either
long accumulators or FPEs. For the ExBLAS
approach, we apply regular reduction, since the long
accumulator is an array of long integers. Note that we
may need to carry an extra intermediate normalization
after the reduction of 2 ∗ 2K−1 long accumulators,
where K = 64− 52 = 12 is the number of carry-safe
bits per each digit of the long accumulator. For the
FPE approach, we define the MPI operation that
is based on the twosum EFT. Thus, at this point,
the choice of the reduction algorithm underneath
MPI Allreduce() does not have an impact on the
computations as every bit of information is stored;

• rounding to double: for long accumulators, we
use the ExBLAS-native Round() routine. To
guarantee correctly rounded results of the FPE-based
computations, we employ the NearSum algorithm

from Rump et al. (2008). It is worth mentioning
that the rounding operation is performed locally and
does not require any communication. In the previous
versions of the code as in Iakymchuk et al. (2022), we
split the reduction into three steps: MPI Reduce(),
rounding, and MPI Bcast(). However, this is
negligible as we re-assure control of the reduction
operation and, hence, eliminate the performance
penalty of using two collectives with one extra
synchronization.

It is evident that the results provided by ExBLAS DOT
are both correctly-rounded and reproducible. With the
lightweight DOT, we aim also to be generic and, hence,
we provide the implementation that relies on FPEs of size
eight with the early-exit technique. This way the working
precision of the computations using FPEs is increased up
to 8 ∗ 52 bits as mentioned in Hida et al. (2001) for the
double-double arithmetic. Additionally, we add a check for
the FPE-based implementations to cover a case when the
condition number and/ or the dynamic range are too large
and we cannot keep every bit of information. Then, the
warning is thrown, containing also a suggestion to switch
to the ExBLAS-based implementation. But, note that these
lightweight implementations are designed for moderately
conditioned problems or with moderate dynamic range in
order be accurate, reproducible, but also high performing,
since the ExBLAS version can be very resource demanding,
specially on the small core count. To sum up, if the
information about the problem is know in advance, it is worth
pursuing the lightweight approach.

3.3 Programmability effort
It is important to note that compiler optimization and

especially the usage of the fused-multiply-and-add (fma)
instruction, which performs a ∗ b+ c with the extended
precision and the single rounding at the end, may lead
to some non-deterministic results. For instance, in the
SPMV computation, each MPI rank computes its dedicated
part dk of the vector d by multiplying a block of rows
Ak by the vector p. Since the computations are carried
locally and sequentially, they are deterministic and, thus,
reproducible. However, some parts of the code like a ∗
b+ c ∗ d ∗ e and a+ = b ∗ c – present in the original
implementation of PBiCGStab – may not always yield to

Prepared using sagej.cls



5

the same result Wiesenberger and et al. (2019). This is due
to the fact that, for performance reasons, the C++ language
standard allows compilers to change the execution order of
this type of operation. It also allows merging multiplications
and summations with fused multiply-add (fma) instructions.
Hence, a compiler might translate a ∗ b+ c ∗ d to two
multiplications t1 = a ∗ b and t2 = c ∗ d, and a subsequent
summation t1 + t2; it might generate a single multiplication
t = c ∗ d with a subsequent fma(a, b, t), which gives a
slightly different result; or it may even compute t = a ∗ b
first and then use the fma(c, d, t). Thus, we advise to instruct
compilers to use fma explicitly via std::fma in C++ 11,
assuming the underlying architecture supports fma.

Another important observation is to carefully perform
divisions and initialization of data. For instance, the choice
of b in the Krylov solvers is the value b = Ad, with d =
1√
N
(1, . . . , 1)T . In this case, we suggest to compute b = Ad

for d = (1, . . . , 1)T first and then scale b by 1/
√
N , as we

observed a slightly faster convergence (up to 7 %) for the
Krylov solver.

4 Reproducible BiCGStab
The classic Biconjugate Gradient Stabilized method
(BiCGStab) van der Vorst (1992) was proposed as a fast and
smoothly converging variant of the BiCG Fletcher (1976)
and CGS Sonneveld (1989) methods. We present here the
preconditioned BiCGStab (PBiCGStab) and the pipelined
preconditioned BiCGStab (p-PBiCGStab), their design and
implementation with Message Passing Interface (MPI).

For both methods, we consider a linear system Ax = b,
where the coefficient matrix A ∈ Rn×n is sparse with nz

nonzero entries; b ∈ Rn is the right-hand side vector; and
x ∈ Rn is the sought-after solution vector.

Additionally, and for simplicity, we integrate the Jacobi
preconditioner Saad (2003) in our implementations, which
is composed of the diagonal elements of the matrix
(M = diag(A)). In consequence, the application of the
preconditioner is conducted on a vector and requires an
element-wise multiplication of two vectors.

4.1 Message-passing Parallel PBiCGStab
Implementation

The algorithmic description of the classical iterative
PBiCGStab is presented in Figure 2. The loop body consists
of two SPMV (S2 and S6), two preconditioner applications
(S1 and S5), five DOT products (S3, S7, S10, and S11), six
AXPY(-like) operations (S4, S8, S9, and S12), and a few
scalar operations Barrett and et al. (1994).

As described in Section 3, the framework includes
a reproducible implementation of the most common
operations in a parallel implementation of a Krylov subspace
method. Therefore, we next perform a communication and
computation analysis of a message-passing implementation
of the PBiCGStab solver. From there, we derive the
reproducible version by following the guide from Section 3.

For clarity, hereafter we will drop the superindices that
denote the iteration count in the variable names. Thus,
for example, xj becomes x, where the latter stands for
the storage space employed to keep the sequence of

approximations x0, x1, x2, . . . computed during the iterative
process. Taking into account these previous considerations,
we analyze the different computational kernels (S1–S12)
that compose the loop body of a single PBiCGStab iteration
in Figure 2.

Sparse matrix-vector product (S2, S6): This kernel
needs as input operands: the coefficient matrix A, which is
distributed by blocks of rows, and the corresponding vector
(p̂ or q̂), which is partitioned and distributed using the same
partitioning as A. For simplicity, we just explain below how
S2 is computed.

In theory, prior to computing this kernel, we would need
to obtain a replicated copy of the distributed vector p̂ in
all processes, denoted as p̂ → e, so that vector e would be
the only array that is replicated in all processes. But not all
elements of e are required in all processes to compute the
local SPMV, only those column indexes which are in the
Ak and are not in p̂k. Therefore, the communication pattern
is defined by the matrix pattern and the matrix distribution.
Note that there are some elements of e which are useless
in each process, and therefore they can be removed, getting
e → ek, reducing the occupied memory, provided the empty
column of each Ak are also removed, obtaining Ak → Âk.
Since the matrix structure A is not changed within the loop,
these changes can be done before the loop starts reducing the
overlapping related to the computation of SPMV, whereas
the real computation in the loop is computed as Pk : sk =
Âk ek.

The computation can then proceed in parallel, yielding
the vector result s in the expected distributed state with
no further communication involved. At the end, each MPI
process owns the corresponding piece of the computed
vector. To ensure the reproducibility of this computation, the
local DOT products between the sparse rows of Âk and ek are
based on fma as outlined in 3.3.

DOT products (S3, S7, S10, S11): The next kernel in
the loop body is the DOT product in the step S3 between
the distributed vectors r0 and s. Here, each process can
compute concurrently a partial result Pk : ρk = ⟨r0k, sk⟩ and
when all processes have finished this partial computation,
these intermediate values have to be reduced into a globally-
replicated scalar α := σ/(ρ1 + ρ2 + · · ·+ ρK). We can
apply the same idea to the DOT products in the steps S7, S10
and S11, yielding a total of five process synchronizations
(in MPI, via MPI Allreduce()) since all scalars are
globally-replicated. But, the number of synchronization can
be reduced to four, considering that communications in S10
and S11 can be merged in a single MPI Allreduce().

The easiest solution to compute ρk is to call to the DOT
routine from the Intel MKL or similar libraries, however
this will not guarantee reproducibility even when fma are
used internally. Thus, we enforce reproducibility by applying
our two ExBLAS-based strategies, following the guideline as
in Section 3.2.

AXPY(-like) vector updates (S4, S8, S9, S12): The next
kernel is the AXPY-like kernel in the step S4, which involves
the distributed vectors q, r, s and the globally-replicated
scalar α. The operations in the steps S8, S9, and S12 follow
the same idea because all scalars are globally-replicated. In
this type of kernels, all processes can perform their local
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Compute preconditioner for A → M

Set starting guess x0

Initiate r0 := b−Ax0, p0 := r0, τ0 :=∥ r0 ∥2, j := 0

while (τ j > τmax)

Step Operation Kernel Comm
S1 : p̂j :=M−1pj Apply precond. –
S2 : sj := Ap̂j SPMV Alltoallw
S3 : αj := ⟨r0, rj⟩/⟨r0, sj⟩ DOT product Allreduce
S4 : qj := rj − αjsj AXPY-like –
S5 : q̂j :=M−1qj Apply precond. –
S6 : yj := Aq̂j SPMV Alltoallw
S7 : ωj := ⟨qj , yj⟩/⟨yj , yj⟩ Two DOT products Allreduce
S8 : xj+1 := xj + αj p̂j + ωj q̂j Two AXPY –
S9 : rj+1 := qj − ωjyj AXPY-like –
S10 : βj := ⟨r0,rj+1⟩

⟨r0,rj⟩ ∗ αj

ωj DOT product Allreduce
S11 : τ j+1 := ∥ rj+1 ∥2 DOT product + sqrt Allreduce
S12 : pj+1 := rj+1 + βj(pj − ωjsj) Two AXPY-like –

end while

Figure 2. Formulation of the PBiCGStab solver annotated with computational kernels and communication. The threshold τmax is
an upper bound on the relative residual for the computed approximation to the solution. In the notation, ⟨·, ·⟩ computes the DOT
(inner) product of its vector arguments.

parts of the computation to obtain the result without any
communication: Pk : qk = rk − α sk.

While AXPY (y = αx+ y) can directly rely on the MKL
library routine, AXPY-like (z = αy + x) requires, at least,
two routines in order to be implemented (SCAL/ COPY
+ AXPY). Looking for a robust and correct solution, the
use of MKL routines is a bad alternative since each one
introduces a rounding error. Additionally, this alternative is
more expensive because some vector must be traversed more
than once. Instead, we propose to rely on fma that computes
each element of the solution of both AXPY and AXPY-
like with a single rounding and only one pass through the
vectors. Therefore, in the reproducible versions we provide
our own implementations for SPMV, AXPY, and AXPY-like
(do not rely on any external BLAS libraries) and, hence, have
the overall control of computations, assuring their correct
rounding and reproducibility.

Application of the preconditioner (S1, S5): The kernel in
the step S1 consists of applying the Jacobi preconditioner M ,
scaling the vector p by the diagonal of the matrix. Therefore,
it can be executed in parallel by all processes because each
of them stores a different set of the diagonal elements (those
related with the piece of the matrix that it stores) and the
corresponding set of the vector elements: Pk : p̂k = M−1

k pk.
The same procedure can be applied on the step S5 to scale
the vector q, resulting in q̂.

There is no routine in the MKL library to implement the
element-wise product of two vector, therefore, an ad-hoc
implementation has to be done. Reproducibility is ensured
if this code is based on fma and the order of operations is
deterministic as mentioned in Section 3.3.

4.2 Message-passing Parallel p-PBiCGStab
Implementation

The authors in Cools and Vanroose (2017) propose two
main steps for deriving the pipelined version of a Krylov
subspace method:

• Communication-avoiding. In which the number of
global communications is reduced, rearranging the
original recurrences. Usually more terms appear in the
new recurrences and, therefore, there are more vector
operations.

• Hiding communications. Since global communica-
tions are the most time-consuming component of
Krylov subspace methods at large scale, the alterna-
tive to reduce their impact on the performance of
parallel implementations is their simultaneous exe-
cution (overlapping) with SPMV. This technique
is implemented using non-blocking collectives, such
as MPI Iallreduce(), which require the use of
MPI Wait() to check when the communication is
complete.

The algorithmic description of the pipelined precondi-
tioned BiCGStab (p-PBiCGStab) is presented in Figure 3.
The loop body consists of two SPMV (S10 and S18), two
preconditioner applications (S9 and S17), six DOT prod-
ucts (S8 ∪ S11 and S16 ∪ S19), eighteen AXPY/ AXPY-like
operations (S1-S7 and S12-S15), and a few scalar opera-
tions Cools and Vanroose (2017). It is worth mentioning that
the pipelined PBiCGStab may show different convergence
behavior compared to the standard PBiCGStab due to the
different way floating-point operations are performed and,
thus, the round off errors are propagated and accumulated
differently.

The analysis of the computational kernels of the algorithm
is very similar to the described above for the parallelization
of PBiCGStab in Section 4.1. The only difference is how the
DOT products are implemented.

DOT products (S8 ∪ S11, S16 ∪ S19): Although, there
are six DOT in Figure 3, only two global synchronizations are
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required because more than one reduction is complete in each
step. Therefore, before the synchronization is initiated, the
partial result related to the corresponding reductions has to be
computed locally in each process. Then, obtained values are
stored in local vectors which are used to compute the global
values using collectives. The overlapping requires the use of
non-blocking collectives which decompose each reduction
in two steps: the first step (S8 and S16) properly executes
MPI Iallreduce() starting the global communication,
which continues while other steps are performed, e.g., S9
and S10. When the global values have to be used, the
second step has to be done, calling MPI Wait(), since
execution can only continue if the global communication
is completed. We follow here the ‘golden rule’ of the non-
blocking communication – start as soon as the data are
available and wait right before they are needed.

5 Experimental Results
In this section, we report a variety of numerical experiments
to examine the convergence, scalability, accuracy, and
reproducibility of the original and two reproducible versions
of PBiCGStab and p-PBiCGStab. In our experiments,
we employed IEEE754 double-precision arithmetic and
conducted them on the dual Intel Xeon Gold 6240R CPU
@2.4 GHz nodes with 48 cores and 384 GB of memory each
at Fraunhofer ITWM. Nodes are connected with the HDR
Infiniband.

5.1 Evaluation on the SuiteSparse matrices
We carried out tests on a range of different linear
systems from the SuiteSparse matrix collection on a single
node using 2, 8, 16, 32, and 48 (full) cores. Table 2
lists a set of tested matrices with the number of rows/
columns N and the number of nonzeros nnz. We aim
to show the reproducibility, accuracy, and performance of
our algorithmic implementations on matrices with various
loads, i.e. number of nonzeros, as well as complexities.
The right-hand side vector b in the iterative solvers was
always initialized to the product Ad, d = 1√

N
(1, . . . , 1)T ,

where N is the number of rows/ columns of A. However,
in both ExBLAS- and FPE-based versions, marked as
ReproPBiCGStab in the table, we computed b = Ad, d =
(1, . . . , 1)T and then scaled b by 1√

N
calling the dscal

routine from BLAS. In all implementations, iterations
were started with the initial guess x0 = 0. The parameter
that controls the convergence of the iterative process is
∥rj∥2/∥r0∥2 ≤ 10−6. We want to specify that ∥rj∥2 =√
|(rj , rj)| since some works use ∥rj∥2 =

√
|(r0, rj)|.

Table 2 reports the number of required iterations to reach
the stopping criterion as well the final true residual for
PBiCGStab and ReproPBiCGStab; the latter marks both
ExBLAS- and FPE-based variants as they report identical
results independently from the number of cores/ MPI
processes used. We also report the initial residual (∥r0∥2)
which can serve as an indicator in combination with the
final true residual of how the convergence unfolds. For the
original version, we display the number of iterations on one
(iter1) and 32 cores (iter32) as they differ. In fact, there is
a variability of the results between the other core counts
too. Notably, the two reproducible variants show a tendency

to deliver more reliable accuracy of the approximate
result (the final true residual) and/ or converge faster.
For instance, the reproducible variants require significantly
less iterations for the vas stokes 2M, orsreg 1, rdb3200l,
Transport, tmt unsym matrices. The reproducible variants
are slightly slower for only two matrices, namely ML Geer
and atmosmodj. For the other matrices, mostly symmetric
matrices, the results are comparable between reproducible
and non-reproducible versions in terms of the number of
iterations; however, there is a fluctuation in the final true
residual for the original non-deterministic version.

The table also reports the overhead of the reproducible
versions against the original non-deterministic version as
the normalized mean time on 48 MPI processes. The two
reproducible versions perform well with the overhead under
3x for the majority of the test matrices. The FPE version
generally shows better performance than the ExBLAS
version: one third of the test matrices show the overhead
under 2x.

Table 3 shows similar results for the non-deterministic
pipelined PBiCGStab and its reproducible variants. The
tendency of reproducible variants to converge faster and to
deliver more reliable accuracy is preserved. For instance, the
reproducible variants require a lower number of iterations
for five matrices: atmosmodl, atmosmodm, atmosmodd,
orsreg 1, tmt unsym, and ML Geer. The reproducible
variants require more iterations for four matrices. It is not
unusual for rounding errors to cancel in stable algorithms
(see Higham (2002), for example page 19) yielding faster
convergence of the method. As a consequence, it may
happen that a computation with more precision take more
time to converge than a one with less precision. With the
pipelined PBiCGStab, we were able to converge to the
approximate solution of vas stokes 2M under the tolerance
of 10−6. When the required tolerance is increased to,
e.g. 10−8 or higher, the pipelined methods may not
converge for vas stokes 2M, ML Geer, and tmt unsym. We
leave this as a future work and foresee to investigate
this correlation between the requested accuracy and the
abilities of the solvers, potentially employing some healing
techniques like residual replacement as well as more
advanced preconditioners.

In addition, the table exhibits the overhead of the
reproducible pipelined BiCGStab variants against the
original version on 48 MPI processes. The two reproducible
versions show the overhead of 3x for most of the tested
SuiteSparse matrices. As for the standard BiCGStab method,
the FPE version generally shows better performance than the
ExBLAS: three quarters of the cases exhibit the overhead
under 3x; for the rest, the overhead never exceeds 4x.

Figure 4 presents the convergence history in terms of the
residual computed at every iteration of both the standard and
pipelined PBiCGStab methods. The depicted two matrices,
namely orsreg 1 and tmt unsym, represent the beneficial
scenarios for the reproducible variants, when they reach the
approximate solution in significantly less iterations than their
non-deterministic variants. In fact, these results demonstrate
a sort of idealistic scenario when the reproducible variants
converge to the solution faster despite yielding more costly
computations per each iteration. In the case of these
two matrices, which may not be generic, the standard
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Compute preconditioner for A → M

Set starting guess x0

Initiate r0 := b−Ax0, r̂0 := M−1r0, w0 := Ar̂0, ŵ0 := M−1w0, t0 := Aŵ0, α0 := ⟨r0, r0⟩/⟨r0, w0⟩, β−1 := 0, j := 0

while (τ j > τmax)

Step Operation Kernel Comm
S1 : p̂j := r̂j + βj−1(p̂j−1 − ωj−1ŝj−1) Two AXPY-like –
S2 : sj := wj + βj−1(sj−1 − ωj−1zj−1) Two AXPY-like –
S3 : ŝj := ŵj + βj−1(ŝj−1 − ωj−1ẑj−1) Two AXPY-like –
S4 : zj := tj + βj−1(zj−1 − ωj−1vj−1) Two AXPY-like –
S5 : qj := rj − αjsj AXPY-like –
S6 : q̂j := r̂j − αj ŝj AXPY-like –
S7 : yj := wj − αjzj AXPY-like –
S8 : ⟨qj , yj⟩, ⟨yj , yj⟩ Two DOT products Iallreduce
S9 : ẑj :=M−1zj Apply precond. –
S10 : vj := Aẑj SPMV Alltoallw
S11 : ωj := ⟨qj , yj⟩/⟨yj , yj⟩ Two DOT products Wait for S8
S12 : xj+1 := xj + αj p̂j + ωj q̂j Two AXPY –
S13 : rj+1 := qj − ωjyj AXPY-like –
S14 : r̂j+1 := q̂j − ωj(ŵj − αj ẑj) Two AXPY-like –
S15 : wj+1 := yj − ωj(tj − αjvj) Two AXPY-like –
S16 : ⟨r0, rj+1⟩, ⟨r0, wj+1⟩ Four DOT products Iallreduce

⟨r0, sj⟩, ⟨r0, zj⟩
S17 : ŵj+1 :=M−1wj+1 Apply precond. –
S18 : tj+1 := Aŵj+1 SPMV Alltoallw
S19 : βj := ⟨r0,rj+1⟩

⟨r0,rj⟩ ∗ αj

ωj Four DOT products Wait for S16

αj+1 := ⟨r0,rj+1⟩
⟨r0,wj+1⟩+βj⟨r0,sj⟩−βjωj⟨r0,zj⟩

end while

Figure 3. Formulation of the pipelined PBiCGStab solver annotated with computational kernels and communication. The
threshold τmax is an upper bound on the relative residual for the computed approximation to the solution. In the notation, ⟨·, ·⟩
computes the DOT (inner) product of its vector arguments.

and pipelined PBiCGStab non-deterministic variants require
more iterations on various MPI processes. Moreover, the
number of iterations to reach the approximation of the
solution fluctuates significantly among runs of the same non-
deterministic variant on a different process count.

Figure 5 demonstrates the strong scalability results –
when the problem is fixed but the number of allocated
resources varies – for the original and both ExBLAS- and
FPE-based standard and pipelined PBiCGStab variants on
the Queen 4147 matrix. The figures in the left column
report the mean execution time for the entire loop of
the solver among five samples, while the figures in
the right column show the performance overhead of the
reproducible versions. We select the Queen 4147 due to
the large number of nonzero elements, 316 millions. As
we observed, the smaller number of nonzeros leads to the
worse scalability, especially on the large core count, and
higher overhead, but never more than 8x. For small matrices
like orsreg 1, a lower number of cores is a preferable
option to reach an approximation to the solution with the
sustainable resource utilization. In these experiments, MPI
communication is performed within a node, most likely
being exposed to intra-node communication via shared
memory. All variants show good scalability results for
Queen 4147 with 28x (24x), 29x (29x), and 31x (31x)
speed up on 48 MPI processes, when compared to the
one process runs, for the original, FPE, and ExBLAS
variants of the standard PBiCGStab (pipelined PBiCGStab),
respectively. The reproducible variants demonstrate higher/

better speedup due to extra floating-point operations. The
overhead of the ExBLAS and FPE variants compared to
the standard variant is reduced to nearly 2.5x and 2.3x,
accordingly, on 48 MPI processes; the pipelined versions
exhibit slightly higher overhead on the small core count. The
scalability on the other matrices from Tables 2 and 3 shows
variable patterns and overhead.

Note that the average execution time per loop for many
matrices from Tables 2 and 3 is not sufficient for distributed
memory computations. This is due to the fact that the
potential performance gain from extra nodes is demolished
by communication.

5.2 Scalability
We leverage a sparse SPD coefficient matrix arising from the
finite-difference method of a 3D Poisson’s equation with 27
stencil points. We perturb the matrix with the values 1.0−
0.0001 below the central point to create the unsymmetric
27-point stencil aka the e-type model Cools and Vanroose
(2017). Given that the theoretical cost of PBiCGStab is tc ≈
4nnz + 26n floating-point arithmetic operations, where nnz
denotes the number of nonzeros of the original matrix and its
size n, the execution time of the method is usually dominated
by that of the SPMV kernel. Therefore, in order to analyze
the weak scalability of the method, we maintain the number
of non-zero entries per node. For this purpose, we modified
the original matrix, transforming it into a band matrix,
where the lower and upper bandwidths (bandL and bandU,
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Matrix Prec N nnz ∥r0∥2 PBiCGStab ReproPBiCGStab
iter1 iter32 ∥b−Axj∥2 iter ∥b−Axj∥2 FPE ExBLAS

add32 Jac 4,960 19,848 8.00e-03 36 37 4.97e-09 35 7.12e-09 1.09 1.01
af shell10 Jac 1,508,065 52,259,885 1.48e+05 9 9 2.18e-02 9 2.18e-02 2.71 3.30
atmosmodd Jac 1,270,432 8,814,880 3.75e+03 221 230 2.68e-03 222 9.55e-04 3.48 4.06
atmosmodj Jac 1,270,432 8,814,880 3.75e+03 220 227 3.46e-03 229 3.25e-03 3.64 4.34
atmosmodl Jac 1,489,752 10,319,760 1.85e+04 133 130 1.80e-02 132 1.68e-02 2.69 3.07
atmosmodm Jac 1,489,752 10,319,760 3.50e+05 77 77 2.43e-01 75 2.41e-01 3.15 3.62
audikw 1 Jac 943,695 77,651,847 1.58e+07 11 11 8.14e+00 11 8.04e+00 1.63 1.89
bcsstk18 Jac 11,948 149,090 2.30e+09 7 7 7.51e+02 7 7.51e+02 1.21 1.25
bcsstk26 Jac 1,922 30,336 6.16e+09 11 11 5.62e+03 11 5.62e+03 1.28 1.32
bone010 Jac 986,703 47,851,783 8.55e+03 12 12 5.91e-03 12 5.91e-03 2.34 2.36
boneS10 Jac 914,898 40,878,708 7.17e+03 12 12 3.92e-03 12 3.92e-03 2.39 2.20
Bump 2911 Jac 2,911,419 127,729,899 1.91e+14 12 12 1.82e+08 12 1.82e+08 2.97 3.13
cage14 Jac 1,505,785 27,130,349 1.00e+00 5 5 1.55e-07 5 1.55e-07 1.88 2.01
cage15 Jac 5,154,859 99,199,551 1.00e+00 6 6 1.12e-07 6 1.12e-07 1.82 2.06
circuit5M dc Jac 3,523,317 14,865,409 1.02e+04 5 5 6.52e-03 5 6.52e-03 3.27 3.45
CurlCurl 3 Jac 1,219,574 13,544,618 2.42e+10 17 17 2.14e+04 17 2.14e+04 2.56 3.09
CurlCurl 4 Jac 2,380,515 26,515,867 2.10e+10 19 19 1.18e+04 19 1.18e+04 3.12 3.60
ecology1 Jac 1,000,000 4,996,000 1.96e+01 8 8 8.77e-06 8 9.66e-06 3.04 3.64
ecology2 Jac 999,999 4,995,991 1.96e+01 8 9 7.38e-06 8 9.67e-06 2.60 2.84
Hardesty1 Jac 938,905 12,143,314 9.99e+00 17 19 9.28e-06 19 4.60e-06 4.02 4.82
ML Geer Jac 1,504,002 110,686,677 4.89e+02 2886 2889 2.83e-04 3060 1.19e-04 2.71 2.69
orsreg 1 Jac 2,205 14,133 4.83e+00 225 231 4.26e-06 210 4.68e-06 1.01 0.82
Queen 4147 Jac 4,147,110 316,548,962 1.94e+14 52 51 6.81e+07 51 7.80e+07 2.12 2.43
rdb3200l Jac 3,200 18,880 9.96e+00 641 610 9.90e-06 583 3.17e-06 0.92 0.83
s3dkq4m2 Jac 90,449 4,427,725 6.08e+02 23 23 7.27e-05 23 7.27e-05 1.66 1.84
tmt unsym Jac 917,825 4,584,801 6.45e-06 6489 5969 9.34e-12 5388 1.20e-11 3.29 4.63
Transport Jac 1,602,111 23,487,281 2.45e-02 561 592 2.35e-08 557 1.74e-08 2.65 3.08
vas stokes 2M Jac 2,146,677 65,129,037 4.19e-01 6411 7352 3.34e-07 6664 3.49e-07 1.60 3.09

Table 2. Convergence of the PBiCGStab and its reproducible versions (ReproPBiCGStab, identical results reported for both) on a
set of the SuiteSparse matrices. The initial guess is x0 = 0. The number of iterations required to reach the tolerance of 10−6 on the
scaled residual, i.e. ∥rj∥2/∥r0∥2, is reported along with the corresponding true residual ∥b−Axj∥2. iterX stands for runs on X MPI
processes. The last two columns show the overhead of the reproducible versions with 48 cores/ MPI processes, e.g. 1.09x for the
add32 matrix.

respectively) depend on the number of nodes employed in
the experiment as follows:

bandL = bandU = 100×#nodes →
nnz = (bandL+ bandU + 1)× n.

With 32 nodes, the bandwidth ranges between 100 and 3200.
With this approach we can then maintain the number of rows/
columns of the matrix equal to n=4M (4,019,679), while
increasing its bandwidth and, therefore, the computational
workload proportionally to the hardware resources, as
required in a weak scaling experiment.

The right-hand side vector b in the iterative solvers
was always initialized to the product of A with a vector
containing ones only; and the PBiCGStab iteration was
started with the initial guess x0 = 0. The parameter that
controls the convergence of the iterative process was set to
10−6.

Figure 6 reports the results of both strong and weak scaling
for the reproducible variants against the original version. For
the strong scaling, we fix the problem to 64M non-zeros and
vary the number of nodes/ cores used, while for the weak
scaling the work load per node is kept constant as 4M non-
zeros by varying the bandwidth with respect to the number
of nodes involved; presumably, there is enough load to hide
the impact of communication. We select median time among

five runs to limit the impact of the outliers. We run the tests
within a single allocation for 32 nodes to make sure that there
is no additional unnecessary perturbations to the measured
time. For the strong scaling tests, the standard and pipelined
PBiCGStab variants show a similar convergence behavior.
However, for the standard variants the global reductions are
not overlapped with computations and may show higher
overhead in case of the FPE reproducible version due
to a more complex reduction operation. For the standard
reproducible versions, the overhead on 32 nodes is 37.8 %
and 40.2 % for the FPE and ExBLAS versions, accordingly.
For the pipelined reproducible versions, the performance
penalties are similar with 38.0 % for the FPE version and
35.9 % for the ExBLAS. The weak scalability experiments
show expected behavior with the slightly declining line of
the execution time and the overheads around 35 %.

5.3 Accuracy and Reproducibility
In addition, we derive a sequential version of the PBiCGStab
as in Figure 2 that relies on the GNU Multiple Precision
Floating-Point Reliably (MPFR) library Fousse and et al.
(2007) – a C library for multiple (arbitrary) precision
floating-point computations on CPUs – as a highly accurate
reference implementation. This implementation uses 2,048
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Matrix Prec N nnz ∥r0∥2 p-PBiCGStab p-ReproPBiCGStab
iter1 iter32 ∥b−Axj∥2 iter ∥b−Axj∥2 FPE ExBLAS

add32 Jac 4,960 19,848 8.00e-03 36 36 5.95e-09 36 4.38e-09 1.07 0.99
af shell10 Jac 1,508,065 52,259,885 1.48e+05 9 9 2.18e-02 9 2.18e-02 2.38 2.81
atmosmodd Jac 1,270,432 8,814,880 3.75e+03 222 223 2.95e-03 222 9.56e-04 3.22 3.88
atmosmodj Jac 1,270,432 8,814,880 3.75e+03 220 227 3.36e-03 229 3.03e-03 3.22 3.96
atmosmodl Jac 1,489,752 10,319,760 1.85e+04 140 138 1.76e-02 134 1.82e-02 3.15 3.73
atmosmodm Jac 1,489,752 10,319,760 3.50e+05 77 78 2.08e-01 77 2.25e-01 2.85 3.38
audikw 1 Jac 943,695 77,651,847 1.58e+07 11 11 8.10e+00 11 8.05e+00 1.95 2.15
bcsstk18 Jac 11,948 149,090 2.30e+09 7 7 7.51e+02 7 7.51e+02 0.97 1.45
bcsstk26 Jac 1,922 30,336 6.16e+09 11 11 5.62e+03 11 5.62e+03 1.10 0.97
bone010 Jac 986,703 47,851,783 8.55e+03 12 12 5.91e-03 12 5.91e-03 2.23 2.51
boneS10 Jac 914,898 40,878,708 7.17e+03 12 12 3.92e-03 12 3.92e-03 2.70 2.47
Bump 2911 Jac 2,911,419 127,729,899 1.91e+14 12 12 1.82e+08 12 1.82e+08 3.09 3.38
cage14 Jac 1,505,785 27,130,349 1.00e+00 5 5 1.55e-07 5 1.55e-07 2.13 2.51
cage15 Jac 5,154,859 99,199,551 1.00e+00 6 6 1.12e-07 6 1.12e-07 1.82 2.09
circuit5M dc Jac 3,523,317 14,865,409 1.02e+04 5 5 6.52e-03 5 6.52e-03 2.77 3.28
CurlCurl 3 Jac 1,219,574 13,544,618 2.42e+10 17 17 2.14e+04 17 2.14e+04 2.65 3.06
CurlCurl 4 Jac 2,380,515 26,515,867 2.10e+10 19 19 1.18e+04 19 1.18e+04 3.07 3.63
ecology1 Jac 1,000,000 4,996,000 1.96e+01 9 8 9.90e-06 8 9.56e-06 3.08 3.52
ecology2 Jac 999,999 4,995,991 1.96e+01 8 8 1.08e-05 9 1.07e-05 3.75 4.60
Hardesty1 Jac 938,905 12,143,314 9.99e+00 17 18 5.13e-06 19 6.11e-06 2.72 3.38
ML Geer Jac 1,504,002 110,686,677 4.89e+02 2426 3707 5.64e-02 2903 5.91e-02 1.34 1.55
orsreg 1 Jac 2,205 14,133 4.83e+00 239 249 4.80e-06 176 4.17e-06 1.29 1.20
Queen 4147 Jac 4,147,110 316,548,962 1.94e+14 52 51 1.08e+08 50 1.38e+08 2.18 2.44
rdb3200l Jac 3,200 18,880 9.96e+00 671 634 4.53e-06 660 8.81e-06 1.20 1.30
s3dkq4m2 Jac 90,449 4,427,725 6.08e+02 23 23 7.33e-05 23 7.27e-05 1.84 1.98
tmt unsym Jac 917,825 4,584,801 6.45e-06 6641 6794 9.76e-06 5148 1.48e-09 3.40 4.12
Transport Jac 1,602,111 23,487,281 2.45e-02 580 582 2.45e-08 587 2.31e-08 2.67 3.15
vas stokes 2M Jac 2,146,677 65,129,037 4.19e-01 6880 6408 2.77e-07 6503 4.23e-07 2.03 2.21

Table 3. Convergence of the pipelined PBiCGStab and its reproducible versions (p-ReproPBiCGStab, identical results reported
for both) on a set of the SuiteSparse matrices. The initial guess is x0 = 0. The number of iterations required to reach the tolerance
of 10−6 on the scaled residual, i.e. ∥rj∥2/∥r0∥2, is reported along with the corresponding true residual ∥b−Axj∥2. iterX stands for
runs on X MPI processes. The last two columns show the overhead of the reproducible versions with 48 cores/ MPI processes, e.g.
1.07x for the add32 matrix.

bits of accuracy for computing DOT products, 192 bits
for internal element-wise product, and performs correct
rounding of the computed result to double precision.

Table 4 reports the intermediate and final (except from
the original version that takes longer) scaled residual on
each iteration of the PBiCGStab solvers for the orsreg 1
matrix, as in Table 2, under the tolerance of 10−6 on eight
MPI processes. We also add the results of the original code
on one core/ process to highlight the reproducibility issue.
The results are presented with all digits using hexadecimal
representation. We report only few iterations, however
the difference is present on all iterations. The sequential
MPFR version of PBiCGStab confirms the accuracy and
reproducibility of parallel ExBLAS and FPE variants
by reporting identical number of iterations, intermediate
residuals, and both the final true and initial scaled residuals.
However, the MPFR variant of PBiCGStab converges to
the approximate solution in 4.04e-01 seconds, while the
ExBLAS and FPE variants take 3.94e-02 and 3.33e-02
seconds (10.24x and 12.14x faster), accordingly, on eight
MPI processes; the overhead of MPFR is 2.14x and 2.68x
for ExBLAS and FPE using one MPI process. The original
version of PBiCGStab shows the discrepancy from few digits
on the initial iteration and up to almost the entire number

on the final iterations; the count of required iterations also
differs from the reproducible and MPFR variants.

We extend our study of accuracy and reproducibility to
provide more details on the execution time of the MPFR
version of PBiCGStab by comparing it against the two
reproducible versions, namely FPE and ExBLAS. Table 5
reports the execution time of the MPFR version and its
overhead against the FPE and ExBLAS version on a set of
SuiteSparse matrices. On a single process, the MPFR version
generally requires 2x more time. This gap growths with the
number of parallel resources used. For instance, on 16 cores/
MPI processes, the MPFR overhead can be as large as 40x
compared to the FPE version with the identical accuracy of
both. However, the reproducible versions are not only the
faster way for accurate and reproducible computations (e.g.
for numerical verification), but also they are as accurate as
the MPFR implementation of PBiCGStab.

6 Related Work
To enhance reproducibility, Intel proposed the “Conditional
Numerical Reproducibility” (CNR) option in its Math Kernel
Library (MKL). Although CNR guarantees reproducibility,
it does not ensure correct rounding, meaning the accuracy
is arguable. Additionally, the cost of obtaining reproducible
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Figure 4. Residual history of the standard PBiCGStab and its reproducible variants (first row), and the pipelined PBiCGStab and
its reproducible variants (second row); orsreg 1 results are shown in the first column, while tmt unsym in the second column,
see Table 2 for details on matrices. Note that the last iteration is not shown.

Iteration Residual
MPFR Original 1 proc Original 8 procs ExBLAS & FPE

0 0x1.3566ea57eaf3fp+2 0x1.3566ea57eab49p+2 0x1.3566ea57eab49p+2 0x1.3566ea57eaf3fp+2
1 0x1.146d37f18fbd9p+0 0x1.146d37f18faafp+0 0x1.146d37f18fabp+0 0x1.146d37f18fbd9p+0
... ... ... ... ...
99 0x1.cedf0ff322158p-13 0x1.88008701ba87p-12 0x1.04e23203fa6fcp-12 0x1.cedf0ff322158p-13

100 0x1.be3698f1968cdp-13 0x1.55418acf1af27p-12 0x1.fbf5d3a5d1e49p-13 0x1.be3698f1968cdp-13
... ... ... ... ...

208 0x1.355b0f18f5ac1p-20 0x1.19edf2c932ab8p-18 0x1.b051edae310c7p-20 0x1.355b0f18f5ac1p-20
209 0x1.114dc7c9b6d38p-20 0x1.19b74e383f74ep-18 0x1.a18fc929018d4p-20 0x1.114dc7c9b6d38p-20
210 0x1.03b1920a49a7ap-20 0x1.19c846848f361p-18 0x1.c7eb5bbc198b1p-20 0x1.03b1920a49a7ap-20

Table 4. Accuracy and reproducibility of the intermediate and final residual against the Multiple Precision Floating-Point Reliably
(MPFR) library for the orsreg 1 matrix, see Table 2.

results with CNR is high. For instance, for large arrays the
MKL’s summation with CNR was almost 2x slower than the
regular MKL’s summation on the Mesu cluster hosted at the
Sorbonne University Collange and et al. (2015).

Demmel and Nguyen implemented a family of algorithms
– that originate from the works by Rump, Ogita, and
Oishi Rump et al. (2010, 2008) – for reproducible summation
in floating-point arithmetic Demmel and Nguyen (2013,
2015). These algorithms always return the same answer.

They first compute an absolute bound of the sum and
then round all numbers to a fraction of this bound. In
consequence, the addition of the rounded quantities is exact,
however the computed sum using their implementations
with two or three bins is not correctly rounded. Their
results yielded roughly 20% overhead on 1024 processors
(CPUs only) compared to the Intel MKL dasum(), but it
shows 3.4 times slowdown on 32 processors (one node).
Ahrens, Nguyen, and Demmel extended their concept to
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Figure 5. Strong scaling results of the standard PBiCGStab and its reproducible variants (first row), and the pipelined PBiCGStab
and its reproducible variants (second row) for the Queen 4147 matrix, see Table 2; plots in the first column report the measure time,
while plots in the second show the overhead.

few other reproducible BLAS routines, distributed as the
ReproBLAS library (http://bebop.cs.berkeley.
edu/reproblas/), but only with parallel reproducible
reduction. Furthermore, the ReproBLAS effort was extended
to reproducible tall-skinny QR Nguyen and Demmel (2015).

The other approach to ensure reproducibility is called
ExBLAS, which is initially proposed by Collange, Defour,
Graillat, and Iakymchuk in Collange and et al. (2015).
ExBLAS is based on combining long accumulators and
floating-point expansions in conjunction with error-free
transformations. This approach is presented in Section 2.
Collange et al. showed Collange and et al. (2015) that
their algorithms for reproducible and accurate summation
have 8% overhead on 512 cores (32 nodes) and less than
2% overhead on 16 cores (one node). While ExSUM
covers wide range of architectures as well as distributed-
memory clusters, the other routines primarily target GPUs.
Exploiting the modular and hierarchical structure of linear
algebra algorithms, the ExBLAS approach was applied
to construct reproducible LU factorizations with partial
pivoting Iakymchuk et al. (2019).

Mukunoki and Ogita presented their approach to
implement reproducible BLAS, called OzBLAS Mukunoki
et al. (2019), with tunable accuracy. This approach is
different from both ReproBLAS and ExBLAS as it does

not require to implement every BLAS routine from scratch
but relies on high-performance (vendor) implementations.
Hence, OzBLAS implements the Ozaki scheme Ozaki et al.
(2012) that follows the fork-join approach: the matrix and
vector are split (each element is sliced) into sub-matrices and
sub-vectors for secure products without overflows; then, the
high-performance BLAS is called on each of these splits;
finally, the results are merged back using, for instance, the
NearSum algorithm. Currently, the OzBLAS library includes
dot products, matrix-vector product (gemv), and matrix-
matrix multiplication (gemm). These algorithmic variants
and their implementations on GPUs and CPUs (only dot)
reassure reproducibility of the BLAS kernels as well as make
the accuracy tunable up-to correctly rounded results.

The proposed framework was implicitly used to derive
the reproducible preconditioned Conjugate Gradient (PCG)
variants with the flat MPI Iakymchuk and et al. (2020b)
and hybrid MPI plus OpenMP tasks Iakymchuk and et al.
(2020a). The reproducible PCG variants were primarily
verified on the 3D Poisson’s equation with 27 stencil points
showing the good scalability and low performance overhead
(under 30 % for both the ExBLAS and lightweight variants)
on up to 768 cores of the MareNostrum4 cluster.
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Figure 6. Strong (top row) and weak (bottom row) scalability of the reproducible PBiCGStab variants; the standard PBiCGStab
results are shown in the left column of plots, while the pipelined PBiCGStab results in the right column.

7 Conclusions

Parallel Krylov subspace methods may exhibit the lack of
reproducibility when implemented in parallel environments
as the results in Tables 2 to 4 confirm. Such numerical
reliability is needed for debugging and validation & verifi-
cation. In this work, we proposed a general framework for
re-constructing reproducibility and re-assuring accuracy in
any Krylov subspace method. Our framework is based on
two steps: analysis of the underlying algorithm for numerical
abnormalities; addressing them via algorithmic solutions and
programmability hints. The algorithmic solutions are build
around the ExBLAS project, namely: ExBLAS that effec-
tively combines long accumulator and FPEs; FPEs for the
lightweight version. The programmability effort was focused
on: explicitly invoking fma instructions to avoid replace-
ments by compilers; customized and fma-based AXPY and
AXPY-like operations instead of MKL or similar BLAS
libraries; as well as to postpone the division to the moment
where it is required.

As test cases, we used the preconditioned standard and
pipelined BiCGStab methods and derived two reproducible
algorithmic variants for each of them. It is worth mentioning
that the two BiCGStab methods are in fact different
algorithms with different set of operations yielding non-
identical computation path and the divergent way rounding

errors are propagate; this difference can be witnessed
by the convergence history in Figure 4 even when
using the reproducible variants. The reproducible variants
deliver identical results of the standard and also pipelined
PBiCGStab, which are confirmed by its MPFR version,
to ensure reproducibility in the number of iterations, the
intermediate and final residuals, as well as the sought-after
solution vector. We verified our implementations on a set of
the SuiteSparse matrices, showing the performance overhead
of nearly 2.0x for the ExBLAS and FPE-based versions,
with a noticeably lower overhead for the latter. Tests with
the 27-point stencil on 32 nodes show a low performance
overhead of 35 %-40 %. The code is available at https:
//github.com/riakymch/ReproPBiCGStab.

With this study we want to promote reproducibility by
design through the proper choice of the underlying libraries
as well as the careful programmability effort. For instance,
a brief guidance would be 1) for fundamental numerical
computations use reproducible underlying libraries such
as ExBLAS, ReproBLAS, or OzBLAS Mukunoki et al.
(2019); 2) analyze the algorithm and make it reproducible
by eliminating any uncertainties and non-deterministic order
of computations that may violate associativity such as
reductions and use/ non-use of fma and postponing divisions
until actually needed. Additionally, we try to argue the need
for the bit-wise reproducible and correctly-rounded results
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Matrix MPFR FPE gain ExBLAS gain
[secs] iter1 iter8 iter16 iter1 iter8 iter16

add32 0.162 2.9 14.2 14.7 2.3 12.5 13.1
bcsstk18 0.080 2.6 16.4 21.7 2.2 13.4 18.9
bcsstk26 0.024 3.0 10.8 8.0 2.5 10.4 7.7
orsreg 1 0.404 2.7 12.2 13.0 2.1 10.0 11.7
rdb3200l 1.764 2.9 17.9 23.3 2.3 14.4 19.9
s3dkq4m2 2.060 2.1 16.1 30.0 1.8 13.9 26.1
Bump 2911 34.846 2.3 17.0 32.4 2.0 14.5 27.6
CurlCurl 3 17.701 2.8 21.0 41.1 2.3 17.1 34.0
CurlCurl 4 38.168 2.8 20.7 40.5 2.2 17.0 33.3
ecology1 5.916 2.4 18.2 36.8 1.9 14.5 29.4
ecology2 6.255 2.5 19.4 38.8 2.0 15.3 31.0
Hardesty1 13.692 2.2 17.1 33.9 1.8 13.7 27.6
atmosmodd 236.325 2.7 20.1 39.7 2.2 16.5 32.6
atmosmodm 84.019 2.5 18.2 35.8 2.0 14.8 29.2
atmosmodj 246.302 2.7 20.2 39.9 2.2 16.5 32.7
atmosmodl 159.122 2.6 19.4 38.0 2.1 15.6 30.9
cage14 7.062 2.4 15.6 28.8 2.0 13.7 25.3
cage15 29.513 2.4 15.8 29.3 2.0 13.8 25.6
circuit5M dc 13.443 2.2 15.1 28.8 1.7 12.1 23.3
af shell10 12.516 2.3 17.6 35.1 2.0 15.0 29.9
audikw 1 11.754 2.1 14.1 27.2 1.8 12.7 24.5
bone010 12.830 2.1 15.9 31.1 1.9 14.0 27.5
boneS10 11.671 2.3 16.7 32.9 2.0 14.7 28.9
Transport 779.205 2.4 17.8 35.0 2.0 15.0 29.4
Queen 4147 241.308 2.0 14.9 29.6 1.7 12.8 25.6
ML Geer 6156.862 1.8 13.6 26.9 1.4 12.4 24.7
vas stokes 2M 14666.959 2.1 10.3 19.7 1.8 9.4 18.1

Table 5. Execution time of the sequential MPFR version of PBiCGStab under the tolerance of 10−6 and its comparison against the
FPE and ExBLAS reproducible versions on a set of the SuiteSparse matrices, see Table 2; iterX stands for runs on X MPI
processes and the values in iterX columns show how many times FPE/ ExBLAS is faster.

for iterative solvers as they will anyway be enhanced on
next iterations as we do not reach the desired tolerance and,
thus, do not exploit at full the obtained bit-wise results. This
becomes more evident with the mixed-precision approaches,
which we foresee to pursue.

Our future work is to investigate the residual replacement
strategy in the pipelined Krylov subspace solvers such as the
pipelined PBiCGStab (p-PBiCGStab) Cools and Vanroose
(2017) and to study if such strategy can be mitigated by the
higher precision provided by long accumulator and FPEs.
We believe that there is a potential of using higher precision
provided by long accumulator and FPEs in order to mitigate
the different way rounding errors are propagate as well as to
cope with the attainable precision loss in p-PBiCGStab.
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Iakymchuk R, Graillat S and José A (2022) General framework for
deriving reproducible krylov subspace algorithms: A bicgstab
case study. In: Proc. of PPAM 2022. Springer LNCS. pp. 16–
29. doi:10.1007/978-3-031-30442-2 2.

IEEE Computer Society (2008) IEEE Standard for Floating-Point
Arithmetic. IEEE Standard 754-2008.

Knuth DE (1969) The Art of Computer Programming: Seminumer-
ical Algorithms, volume 2. Addison-Wesley.

Kulisch U and Snyder V (2011) The Exact Dot Product As Basic
Tool for Long Interval Arithmetic. Computing 91(3): 307–313.

Mukunoki D, Ogita T and Ozaki K (2019) Accurate and
reproducible blas routines with ozaki scheme for many-core
architectures. In: Proc. of PPAM 2019. Springer LNCS, volume
12043. pp. 516–527. doi:10.1007/978-3-030-43229-4 44.

Nguyen HD and Demmel J (2015) Reproducible tall-skinny
QR. In: Proceedings of ARITH-22. pp. 152–159.
doi:10.1109/ARITH.2015.28.

Ogita T, Rump SM and Oishi S (2005) Accurate sum and dot
product. SIAM J. Sci. Comput 26: 1955–1988.

Ozaki K, Ogita T, Oishi S and Rump SM (2012) Error-free
transformations of matrix multiplication by using fast routines
of matrix multiplication and its applications. Numerical
Algorithms 59(1): 95–118.

Rump SM, Ogita T and Oishi S (2008) Accurate floating-point
summation part II: Sign, K-fold faithful and rounding to
nearest. SIAM J. Sci. Comput. 31(2): 1269–1302.

Rump SM, Ogita T and Oishi S (2010) Fast high precision
summation. Nonlinear Theory and Its Applications, IEICE
1(1): 2–24.

Saad Y (2003) Iterative methods for sparse linear systems. 2nd
edition. Philadelphia, PA, USA: SIAM.

Saad Y and Schultz MH (1986) GMRES: a generalized minimal
residual algorithm for solving nonsymmetric linear systems.
SIAM Journal on Scientific and Statistical Computing 7: 856–
869.

Sonneveld P (1989) CGS, A Fast Lanczos-Type Solver for
Nonsymmetric Linear systems. SIAM J. Sci. Stat. Comp. 10(1):
36–52.

van der Vorst HA (1992) Bi-CGSTAB: A Fast and Smoothly Con-
verging Variant of Bi-CG for the Solution of Nonsymmetric
Linear Systems. SIAM J. Sci. Stat. Comp. 13(2): 631–644.
doi:10.1137/0913035.

Wiesenberger M and et al (2019) Reproducibility, accuracy and
performance of the Feltor code and library on parallel computer
architectures. CPC 238: 145–156.

Prepared using sagej.cls

https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/103162.103163
https://doi.org/10.1109/ARITH.2001.930115
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1007/978-3-031-30442-2_2
https://doi.org/10.1007/978-3-030-43229-4_44
https://doi.org/10.1109/ARITH.2015.28
https://doi.org/10.1137/0913035

