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Conformal anomaly and gravitational pair production

M. N. Chernodub1

1Institut Denis Poisson UMR 7013, Université de Tours, 37200 Tours, France
(Dated: June 6, 2023)

We argue that the rate density of particle pair production Γ in background fields in conformal
field theories is determined by the conformal anomaly and related to anomalous trace of the energy-
momentum tensor as Γ = (π/2)〈Tµµ〉 if the trace is positive (and Γ = 0 otherwise). This formula
perfectly reproduces (presumably, non-Hawking) radiation generated by static gravitational fields in
the absence of an event horizon via a new evaporation mechanism suggested recently. Our relation
also correctly describes the one-loop Schwinger pair creation in massless (scalar and spinor) quantum
electrodynamics. It also accurately points to the Savvidi instability of the gluonic vacuum towards
the formation of the chromomagnetic condensate. Photon and neutrino pair production are also
discussed.

Introduction. Signatures of vacuum instability in a
strong electric field were first found in work by Sauter on
the Klein paradox [1]. This effect has been recognized
and developed further by Heisenberg and Euler [2] and
later formalized in terms of a pair production process in
QED by Schwinger [3, 4].

The physical interpretation of this instability, often
called the Schwinger effect, is linked to the quantum vac-
uum fluctuations in which virtual pairs of electrons e−
and positrons e+ are constantly created to be annihi-
lated shortly later. In a sufficiently strong background
electric field, the created e+e− particles are taken away
in opposite directions by the field. As they are spatially
separated, they cannot annihilate and become real par-
ticles. Thus, a sufficiently strong electric field creates
matter (e+e− pairs) from the vacuum.

A similar phenomenon exists in gravitational fields
near black holes. A black hole emits the Hawking ra-
diation [5, 6], which can be associated with the parti-
cle tunneling process [7] in which one particle from the
pair, created in the vicinity of the event horizon, gets
swallowed by the hole while another particle has suffi-
cient energy escape to infinity. The escaping particles
form the outgoing energy flux, which diminishes the mass
of the black hole and, therefore, leads to the black hole
evaporation. Due to a nonlocality of the tunneling pro-
cess, this effect operates in an extended vicinity above
the black hole event horizon, thus creating the notion of
the quantum atmosphere [8] (see also [9]). It was recently
suggested that such quantum atmospheres could possess
nontrivial thermodynamic features that can be probed in
condensed matter experiments [10].

In 1+1 spacetime dimensions, the Hawking radiation
can be related to a gravitational (Einstein) anomaly
which implies a non-conservation of energy-momentum
of a chiral particle in a curved spacetime [11]. The
anomaly appears due to quantum fluctuations when clas-
sical symmetries are inconsistent with the quantization
procedure [12]. In 1+1 and 3+1 spacetime dimensions,
the Hawking effect can also be interpreted [13] in terms

of conformal (or trace) anomalies [14–16]1.
In addition, one can argue that the particle creation

in a static gravitational field can also produce particles
even without the event horizon [18]. In this scenario, the
virtual pairs of particles are separated by local tidal forces
and become real particles, similar to what happens in the
Schwinger effect. Some of these real particles will fall to
the gravitating body and will later be recaptured, while
other particles will escape to infinity and create, similarly
to the Hawking effect, an outgoing flux of matter [18].

In our article, we argue that in the off-event-horizon
mechanism of Ref. [18] of particle pair production, the
creation rate in the background gravitational field can
be directly related to the conformal anomaly. We will
show that our approach works for the Schwinger pair-
production mechanism in QED and is consistent with
the Savvidi vacuum instability in non-Abelian gauge the-
ories [19].

We set ~ = c = 1 everywhere in the article and work
in the mostly-plus metric convention.
Particle production and effective action. The

rate density of particle production events dN/dt = Γ is
determined by the imaginary part, Γ = 2 ImLeff , of the
Lagrangian Leff associated with the effective action [3],

W =

∫
d4x
√
−gLeff , (1)

which takes into account quantum corrections. The rate
Γ has a sense of non-persistence of vacuum due to pair

1 It is worth mentioning about terminology used in the paper.
The terms “scale” and “conformal” in relation to the symme-
tries of the system and the quantum anomalies are often used
interchangeably in the literature. Mathematically, these con-
cepts correspond to different symmetries as the requirement of
local conformal invariance is much stronger than the condition
of global scale invariance. Physically, the distinction between
the scale and conformal concepts is frequently ignored because
all physically relevant scale-invariant field theories in four space-
time dimensions also exhibit conformal invariance [17]. More-
over, since these anomalies are seen as a non-zero trace of the
energy-momentum tensor, they are also called “trace” anomalies.
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creation [3, 4].
In our paper, we argue that in conformal field theories,

the pair-creation rate Γ in a background gravitational
and gauge (electromagnetic or gluon) fields can be related
to the conformal (trace) anomaly:

Γ =
π

2

〈
Tµµ
〉
, (2)

where
〈
Tµµ
〉
≡
〈
Tµµ
〉

an
is the anomalous trace of the

energy-momentum tensor Tµν . Relation (2) is quan-
tum because, in classical conformal theories in an even
number of spacetime dimensions, the trace of the stress-
energy tensor vanishes identically, (Tµµ)cl ≡ 0. Quantum
fluctuations can violate this identity,

〈
Tµµ
〉
6= 0, hence

the term “trace anomaly” or “conformal anomaly”.
In order to keep Eq. (2) as simple as possible, we used

the convention that this equation has a relation to the
pair production if and only if

〈
Tµµ
〉
> 0. Otherwise,

Γ < 0 is equivalent to Γ ≡ 0 because a negative pair
production rate does not lead to the production of pairs.

The particle production rate of N massless scalar de-
grees of freedom in the curved d = 3 + 1 dimensional
spacetime (described by the metric gµν) in the pres-
ence of the classical electromagnetic field (characterized
by the field strength Fµν) has been found in the recent
work [18]2:

ΓNsc =
N

32π

[
1

180

(
RµναβR

µναβ −RµνRµν
)

(3)

+
1

2

(
1

6
− ξ
)2

R2 − q2

12
FµνF

µν

]
,

where the curved background is expressed via the Rie-
mann tensor Rµναβ , the Ricci tensor Rµν = Rαµαν , and
the scalar curvature R ≡ Rµµ. The subscript “Nsc” in
Eq. (3) stands for N scalar degrees of freedom (for ex-
ample, N = 1 for a neutral scalar field and N = 2 for a
complex scalar field).

The quantity q in Eq. (3) is the electric charge of the
scalar particle minimally coupled to electromagnetism. A
neutral (q = 0) scalar field carrying one degrees of free-
dom (N = 1) is described by the following Lagrangian:

L = −1

2
∂µφ∂

µφ− 1

2
ξRφ2 − 1

2
m2φ2 , (4)

where the parameter ξ controls the local coupling of the
Ricci curvature scalar R to the scalar field. The confor-
mally invariant massless theory corresponds to ξ = 1/6.
For consistency with previous studies, we also add to
Eq. (4) the mass term, which will be set to zero at the

2 We have slightly re-arranged and combined the original expres-
sions of Ref. [18] for further convenience.

end of our considerations, m = 0. The charged (com-
plex) scalar field carrying the elementary electric charge
q = e has N = 2 degrees of freedom with corresponding
modifications of Eq. (4).

The remarkable feature of the pair-production ef-
fect (3) is that it can take place in static gravitational
fields, which immediately suggests that this effect is a
Hawking-type of radiation associated with the presence of
an event horizon [5, 6]. However, the pair production (3)
takes place even in the absence of an event horizon (that
is, not only for a black hole), thus indicating that this
phenomenon is either an addition or a generalization of
Hawking radiation [18].
Effective action, trace anomaly, and pair pro-

duction. It is instructive first to start from the sim-
plest case of the scalar field for which the trace anomaly
has been elaborated in great detail in Ref. [20]. Our rela-
tion (2) between the conformal (trace) anomaly and the
off-event-horizon particle production can be deduced by
matching the anomalous term in the one-loop effective
action W represented as an integral over the proper time
s of Ref. [20] with the representation of the same action
in terms of the spectral parameter s in the heat-kernel
approach of Ref. [18] based on the Barvinsky–Vilkovisky
expansion [21].

The one-loop action functional W is given by a for-
mal divergent expression, W = (i/2) ln detG−1, where
G(x, x′) ≡

〈
iT
(
φ(x)φ(x′)

)〉
represents the Green func-

tion associated with the quadratic Lagrangian (4):(
− 1√
−g

∂µ
√
−ggµν∂ν + ξR +m2

)
G(x, x′) (5)

= δ(x− x′)/
√
−g .

The functional W has a close relation to the expecta-
tion value of the energy-momentum tensor, 〈Tµν〉, in
its response, W → W + δW to the metric variation,
gµµ → gµν + δgµν in (even) D spacetime dimensions:

δW =
i

2
TrGδG−1 =

∫
dDx
√
−g〈Tµν〉1

2
δgµν , (6)

thus giving access to the evaluation of the trace
〈
Tµµ
〉
,

allowing us to uncover an eventual conformal (trace)
anomaly.

The variation of the effective action (6) can be ex-
pressed in the proper-time representation of Schwinger
and DeWitt [3, 22] (in notations of [20]):

δW = − i
2
δTr

∫ ∞
0

ids

is
e−isH , (7)

via a relativistic Hamiltonian-like operator H = ∆ +
ξR + m2, where a second-order differential operator ∆
represents the kinetic term, the coupling to the curva-
ture R plays a role of an external potential, and m2

gives the mass term. The correct analytical properties
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of Eq. (7) and similar subsequent relations are main-
tained by an appropriate complex continuation of the
mass term, m2 → m2(1− i0+), silently assumed here.

The effective Lagrangian (1) takes the following form:

Leff =
1

2

1

(4π)
D
2

∫ ∞
0

ids

(is)1+ D
2

e−im
2sF (x, x; is;D) , (8)

where F (x, x′; is;D) is the weight bi-scalar in the proper-
time Green’s function 〈x, s|x′, 0〉 = 〈x|e−isH |x′〉 defined
in a manner similar to Eq. (8). The Green’s function
satisfies the Schrödinger-like equation: − ∂

∂is 〈x, s|x
′, 0〉 =

H〈x, s|x′, 0〉, which gives a quantum-mechanical flavor to
the whole proper-time formalism.

We will not dwell on the precise definition of the bi-
scalar F , which can be found in detail in Refs. [20, 22].
The key mathematical point of our arguments is that the
function F allows for the power-series expansion in terms
of the proper time s (omitting other arguments):

F = 1 + is f1 + (is)2 f2 + . . . , (9)

where, in four space-time dimensions, the O(s2) term
captures the trace anomaly [20]. On the other hand, the
O(s2) term in an identical3 expansion of the same 1-loop
effective action over the proper time s has been shown
in Ref. [18] to be associated with the (off-event-horizon)
pair-production rate Γ. The mentioned equivalence of
the O(s2) terms allows us to identify the trace-anomalous
origin of the pair production and eventually leads us to
Eq. (2) as we discuss below.

The renormalized energy-momentum tensor,

〈Tµν〉ren =
1

4
A4 g

µν + non-anomalous part, (10)

contains the anomalous part given by an A4 function and
a non-anomalous part (not shown explicitly). In D = 4
spacetime dimensions, the A4 function in stress-energy
tensor (10) is related to the O(s2) prefactor in the power
series expansion (9) of the bi-scalar F [20]:

A4 =
1

2

1

(4π)2

(
∂

∂is

)2 [
e−im

2sF (x, x; is, 4)
] ∣∣∣∣
s=0

. (11)

3 Taking into account the signs and i-th prefactors arising from the
difference between Minkowski/Euclidean spacetimes employed in
Refs. [18, 20] one finds that f1 = ( 1

6
− ξ)R term in Eq. (A20) of

the proper-time approach of Ref. [20] coincides precisely with the
second, O(s) term under the integral in Eq. (S.17) of the heat-
kernel expansion of Ref. [18]. Analogously, f2 in Eq. (A24) of
Ref. [20] coincides precisely with purely gravitational contribu-
tion to the third, O(s2) term under the integral in Eq. (S.17) of
Ref. [18]. The f2 term in series (9) is also reproduced, up to ir-
relevant contact term �R, by the m = 0 expression in the square
brackets of our Eq. (13) below. Notice that our functions fa in
Eq. (9) correspond to fa of Ref. [20] and not to fa of Ref. [18].

In the massless theory (m = 0), the last term in Eq. (10)
reduces to a traceless tensor, and the trace of the energy-
momentum tensor (10) is fully determined by the trace
(scale) anomaly (11):〈

Tµµ
〉
≡ gµν〈Tµν〉ren = A4, [for m = 0] , (12)

where the short-hand notation
〈
Tµµ
〉
is used for represen-

tational convenience (see also the discussion of Ref. [14]
on non-commutativity of the regularization operation
and the trace operation).

Finally, combining Eqs. (9), (11), (12) and match-
ing them with the O(s2) term in the effective action of
Ref. [18] leads us to our main result (2). In the rest of
the paper, we ensure that Eq. (2) is valid for physical en-
vironments where both sides of this equation are known.
We also discuss photon and neutrino pair production.
A neutral scalar field in curved spacetime. As

the first check of our result (2), we consider a single-
component neutral scalar field of mass m and generic
non-conformal coupling ξ to gravity described by La-
grangian (4). It is well known that quantum fluctuations
in this theory produce the following trace anomaly [20,
23]:

〈
Tµµ
〉

1sc
=

1

(4π)2

[
1

180
RµναβR

µναβ − 1

180
RµνR

µν (13)

+
1

6

(
1

5
− ξ
)
�R+

1

2

(
1

6
− ξ
)2

R2 +
1

2
m4

]
.

We substitute Eq. (13) to our formula (2) and recover
exactly the result of Ref. [18] given in Eq. (3) for the off-
horizon pair creation rate for a single (N = 1) neutral
(q = 0) massless (m = 0) scalar field4. The subscript
“1sc” in Eq. (13) stresses that this expression is derived
for a one-component scalar field.
General case. A quantum field theory of NS scalar

degrees of freedom, NF Dirac fermions (a single Majo-
rana or Weyl fermion contributes half of a Dirac fermion,
NF = 1/2) and NV species of massless vector fields, the
trace anomaly gets the following form [14, 24, 25]:〈

Tµµ
〉

= bC2 + b′E4 + cFµνF
µν , (14)

where

C2 = RµναβR
µναβ − 2RµνR

µν +
R2

3
, (15)

is the Weyl tensor squared and

E4 = RµναβR
µναβ − 4RµνR

µν +R2, (16)

4 These equations correspond to the same physical result since
the �R term, present in Eq. (13) and absent in Eq. (3), can be
removed by a finite local counterterm during the renormalization
procedure and is, therefore, physically irrelevant.
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is the Euler density (the integrand of the topological,
Gauss–Bonnet term) in D = 4 dimensions. In Eq. (14),
the physically irrelevant �R term is omitted5 and the
conformal coupling (ξ = 1/6 for scalars) is assumed. The
parameters are as follows [13–16, 20, 26]:

b =
1

120

1

(4π)2
(NS + 6NF + 12NV ) , (17)

b′ = − 1

360

1

(4π)2
(NS + 11NF + 62NV ) . (18)

As an immediate check, one finds that in a pure gravita-
tional background (Fµν = 0), NS = N species of neutral
scalar fields (with ND = NV = 0), Eq. (14) expectedly
reduces to Eq. (13) with a factor N and leads us, via
Eq. (2), to the recent result (3).

The last term (14) represents a non-universal (“mat-
ter”) part which accounts for renormalization effects re-
lated to the scale dependence of the couplings of the the-
ory. While Eq. (14) gives the matter term for a vector-
field background, a nontrivial scalar background in an
interacting scalar field theory can also generate a matter-
type contribution to the conformal anomaly which can be
found in Ref. [27].

For gauge vector fields coupled minimally with matter
fields via the electric coupling e, the prefactor

c = −β(e)

2e
, (19)

of the last term in Eq. (14) depends the beta function
β(e) = µde/dµ associated with the running of the cou-
pling e. A nonvanishing beta function expresses the fact
that radiative corrections make the electric charge e =
e(µ) dependent on the renormalization energy scale µ.
This effect appears as a result of vacuum polarization
which implies, for example, that the electric charges of
a particle probed at a large distance (by a low-energy
photon) does not match the charge of the same particle
at a short distance (probed by a high-energy photon).
Therefore, radiative corrections can break the scale in-
variance of the system and naturally contribute to the
scale anomaly (14).

Notice that the gravitational part of the anomaly rep-
resented by the first two terms in Eq. (14) is exact in
one loop implying that the higher-order corrections to
this expression vanish. This statement is not true for
the third, matter term since radiative corrections exist,
generally, in all loops [28].
Scalar QED in flat spacetime. A similarity be-

tween the gravitational particle production and the
Schwinger pair production in flat spacetime in the back-
ground electric field has been noticed in Ref. [18] on the

5 See also a relevant discussion on �R in Ref. [14].

basis of equation (3). Here we show that the conformal
anomaly plays an essential role in this relation.

Consider a theory of NS species of massless complex
scalars coupled to electromagnetism with the same elec-
tric coupling e (a “scalar Quantum Electrodynamics” or
sQED). Since we already established the relation with
the gravitational part of the trace anomaly in this the-
ory, we consider below a flat spacetime where first two
(gravitational) terms in the trace (14) vanish. However,
this theory still possesses the trace anomaly because its
one-loop beta function is non-zero [29, 30],

β1loop
sQED =

NSe
3

48π2
. (20)

Equations (19) and (20) imply that the coefficient in the
last term of the trace anomaly (14) is c = NSe

2/(96π2).
Then Eq. (2) gives us ΓsQED = −NSe2FµνF

µν/(192π),
which exactly coincides with the pair production rate (3)
of Ref. [18] if one takes into account that each complex
field carries two degrees of freedom: N = 2NS .

According to our convention in Eq. (2), there is no
particle production for a negative production rate. Since
FµνF

µν = 2(B2 − E2), implies the absence of particle
creation in a pure magnetic field because ΓsQED < 0.
However, in the electric-field background, one gets the
following well-known result the complex scalar field (re-
produced also in Ref. [18] for NS = 1):

ΓsQED = NS
e2E2

96π
. (21)

This equivalence further supports the validity of Eq. (2)
in one loop.
Spinor QED. The pair creation rate in the (spinor)

QED with a single flavor of massless Dirac fermion and a
single gauge (electromagnetic) field can be derived with
the use of correspondence (2) together with the anomaly
relations (14)–(19) by setting NS = 0, NF = 1, and
NV = 1. Taking into account that the one-loop beta
function of the spinor QED is four times bigger (per par-
ticle) than its scalar analogue (22) [30]:

β1loop
QED =

e3

12π2
, (22)

one gets the following prediction for the particle produc-
tion rate:

Γ
(m=0)
QED =

1

11 520π

(
−19RµναβR

µναβ + 184RµνR
µν

(23)

− 55R2

)
− e2

48
FµνF

µν ,

Notice that in flat background, the particle production
rate in the massless QED (23) reduces exactly to the
well-known QED result [3, 30] in the limit m→ 0:

Γ
(m=0)
QED =

e2E2

24π
[electromagnetic] . (24)
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To estimate the contribution of the gravitational part
to the production rate, consider now a purely gravi-
tational background given by the static Schwarzschild
spacetime of a body with the mass M :

ds2 = −
(

1− 2MG

r

)
dt2 +

(
1− 2MG

r

)−1

dr2

+ r2(dθ2 + sin2 θdϕ2) (25)

Given Ricci flatness (Rµν = 0) of this metric, the gravi-
tational contribution to the pair-creation rate (23) is pro-
vided only by the Kretschmann scalar:

K = RµναβR
µναβ = 48

G2M2

r6
. (26)

Thus, it appears that the purely gravitational contribu-
tion to the pair production rate (23) is always negative

δΓ
(m=0)
QED = − 19

240π

G2M2

r6
[gravitational] , (27)

implying that our conformal anomaly mechanism alone
cannot create particles outside of the event horizon even
in the presence of the strong gravitational field and even
for massless QED. Moreover, our result imply that the
ordinary Schwinger pair production due to background
electric field (24) will be inhibited by the gravitational
contribution (27) in curved spacetime.

It is worth here mentioning that the considerations of
Ref. [14] on the sense of the conformal anomaly in the
context of renormalization of quantum field theories sug-
gest that in conformally-non-invariant theories (for ex-
ample, for massive fields), the right-hand-side of Eq. (2)
should be modified:

〈
Tµµ
〉
→ gµν〈Tµν〉ren − 〈gµνTµν〉ren.

This conjecture implies, in particular, that the explicitly
non-conformal mass term m4 will not enter Eq. (2).

Coming back to the massless case in flat spacetime, the
proportionality of the pair-creation rates for scalar (21)
and spinor (23) QED to their beta functions, Eqs. (20)
and (22), respectively, is not surprising given an inti-
mate relation between the effective Euler-Heisenberg La-
grangian and the beta function (for an excellent review,
see Ref. [30]). Since the beta function also contributes
to the trace anomaly, the relation of the trace anomaly
to the pair-creation rate closes the logical triangle, thus
qualitatively supporting Eq. (2) on physical grounds.

Our results (2) suggest that in the flat spacetime, the
creation rate of pairs of massless particles in classical
(electromagnetic) background is related to the respective
beta function:

Γflat = −πβ(e)

4e
FµνF

µν . (28)

This result should be valid at least in one-loop order with
the already mentioned reservation that a negative pro-
duction rate implies no production.

No photon production. In realistic QED in weak
background electromagnetic fields with the strength be-
low the Schwinger limit, the four-photon scattering
can be neglected [30], so that photon propagation can
be described by free Maxwell theory with simple La-
grangian, Lph = −(1/4)FµνF

µν . The particle creation
rate corresponds to NF = 0, NS = 0 and NV = 1
and gives us the following discouraging result Γph =
−13G2M2/(120πr4) < 0 implying that no photons can
created in the gravitational field due to this conformal
anomaly mechanism.
Neutrino–anti-neutrino pairs. Similar considera-

tions can also be applied to neutrino–anti-neutrino pair
creation with the appropriate replacement of the spinor
degrees of freedom by the sum of Dirac and Majo-
rana/Weyl neutrino species: ND → Nν = ND+(1/2)NM
and taking NV = NS = 0 in the above expressions. One
gets Γν = 7G2M2/(240πr4) > 0, so that the pairs of light
neutrino can potentially be created by sufficiently strong
background gravitational field. For a Dirac neutrino, the
pair production rate Γν is 7/2 times bigger than the rate
of pair production for scalar particles which is about two
times bigger than the one for the Hawking radiation. The
relevant estimations for scalar particles in physically in-
teresting gravitational fields can be found in Ref. [18].

Finally, one could ask whether these results, derived for
massless spinors, are applicable to particles with mass
mν . For the pure electromagnetic contribution to the
pair creation rate (23), the condition is well known [30]:
the electric field strength should substantially exceed
the critical Schwinger field, E � ESch

c = m2
e/e '

1.3 × 1018 V/m. Likewise, the same condition can be
obtained by demanding that the gravitational contribu-
tion should exceed the anticipated6 ∝ m4

e term generated
by the explicit breaking of the conformal symmetry. For
neutrinos in the field of a gravitating body with massM ,
the applicability condition then reads as r � rc with the
critical field rc =

√
GM/mν up to a O(1) factor.

Savvidi magnetic instability in QCD. In the
pure magnetic field, both in scalar QED and spinor QED,
the right-hand of Eq. (2) is a negative quantity and,
therefore, no instability associated with the particle pro-
duction can occur. Of course, this natural conclusion is
supported by the fact that their beta functions, Eqs. (20)
and (22), are positively defined. But what happens if the
beta function is negative?

Consider, for example, Yang-Mills (YM) theory which
determines non-perturbative properties of Quantum
Chromodynamics (QCD). The beta function of Nc-color
YM theory, βYM(g) = −11Ncg

3/(48π2), is a negative
function of the strong coupling constant g. Adopt-
ing Eq. (28) to non-Abelian fields possessing the field-

6 Cf. the last term in Eq. (13).
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strengths F aµν , one gets the following formal perturbative
expression for the gluon production rate:

Γpert
YM =

11Ncg
2

192π
F aµνF

a,µν

≡ 11Nc
96π

[
(gBa)2 − (gEa)2

]
, (29)

where the sum over the gluon species, a = 1, . . . , N2
c − 1,

is implicitly assumed.
Equation (29) represents a formal expression which is

not applicable to the ground state of YM theory be-
cause Eq. (29) corresponds to the anomalous breaking of
scale symmetry associated with the perturbative renor-
malization of couplings – hence the superscript “pert” in
Eq. (29) – while in YM theory, the conformal symme-
try is broken dynamically and non-perturbatively7. De-
spite this fact, Eq. (29) still allows us to make another
interesting relationship with already known effect: the
instability of the perturbative gluonic vacuum. Indeed,
since ΓYM = 11Nc(gB

a)2/(96π) > 0, even the weak-
est background gluomagnetic field leads to the creation
of gluon pairs and makes the gluonic vacuum unstable.
This observation matches well with the instability of the
perturbative gluon vacuum [31] which drives creation of
the magnetic condensate (the Savvidi vacuum [19]) and
the formation of the suggested magnetic-spaghetti vac-
uum state [32, 33] precisely due to the negativeness of
the YM beta function, βYM(g) < 0 (see also a related
critical discussion in Ref. [34]).
Conclusions. We suggested the simple formula (2)

for the off-horizon particle production rate in curved
spacetime proposed in Ref. [18] and argued that its un-
derlying mechanism is based on the anomalous breaking
of the conformal symmetry. The anomalous particle pro-
duction can occur in static gravitational fields and can
operate, in particular, above the event horizons of black
holes. These two properties discriminate the anomalous
production from the dynamical Casimir effect in time-
dependent backgrounds and the Hawking mechanism of
particle production, which occurs near the black-hole
horizons.

Our formula (2) agrees with known results for the pair
production rate in the gravitational background for a
scalar field presented recently in Ref. [18] where the off-
horizon pair production has been suggested first. We
also reproduce the known expressions for the Schwinger
pair production in QCD with scalar and spinor particles.
Our approach also supports instability in the perturba-
tive gluonic vacuum in the chromomagnetic field, thus
suggesting the formation of the magnetic condensate in

7 In QCD, the magnitude of the dynamical breaking of conformal
symmetry,

〈
Tµµ

〉
' Λ4

QCD, is determined by an intrinsic mass
scale ΛQCD of the order of a few hundred MeV.

accordance with widely accepted ideas about the nature
of the QCD vacuum.

Our mechanism suggests that the photon pairs can-
not be produced in a static Schwarzschild spacetime.
However, our estimations show that a sufficiently strong
gravitational field can create pairs of neutrinos and anti-
neutrinos (as well as other light spinors), thus providing
us with another channel for the evaporation of black holes
and other gravitating objects.
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