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Abstract: Defining homogeneous units to optimize the monitoring and management of groundwater
is a key challenge for organizations responsible for the protection of water for human consumption.
However, the number of groundwater bodies (GWBs) is too large for targeted monitoring and
recommendations. This study, carried out in the Provence-Alpes-Côte d’Azur region of France,
is based on the intersection of two databases, one grouping together the physicochemical and
bacteriological analyses of water and the other delimiting the boundaries of groundwater bodies.
The extracted dataset contains 8627 measurements from 1143 observation points distributed over
63 GWB. Data conditioning through logarithmic transformation, dimensional reduction through
principal component analysis, and hierarchical classification allows the grouping of GWBs into
11 homogeneous clusters. The fractions of unexplained variance (FUV) and ANOVA R2 were
calculated to assess the performance of the method at each scale. For example, for the total dissolved
load (TDS) parameter, the temporal variance was quantified at 0.36 and the clustering causes a loss
of information with an R2 going from 0.63 to 0.4 from the scale of the sampling point to that of the
GWB cluster. The results show that the logarithmic transformation reduces the effect of outliers and
improves the quality of the GWB clustering. The groups of GWBs are homogeneous and clearly
distinguishable from each other. The results can be used to define specific management and protection
strategies for each group. The study also highlights the need to take into account the temporal
variability of groundwater quality when implementing monitoring and management programs.

Keywords: groundwater quality; European Union Water Framework Directive; groundwater Bodies;
hydrogeological clusters; environmental outliers; PACA region of France

1. Introduction

The supply of drinking water to the population is a major challenge, and among the
resources, the issue of groundwater management remains a practical concern in many parts
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of the world [1–5] due to the absence or simply the greater vulnerability of surface water to
various pollutions [6,7]. Groundwater is a privileged resource, in part because the subsoil
effectively filters suspended matter, especially bacteria. The filtering capacity of the aquifer
depends on its geological nature, especially its porous characteristics. Once considered an
“invisible resource” [8], global economic and population growth now places groundwater
in the spotlight [9,10]. Bacteriological quality is a key factor responsible for most drinking
water non-compliance and requires a better understanding of the mechanisms responsible
for pollution by distinguishing between variations in space and time. Water managers
continue to grapple with the question of how to manage this resource, which exhibits great
variability in storage over space and time [11]. Following the Water Framework Directive
(WFD) adopted by the European Union in 2000 [12–16], an inventory of groundwater
bodies (GWB) has been established throughout the EU. In France, the water agencies were
in charge of this inventory based on geographical and geological criteria. This inventory
has been collected in a French Reference System for Ground Water Bodies [17], regularly
updated for about twenty years.

Independently of this inventory, regular water analyses are carried out by the health
agencies as part of the monitoring of the quality of water intended for human consumption.
These data, the collection of which was initiated more than 30 years ago, have been com-
piled in another database called SISE-EAUX, which is managed at the national level, but
especially at the level of the administrative regions by the regional health agencies [18,19].
This database, continuously updated, includes a wide range of microbiological, physico-
chemical, and radioactive parameters, making it a valuable source of spatially referenced
information on groundwater quality. There are more than 32,000 geo-referenced collection
points throughout the country, and each collection point is analyzed several times over
time, allowing the measurement of temporal and spatial variability. Despite the large body
of information in this database, which allows for a better understanding of key mechanisms
shaping water characteristics, the large number of sampling points, even at the scale of the
administrative region, does not allow for the development of a monitoring and protection
strategy for each catchment point (several thousand) or even for each GWB (typically more
than 100). In addition, the highly dimensional nature (sometimes more than 100 param-
eters) of the data contained in the database makes it difficult to analyze the information
using traditional pairwise parameter crossing methods, not to mention that the information
may be redundant, with some parameters being more or less related to each other and to
environmental conditions.

This work aims to optimize the identification of processes that influence the chemical
quality of groundwater bodies, by basing itself on previous research, for a sound manage-
ment of the resource. Recently, our research team has proposed a classification method
to cluster GWBs into homogeneous sets based on multifactorial water quality [20]. This
clustering involves a data conditioning step in order to reduce the weight of outliers in the
analysis [21] and a dimensional reduction based on principal component analysis [22]. The
shift from the collection point scale to the GWB scale and then to the GWB homogeneous
grouping scale is accompanied by a loss of part of the information contained in the dataset,
which has not been quantified so far. This is one of the objectives of our study, in order to
evaluate the relevance and effectiveness of the method leading to the differentiation of a
reduced number of spatial units on the final map. The coefficient of determination (R2) [23]
of the analysis of variance (ANOVA) [24] is a relevant tool for this quantification of the rate
of information loss during clustering. The higher the R2, the less information is lost, and
the more relevant is the homogeneous clustering of GWB. This study will also focus on
the distinction between temporal and spatial variances for a better understanding of the
processes taking place in groundwater.

In this framework, the objective of this study is three-fold. It is to (1) analyze the
impact of outliers within the dataset without losing the information conveyed by these
observations; (2) identify homogeneous subsets of data that allow for better discrimination
of processes within each group of GWBs; and (3) quantify the loss of information associated
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with the reduction of spatial units from the scale of the collection points to the grouping
of GWBs.

2. Materials and Methods
2.1. Study Location

This study was conducted in the Provence-Alpes-Côte d’Azur (PACA) region lo-
cated in southwestern France (Figure 1). The PACA region, with a surface area of around
31,400 km2, is characterized by an important altitudinal gradient, ranging from 0 to 4000 m,
and by a diversified geology and lithology (Figure 2), as well as a variety of aquifers (Karstic,
sedimentary, of fractured basement or accompanying rivers). The water exploitation index
(WEI+), the ratio of total annual water withdrawal to the long-term annual average of
renewable freshwater resources, is between 30 and 40% [25]. The Rhône River marks the
western limit of the region, while its main tributary, the Durance, crosses the region from
east to west. Small coastal rivers (Argens, Var, etc.) turned towards the Mediterranean Sea
complete the hydrographic network as shown in Figure 2. The population is of around 5 mil-
lion inhabitants with a considerable increase during the summer periods. For more details
regarding the PACA region, the reader may refer to the work of Tiouiouine et al. [20,22].

Figure 1. Map distribution of the groundwater bodies (GWB) and observation points within PACA region.
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Figure 2. Special distribution of the geological features and hydrographic elements within PACA region.

2.2. Data Sources and Processing

SISE-EAUX is a groundwater quality database maintained by the French Ministry of
Health and its regional and departmental services and is intended for the organized storage
of health-related information on water [18,19]. It has been progressively computerized
since 1994, but its systematic use as a database has been widely adopted since 2000. The
database includes 250,000 control points throughout France, covering both raw (untreated)
and distributed (potentially treated) water. The analyses were performed by laboratories
that have received the necessary approvals and laboratory quality certifications. The data
extraction for this study covered the entire PACA region over a period of 14 years, from
2006 to 2020, and focused specifically on raw water before any treatment for potability.
The database includes a total of 1143 georeferenced sampling points, the distribution
of which is presented in Figure 1. The data extraction provided 9117 water samples,
on which between 4 and 24 parameters were analyzed, resulting in a hollow matrix of
9117 samples on 24 parameters. Afterwards, a data cleansing stage took place, which
included removing observations with missing values and parameters that had a limited
number of samples, such as thermotolerant coliforms and revivable bacteria at 22 and
37 degrees Celsius, along with total coliforms, which exhibited a data deficiency exceeding
95%. In the end, all parameters with more than 2.5% missing values were eliminated,
resulting in a data loss of 5.4% compared to the initial extraction. After this cleaning phase,
a full matrix of 8627 observations and 18 parameters was retained, which corresponds to
an average of 7.55 analyses per sampling point over the 14 years of data collection. The
retained parameters are Enterococcus (Ent.), Escherichia coli (E. coli), electrical conductivity
(EC25), potassium (K), sodium (Na), calcium (Ca), magnesium (Mg), chloride (Cl), sulfate (SO4),
hydrogenocarbonates (HCO3), nitrates (NO3), fluoride (F), total dissolved solids (TDS), metals
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which are iron (Fe) and manganese (Mn), and metalloids which are arsenic (As) and bore (B).
The pH was transformed into H+ concentration to avoid mixing log and non-log units.

The European Water Framework Directive (Directive 2000/60/EC) [16] launched the
Water Information System for Europe, in which groundwater bodies correspond to discrete
volumes of groundwater residing in one or more aquifers [26]. In France, their inventory is
the responsibility of the water agencies with the support of the French Geological Survey
(BRGM) and is now listed in the French Reference System for GWB [27]. GWBs can be
based on common attributes such as lithological composition, flow characteristics (confined
or unconfined), karst properties, and proximity to coastal regions. The 1143 sampling
points in the study were associated with 63 groundwater bodies, which were subsequently
grouped into 11 GWB groups according to the procedure outlined by Tiouiouine et al. [20].

2.3. Data Treatement and Multivariate Statististical Analysis

Given the complexity of the ecosystem, a series of statistical techniques were employed
to analyze the data, including a logarithmic transformation to alleviate the impact of
outliers on the data, a principal component analysis (PCA) [28], hierarchical clustering
(AHC) [29], kriging, and analysis of variance (ANOVA) [24] with the fraction of variance
unexplained (FVU). These methods were used to optimize the identification of the processes
that influence the chemical quality of groundwater bodies (GWB) in the PACA region
of France.

2.3.1. Log Transformation

The presence of outliers was detected using the Z score defined by:

Z = |x − M|/σ, (1)

where x is the measured value for a given parameter, M is the mean, and σ is the standard
deviation. Z values greater than 2.5 and 10 are considered outliers, respectively [21]. The
presence of outliers, particularly for microbiological parameters, results in a non-symmetric
distribution that deviates from normality. A log transformation of the data was applied
according to:

y = log10 (x + DL), (2)

where x denotes the analytical result and DL is the detection limit. The log transformation
aims to modify the value scales of the different parameters by dilating the gaps between
low values and contracting those between high values [30].

2.3.2. Principal Component Analysis (PCA)

A principal component analysis (PCA) based on the correlation matrix was performed
on all parameters [31] in order to reduce the dimensionality of the data space while minimiz-
ing the loss of information contained in the dataset. This procedure, based on standardized
data centered on the mean and divided by the standard deviation, ensured that each vari-
able had the same weight in the PCA, regardless of the unit used. This method is based on
the principle that the resulting factorial axes (principal components) are orthogonal to each
other, and therefore carry information related to interdependent processes [32,33].

2.3.3. Hierarchical Clustering

Subsequently, an agglomerative hierarchical clustering (AHC) using the Ward’s link-
age method [34,35] was performed using the mean values of each groundwater body on
the principal components obtained from the PCA. The relative similarities among the GWB
were quantified using Euclidean distance, and the levels of similarity at which the GWB
were merged were used to construct a dendrogram.
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2.3.4. Spatial and Temporal Variability

In order to measure the amount of information lost when downscaling from catchment
to GWB and then to grouping of GWBs, an analysis of variance (ANOVA) was conducted
with water characteristics as the dependent variable, and individual catchments, GWBs,
and groups of GWBs as categorical explanatory variables [36]. The variance explained by
the categorical variable was measured by the R2 [37], according to the formula:

R2 = 1 − (RSS/TSS), (3)

where RSS is the residual square sum and TSS is the total square sum. R2 denotes the
percentage of variation in the response variable that is explained by its relationship with the
explanatory variables. As the analyses were carried out at several dates on several sampling
points, the variance includes on the one hand the temporal variability, which results in
different values on the same sampling point, and on the other hand the spatial variability,
which results in different averages between the sampling points. The R2 calculated on
the criterion “sampling point” as a non-quantitative explanatory variable corresponds to
the spatial variability at this scale. The complement to 1 of the R2 which is the fraction of
variance unexplained (FVU) [38] reflects the temporal variance added to a small part of
variance linked to the analytical imprecision, which will be neglected. The same calculation
was carried out at the scale of GWBs and groups of GWBs in order to quantify the amount
of information contained at these different spatial scales.

2.3.5. Kriging

The spatial structure of each parameter was analyzed by studying the main charac-
teristics of the experimental variograms, such as the range, sill, and nugget effect. The
experimental variograms were fitted using spherical models, which were obtained un-
der comparable conditions, (i.e., same number of points and same number of distance
classes) [39].

3. Results
3.1. Achieving a Symmetrical Data Distribution

Figure 3 presents the inertia of the factorial axes of the PCAs conducted on the raw
and log-transformed data. The first eight principal components accounted for 85.6% of the
total variance for all parameters and all samples combined. Despite the high number of
parameters and their heterogeneous nature (bacteriological, major ions, metals, metalloids,
etc.), the first factorial plane concentrated a significant part of the information, which was
significantly higher after log transformation of the data, shifting from 43.2% (10.7 + 32.5)
to 51.4% (36.3 + 15.1). The projection of the samples on the factorial plane F1–F2 and
F3–F4 (Figure 3) shows that a few samples significantly increase the area of the score plots,
with most observations concentrated in a small area (Figure 4a,c). In contrast, after log
transformation of the data, the dispersion of observations in the score plots is more uniform
(Figure 4b,d). Therefore, in the following, we will consider the log-transformed data.

3.2. PCA Results: General Chemistry and Spatial Distribution of Groundwater

The first factorial axis (F1) in Table 1 contrasted mineralized water without fecal
contamination with diluted water contaminated by E. coli and Enterococcus. This is notably
highlighted by high variable contributions (above 0.7) in the majority of major ions, TDS,
and electrical conductivity in F1. We assert clearly that this is an axis of water mineral
load. The second factorial axis (F2) was mainly scored with waters contaminated by fecal
bacteria with E. coli. and Enterococcus having scored around 0.8. Contaminated waters were
rather reductive as shown by the positive coordinates of metals and negative of nitrates.
The third factorial axis reflected mainly waters with the highest arsenic, nitrate, fluorine,
and boron content, and the fourth factorial axis reflected redox processes, but for waters
with low contamination by fecal bacteria.
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Figure 3. Inertia of the factorial axes of the PCA conducted on the raw and log-transformed data.

Figure 4. Cont.
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Figure 4. Distribution of the observations in factorial plans F1−F2 and F3−F4 for: (a,c) raw data;
(b,d) log-transformed data.

Table 1. Contribution of the parameters to the first five factorial axes (PCA with log-transformed data).

F1 F2 F3 F4 F5

Enterococcus 0.035 0.800 −0.299 −0.241 0.208
E. coli 0.052 0.799 −0.283 −0.244 0.219

K 0.727 0.336 0.230 0.002 −0.267
Na 0.721 0.392 0.202 0.019 −0.305
Ca 0.829 −0.283 −0.299 −0.002 0.094
Mg 0.723 −0.015 −0.061 0.116 0.051
Cl 0.751 0.344 0.161 −0.006 −0.292

SO4 0.729 0.238 0.144 0.042 −0.067
HCO3 0.676 −0.420 −0.402 0.011 0.128
EC25 0.779 −0.129 −0.215 0.066 −0.012
TDS 0.912 −0.226 −0.249 0.045 0.060
pH −0.378 0.531 −0.189 −0.224 −0.151
Fe 0.070 0.423 −0.109 0.663 −0.167
Mn 0.117 0.380 −0.017 0.541 0.524
As −0.199 0.074 0.619 0.229 0.219

NO3 0.531 −0.200 0.245 −0.185 0.079
B 0.554 0.048 0.285 −0.196 0.254
F 0.522 0.055 0.415 −0.277 0.325

Note(s): Bold Parameter contribution in the factorial axis of (+/−) 0.7.

3.3. AHC Results: Grouping Groundwater Bodies Using AHC

The clustering of GWBs based on their average coordinates on the first 10 factorial axes
is presented in Figure 5, where 11 distinct groups were identified. The mapping of these
11 groups is presented in Figure 6. A strong correlation was observed between the GWB
groups and the regional geology and geomorphology. For example, group 9 represents
all the accompanying water tables of the hydrographic network, group 11 corresponds to
low altitude discontinuous aquifers (karst and fractured aquifers), group 6 groups together
sedimentary coastal aquifers, and group 1 identifies high altitude fractured aquifers in
crystalline bedrocks.

Figure 6 below shows the main spatial distribution of GWB body group. The main
visually observed remark from this clustering is the resemblance between some clusters
and the lithological limit. Cluster 1 is located within the coastal crystalline group, cluster
2 corresponds to the alpine crystalline group, clusters 3 and 4 are located within the
sedimentary ensembles in altitude, group 5 is exclusive to the sedimentary rocks within
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the coastal south to southwest PACA, group 9 is located within the alluvial plains of the
Rhone and Durance rivers, group 10 is located also in the sedimentary formations near
the alluvial plains, and group 11 is located within two formations, the crystalline coastal
formations and near the alluvial plains in the Durance river.

Figure 5. Cluster dendrogram of all groundwater bodies resulting from the agglomerative hierarchical
clustering (AHC). FRDGx is an acronym used to represent the French reference of groundwater bodies,
where “FR” stands for French reference, “D” refers to the Rhône-Méditerranée Basin, “G” indicates
the groundwater body, and “x” signifies the identification code of the particular groundwater body.
The colors of each cluster in this dendrogram are reported on Figure 6.

The clustering of GWBs based on their average coordinates on the first 10 factorial
axes is presented in Figure 5, where 11 distinct groups were identified. The mapping of
these 11 groups is presented in Figure 6. A strong correspondence was observed between
GWB groups and regional geology and geomorphology.

Groups 1 and 2 are located in the coastal and alpine crystalline contexts, respectively.
Groups 3 and 4 are located in the sedimentary complexes at high altitude and group 5 is
exclusive to the sedimentary rocks of the south to southwest coast of the PACA region.
Groups 6, 7, and 8 are small and isolated. Group 9 is located in the alluvial plains of the
Rhone and Durance rivers and includes all the water tables accompanying the hydrographic
network. Group 10 is situated in the sedimentary formations close to the alluvial plains,
and group 11 is situated in two formations, the coastal crystalline formations and close to
the alluvial plains of the Durance river, which are discontinuous aquifers of low altitude
(karst and fractured environments).
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Figure 6. Spatial distribution of groundwater bodies (GWB) clusters resulted from agglomerative
hierarchical clustering (AHC).

3.4. Spatial and Temporal Variability

Table 2 summarizes the main characteristics of the variograms obtained for some key
parameters (bacteriology and major ions). A significant nugget effect was observed for the
bacteriological parameters, combined with a very small range, of the order of a few km.
On the other hand, the nugget effect is practically null for electrical conductivity and major
ions (represented here by sodium), with a high range of several tens of km.

Table 2. Adjusted special variogram parameters and ANOVA R2 for Enterococcus, E. coli, electrical
conductivity 25◦, and sodium.

Parameter Nugget Spherical Semi-Variance Lag % Nugget Effect ANOVA R2

Enterococcus 0.28 0.12 4000 70.0 0.546
E. coli 0.3 0.22 3000 57.7 0.555
EC25 0.007 0.042 62,000 14.3 0.654
Na 0.08 0.36 150,000 18.2 0.583

The temporal variability evaluated by the R2 for each parameter is presented in
Figure 7. This was high for metals with values reaching 65 to 70%, close to 55 to 60% for
trace elements F, B, and As, around 45% for bacteriological parameters, but generally below
40% for major ions.
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Figure 7. The rate of fraction of variance unexplained FVU within each parameter.

3.5. Determining the Proper Scaling of Groundwater Water Quality

The ratios of variance explained in the two groupings, namely from the scale of
collection points to the GWBs and then from GWBs to GWB groups, is presented in Figure 8.
In the first aggregation, most of the major ions show a moderate decrease (between 0.7
and 0.99), except for Mg and SO4 ions whose ratio showed a decrease of about 0.6. For
nitrates, the ratio was also around 0.6. The ratio for bacteriological parameters showed a
moderate decrease (0.55) in spatial variation, while metals and other trace elements showed
a decrease in the range of 0.5 to 0.25. At the second aggregation, these ratios decreased
slightly on the order of 0.1.

Figure 8. The ratio of explained variance for both the GWB/observation point scale and the GWB
groups/observation point scale.
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4. Discussion
4.1. Processes of Acquisition of Water Characteristics

The logarithmic transformation of the data clearly allows limiting the weight of
outliers, mainly observed for bacteriological parameters. This transformation, already
tested on other similar databases [21], allows a stronger concentration of information
on the first factorial axes and facilitates the interpretation of the associated processes.
The logarithmic transformation of the data also reduces the temporal variability of some
parameters, especially bacteriological parameters, a point that will be analyzed in the
next paragraph. Minerality is the main factor of variability in the waters of the PACA
region. This point has already been emphasized by several studies conducted in the region,
whether it is the work of Tiouiouine [20] on which we have relied, or other works conducted
in more targeted environments. Thus, minerality is the main factor of water variability
within the karst system of Fontaine de Vaucluse and is even identified as a major factor
of flow discrimination within the karst [40]. Minerality is also frequently identified as a
major variability factor among surface waters on all continents [41]. The second factor
of variability in water quality is bacterial contamination, which more specifically affects
waters with low mineralization. This is again a classic phenomenon in Mediterranean
environments, where late summer storms cause runoff of low mineralized water but with
high turbidity and likely to carry a high bacterial load. These waters infiltrate as they
flow through the watersheds and contaminate the groundwater. The second factorial axis
represents a spatial opposition between mineralized waters with a calcareous carbonate
chemical profile and non-carbonate waters that are less mineralized but reductive (attested
by the presence of soluble metals) and contaminated by bacteria. The fecal contamination
of calcareous, mineralized, and reducing waters appears as the next factor. It can be
interpreted as a contrast between more or less old waters in karst environments (i.e., with
a higher residence time and which are generally discriminated by higher magnesium
contents) [42,43]. Thus, PCA reveals several distinct signatures of fecal contamination,
which are represented by distinct factorial axes. There is thus a diversity of situations
and mechanisms related to this contamination, as mentioned by Tiouiouine et al. [22].
The mechanisms leading to fecal contamination are not solely limited to surface transport
during storm events infiltrating susceptible water catchments, even though this is the most
common scenario.

4.2. A Relevant and Efficient Grouping of GWBs

The implementation of a groundwater protection and monitoring policy by health
agencies cannot be done on the scale of too many catchment points. A relevant group-
ing, in homogeneous sets and in coherence with the physicochemical and bacteriological
characteristics, is necessary. The knowledge of which catchment points belong to a given
GWB is an independent and essential source of information that must obviously be taken
into consideration, but the number, 63 in the PACA region and 106 in the neighboring
Occitanie region [21], is still too high to implement specific recommendations for each
GWB. The reduction in the fineness of description of the information contained in the
8627 water samples collected is drastic when going from 1143 to 63 and then to 11 spatial
units (i.e., from sampling points to GWBs and then to groups of GWBs).

The calculation of temporal variability is based on the calculation of R2 when moving
from 8627 collected water samples to 1143 sample points, which resulted in a reduction
in the number of data by a factor of 7.5. Temporal variability can also be estimated by the
nugget effect observed on the variograms which appears as variance for zero distance,
with samples collected from the same point on multiple dates. The comparison between R2

(Figure 7) and nugget effect for each parameter confirms this. The temporal variability is
important, of the order of a third or more of the total variability, less for the chemistry of
major ions than for trace elements or bacteriological parameters. In the transition from the
observation point scale to the GWB scale, factors that explain changes in variance include
differences in borehole characteristics (such as wells or springs), differences in borehole
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vulnerability, and heterogeneity of land use in the vicinity of boreholes. The difference in
explained variance between groups of GWBs is mainly related to differences in geological
characteristics between GWBs. The rates of spatial variability and loss of information
during upscaling have different values for different parameters, which can be explained by
the diversity of transport mechanisms for these parameters. For bacteriological parameters,
the transport of particle fixed bacteria is limited by the pore size, while they enter the
boreholes by contamination of runoff water. This leads to a high temporal variability of
their concentrations, which can be very sensitive to precipitation events. In general terms,
this typology of parameters’ behavior is strongly correlated to the spatial structure. Indeed,
the parameters that show greater temporal variability are also those that show local spatial
variability (Table 2). Thus, there appears to exist a relationship between the local character
of spatial variation and the intensity of temporal variability. This constitutes a first basis for
a typology of microbiological and physicochemical parameters, which will be the subject of
a future publication.

As with temporal variability, the log transformation preserves a greater proportion of
the information contained in the dataset. With raw data, almost all spatial information is
lost for bacteriological parameters when grouping from catchment points to GWBs and then
to GWB groups. The difference is significant and the lack of data conditioning would be
detrimental to the methodology. In this sense, this work considerably improves the results
previously presented by Tiouiouine [20] in the same PACA region. The loss of spatial
information that accompanies the two aggregations varies according to the parameter.
For chlorides, the loss is minimal, and the aggregation into GWB groups preserves more
than 90% of the initial spatial information. For sodium, electrical conductivity, and E. coli
content, more than half of the spatial information is preserved at the GWB group level, with
most of the information loss occurring during the first aggregation of the sample points to
the corresponding GWBs. For elements with high local variability such as Fe, Mn, and NO3,
the loss of information is more important, but about 30–40% of the spatial information is
still preserved by the GWB groups. Again, as for the other parameters, the switch from
GWBs to GWB groups causes only a minor part of the information loss, the bulk being lost
during the first aggregation.

4.3. Methodological Contributions

The present work highlights a series of methodological advances that we feel are
relevant to bring together here:

• The log transformation to the data greatly reduces the problem of data non-normality
and improves the statistical properties of the dataset, thus enhancing the robustness
and reliability of subsequent analyses.

• It also mitigates the effects of outliers without eliminating the information they convey.
The integrity of the dataset is thus preserved for analysis.

• The quantification of the loss of information that accompanies the clustering allows
the effectiveness of the method to be measured.

• However, the proposed method has certain limitations. In particular, at this stage, the
analysis is carried out parameter by parameter, which does not take into account the
interrelations between several parameters. A more integrated approach, which could
be based on principal components rather than on parameters, could be developed,
but it would go beyond the scope of our study. It should be noted, however, that this
approach is implicitly supported by the generation of GWB groups, as the classifi-
cation process takes into account the relationships between different groundwater
quality parameters.

• The method applied here is currently being applied in parallel in other French ad-
ministrative regions and should be the subject of further advances. Whether the
groundwater conditions are similar or quite different, there is no reason why the
analysis should not be similar to the one conducted here. This method is flexible
and applicable to various geological contexts and hydrogeological conditions. The
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applicability depends on the availability of a statistically significant number of samples
per observation point and per GWB. Interpretation will, of course, be guided by the
specificities of the region under consideration in terms of geological formations, land
use patterns, and possible sources of contamination.

5. Conclusions

The objective of this work was to quantify the spatial variability and temporal vari-
ability of the multiparameter quality of groundwater in a region, and to measure the loss of
information when implementing the upscaling method proposed by Tiouiouine et al. [20].
This method consists in reducing the dimensionality of the data by PCA, then classifying the
groundwater bodies into homogeneous groups according to the average values by GWB.

The analysis of variance shows that the share of temporal variability in the total
variance depends strongly on the nature of the quality parameters. The temporal variability
is higher for microbiological parameters, and less important for major ions. The analysis
of variance made it possible to quantify the loss of information inherent to the grouping
and the decrease in the number of units from 1143 sampling points to 63 GWB and then
to 11 GWB groups. The amount of information lost also varies according to the quality
parameter considered.

The monitoring of water quality for human consumption is the responsibility of the
health agencies. The number of 11 homogeneous groups is suitable for the development of a
specific roadmap and targeted recommendations for each group of GWB. More specifically,
for the PACA region, the detailed analysis of each group will be the next step in our
research schedule.
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