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dimensional vector and we have x = (x 1 , . . . , x n ) ⊤ .

Definition (Inner Product)

Recall that if x, y ∈ R n are two n-dimensional vectors, then the inner product (scalar product) is:

x ⊤ y = n i=1 x i y i (1)
where x i is the i th component of the vector x.

-Various norms of a vector can be used. We shall use here the Euclidean norm. This norm is the square root of the inner product of the vector and itself, i.e., ∥x∥ := √ x ⊤ x.

Let θ be the angle between the vectors x and y. Then the dot product of x and y may be alternatively written as:

x ⊤ y = ||x|| ||y|| cos θ (2)
This fact can be proved using the law of cosines from trigonometry. As a result, we have the following small lemma:

Lemma

Let x, y ∈ R n . Then the following hold:

1 The angle between x and y is less than π/2 (i.e., acute) iff x ⊤ y > 0.

2 The angle between x and y is exactly π/2 (i.e., the vectors are orthogonal) iff

x ⊤ y = 0. 3 The angle between x and y is greater than π/2 (i.e., obtuse) iff x ⊤ y < 0.

-The Cauchy-Schwartz Inequality:

| x ⊤ y |≤ ||x|| ||y||.

Lemma

Let z be a linear function over R n , and let x ∈ R n , and ∇z(x) ̸ = 0. Then 1 ∇z(x) is an ascent direction of z at x. 2 -∇z(x) is a descent direction of z at x. Proof. In class

Attainment of Minimal/Maximal Points Definition (Global Minimum and Maximum)

Let f : S → R be defined on a set S ⊆ R n . Then 1 x * ∈ S is a global minimum point of f over S if f (x) ≥ f (x * ) for any x ∈ S. 2 x * ∈ S is a global maximum point of f over S if f (x) ≤ f (x * ) for any x ∈ S.

Theorem (Weierstrass Theorem)

Let f be a continuous function defined over a non-empty compact set S ⊆ R n . Then there exists a global minimum point of f over S and a global maximum point of f over S.

The Rank of a Matrix

Let A be an m × n matrix.

• The row rank of the matrix is equal to the maximum number of linearly independent rows of A.

• The column rank of A is the maximum number of linearly independent columns of A.

-It can be shown that the row rank of a matrix is always equal to its column rank, and hence the rank of the matrix is equal to the maximum number of linearly independent rows (or columns) of A.

-It is clear that rank(A m×n ) ≤ min{m, n}. . . .

a m   ,
where a r is the r th column of the matrix A, and a s is the s th row of the matrix A.

Lemma

Let A be an m × n matrix. Then the following hold:

1 rank(A m×n ) < n ⇐⇒ ∃d ̸ = 0; Ad = 0. 2 Linear system Ax = b has solution ⇐⇒ rank(A) = rank([A | b]).

Proof. In class

Introduction to Linear Programming Problems

An optimization problem is called a linear programming problem when it has the following general form:

                             max z(x 1 , . . . , x n ) = c 1 x 1 + • • • + c n x n s.t. a 11 x 1 + • • • + a 1n x n ≤ b 1 . . . a m1 x 1 + • • • + a mn x n ≤ b m h 11 x 1 + • • • + h n1 x n = r 1 . . . h l1 x 1 + • • • + h ln x n = r l (5)
Example 1

Consider the problem of a toy company that produces toy planes and toy boats.

• The profit for each plane is $7 per plane.

• The profit for each boat is $6 per boat.

• A plane requires 3 hours to make and 1 hour to finish.

• A boat requires 1 hour to make and 2 hours to finish.

• The toy company knows it will not sell anymore than 35 planes per week.

• The company cannot spend any more than 160 hours per week finishing toys and 120 hours per week making toys.

The company wishes to maximize the profit it makes by choosing how much of each toy to produce.

Example 1

Define variables:

-Let x 1 be the number of planes the company will produce.

-Let x 2 be the number of boats the company will produce.

(Detail in class.)

Thus the complete linear programming problem is given as:

                   max z(x 1 , x 2 ) = 7x 1 + 6x 2 s.t. 3x 1 + x 2 ≤ 120, x 1 + 2x 2 ≤ 160, x 1 ≤ 35, x 1 ≥ 0, x 2 ≥ 0. ( 6 
)
13 Abbas Khademi (University of Tehran) -Linear Programming Example 2 (The Transportation Problem)

• A company has three factories 1 ○, 2 ○, and 3 ○.

• There are four major warehouses situated at A, B, C and D.

• Average daily product at 1 ○, 2 ○, and 3 ○ is 30, 40, and 50 units, respectively.

• The average daily requirement of this product at A, B, C and D is 35, 28, 32, and 25 units, respectively.

• The transportation cost per unit of product from each factory to each warehouse is given below: The problem is to determine a routing plan that minimizes total transportation costs. Define variables: -Let x ij of units of a product transported from i th factory to j th warehouse.

(i = 1, 2, 3 and j = A, B, C , D). The problem can be formulated mathematically in linear programming form as

                         min 6x 1A + 8x 1B + 8x 1C + 5x 1D + 5x 2A + 11x 2B + 9x 2C + 7x 2D + 8x 3A + 9x 3B + 7x 3C + 13x 3D s.t. Capacity constraints Requirement constraints x 1A + x 1B + x 1C + x 1D = 30, x 1A + x 2A + x 3A = 35, x 2A + x 2B + x 2C + x 2D = 40, x 1B + x 2B + x 3B = 28, x 3A + x 3B + x 3C + x 3D = 50, x 1C + x 2C + x 3C = 32, x 1D + x 2D + x 3D = 25, x ij ≥ 0. ( 7 
)
Example 3 (Blending Problem)

Consider the example of an animal feed manufacturer producing feed mix for dairy cattle.

• The feed mix contains two active ingredients.

• One kg of the feed mix must contain a minimum quantity of each of four nutrients as shown in • The maximum production of Ingredient 1 is twice as much as Ingredient 2.

What should be the amounts of active ingredients in one kg of feed mix that minimizes cost?

Example 3 (Blending Problem)

Problem: Minimize the cost of blending the feed.

Define variables:

-Let x 1 be the amount (kg) of ingredient 1 in one kg of feed mix.

-Let x 2 be the amount (kg) of ingredient 2 in one kg of feed mix.

The complete LP formulation:

                               min z = 40x1 + 60x2 s.t. 100x1 + 200x2 ≥ 900 (NutrientA) 80x1 + 150x2 ≥ 500, (NutrientB) 40x1 + 20x2 ≥ 200, (NutrientC ) 10x1 ≥ 20, (NutrientD) -x1 + 2x2 ≥ 0, x1 ≥ 0, x2 ≥ 0. ( 8 
)
The Standard form of the Linear Programming (LP) Problem

Minimize (or Maximize) the function

z = c 1 x 1 + c 2 x 2 + • • • + c n x n , subject to            a 11 x 1 + a 12 x 2 + • • • + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + • • • + a 2n x n = b 1 . . . a m1 x 1 + a m2 x 2 + • • • + a mn x n = b m (9) and x j ≥ 0, j = 1, 2, . . . , n
Here a ij , c j , b i , (i = 1, 2, . . . , m, j = 1, 2, . . . , n), are given constants.

Claim: one can transform all these LP problems into the standard form.

Example. Transform the following LP problem into standard form.

Minimize z = x 1 + 2x 2 + 3x 3 subject to      x 1 + x 2 + x 3 ≤ 10 (C 1) x 1 -x 2 ≥ 5 (C 2) x 1 , x 2 , x 3 ≥ 0 (10) 
Trick: Introduce new variable x 4 , x 5 , where x 4 ≥ 0, x 5 ≥ 0. Rewrite (C1) as: x 4 = 10x 1x 2x 3 , and we have x 4 ≥ 0.

We have

x 1 + x 2 + x 3 + x 4 = 10.
Similar for (C2). Rewrite as: x 1x 2 -5 ≥ 0 And let x 5 = x 1x 2 -5, and we have x 5 ≥ 0.

We have

x 1 -x 2 -x 5 = 5. Minimize z = x 1 + 2x 2 + 3x 3 subject to      x 1 + x 2 + x 3 ≤ 10 (C 1) x 1 -x 2 ≥ 5 (C 2) x 1 , x 2 , x 3 ≥ 0 (11)
is transformed into the standard form:

Minimize z = x 1 + 2x 2 + 3x 3 subject to      x 1 + x 2 + x 3 +x 4 =10 (C 1) x 1 -x 2 -x 5 =5 (C 2) x 1 , x 2 , x 3 , x 4 , x 5 ≥ 0 (12) 
Summary:

(1) For ≤ inequality, add +x k to the left, change into =, require x k ≥ 0.

(2) For ≥ inequality, add -x k to the left, change into =, require x k ≥ 0.

Slack variables

These new variables are called slack variables.

They measure the slack or surplus of the original constraint of inequality.

For example, consider (C1):

x 1 + x 2 + x 3 +x 4 =10, x 4 ≥ 0.
If x 4 = 0, i.e., no slack, then we get

x 1 + x 2 + x 3 = 10.
If x 4 > 0, i.e., with slack, then we get

x 1 + x 2 + x 3 < 10.
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If x i is unrestricted (free), i.e., it can be both positive and negative.

We introduce two new variables x ′ i , x ′′ i where

x i = x ′ i -x ′′ i , x ′ i ≥ 0, x ′′ i ≥ 0. 22 Abbas Khademi (University of Tehran) -Linear Programming Example Maximize 3x 1 -2x 2 -x 3 + x 4 subject to          4x 1 -x 2 + x 4 ≤ 6 -7x 1 + 8x 2 + x 3 ≥ 7 x 1 + x 2 + 4x 4 = 12 x 1 , x 2 , x 3 ≥ 0, x 4 free. (13) is transformed to: Maximize 3x 1 -2x 2 -x 3 + x ′ 4 -x ′′ 4 subject to            4x 1 -x 2 + x ′ 4 -x ′′ 4 + x 5 = 6 -7x 1 + 8x 2 + x 3 -x 6 = 7 x 1 + x 2 + 4(x ′ 4 -x ′′ 4 ) = 12 x 1 , x 2 , x 3 , x ′ 4 , x ′′ 4 , x 5 , x 6 ≥ 0. (14)

Matrices and Linear Programming Expression

Consider the following system of equations:

           a 11 x 1 + a 12 x 2 + • • • + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + • • • + a 2n x n = b 2 . . . a m1 x 1 + a m2 x 2 + • • • + a mn x n = b m (15) 
Then we can write this in matrix notation as:

Ax = b ( 16 
)
where A ij = a ij for i = 1, . . . , m, j = 1, . . . , n and x is a column vector in R n with entries x j (j = 1, . . . , n) and b is a column vector in R m with entries b i (i = 1 . . . , m).

Definition (Standard Form (Max Problem))

A maximization LP problem is in standard form if it is written as:

     max cx s.t. Ax = b x ≥ 0 (17) 
Remark. In the previous definition, a problem is in standard form as long as its constraints have form Ax = b and x ≥ 0. The problem can be either a maximization or minimization problem.

The Canonical form of the LP Problem Definition (Canonical Form)

A maximization LP problem is in canonical form if it is written as:

     max cx s.t. Ax ≤ b x ≥ 0 (18) 
A minimization LP problem is in canonical form if it is written as:

     min cx s.t. Ax ≥ b x ≥ 0 (19)

Theorem

• Every LP problem in canonical form can be put into standard form.

• Every LP problem in standard form can be put into canonical form.

Proof. In class.
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Matrix\ Column\ Row LP expression

A m×n = [a 1 , a 2 , ..., a n ] =    a 1
. . .

a m   ,
where a r is the r th column of the matrix A, and a s is the s th row of the matrix A.

     min cx s.t. Ax ≥ b x ≥ 0 ⇐⇒                  min n j=1 c j x j s.t. n j=1 a j x j ≥ b x j ≥ 0, j = 1, . . . , n ⇐⇒      min cx s.t. a i x ≥ b i , i = 1, . . . , m x ≥ 0
Definition (Non-negative Linear Combination)

Given t points α 1 , α 2 , . . . , α t ∈ R n , a non-negative linear combination of these t points is a vector of the form

λ 1 α 1 + λ 2 α 2 + • • • + λ t α t
, where λ j ≥ 0, j = 1, . . . , t.

The set of these linear combinations denote by Pos {α 1 , α 2 , . . . , α t } , i.e.,

Pos {α 1 , α 2 , . . . , α t } = λ 1 α 1 + λ 2 α 2 + • • • + λ t α t | λ j ≥ 0, j = 1, . . . , t .
Exercise (bounce). For a matrix, by defining Pos(A m×n ) := Pos({a 1 , a 2 , ..., a n }), where where a r is the r th column of A. Show that Pos(A) is a closed set.

Consider following LP problem (LP) :

     min cx s.t. Ax ≥ b x ≥ 0 (20)
Definition (Feasible solution)

A vector x ∈ R n is called feasible, or a feasible solution, if it satisfies all the constraints, i.e.,

Ax ≥ b, x ≥ 0.

The set S = {x ∈ R n |Ax ≥ b, x ≥ 0} of all feasible solutions is called the feasible set or feasible region.

Definition (Optimal solution)

A feasible solution x * ∈ R n is called optimal, if it attains the desired minimum, i.e.,

1 x * ∈ S, 2 cx * ≤ cx, ∀x ∈ S.
The set of all optimal solutions of (LP) is called the optimal set, and denoted by O.
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• Unique optimal solution: x * ∈ S is a unique optimal solution for (LP), if

1 x * ∈ S, 2 cx * < cx, ∀x ∈ S \ {x * }.
• Alternative optimal solution: When (LP) has more than one optimal solution. • (LP) is feasible if there exists a feasible solution, i.e., S ̸ = ∅. • (LP) is infeasible if has no solution, i.e., S = ∅.

• (LP) is unbounded if ∃{x v } v ⊆ S; cx v → -∞, as v → ∞.
⋆ What shall be changed in above definitions when LP was a maximization problem?

Exercise. Prove that the following definitions are equivalent:

1 (LP) is unbounded if ∃{x v } v ⊆ S; cx v → -∞, as v → ∞. 2 (LP) is unbounded if ∀x ∈ S, ∃x ∈ S; cx < cx. 3 (LP) is unbounded if ∀λ ∈ R, ∃x ∈ S; cx ≤ λ.
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• Set S is called unbounded if there exists {x k } k ⊆ S; ∥x k ∥ → +∞ as k → ∞. • (LP) is called unbounded if ∃{x v } v ⊆ S; cx v → -∞, as v → ∞.
Clearly, a linear program is unbounded only if its feasibility set is a unbounded set. However, a unbounded feasibility set does not necessarily imply that the linear program itself is unbounded.

Hence, for a linear program, the term unbounded means objective unbounded. When the feasibility set S is unbounded, whether or not the corresponding linear program is unbounded depends entirely on the objective function.

If the feasible set is bounded, there always exists an optimal solution by the Weierstrass Theorem (S is compact and the objective function is continuous and thus assumes its minimum value on S).

Classification of LPs

           Infeasible Feasible ⇝     

With optimal solution ⇝

Unique optimal solution Alternative optimal solution Unbounded 33 Abbas Khademi (University of Tehran) -Linear Programming

Graphically Solving Linear Programs Problems with Two Variables

Consider Example 1 in Lecture 2:

                   max z(x 1 , x 2 ) = 7x 1 + 6x 2 s.t. 3x 1 + x 2 ≤ 120, x 1 + 2x 2 ≤ 160, x 1 ≤ 35, x 1 ≥ 0, x 2 ≥ 0. ( 21 
)
To solve this LP graphically, begin by drawing the feasible set. This is shown in the blue shaded next page. We see the optimal solution is the last point in the feasible region that intersects a level set as we move in the direction of increasing profit. 

Problems with Alternative Optimal Solutions

Consider following LP                    max z(x 1 , x 2 ) = 18x 1 + 6x 2 s.t. 3x 1 + x 2 ≤ 120 x 1 + 2x 2 ≤ 160 x 1 ≤ 35 x 1 ≥ 0 x 2 ≥ 0 ( 22 
)
Every point on this line is an alternative optimal solution.
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Problems with No Solution

Consider the following LP

                     max z(x 1 , x 2 ) = 3x 1 + 2x 2 s.t. 1 40 x 1 + 1 60 x 2 ≤ 1 1 50 x 1 + 1 50 x 2 ≤ 1 x 1 ≥ 30 x 2 ≥ 20 (23) 
Figure : A Linear Programming Problem with no solution. The feasible region of the linear programming problem is empty; that is, there are no values for x 1 and x 2 that can simultaneously satisfy all the constraints. Thus, no solution exists.

Problems with Unbounded Feasible Regions

Consider the LP below:

         max z(x 1 , x 2 ) = 2x 1 -x 2 s.t. x 1 -x 2 ≤ 1 2x 1 + x 2 ≥ 6 x 1 , x 2 ≥ 0 ( 24 
)
40 Abbas Khademi (University of Tehran) -Linear Programming Just because a linear programming problem has an unbounded feasible region does not imply that there is not a finite solution.

x 1 -x 2 = 1 2x 1 + x 2 = 6 ∇z(x 1 , x 2 ) = (2, -1)
Consider the linear programming problem below:

             max z(x 1 , x 2 ) = 1 2 x 1 -x 2 s.t. x 1 -x 2 ≤ 1 2x 1 + x 2 ≥ 6 x 1 , x 2 ≥ 0 ( 25 
)
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x 1 -x 2 = 1 2x 1 + x 2 = 6 ∇z(x 1 , x 2 ) = (2, -1)
         min z(x 1 , x 2 ) = 2x 1 -x 2 s.t. x 1 -x 2 ≤ 1 2x 1 + x 2 ≥ 6 x 1 , x 2 ≥ 0 ( 

Theorem

The intersection of a finite number of convex sets in R n is convex.

Proof.

Let C 1 , . . . , C n ⊆ R n be a finite collection of convex sets. Let

C = n i=1 C i (27) 
be the set formed from the intersection of these sets. Choose This result would be useful for our LP problems.

x 1 , x 2 ∈ C and λ ∈ [0, 1]. Consider x = λx 1 + (1 -λ)x 2 . We know that x 1 , x 2 ∈ C 1 , . . . ,

Polyhedral Sets Definition (Hyperplane)

Let a ∈ R n be a constant vector in n-dimensional space and let b ∈ R be a constant scalar. The set of points

H = x ∈ R n |a T x = b (28)
is a hyperplane in n-dimensional space. Note the use of column vectors for a and x in this definition.

Definition (Half-Space)

Let a ∈ R n be a constant vector in n-dimensional space and let b ∈ R be a constant scalar. The sets of points

H -= x ∈ R n |a T x ≤ b (29) 
H + = x ∈ R n |a T x ≥ b (30) 
are the half-spaces defined by the hyperplane a T x = b.

Consider the two dimensional hyperplane (line) x 1 + x 2 = 1. Then the two half-spaces associated with this hyper-plane are shown below. A half-space is so named because the hyperplane a T x = b literally separates R n into two halves: the half above the hyperplane and the half below the hyperplane.
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Lemma

Every hyper-plane is convex.

Proof.

Let a ∈ R n and b ∈ R and let H be the hyperplane defined by a and b. Choose

x 1 , x 2 ∈ H and λ ∈ [0, 1]. Let x = λx 1 + (1 -λ)x 2
. By definition we know that:

a T x 1 = b a T x 2 = b
Then we have:

a T x = a T λx 1 + (1 -λ)x 2 = λa T x 1 + (1 -λ)a T x 2 = λb + (1 -λ)b = b (31)
Thus, x ∈ H and we see that H is convex. This completes the proof.

Extreme Points of a Polyhedral Set Definition (Extreme Points of a Polyhedral Set)

A point x 0 ∈ P is an extreme point of P if it has n linearly independent binding constraints.

Definition

An extreme point of P is called degenerate if it has more than n linearly independent binding constraints.

-For point x 0 ∈ P, we denote all the gradients of binding constraints at x 0 by G.

-For point x 0 ∈ P, we denote all the gradients of non-binding constraints at x 0 by Ḡ. 

Example

Consider the polyhedral set defined by the system of inequalities:

3x 1 + x 2 ≤ 120, x 1 + 2x 2 ≤ 160, 28 16 x 1 + x 2 ≤ 100, x 1 ≤ 35, x 1 ≥ 0, x 2 ≥ 0.
62 Abbas Khademi (University of Tehran) -Linear Programming In the other word, d ̸ = 0 is a (recession) direction of S if for all x 0 ∈ S the ray with vertex x 0 and direction d is contained entirely in S. Formally, for all x 0 ∈ S we have:

x

: x = x 0 + λd, λ ≥ 0 ⊆ S.
The set of feasible directions of in S denote by S ∞ .

Example

Consider the unbounded convex set below. This set has direction [1, 0] T . 

Example

Consider the polyhedral set defined by the equations: P is a polyhedral set in the positive orthant of R n with form: P = {x ∈ R n : Ax ≤ b, x ≥ 0}, then a direction d of P is characterized by the set of inequalities and equations Ad ≤ 0, d ≥ 0, d ̸ = 0.

x 1 -x 2 ≤ 1 2x 1 + x 2 ≥ 6 x 1 ≥ 0 x 2 ≥ 0
To isolate a unique set of directions, we can normalize and construct the set:

P ∞ N = {d ∈ R n : Ad ≤ 0, d ≥ 0, e T d = 1} (37)
here we are interested only in directions satisfying e T d = 1. This is a normalizing constraint that will chose only vectors whose components sum to 1.

• Now, given any face F of P, if r (F ) is the maximum number of linearly independent defining hyperplanes that are binding at all points feasible to F , then the dimension of F , denoted dim(F ), is equal to nr (F ).

• Based on this definition, we can easily see that an extreme point, which is the intersection n linearly independent hyperplanes is a face of dimension zero.

• Furthermore, the set P and the empty set are also sometimes called improper faces of P itself. The other faces are called proper faces.

• The highest dimensional proper face of P is called a facet of P.

• Finally, two extreme points of P are said to be adjacent if the line segment joining them is an edge of P.

Example

Consider the polyhedral set defined by the system of inequalities:

3x 1 + x 2 ≤ 120 x 1 + 2x 2 ≤ 160 28 16 x 1 + x 2 ≤ 100 x 1 ≤ 35 x 1 ≥ 0 x 2 ≥ 0
The polyhedral set is shown in the next Figure. 

Example

The extreme points of the polyhedral set are shown as large diamonds and correspond to intersections of binding constraints. Note the extreme point (16, 72) is degenerate since it occurs at the intersection of three binding constraints 3x 1 + x 2 ≤ 120, x 1 + 2x 2 ≤ 160 and 28 16 x 1 + x 2 <= 100. All the faces of the polyhedral set are shown in bold. They are locations where one constraint (or half-space) is binding. An example of a pair of adjacent extreme points is (16, 72) and (35, 15), as they are connected by the edge defined by the binding constraint 3x 1 + x 2 ≤ 120.

The matrix N is composed of the nm other columns of A not in B. We can similarly sub-divide the column vector x and write:

[B|N] x B x N = b (38) 
where the vector x B are the variables corresponding to the columns in B and the vector x N are the variables corresponding to the columns of the matrix N.

Definition (Basic Variables)

The variables in the vector x B are called the basic variables and the variables in the vector x N are called the non-basic variables.

We can use matrix multiplication to expand the left hand side of this expression as:

Bx B + Nx N = b (39) 
The fact that B is invertible. We can solve for basic variables x B in terms of the non-basic variables:

x B = B -1 b -B -1 Nx N (40) 
We can find an arbitrary solution to the system of linear equations by choosing values for the variables the non-basic variables and solving for the basic variable values using Equation 40.

Definition (Basic Solution)

When we assign x N = 0, the resulting solution for x is called a basic solution and 

We know that B is invertible since we assumed that A had full row rank. If we assume that x N = 0, then the solution x B = B -1 b (47) was called a basic solution. Clearly any basic solution satisfies the constraints Ax = b but it may not satisfy the constraints x ≥ 0.

Representation Theorem Theorem

Let P be a non-empty, bounded polyhedral set. Suppose that P has extreme points x 1 , . . . , x k . Then, x ∈ P, if and only if there exists constants λ 1 , . . . , λ k such that:

x = k i=1 λ i x i k i=1 λ i = 1 λ i ≥ 0 i = 1, . . . , k (48) 
A bounded polyhedral set is the convex hull of its extreme points.

96 Abbas Khademi (University of Tehran) -Linear Programming Representation Theorem for the General Case Theorem Let P be a non-empty, unbounded polyhedral set. Suppose that P has extreme points x 1 , . . . , x k and extreme directions d 1 , . . . , d ℓ . Then, x ∈ P, if and only if there exists constants λ 1 , . . . , λ k and µ 1 , . . . , µ ℓ such that: 
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  Abbas Khademi (University of Tehran) -Linear Programming Notation: A m×n = [a 1 , a 2 , ..., a n ] =
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  Abbas Khademi (University of Tehran) -Linear Programming Example 2 (The Transportation Problem)

Figure :

 : Figure: Feasible Region and Level Curves of the Objective Function

Figure

  Figure: A Linear Programming Problem with Unbounded Feasible Region, and Unbounded. 41 Abbas Khademi (University of Tehran) -Linear Programming

Figure

  Figure: A Linear Programming Problem with Unbounded Feasible Region and Finite Solution 43 Abbas Khademi (University of Tehran) -Linear Programming
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Figure :

 : Figure: Two half-spaces defined by a hyper-plane.

-

  With these setting, A ≡ G Ḡ and similarly b ≡ b b .

Figure : A

 : Figure: A Polyhedral Set: This polyhedral set is defined by five half-spaces and has a single degenerate extreme point located at the intersection of the binding constraints 3x 1 + x 2 ≤ 120, x 1 + 2x 2 ≤ 160 and 28 16 x 1 + x 2 <= 100. 63 Abbas Khademi (University of Tehran) -Linear Programming

Figure :

 : Figure: Convex Direction: Clearly every point in the convex set (shown in blue) can be the vertex for a ray with direction [1, 0] T contained entirely in the convex set. Thus [1, 0] T is a direction of this convex set.

Figure :

 : Figure: An Unbounded Polyhedral Set: This unbounded polyhedral set has many directions. One direction is [0, 1] T .

84

  Figure: A Polyhedral Set: This polyhedral set is defined by five half-spaces and has a single degenerate extreme point located at the intersection of the binding constraints 3x 1 + x 2 ≤ 120, x 1 + 2x 2 ≤ 160 and 28 16 x 1 + x 2 <= 100. All faces are shown in bold. 85 Abbas Khademi (University of Tehran) -Linear Programming

  x B = B -1 b (41)For the remainder of this Lecture, assume that A ∈ R m×n with full row rank and b∈ R m let X = {x ∈ R n : Ax = b, x ≥ 0} (45)be a polyhedral set.Recall we can separate A into an m × m matrix B and an m × (nm) matrix N and we have the result:x B = B -1 b -B -1 Nx N

1 λ

 1 i ≥ 0 i = 1, . . . , k µ j ≥ 0 1, . . . , ℓ (49) 97 Abbas Khademi (University of Tehran) -Linear Programming Example Representation of polyhedral sets in terms of extreme points and extreme directions The Representation Theorem is illustrated for a bounded & unbounded polyhedral set in next figure.

  1λ)x3 x = µx5 + (1µ) (λx2 + (1λ)x3) x1 x2 x3 λx2 + (1λ)x3x d1 x = λx2 + (1λ)x3 + θd1 98 Abbas Khademi (University of Tehran) -Linear Programming

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  Table below (columns). • The ingredients have the nutrient values and cost in Table below (rows).

	Nutrient	A	B	C	D	Cost/kg
	Ingredient 1 (g/kg)	100	80	40	10	40
	Ingredient 2 (g/kg)	200 150	20	0	60
	Min requirement (g/kg) 900 500 200 20	

Abbas Khademi (University of Tehran) -Linear Programming

Abbas Khademi (University of Tehran) -Linear Programming

Abbas Khademi (University of Tehran) -Linear Programming Bibliography I

Convex Sets and Polyhedral Sets Definition (Convex Set)

Let X ⊆ R n . Then the set X is convex if and only if for all pairs x 1 , x 2 ∈ X we have

Recall that if λ ∈ [0, 1], then the point λx 1 + (1λ)x 2 is on the line segment connecting x 1 and x 2 in R n . For example, when λ = 1/2, then the point λx 1 + (1λ)x 2 is the midpoint between x 1 and x 2 . In fact, for every point x on the line connecting x 1 and x 2 we can find a value λ ∈ [0, 1] so that x = λx 1 + (1λ)x 2 . Then we can see that, convexity asserts that if x 1 , x 2 ∈ X , then every point on the line connecting x 1 and x 2 is also in the set X .

Consider the hyper-plane 2x 1 + 3x 2 + x 3 = 5.

This hyperplane is composed of the set of points (x 1 , x 2 , x 3 ) ∈ R 3 satisfying 2x 1 + 3x 2 + x 3 = 5. This can be plotted implicitly or explicitly by solving for one of the variables, say x 3 . We can write x 3 as a function of the other two variables as:

Lemma

Every half-space is convex.

Proof.

Let a ∈ R n and b ∈ R. Without loss of generality, consider the half-space H -defined by a and b. For arbitrary x 1 and x 2 in H -we have: 

Thus we have shown that a T x ≤ b. The case for H + is identical with the signs of the inequalities reversed. This completes the proof.

Definition (Polyhedral Set)

If P ⊆ R n is the intersection of a finite number of half-spaces, then P is a polyhedral set. Formally, let a 1 , . . . , a m ∈ R n be a finite set of constant vectors and let b 1 , . . . , b m ∈ R be constants. Consider the set of half-spaces:

Then the set:

is a polyhedral set.

54 Abbas Khademi (University of Tehran) -Linear Programming

It should be clear that we can represent any polyhedral set using a matrix inequality. The set P is defined by the set of vectors x satisfying:

where the rows of A ∈ R m×n are made up of the vectors a 1 , . . . , a m and b ∈ R m is a column vector composed of elements b 1 , . . . , b m . So,

Theorem

Every polyhedral set is convex.

Exercise. Prove Theorem.

55 Abbas Khademi (University of Tehran) -Linear Programming Definition (Ray) Let x 0 ∈ R n be a point and and let d ∈ R n be a vector called the direction. Then the ray with vertex x 0 and direction d is the collection of points {x|x = x 0 + λd, λ ≥ 0}.

Rays are critical for understanding unbounded convex sets. Specifically, a set is unbounded, in a sense, only if you can show that it contains a ray. 

Theorem

The feasible region of any LP problems is a convex set.

Theorem

The optimality region (i.e., the region where optimal value is attained) of any LP problems is a convex set.

Lemma

Polyhedral sets are closed sets. Let C be a convex set. A point x 0 ∈ C is a extreme point (or vertex) of C if there are no points x 1 and x 2 (x 1 ̸ = x 0 or x 2 ̸ = x 0 ) so that

Consider the following polyhedral set:

where

Definition (Binding Constraint)

We say that a constraint

-Similarly, at point x 0 , the constraint a i x 0 = b i is non-binding when we have a i x 0 < b i .

-When we say hyperplanes H 1 , H 2 , ..., H k ⊂ R n are linearly independent, meaning the gradient (normal vector) of these hyperplanes are linearly independent.

Theorem

Consider the following polyhedral set:

Let x 0 ∈ P, and G be matrix of all the gradients of binding constraints (from the set defining P) at x 0 . Then that the following statements are equivalent:

1 The point x 0 is an extreme point of P, in the sense of the definition extreme point of a convex set. 2 The point x 0 is an extreme point of P, in the sense of the definition extreme points of a polyhedral set. 3 r (G) = n (i.e., there are n linearly independent constraints that are active at x 0 ).

Proof. In class.

Does every polyhedral have extreme points?

No. For example, half spaces. So when does a set have an extreme point?

Theorem

Let A be an m × n matrix, and P = {x ∈ R n : Ax ≤ b} be a non-empty polyhedral set. P has an extreme point ⇐⇒ r (A) = n.

Theorem

Every non-empty polyhedral set in which all variables be non-negative has an extreme point. Let f : R n → R be a function, and the goal is minimizing f . A vector

Lemma

Let f (x) = cx be a linear function over R n , and the goal is minimizing f . Then, d ̸ = 0 is improving direction of f at any x ∈ R n ⇐⇒ cd < 0.

⋆ What shall be changed when goal was maximizing f ?

Definition (Feasible Direction)

Let S ⊂ R n and x 0 ∈ S. A vector d ̸ = 0 is a feasible direction in x 0 if there exists δ > 0 such that x 0 + λd ∈ S,

The set of feasible directions in x 0 denote by F (S; x 0 ).

Theorem

Let P = {x ∈ R n : Ax ≤ b} be a polyhedral set, x 0 ∈ P, and G be matrix of all the gradients of active constraints at x 0 . Then

Extreme Directions 

Definition (Extreme Direction)

Let C ⊆ R n be a convex set. Then a direction d of C is an extreme direction if there are no two distinct directions d 1 and

Theorem

A direction d ∈ P ∞ N is an extreme direction of P if and only if d is an extreme point of P ∞ N when P ∞ N is taken as a polyhedral set.

Some Remarks

Let P be a non-empty polyhedral set. Then the set of directions of P is empty if and only if P is bounded.

Let P be a non-empty unbounded polyhedral set. Then the number extreme directions of P is finite and non-zero.

Let P be a non-empty unbounded polyhedral set and let P has an extreme point.

Then the set of directions of P is non-empty if and only if P is unbounded.

Why are the above points valid?

On Extreme Directions 

Definition (Extreme Direction)

Let C ⊆ R n be a convex set. Then a direction d of C is an extreme direction if there are no two distinct directions d 1 and

On Extreme Directions Theorem

Let A ∈ R m×n , and P = {x ∈ R n : Ax ≤ b, x ≥ 0}. By setting

where e ⊤ = (1, 1, ..., 1) ⊤ ∈ R n , we have the following 1 If d is an extreme point of P ∞ N , then d is an extreme direction of P. 2 If d is an extreme direction of P, then d e ⊤ d is an extreme point of P ∞ N . Proof. Leave as homework.

Remark. The above Theorem is only valid for a polyhedral set in the positive orthant of R n (i.e., x ≥ 0) with form:

If we assume that P = {x ∈ R n : Ax ≤ b, x ≥ 0}, then the set of extreme directions of P is the same as the set of extreme points of the set

Then we have the set of directions d = [d 1 , d 2 ] T so that: 

On Polyhedral Sets

Let P be a polyhedral set defined by

Definition (Face)

If F ⊆ P is defined by a non-empty set of binding linearly independent hyperplanes, then F is a face of P.

Redundant Constraints

Let P be a polyhedral set defined by P = {x ∈ R n : a i x ≤ b i , i = 1, . . . , m}.

Definition

If x 0 is an extreme point of P and more than n hyperplanes are binding at x 0 , then x 0 is called a degenerate extreme point.

Definition (Geometrically Redundant Constraint)

Inequality a ℓ x ≤ b ℓ is called (geometrically) redundant or irrelevant to the polyhedral set P, when this inequality is disregarded the polyhedral set is not affected, i.e.,

• Note that degeneracy is not always simply the result of redundant constraints.

Solving Systems with More Variables than Equations

Suppose that A ∈ R m×n where m ≤ n. Let b ∈ R m . Then the equation:

has more variables than equations and is underdetermined and if A has full row rank then the system will have an infinite number of solutions. We can formulate an expression to describe this infinite set of solutions.

Sine A has full row rank, we may choose any m linearly independent columns of A corresponding to a subset of the variables, say x i 1 , . . . , x im . We can use these to form the matrix

from the columns a i 1 , . . . , a im of A, so that B is invertible. We can then use elementary column operations to write the matrix A as:

Example

Consider the problem:

Then we can let x 3 = 0 and:

We then solve:

Other basic solutions could be formed by creating B out of columns 1 and 3 or columns 2 and 3.

Definition (Basic Feasible Solution (BFS))

If x B = B -1 b and x N = 0 is a basic solution to Ax = b and x B ≥ 0, then the solution (x B , x N ) is called basic feasible solution.

Theorem

Let A ∈ R m×n with r (A) = m < n, b ∈ R m , and let X = {x ∈ R n : Ax = b, x ≥ 0} be a (standard) polyhedral set. Then prove that the following statements are equivalent: 1 x 0 ∈ X is a BFS. 2 x 0 ∈ X is an extreme point.

3 Set {a j : x 0 j > 0} is a linearly independent set. Proof. In class.

Definition (Degenerate Basic Feasible Solutions)

A BFS is called a degenerate basic feasible solution when at least one of the basic variable is zero.

Theorem

Assume that A ∈ R m×n with full row rank and b ∈ R m let X = {x ∈ R n : Ax = b, x ≥ 0} be a polyhedral set. Then,

x 0 ∈ X is a degenerate BFS ⇐⇒ x 0 ∈ X is a degenerate extreme point. Proof. In class.

94 Abbas Khademi (University of Tehran) -Linear Programming Definition (Convex Combination)

Definition (Convex Hull)

The set conv(v 1 , ..., v k ) ⊆ R n , called the convex hull of v 1 , ..., v k , is the set of all convex combinations of v 1 , ..., v k ∈ R n .

Example

The Representation Theorem: Extreme points and extreme directions are used to express points in a bounded and unbounded set.

This example illustrates simply how one could construct an expression for an arbitrary point x inside a polyhedral set in terms of extreme points and extreme directions. 

Corollary

Let S has an extreme point. Problem LP has an optimal solution if and only if cd i ≥ 0 for all i = 1, . . . ℓ when d 1 , . . . , d ℓ are the extreme directions of S. the set of all optimal solutions of this problem denoted by O.

1 O is a polyhedral set.

2 The set of extreme points of O is the same as the set of extreme optimal points of X . 3 The set of extreme directions of O is the same as the set of extreme directions of X , which are orthogonal to c. Proof. Leave as homework.

Representation Theorem for Optimal solutions Set x ≥ 0

Assume that E 1 is the set of extreme optimal points of X , and E 2 is the set of extreme non-optimal points of X . As well as, assume that D 1 = {d ∈ X ∞ N : cd = 0}, and D