
HAL Id: hal-04119928
https://hal.science/hal-04119928

Submitted on 7 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

GPU-Enabled Asynchronous Multi-level Checkpoint
Caching and Prefetching

Avinash Maurya, M Mustafa Rafique, Thierry Tonellot, Hussain J Alsalem,
Franck Cappello, Bogdan Nicolae

To cite this version:
Avinash Maurya, M Mustafa Rafique, Thierry Tonellot, Hussain J Alsalem, Franck Cappello, et
al.. GPU-Enabled Asynchronous Multi-level Checkpoint Caching and Prefetching. HPDC’23: 32nd
International Symposium on High-Performance Parallel and Distributed Computing, ACM; IEEE,
Jun 2023, Orlando, United States. �10.1145/3588195.3592987�. �hal-04119928�

https://hal.science/hal-04119928
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


GPU-Enabled Asynchronous Multi-level Checkpoint Caching and
Prefetching

Avinash Maurya
Rochester Institute of Technology

Rochester, NY, USA
am6429@cs.rit.edu

M. Mustafa Rafique
Rochester Institute of Technology

Rochester, NY, USA
mrafique@cs.rit.edu

Thierry Tonellot
Exploration and Petroleum

Engineering Advanced Research
Center, Saudi Aramco
Dhahran, Saudi Arabia

thierrylaurent.tonellot@aramco.com

Hussain J. AlSalem
Exploration and Petroleum

Engineering Advanced Research
Center, Saudi Aramco
Dhahran, Saudi Arabia

hussain.salim.2@aramco.com

Franck Cappello
Argonne National Laboratory

Lemont, IL, USA
cappello@anl.gov

Bogdan Nicolae
Argonne National Laboratory

Lemont, IL, USA
bnicolae@anl.gov

ABSTRACT
Checkpointing is an I/O intensive operation increasingly used by
High-Performance Computing (HPC) applications to revisit pre-
vious intermediate datasets at scale. Unlike the case of resilience,
where only the last checkpoint is needed for application restart
and rarely accessed to recover from failures, in this scenario, it is
important to optimize frequent reads and writes of an entire history
of checkpoints. State-of-the-art checkpointing approaches often
rely on asynchronous multi-level techniques to hide I/O overheads
by writing to fast local tiers (e.g. an SSD) and asynchronously flush-
ing to slower, potentially remote tiers (e.g. a parallel file system)
in the background, while the application keeps running. However,
such approaches have two limitations. First, despite the fact that
HPC infrastructures routinely rely on accelerators (e.g. GPUs), and
therefore a majority of the checkpoints involve GPU memory, ef-
ficient asynchronous data movement between the GPU memory
and host memory is lagging behind. Second, revisiting previous
data often involves predictable access patterns, which are not ex-
ploited to accelerate read operations. In this paper, we address these
limitations by proposing a scalable and asynchronous multi-level
checkpointing approach optimized for both reading and writing of
an arbitrarily long history of checkpoints. Our approach exploits
GPU memory as a first-class citizen in the multi-level storage hier-
archy to enable informed caching and prefetching of checkpoints
by leveraging foreknowledge about the access order passed by the
application as hints. Our evaluation using a variety of scenarios un-
der I/O concurrency shows up to 74× faster checkpoint and restore
throughput as compared to the state-of-art runtime and optimized
unified virtual memory (UVM) based prefetching strategies and at

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
HPDC ’23, June 16–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0155-9/23/06. . . $15.00
https://doi.org/10.1145/3588195.3592987

least 2× shorter I/O wait time for the application across various
workloads and configurations.
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1 INTRODUCTION
Motivation. High-Performance Computing (HPC) applications

produce massive amounts of distributed intermediate data dur-
ing their execution that needs to be checkpointed concurrently
by a large number of processes in real-time at scale. This is a fun-
damental I/O pattern used in a wide range of scenarios [35]: re-
silience based on checkpoint-restart, producer-consumer patterns
in workflows (e.g., simulations coupled with analytics of intermedi-
ate checkpoints), reproducibility efforts (e.g., validation of interme-
diate checkpoints in addition to the end results), revisiting previous
states to advance a computation, etc.

Some scenarios like checkpoint-restart involve frequent writes of
checkpoints, but only need to retain a few latest checkpoints, which
are only occasionally read back for restoring workloads in case of
failures. However, many other scenarios require retaining the entire
(or most of the) history of checkpoints produced during runtime
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and need to read them back with high frequency, sometimes even
higher than the write frequency. For example, reproducibility ef-
forts need to write checkpoints that represent intermediate results
and/or performance measurements during the runtime of an ap-
plication, then read them back in the same order in which they
were produced to check for invariants and/or compare multiple
runs to identify where they begin to diverge [33]. As another ex-
ample, the adjoint state method used for automated differentiation
(AD) [31], involves a forward pass that produces a large number of
checkpoints and a backward pass that reads them back in reverse
order. This is popular in a variety of scientific applications, such as
climate and ocean modeling, multi-physics, and seismic imaging
in the oil industry [32, 43] and deep learning [40]. Binomial check-
pointing [39, 41] is another popular approach extensively used by
applications such as quantum optimal control to enable execution
of memory-bound AD applications [24] where the forward pass
generates only a subset of checkpoints, while the backward pass
recomputes missing checkpoints by triggering smaller forward
passes, which themselves may generate new checkpoints. Such
interleavings introduce the need to write and read checkpoints
in any predefined order. Similarly, coupled workflows that involve
producer-consumer patterns rely on intermediate checkpoints to
exchange data (e.g., simulations that produce intermediate check-
points consumed by analytics, data batches produced in real-time
and consumed by ML/DL models, etc.) also often need to access the
checkpoint history in a predefined order (e.g., based on priority).

These scenarios have two important aspects in common. First,
the frequency of writing and reading back checkpoints is much
higher than in the case of resilience. Second, there is a large number
of processes, each of which needs to read andwrite large checkpoint
sizes. For example, RTM [32] (reverse time migration) scenarios
used in the oil industry need to run an entire ensemble of adjoint
computation instances that run concurrently and cover a diverse
spectrum of wavelength frequencies. There can be hundreds of
instances, each of which needs to access a history of checkpoints
that reaches up to hundreds of TBs, with a frequency of reads and
writes in the order of milliseconds. For example, an instance corre-
sponding to a wavelength frequency of 100 Hz runs on eight Nvidia
V100 GPUs (one process per GPU) and generates checkpointing
data at 20 GB/s per GPU, amounting to ∼200 TB of checkpointing
data over 1300 seconds for all eight processes.

Limitations of State-of-the-Art. Checkpointing and I/O run-
times (e.g., VELOC [25, 26], ADIOS [11], SCR [22], and FTI [29])
often make use of multi-level strategies that leverage hierarchic
node-local storage tiers (e.g., GPU memory, host memory, non-
volatile memory, and SSDs) to flush the checkpoints to the slower
tiers asynchronously. Specifically, the application is blocked only for
the duration of the writes to the fastest tier, while other cascading
transfers to the slower tier proceed concurrently in the background.
However, multi-level strategies that retain high performance and
scalability for both writing and reading checkpoints have received
comparatively less attention.

One solution to address this gap is to complement multi-level
asynchronous flushing with multi-level asynchronous prefetching,
which solves the opposite problem: read the checkpoints in ad-
vance from the slowest tiers to the fastest tiers concurrently in the

background to reduce the duration of read operations when the
application issues them. Although prefetching strategies have been
extensively studied in the context of I/O subsystems, in our case
there are several important challenges. First, writing and reading
checkpoints concurrently creates a complex producer-consumer
interleaving, which means that independent strategies specifically
optimized for checkpointing and prefetching may perform sub-
optimally when combined together. Second, for a majority of HPC
applications, the read order of checkpoints is deterministic for long
periods of the runtime and is often fully known in advance, which
can be leveraged to optimize both the prefetching decisions and
eviction policies. Third, the rise in the popularity of high bandwidth
memory (HBM) [9] available in accelerators, such as GPUs, opens
new opportunities to leverage the spare capacity for caching but
complicates the interactions with the other node-local storage tiers.

Key Insights and Contributions. To address these challenges,
we propose an asynchronous multi-level strategy specifically opti-
mized to leverage synergies between checkpointing and prefetching
to minimize the I/O overheads of reading and writing checkpoints
under concurrency. The novelty of our proposal is to manage the
entire life cycle of the checkpoints by leveraging foreknowledge
about the order in which the checkpoints will be consumed in the
future using application-level hints. This enables an optimized de-
sign of caching, prefetching, and eviction strategies across multiple
tiers, including the high bandwidth memory available in GPUs. We
summarize our contributions as follows:

(1) We formulate the problem of asynchronousmulti-level check-
pointing and prefetching on hierarchic storage tiers for sce-
narios in which checkpoints are frequently read and written
in a producer-consumer fashion under concurrency with
deterministic patterns (Section 2).

(2) We propose a series of design principles and algorithms
for managing a limited cache space on both individual and
shared heterogeneous storage tiers of the compute nodes.
Specifically, we introduce key ideas, such as checkpoint life
cycle based on a state machine that combines flushing and
prefetching, score-based eviction of consecutive checkpoints
that are the least likely to cause I/O bottlenecks as a group
in the future, management of fragmentation (Section 4.1).

(3) We illustrate these design principles and proposed algo-
rithms as an extension to VELOC [25, 26], a production-ready
HPC checkpoint-restart library. In this context, we take ad-
vantage of CUDA-enabled GPUs to provide fast node-local
caching (Section 4.3).

(4) We evaluate our proposed approach in a series of experi-
ments conducted on the Nvidia DGX-A100 [28] platform.
Our experiments use two workloads consisting of uniform
and variable-sized checkpoints obtain from traces of RTM [2]
(reverse time migration), a real-life application used in the
oil and gas industry (Section 5). These experiments show
an order of magnitude higher read and write throughput
compared with state-of-art approaches.

Limitations of the ProposedApproach. Our approach assumes
that the checkpoints are monolithic objects for which partial writes
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and reads are not allowed. Furthermore, we assume that each check-
point remains immutable after a write request at least until it is read
back. While these assumptions limit the scope of our proposal com-
pared with generic, system-level caching and prefetching solutions,
they also enable significant optimization opportunities.

The rest of the paper is organized as follows. In Section 2, we
describe the problem of checkpoint and restore of GPU-resident
data structures using asynchronous multi-tier I/O operations. In
Section 3, we summarize existing efforts and approaches that are
related to the scope of this paper. In Section 4, we explain our
proposed system design, describe our design principles and gap-
aware scoring-based eviction algorithm for efficient checkpoint
and prefetch overlaps, and provide the implementation details. In
Section 5, we describe our evaluations using diverse applications
and system configurations and show a significant improvement in
the application performance as compared to the state-of-the-art
techniques. Finally, in Section 6, we conclude this paper.

2 PROBLEM FORMULATION
Consider an HPC application that runs on 𝑁 compute nodes, each
of which is equipped with multiple GPUs and features a hierarchy
of node-local storage (high-bandwidth GPU memory, host memory,
SSDs) and access to remote storage (e.g., parallel file systems [36],
object stores [17]). The HPC application is composed of 𝑃 processes,
each of which is assigned to a single GPU of each compute node and
is allocated a fixed cache size on each of the node-local storage tiers.
While the GPU caches are used separately by the processes, the rest
of the caches are shared, competing for the I/O bandwidth at either
node level (host memory, SSDs) or globally (remote storage). We
assume that the SSD has enough capacity to hold all checkpoints
of a single node, while the remote storage has enough capacity to
hold all checkpoints of all nodes.

The processes perform computations either independently or
in a tightly coupled fashion. Each process produces a history of
𝐾 intermediate datasets in the GPU memory assigned to it. These
intermediate datasets need to be checkpointed and revisited later
by the same process, by using the node-local storage hierarchy
to swap in and out the checkpoint data as needed. To revisit an
intermediate dataset, we need to “restore” it from a checkpoint. The
restore order is known to a large extent in advance and specified at
runtime by the application. However, the order is simply considered
as a hint and the application is allowed to deviate from it at the
expense of a potential performance penalty. Once a checkpoint
is restored, it is considered consumed by the application and will
either be discarded or will not be accessed again before any other
unconsumed checkpoint in the history.

The following conditions apply: (1) during a checkpoint request,
a process blocks until the checkpoint has been fully copied to the
GPU cache, after which control is returned back to the application.
Meanwhile, the checkpoint is asynchronously flushed to the slower
tiers; (2) a process is allowed to read a checkpoint it has previously
written even if the asynchronous flushes to slower tiers are still
pending; (3) to speed up restore requests, the checkpointing run-
time is allowed to prefetch checkpoints based on the restore order
specified by each process; (4) to avoid trashing, once a checkpoint
has been prefetched on the GPU cache, it can only be evicted after

it was consumed; and (5) if a checkpoint was consumed and can be
discarded, any of its pending flushes to other tiers are not required
to complete successfully.

We aim to design and implement an asynchronous multi-level
strategy that minimizes the I/O overheads of both reading and writ-
ing checkpoints from the application perspective while satisfying
the aforementioned conditions.

3 RELATEDWORK
3.1 HPC Checkpoint-Restart
Checkpoint-Restart techniques are traditionally used to provide
resilience for HPC applications. Transparent fault tolerance ap-
proaches (BLCR [12]) automatically capture the full state of a group
of processes, at the expense of generating large checkpoint sizes that
cannot be used for any other purpose than resuming the process
execution. Application-level fault tolerance approaches (FTI [29],
SCR [22], VELOC [25], Canary [5]) require the user to define the
critical data structures and reconstruct a consistent state from them
on restart. This enables many use cases beyond resilience, includ-
ing the scenario targeted in this paper. However, such approaches
typically focus on checkpointing performance, with comparatively
less attention dedicated to restart performance. Both approaches
can be complemented by asynchronous multi-level strategies to
ensure checkpoint durability. They include optimized flushes from
faster to slower tiers [25], but also complementary strategies such
as partner replication and erasure coding.

3.2 Workflow Engines
To enable efficient coupling between different HPC application
components, several workflow engines have been extensively ex-
plored [7, 21, 23]. In addition to addressing the placement and
scheduling of application tasks, the increasing data-centric nature
of HPCworkloads has brought attention to several aspects: complex
data redistribution and block-level parallelism (e.g. DIY [23] and
Decaf [7]), data staging and publish-subscribe (e.g. DataSpaces [13]),
in-situ engines (e.g. ADIOS2 [11]), coroutines (e.g., Henson [21]).
While they provide flexible data pipelines, they are typically opti-
mized for coarse-grained I/O between different tasks with different
access patterns and caching requirements.

3.3 GPU Checkpointing
Checkpoint-restore techniques have been extended to GPUs, both
for fault-tolerance [27, 29] and workload migration [27, 42]. System-
level checkpointing libraries such as NVCR [27], transparently
record and replay the memory-based CUDA APIs for checkpoint-
ing and restoring. Approaches such as CheckFreq [20] and Multi-
layered Buffered System [3] also exploit heterogeneous storage tiers.
However, none of these efforts consider the case of dedicated cache
regions on the GPU and host memory. Furthermore, they typically
focus on caching and prefetching of single snapshots rather than
collections of snapshots.

3.4 Caching and Prefetching
Cache management for many-core processors and deep hierarchies
has been explored in various contexts, e.g., location awareness [19,
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30], locality-aware data access control [37], software-defined cache
hierarchies [38], and urgency-based prioritization of I/O across
caching hierarchies [14]. Several approaches specifically focus on
the problem of prefetching for HPC using multi-tiered storage,
notably eliminating cache pollution and redundancy [6] and user-
level access pattern modeling [34]. Of particular relevance are data
pipelines in the context of machine learning. These abstractions
(e.g. Nvidia DALI [44]) are used by AI runtimes (e.g., Tensorflow,
PyTorch) during model training for sampling the training data. This
is often achieved using pseudo-random number generators, whose
seed can be exploited to enable foreknowledge about the access
order, and, subsequently, optimized prefetching based on reuse
distance [8, 16]. Such approaches treat the problem of caching and
prefetching separately, without exploiting synergies between the
interleaving of producer-consumer checkpointing patterns. While
this limits the performance and scalability of such approaches in
the scenarios we consider, several ideas are complementary to our
proposal and could be used to enhance our proposal.

To our best knowledge, we are the first to consider the case of com-
bined asynchronous multi-level strategies for flushing and prefetching
of checkpoints that exploit foreknowledge about the access order.

4 SYSTEM DESIGN
4.1 Design Principles
4.1.1 Dynamic Foreknowledge of Read Order using Prefetching
Hints. As mentioned in Section 2, we assume that a large part
of the checkpoint read order is known in advance, which enables
optimized prefetching. In the ideal case, the order is fixed from the
beginning and remains static (e.g., adjoints such as RTM [32] and
quantum optimal control [24] produce a fixed number of check-
points revisited in reverse order). However, many applications have
partial foreknowledge of the checkpoint read order, which may
evolve based on various runtime conditions. To accommodate the
need for dynamic foreknowledge, we propose to maintain a sepa-
rate restore order queue for each process. The queue can be used by
each process to programmatically enqueue as many hints about the
future read requests as it desires (potentially covering the whole
checkpoint history from the beginning) at runtime. These appli-
cation hints can be enqueued at any time and can be interleaved
with checkpoint and restore requests. For simplicity, we assume
that once enqueued, hints cannot be revoked, i.e., the application
is not allowed to “change its mind”. Note that the application does
not need to provide the hints directly; they can also be provided by
higher-level I/O middleware, e.g., by using predictors [6]. Further-
more, since the hints have an advisory role, i.e., the read requests
can deviate from the hints, our proposal is not limited in its appli-
cability to the general case.

4.1.2 Shared Multi-level Cache Hierarchy for Flush/Prefetch. Asyn-
chronous flushing of checkpoints over a multi-level cache hierarchy
involves cascading data transfers from the fastest (GPU memory)
tier to the slowest (SSD or parallel file system) tier, while asyn-
chronous prefetching of checkpoints follows the opposite path. A
naive strategy could simply manage a separate space on each tier to
handle the flushing and prefetching strategies separately. Such an

INIT

Write in
Progress

Read in
Progress

Eligible for  
eviction

Not eligible  
for eviction

Checkpointing Prefetching*

Write
Complete

Read
Complete

Flushed Consumed

* Checkpoints entering any 
of the prefetching states can 
be evicted only by the  
"Consumed" state

Eligible only when 
not transitioned 
into prefetching

Figure 1: Life cycle of each checkpoint represented as a finite-
state machine.

approach is simple to design and implement because it requires min-
imal coordination between flushing and prefetching. However, it
has twomajor disadvantages. First, it leads to high under-utilization
of the scarce cache space (especially GPU memory). Second, it leads
to uncontrolled competition for shared I/O bandwidth between the
flushing and prefetching. Both of these aspects result in signifi-
cant degradation of I/O performance and scalability. Therefore, a
key design choice in our approach is to maximize the cache shar-
ing and control the competition between flushing and prefetching
across as many processes as possible, allowing the application to
run prefetches in parallel with the flushes.

4.1.3 Unified Flush/Prefetch Support using Finite-State Machine
Life Cycle. Even with improved cache utilization due to maximized
sharing across the cache tiers, the available capacity on each tier
is typically limited and therefore evictions to slower tiers are un-
avoidable. However, unlike the case of a traditional cache where
the benefits of not evicting an object are well-understood (e.g., evict
the least frequently used object), the interleaving of flushes and
prefetches mandates a new model to uniquely identify the validity
of evictions across the cache tiers for a producer-consumer pattern.
To this end, we introduce a life cycle for every checkpoint instance
on all cache tiers. The life cycle is illustrated in Figure 1 and is based
on a finite-state machine. Specifically, every new checkpoint is born
into the INIT state and transitions into either the Checkpointing
path or the Prefetching path, depending on whether it serves a
checkpoint or restore request. In the Checkpointing path, the check-
point waits in theWrite in Progress state until the pending transfers
from the faster (or the application buffer) to the slower cache tier
have finished. Then, it transitions into the Write Complete state. If
no pending restore or prefetch request exists for the checkpoint,
then it transitions further into the Flushed state, which makes it
eligible for eviction. If the checkpoint was successfully flushed and
evicted from the cache, then a subsequent prefetch hint will trigger
the Prefetching path. In this case, the checkpoint waits in the Read
in Progress state until the pending transfers from the slower to the
faster cache tier are complete, which transitions it into the Read
Complete state. Otherwise, the checkpoint is either in the process
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of being flushed or was already flushed but not evicted yet. In this
case, the checkpoint transitions directly into the Read Complete
state. Regardless of how this state was reached, the checkpoint will
not be evicted until the restore request has finished copying the
data to the application buffer, which triggers a final transition into
the Consumed state, at which point the checkpoint is again eligible
for eviction. Using this approach, individual checkpoints are aware
of any concurrent flushes and prefetches that affect them across
all cache tiers, thereby mitigating the competition and improving
the caching utilization for the combined checkpoint and restore
request interleaving.

4.1.4 Contiguous Cache Buffer Pre-allocation and Pinning. Allocat-
ing memory on the cache tiers on-demand to hold the checkpoints
is expensive. For some types of cache tiers, the allocation cost is
higher than the transfer cost. For example, on Nvidia A100 GPU
HBM, memory allocation speed and GPU-to-GPU transfer speed
are about 1 TB/s. However, pinned memory can be allocated on
the host cache at about 4 GB/s, whereas the GPU cache-to-host
cache transfer speed is about 25 GB/s. Therefore, in our design, we
opt to pay the expensive allocation cost (and, where applicable, the
pinning cost) upfront at the initialization time by using a single
contiguous cache buffer on each node-local storage tier per process,
which is reused for the whole application runtime. It is worthwhile
to note that such a reuse strategy can also be complemented by tech-
niques to hide the overhead of memory pinning asynchronously, as
described in [18]. However, this is outside the scope of this paper.

4.1.5 Fragmentation Mitigation of Cache Buffers. When the check-
point sizes are identical, the management of the cache buffer is
straightforward: each eviction creates a gap that is large enough to
accommodate a new checkpoint. However, when the checkpoint
sizes are not identical (e.g., because they are compressed) it is diffi-
cult to avoid fragmentation. For example, compressed checkpoint
sizes are difficult to predict in advance, and even if it were possi-
ble to predict them, the interleaving of producing and consuming
checkpoints under concurrency will lead to many small contiguous
gaps in the cache buffer that cannot be individually used to hold a
new checkpoint, even if their combined size would be sufficient to
do so. To solve this problem, we propose a fragmentation mitigation
approach that is closely coupled with the eviction strategy: we take
into consideration not only what checkpoints are the best candi-
dates for eviction, but also how these checkpoints are bordering the
gaps around them. This leads to interesting trade-offs. For example,
a small checkpoint may not be a good candidate for eviction by
itself but becomes so if it is surrounded by large gaps. Furthermore,
evictions of single checkpoints may not be sufficient to accommo-
date new writes of large checkpoints. Thus, we have to determine
the value of evicting an entire contiguous region in the cache tier
that is potentially made of interleaving of gaps and checkpoints. To
this end, we introduce a gap-aware eviction strategy that coalesces
gaps and checkpoints during evictions to form a single contiguous
gap where we can fit a new checkpoint.

4.1.6 Gap-aware Eviction Policy based on Sliding-window Scoring.
We propose a strategy to identify the value of contiguous regions
considered for evictions that works as follows: we start by assigning
each checkpoint a score that indicates the estimated overhead on

1 VELOC_Init(MPI_World, config_file);
2 for (int ver=num_ckpts-1; ver >= 0; ver--)
3 VELOC_Prefetch_enqueue(ver);
4 VELOC_Mem_protect(1, ptr, size);
5 for (int ver=0; ver < num_ckpts; ver++) {
6 compute_and_compress<<<nb, nt>>>(ptr);
7 VELOC_Checkpoint(ckpt_name, ver);
8 }
9 VELOC_Prefetch_start();
10 for (int ver=num_ckpts-1; ver >= 0; ver--) {
11 size_t size = VELOC_Recover_size(ver, 1);
12 VELOC_Mem_protect(1, ptr, size);
13 VELOC_Restart(ver);
14 uncompress_and_compute<<<nb, nt>>>(ptr);
15 }

Listing 1: Example of prefetching API usage: Application
reading back checkpoints in reverse order (new APIs high-
lighted with blue background).

the future restore requests it causes if it were allowed to be evicted.
This score is derived from several aspects. First, we obviously prefer
consumed checkpoints, followed by flushed checkpoints (which are
immediately evictable). If there is a flush pending on a checkpoint
and no prefetch in progress, then we prefer the checkpoint whose
estimated flush completion time is the smallest based on its size and
the bandwidth between the cache tiers. This minimizes the wait
time until the transition into the Flushed state makes the checkpoint
evictable. Third, we prefer to evict a checkpoint for which there is
either no prefetching hint available, or otherwise, its prefetching
hint is the farthest away from the head of the restore order queue,
i.e., it will be restored last. This excludes any checkpoint for which
a prefetch has already started and thus, according to its life cycle,
it is not evictable. For the purpose of scoring, gaps are treated like
regular checkpoints and have the highest eviction priority. Once
we obtained a score for each checkpoint, we combine the scores of
consecutive gaps and checkpoints until a window is obtained that
is large enough to accommodate a new checkpoint. Then, we slide
this window of variable size over the entire cache buffer and retain
the best performer. This process is detailed in Section 4.2.

4.2 Gap-aware Eviction Policy
In this section, we propose an algorithm for the gap-aware evic-
tion strategy introduced in Section 4.1. As outlined in Algorithm 1,
this strategy aims to identify the set of consecutive fragments (rep-
resented either by checkpoints or gaps in the cache buffer) such
that: (1) they form a gap in the cache buffer that is large enough to
write a new checkpoint 𝑐𝑘𝑝𝑡_𝑛𝑒𝑤 of size 𝑠𝑖𝑧𝑒_𝑛𝑒𝑤 ; (2) the impact,
measured as blocking duration, on subsequent restore requests is
minimized. Note that writing a checkpoint into the cache buffer can
be triggered either by a checkpoint request or a prefetch operation.

We assume that the cache buffer keeps an allocation table𝐴 for its
checkpointswith tuples of the form ⟨𝑐𝑘𝑝𝑡_𝑖𝑑, 𝑜 𝑓 𝑓 𝑠𝑒𝑡, 𝑠𝑖𝑧𝑒, 𝑠𝑡𝑎𝑡𝑒_𝑡𝑠⟩,
where 𝑐𝑘𝑝𝑡_𝑖𝑑 denotes its unique id,𝑜 𝑓 𝑓 𝑠𝑒𝑡 and 𝑠𝑖𝑧𝑒 mark segments
of the cache buffer occupied by the checkpoint, and 𝑠𝑡𝑎𝑡𝑒_𝑡𝑠 is the
estimated time left at which the checkpoint will reach an evictable
state in its life cycle (either Flushed or Completed). We also assume
that we have access to the restore order queue, denoted 𝑃 .
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Algorithm 1: Score-based look-ahead cache eviction.
Input : ⟨𝑐𝑘𝑝𝑡_𝑛𝑒𝑤, 𝑠𝑖𝑧𝑒_𝑛𝑒𝑤⟩: checkpoint to written to the

cache buffer and its size; 𝐴: the allocation table of the
cache buffer, holding tuples ⟨𝑐𝑘𝑝𝑡_𝑖𝑑 , 𝑜 𝑓 𝑓 𝑠𝑒𝑡 , 𝑠𝑖𝑧𝑒 ,
𝑠𝑡𝑎𝑡𝑒_𝑡𝑠 ⟩; 𝑃 : restore order

Output : index of 𝑐𝑘𝑝𝑡_𝑡𝑎𝑟𝑔𝑒𝑡 in 𝐴

1 Function score_eviction(⟨𝑐𝑘𝑝𝑡_𝑛𝑒𝑤, 𝑠𝑖𝑧𝑒_𝑛𝑒𝑤⟩, 𝐴, 𝑃):
2 𝑛 = |𝐴 |; 𝑗 = 0; 𝑤𝑖𝑛𝑑𝑜𝑤 = 0
3 𝑝_𝑠𝑐𝑜𝑟𝑒 = 0; 𝑠_𝑠𝑐𝑜𝑟𝑒 = 0
4 𝑚𝑖𝑛_𝑝_𝑠𝑐𝑜𝑟𝑒 = ∞ ;𝑚𝑎𝑥_𝑠_𝑠𝑐𝑜𝑟𝑒 = 0
5 𝑟_𝑠𝑡𝑎𝑟𝑡 ← 0; 𝑟_𝑒𝑛𝑑 ← 0
6 for 𝑖 ← 0 to 𝑛 and 𝑗 < 𝑛 do
7 if 𝑖 > 0 then
8 𝑝_𝑠𝑐𝑜𝑟𝑒− = 𝐴[𝑖 − 1] .𝑠𝑡𝑎𝑡𝑒_𝑡𝑠
9 𝑠_𝑠𝑐𝑜𝑟𝑒− = 𝑃 [𝐴[𝑖 − 1] .𝑐𝑘𝑝𝑡_𝑖𝑑 ]

10 𝑤𝑖𝑛𝑑𝑜𝑤− = 𝐴[𝑖 − 1] .𝑠𝑖𝑧𝑒
11 while 𝑤𝑖𝑛𝑑𝑜𝑤 < 𝑠𝑖𝑧𝑒_𝑡𝑎𝑟𝑔𝑒𝑡 and 𝑗 < 𝑛 do
12 𝑝_𝑠𝑐𝑜𝑟𝑒+ = 𝐴[ 𝑗 ] .𝑠𝑡𝑎𝑡𝑒_𝑡𝑠
13 𝑠_𝑠𝑐𝑜𝑟𝑒+ = 𝑃 [𝐴[ 𝑗 ] .𝑐𝑘𝑝𝑡_𝑖𝑑 ]
14 𝑤𝑖𝑛𝑑𝑜𝑤+ = 𝐴[ 𝑗 ] .𝑠𝑖𝑧𝑒
15 𝑗 + +;
16 if 𝑤𝑖𝑛𝑑𝑜𝑤 ≥ 𝑠𝑖𝑧𝑒_𝑛𝑒𝑤 and

(𝑝_𝑠𝑐𝑜𝑟𝑒 <𝑚𝑖𝑛_𝑝_𝑠𝑐𝑜𝑟𝑒 or (𝑝_𝑠𝑐𝑜𝑟𝑒 ==

𝑚𝑖𝑛_𝑝_𝑠𝑐𝑜𝑟𝑒 and 𝑠_𝑠𝑐𝑜𝑟𝑒 >𝑚𝑎𝑥_𝑠_𝑠𝑐𝑜𝑟𝑒 ) ) then
17 𝑚𝑖𝑛_𝑝_𝑠𝑐𝑜𝑟𝑒 = 𝑝_𝑠𝑐𝑜𝑟𝑒
18 𝑚𝑎𝑥_𝑠_𝑠𝑐𝑜𝑟𝑒 = 𝑠_𝑠𝑐𝑜𝑟𝑒
19 𝑟_𝑠𝑡𝑎𝑟𝑡 = 𝑖

20 𝑟_𝑒𝑛𝑑 = 𝑗

21 𝑠𝑡𝑎𝑟𝑡 = 𝐴[𝑟_𝑠𝑡𝑎𝑟𝑡 ] .𝑜 𝑓 𝑓 𝑠𝑒𝑡
22 𝑓 𝑟𝑒𝑒_𝑠𝑖𝑧𝑒 = 0
23 for 𝑖 ← 𝑟_𝑠𝑡𝑎𝑟𝑡 to 𝑟_𝑒𝑛𝑑 do
24 while 𝐴[𝑖 ] .𝑠𝑡𝑎𝑡𝑒_𝑡𝑠 ≠ 0 do
25 𝑤𝑎𝑖𝑡 until A[i] evictable

26 𝑓 𝑟𝑒𝑒_𝑠𝑖𝑧𝑒+ = 𝐴.𝑒𝑟𝑎𝑠𝑒 (𝑖 )
27 if 𝑓 𝑟𝑒𝑒_𝑠𝑖𝑧𝑒 > 𝑠𝑖𝑧𝑒_𝑛𝑒𝑤 then
28 insert_gap(start+size_new, free_size-size_new)

29 𝑠𝑡𝑎𝑡𝑒_𝑡𝑠 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡_𝑒𝑣𝑖𝑐𝑡𝑎𝑏𝑙𝑒 (𝐴, 𝑠𝑖𝑧𝑒_𝑛𝑒𝑤, 𝐵)
30 return 𝐴.𝑖𝑛𝑠𝑒𝑟𝑡 (⟨𝑐𝑘𝑝𝑡_𝑛𝑒𝑤, 𝑠𝑡𝑎𝑟𝑡, 𝑠𝑖𝑧𝑒_𝑛𝑒𝑤, 𝑠𝑡𝑎𝑡𝑒_𝑡𝑠 ⟩)

The algorithm uses a sliding window approach to iterate over all
fragments of the cache buffer. Specifically, a𝑤𝑖𝑛𝑑𝑜𝑤 is a sequence
of consecutive fragments in 𝐴, with the first denoted 𝑖 and the last
denoted 𝑗 . Each window is assigned two scores: (1) the 𝑝_𝑠𝑐𝑜𝑟𝑒 ,
which measures the estimated total blocking duration until all frag-
ments in the window are evictable; (2) the 𝑠_𝑠𝑐𝑜𝑟𝑒 , which measures
the sum of the prefetch distances of each checkpoint belonging to
the window. The prefetch distance is the number of elements in 𝑃
between the position of a checkpoint 𝑗 in 𝑃 and the head of 𝑃 and
measures how far a checkpoint is from being prefetched. Ideally, we
want to minimize (1) and maximize (2) simultaneously. However,
if this is not possible, we prioritize (1) with the assumption that
waiting and doing nothing while evictions become eligible causes
a more negative impact than suboptimal decisions for (2).

Once we identify the window with the best score (delimited by
𝑟_𝑠𝑡𝑎𝑟𝑡 and 𝑟_𝑒𝑛𝑑), we wait for its checkpoints to become evictable,
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Figure 2: Workflow of checkpoint operations.

then we remove them from 𝐴, and we insert a new tuple in 𝐴 cor-
responding to the new checkpoint (which overwrites the window).
The estimated time until the new checkpoint becomes evictable in
the future is based on its state in the life cycle: (1) if the checkpoint
is being flushed, then we estimate how long this will take; (2) if
the checkpoint is being prefetched, then we estimate how long it
will take until the checkpoint will be consumed. The estimation
is based on several factors: the size of the checkpoint 𝑠𝑖𝑧𝑒_𝑛𝑒𝑤 ,
bandwidth 𝐵 between the caching tiers, and other enqueued flushes
and prefetches in 𝐴 that compete for bandwidth. It is computed by
𝑝𝑟𝑒𝑑𝑖𝑐𝑡_𝑒𝑣𝑖𝑐𝑡𝑎𝑏𝑙𝑒 .

By adjusting both scores every time we increment 𝑖 and 𝑗 (rather
than recalculating the score for each window), we can achieve an
optimal O(N) complexity, where 𝑁 is the number of checkpoints
cached on the given memory tier. This aspect is important, because
a long response time may delay the data transfer and thus lead to
lower overall throughput, especially when fast tiers are involved.

4.3 Implementation
We implemented our approach in VELOC [25], a production-ready,
multi-level checkpointing framework. We added support for GPU-
aware multi-level flushing and prefetching with the design prin-
ciples noted in Section 4.1. The default VELOC API exposes basic
primitives to declare thememory regions that must be checkpointed
(VELOC_Mem_protect), write the defined memory regions into a
new checkpoint ID (VELOC_Checkpoint) and read the memory re-
gions from a given checkpoint ID (VELOC_Restart). We extend the
VELOCAPIwith two newprimitives: (1) VELOC_Prefetch_enqueue,
which enables a process to provide a hint about the next checkpoint
ID it intends to restore in the future; and (2) VELOC_Prefetch_start,
which allows the application to indicate when to start prefetching.
The latter is helpful (but optional) in scenarios when it is desirable
to delay the asynchronous prefetches in order to avoid unneces-
sary interference with the asynchronous flushes. For example, this
would be the case when the application writes the checkpoints
in a forward pass, then reads them back in a backward pass, as
illustrated in Listing 1.

4.3.1 Asynchronous Flushing and Prefetching. Wedeveloped amulti-
threaded approach that serves checkpoint and restore requests
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Figure 3: Workflow of prefetch and restore operations.

issued in the main application thread (𝑇𝑚𝑎𝑖𝑛) using dedicated back-
ground threads for asynchronous I/O (GPU to host cache flushes:
𝑇𝐷2𝐻 , host cache to local SSD flushes: 𝑇𝐻2𝐹 , prefetches on all tiers:
𝑇𝑃𝐹 ). Additionally, since the application processes may use the de-
fault CUDA stream, our implementation creates a separate set of
dedicated CUDA streams, which are then used by the background
threads. Using this approach, transfers between different memory
layers, such as GPU-to-GPU, GPU-to-host, and host-to-GPU can be
efficiently overlapped thanks to dedicated copy engines employed
by the Nvidia GPUs and the CUDA driver.

4.3.2 Workflows. Next, we detail the workflows of the check-
point/flush and prefetch/restore requests in Figure 2 and Figure 3,
respectively. We start by enqueuing the prefetching hints (Line 3
of Listing 1) after completing the initialization phase. Then, the
memory regions that need to be checkpointed as protected us-
ing VELOC_Mem_protect (Line 4). During the checkpointing phase
(Lines 5-8), VELOC_Checkpoint (Line 7) blocks until the protected
memory regions are copied to the GPU cache using the main thread
𝑇𝑚𝑎𝑖𝑛 , at which point 𝑇𝐷2𝐻 is notified to begin flushing. In turn,
immediately after flushing finished to the host cache, 𝑇𝐻2𝐹 is noti-
fied to flush to the local SSD (and further to a parallel file system if
persistence is required). Prefetching is initiated by the 𝑇𝑃𝐹 thread,
which respects the finite-state machine described in Figure 1 for
each tier. Specifically, if the requested checkpoint is present on the
GPU cache, VELOC_Restart (Line 13) restores the declared memory
regions from the checkpoint and marks its state as Read Consumed.
Otherwise, VELOC_Restart blocks until 𝑇𝑃𝐹 promotes the check-
point to the faster tiers as follows: space is reserved for it on the
faster tier (by waiting for evictions if necessary) and marked as
Read in Progress, then the checkpoint is copied to the reserved space
on the faster tier and marked as Read Completed, while the original
is marked as Read Consumed.

5 EVALUATION
5.1 Experimental Setup
We evaluated our approach on the ThetaGPU HPC testbed [4],
which consists of 24 Nvidia DGX A100 nodes [28]. Each node is
equipped with 1 TB DDR4 memory (20 GB/s, 8 NUMA domains),
two 64-core AMD Rome CPUs (256 threads), four 3.84 TB Gen 4

NVMe drives (4 GB/s per drive), and eight Nvidia A100 Tensor
core GPUs (for a total of 320 GB HBM2e memory). The nodes have
access to a 10 PB Lustre parallel file system [36] that is accessible
through a POSIX mount point. On each node, the eight A100 GPUs
are interconnected using 6 NVSwitches. Furthermore, they can
access the host memory through a PCIe Gen 4 interface. The peak
unidirectional device-to-device and pinned device-to-host (and vice
versa) bandwidths on each GPU are 1 TB/s and 25 GB/s, respectively.
Two GPUs share the same PCIe 4 link to the host memory, which
has two implications. First, only four of the eight NUMA domains
are directly accessible from the GPUs. Second, there is a contention
for the device-to-host memory bandwidth. We use up to four nodes,
i.e., 32 GPUs, for our experiments.

5.2 Compared Approaches
5.2.1 Adaptable Input Output System version 2 (ADIOS2). This is a
data management runtime for HPC applications that aims to pro-
vide scalable I/O on HPC infrastructures [11]. It provides a set of
reusable and extendable components for managing data presen-
tation and transport engines. In our comparison, we use the BP5
transport engine, which enables deferred (asynchronous) I/O to the
fast Gen 4 NVMe storage by first buffering in the main memory.
We use the adios2::MemorySpace::CUDA feature, which instructs
ADIOS2 that the data to be checkpointed resides on the GPU mem-
ory. Unlike our approach, ADIOS2 does not use the spare GPU
capacity for caching and prefetching and instead performs the on-
demand movement of data between the GPU memory and host
memory. We choose ADIOS2 because it is representative of a multi-
level asynchronous I/O framework that handles checkpointing of
GPU data structures on-demand, which is a widely used approach
in the production settings of the HPC domain.

5.2.2 Nvidia Unified Virtual Memory (UVM). The UVM is a popu-
lar memory management technique introduced by Nvidia to trans-
parently manage data movement across GPUs and host memory
tiers in a cache-coherent fashion. Data movement across these
tiers is governed by various heuristics, such as hardware-based
counters, memory access pattern, amount of available device mem-
ory, prefetching and eviction policies, page-fault replay policy, and
memory device configured by the application [1, 10]. In addition
to transparent data movement, UVM provides several other ben-
efits, such as on-demand memory allocation, dynamic expansion
and reduction of UVM memory allocated on the device HBM, and
zero-copy data access to achieve low latency while eliminating the
overheads of copying data between memory tiers. We choose UVM
because it is representative of a system-level transparent caching
and prefetching solution that adopts a combination of best practices
introduced by state-of-the-art over time.

Note that just like our proposal, UVM enables the application
to provide hints about the memory access pattern. We provide these
hints by exploiting the cudaMemAdvise and cudaMemPrefetchAsync
primitives. Specifically, we make use of two flags that are relevant
for cudaMemAdvise: (1) cudaMemAdviseSetPreferredLocation,
which advises the CUDA driver to move the checkpoint to either
the host memory (in case of flushing) or to the GPU memory (in
case of prefetching). Once a checkpoint is read by the application,
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Table 1: Compared approaches using different number of
prefetching hints.

Notation Prefetch Hints
No hints, ADIOS2 0
No hints, UVM 0
No hints, Score 0
Single hint, UVM 1
Single hint, Score 1
All hints, UVM All
All hints, Score All

we again set its preferred location to the host memory that en-
ables the CUDA driver to immediately evict consumed checkpoints,
which otherwise would have been retained due to the default LRU
eviction policy; (2) cudaMemAdviseSetAccessedBy, which enables
faster access for specific processes. In addition, we initiate asynchro-
nous prefetching using cudaMemPrefetchAsync in order to make
sure that the checkpoints that are already present on the device
memory but not yet consumed by the application are not evicted
prematurely. Since UVM does not expose a mechanism to block
further prefetch operations until the previously prefetched memory
regions on the device are consumed by the application, we explic-
itly control the prefetch request by tracking the amount of device
memory consumed (when prefetching operations load checkpoint
data for application consumption) and released (when application
consumes the prefetched checkpoints). During the restore phase, if
the amount of memory consumed by the prefetch operations ex-
ceeds the amount of the UVM device cache, the prefetching thread
waits until the application consumes checkpoints from the UVM de-
vice cache. In addition to avoiding page thrashing, this also allows
efficient use of the limited host-to-device interconnect bandwidth.
Thanks to these optimizations, we aim for a fair comparison that
informs the CUDA driver about the foreknowledge of the access
pattern of the checkpoint data.

5.2.3 Our Proposal (Score). We compare the state-of-the-art ap-
proaches mentioned above with our proposal, whose key design
principles and implementation details are outlined in Section 4.1
and Section 4.3, respectively. We denote our proposal Score, after
the gap-aware eviction policy based on the sliding-window scoring
algorithm introduced in Section 4.2.

5.2.4 Number of Prefetching Hints. We vary the degree of fore-
knowledge by varying the amount of prefetching hints provided
by the application as follows: unlimited (the restore order is fully
known in advance); one prefetching hint at a time (the applica-
tion specifies what checkpoint to prefetch for the next iteration at
the beginning of the current iteration) and no prefetching hints
(corresponding to direct read requests where foreknowledge is not
available). By varying the degree of foreknowledge, we study the
impact of our design principles even in the case of the scarcity or
absence of prefetching hints. The combination of all the compared
approaches is summarized in Table 1.
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Figure 4: Size distribution of 32 RTM snapshots.

5.3 Evaluation Methodology
We evaluate each approach used in our comparison using the sce-
narios and metrics described below.

5.3.1 Application Benchmark – RTM. As an application, we con-
sider the case of Reverse TimeMigration (RTM) [15], anHPC adjoint
computation commonly used in the oil and gas industry. Specifi-
cally, RTM is used to generate subsurface images from seismic data.
This process involves wave fields generated in the forward pass,
which are checkpointed and consumed in a predefined order during
the backward pass to cross-correlate and form the subsurface image.
RTM can run either in embarrassingly parallel mode (many shots in
parallel, each on a different GPU) or tightly coupled mode (one shot
across multiple GPUs with synchronization steps at each iteration).
In this work, due to a large number of compared configurations,
we designed a series of benchmarks that emulate the behavior of
RTM based on traces obtained during large-scale production runs
that record the checkpoint sizes. Specifically, our benchmarks run
trivial iterations, by sleeping to simulate computations between
consecutive checkpoints or restore operations, but generate the
exact same checkpoint sizes as in the RTM traces.

5.3.2 Restore Order Patterns. We consider a set of distributed pro-
cesses, each of which performs a single forward pass that writes a
checkpoint at each iteration, then starts the prefetching, and then
performs a backward pass that reads a checkpoint at each iteration.
This corresponds to the example used in Listing 1. We refer to such
a run as a shot. In this context, we evaluate all three restore order
patterns discussed in Section 1: Sequential (the backward pass
consumes the checkpoints in the same order they were generated
during the forward pass), Reverse (the backward pass consumes
the checkpoints in the reverse order than they were generated dur-
ing the forward pass), and Irregular (the backward pass consumes
the checkpoints in a random but predetermined order).

5.3.3 Traces and Distribution of Checkpoint Sizes. In a typical shot,
RTM compresses the image checkpoints by default during the for-
ward pass, which leads to variable checkpoint sizes not only across
different iterations but within the same iteration among different
processes. The average compression ratio of these checkpoints is
∼30×. From over 1600 shot traces, 32 representative shots were cho-
sen for benchmarks on up to 32 GPUs (4 compute nodes). Figure 4
shows the minimum, maximum, and average sizes per snapshot
for 384 snapshots. The aggregated size of checkpoints on each shot
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Figure 5: Average checkpoint+restore throughput across 8 GPUs for uniform (Fig. 5a) and variable (Fig. 5b) sized checkpoints
when we WAIT for checkpoints to be flushed from the caches before the restore phase. Higher is better. Y-axis is in log scale.

ranges between 38 GB to 50 GB. From a caching perspective, vari-
able checkpoint sizes are difficult to handle because they introduce
fragmentation. We complement this scenario with another that uses
uniform checkpoint sizes: 128 MB per checkpoint, which roughly
corresponds to the 50 percentile distribution of the 1600 RTM shot
traces, leading to 384 checkpoints amounting to 48 GB per GPU.
This enables us to study the effectiveness of our approach in the
absence of cache fragmentation as well.

5.3.4 Multi-level Cache Tiers. Unless noted otherwise, we use the
following cache configurations: for each process, we reserve 4 GB
GPU memory (i.e., 10% of the capacity) as a device-level cache and
32 GB main memory (i.e., 25% of the total capacity consumed by
8 processes) as a pinned host cache. Additionally, we use a node-
local SSD as the slowest tier, which is shared by all processes co-
located on the same compute node. The SSD can accommodate all
checkpoints produced on the same compute node during the entire
forward pass of RTM. If this is not enough for other applications, an
external storage tier (e.g., parallel file system) shared by all compute
nodes can be used to store the checkpoint data.

5.3.5 Performance Metrics. We use the following performance met-
rics in our evaluation:

(1) Write and read throughput observed by the application for
two cases. First, wait for checkpoints to be flushed from the
caches before starting the restore phase. Second, the restore
phase starts immediately after the checkpointing phase.

(2) Read throughput observed by the application at different
iterations.

(3) Prefetch distance, i.e., the number of successive checkpoints
successfully prefetched in advance at the moment when a
given checkpoint is restored to measure the effectiveness of
the prefetch strategy.

These metrics are obtained in a variety of settings, i.e., single
node vs. multiple nodes, tightly coupled (barrier after each itera-
tion) and embarrassingly parallel (no synchronization after each
iteration) scenarios, and variable compute complexity (simulated
sleep duration) of each iteration and variable GPU cache sizes.

5.4 Performance Results
5.4.1 Checkpointing Throughput. Our first set of experiments mea-
sures the average checkpointing and restoring throughput as ob-
served by the application (total checkpoint size divided by blocking
time of checkpoint and restore operations respectively) over the
entire shot. Note that the data movement (flush and prefetch) across
slower tiers is asynchronous, therefore blocking time only includes
the duration of writes or reads from the GPU/UVM cache and any
delays due to evictions or prefetches, which is most relevant from
the application perspective. We run our benchmarks on a single
node (8 GPUs) in embarrassingly parallel mode and fix the check-
point frequency to 10 ms to be consistent with the RTM behavior.

5.4.2 Restore Phase Waits for Checkpoint Phase. We first consider
the case when the checkpoint and restore phases are sequential,
i.e., the restore phase waits for the checkpoint phase to finish flush-
ing to the slowest tier. This scenario captures the cases where
checkpoints from the forward pass are persisted for reproducibility,
post-hoc, or in-transit analysis. Figure 5a and Figure 5b show the
average checkpoint and restore overheads associated with uniform
and variable-sized checkpoints respectively. As expected, the per-
formance of the ADIOS2 approach across all restore patterns for
uniform and variable checkpoint sizes is the slowest due to the lack
of a dedicated device cache tier.

As compared to the optimized UVM approach, our proposed
score-based approach shows 2×–74× and 1.6×–52× faster check-
point+restore rates for uniform and variable-sized checkpoints,
respectively. Note that even without any restore-order hints, our
approach outperforms the optimized UVM approach by at least
2×, thanks to directly evicting the consumed checkpoints from the
device cache (if already consistently captured on slower memory
tiers), as opposed to UVM’s approach of migrating the checkpoints
before eviction. We observe similar checkpointing throughput for
UVM and score-based approaches due to– (1) the problem of slow
host cache initialization (mapping and registration of host cache for
faster direct-memory transfers) as studied in [18]; and (2) the shot
contains 48 GB worth of checkpoints, which does not fit in 4 GB
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Figure 6: Average checkpoint+restore throughput across 8 GPUs for uniform (Fig. 6a) and variable (Fig. 6b) sized checkpoints
when we DO NOTWAIT for checkpoints to be flushed before the restore phase. Higher is better. Y-axis is in log scale.

GPU cache and 32 GB host cache, triggering waits for evictions to
the SSD towards the end of the shot.

An interesting observation when waiting for checkpoints to get
flushed before restoring is that all checkpoints residing in either of
the cache tiers transition to the Flushed or the Read Complete state,
thereby, minimizing waits due to evictions. However, this approach
incurs an additional overhead of waiting for cache flushes, which
amounts to 70 seconds per rank (effective flush rate per rank =
48 GB/70s ≈ 685 MB/s). Since the cache flush rate is uniform for all
approaches, we do not show this additional flush time in the graphs
to better highlight the impact of our approach on checkpoint and
restore operations exclusively.

We also observe that the average checkpoint rate of variable-
sized checkpoints (Figure 5b) is higher than the corresponding
uniform-sized checkpoints (Figure 5a) for all read-orders in the
score-based approach. This is because smaller-sized checkpoints
at the beginning of the shot (Figure 4) allow for faster evictions
by flushing smaller checkpoints between consecutive iterations
(of 10ms), and the disparity in checkpoint sizes across multiple
processes reduces competition on shared resources such as PCIe
lane, host memory allocated on the same NUMA domain, and the
file system. On the contrary, we observe that the restore rates of
uniform-sized checkpoints are faster compared to the variable-sized
scenario. This is because uniform-sized checkpoints do not cause
fragmentation on either of the cache tiers, but the variable-sized
checkpoints undergo fragmentation and adopt our proposed gap-
aware eviction policy based on sliding-window scoring (Section 4.1)
which may block the prefetch/restore operation until a contigu-
ous region consisting of multiple checkpoints becomes evictable.
Nonetheless, we note that the restore rate of our proposed score-
based approach is at least 2× faster than the optimized UVM-based
approach and state-of-art ADIOS2 framework (note the representa-
tion of the y-axis in log scale).

5.4.3 Restore Phase Immediately Follows Checkpoint Phase. Next,
we consider the case when the restore phase begins immediately
after the checkpointing phase. This illustrates scenarios such as
adjoint computations where the overall job runtime needs to be
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Figure 7: Restore rate and number of next prefetches com-
pleted for different timesteps for uniform sizes checkpoints
using score-based approach.

minimized and the checkpoints need not be persisted. Similar to the
case of waiting for flushes after the checkpoint phase, the ADIOS2
approach is the slowest across all approaches for all read orders
and checkpoint sizes.

As observed in Figure 6, our score-based approach outperforms
the optimized UVM-based approach by 1.8×–3.6× and 2.9×-22.8×
for uniform (Figure 6a) and variable (Figure 6b) checkpoint sizes,
respectively. Again, we observe consistent checkpoint throughput
across all approaches for various restore order patterns because of
slow cache initialization and waiting for evictions (flush to the file
system) when both cache tiers have been fully utilized. Note that
in this case, we only wait for flushes to the file system to capture
the checkpoints that exceed the combined memory capacity of the
device and host cache tiers.

Unlike the previous case of waiting for checkpoints to get flushed
before starting the restore phase where checkpoints residing on the
cache belong to either Flushed or Read Complete states, in this case,
the checkpoints residing on the cache tiers can belong to any state
of the checkpoint life cycle (Figure 1). Transitioning through the
state life cycle leads to longer cache eviction times in the restore
phase, due to which the restore rate across various read orders and
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Figure 8: Impact of varying compute interval (Fig. 8a) and GPU cache size (Fig. 8b) on I/O throughput for variable-sized
checkpoints and irregular read order on 8 GPUs. Higher is better. Y-axis is in log scale.

a varying number of hints are magnitudes of order slower than
the corresponding restore rates observed for the case of waiting
for checkpoints to be flushed before starting the restore phase.
However, this approach achieves faster overall execution time by
eliminating the additional wait time (∼70s) to flush checkpoints in
between the checkpoint and restore phases.

Experiments with variable-sized checkpoints (Figure 6b) show
higher restore rates as compared to uniform-sized checkpoints (Fig-
ure 6a) due to faster evictions for smaller checkpoint sizes and
lower congestion on shared resources because of differences in
checkpoint sizes across multiple processes. The case of irregular
read order is the most challenging scenario across all executions
because of– (1) large fragmentation management overheads due to
variable sizes of checkpoints, (2) complex transitions in the state
life cycle due to overlapping checkpoint and restore operations
across various cache tiers, and (3) non spatio-temporal read-access
due to irregular read order. However, even with these complexities,
our proposed score-based approach achieves 3.7× faster checkpoint
and 38× faster restore rates as compared to the UVM approach.

Since this case of starting the restore phase immediately after
the checkpoint phase introduces performance challenges due to
fragmentation and complex transitions in the state life cycle, we run
the remainder of the experiments without waiting for checkpoints
to complete before starting the restore cycle.

5.4.4 Prefetch Distance and Restore Rate. To explain the observed
restore throughput better, we study the effectiveness of the prefetches
by measuring the prefetch distance, i.e., the number of successor
checkpoints successfully prefetched based on the hints at the mo-
ment of a read request. The intuition behind this metric is as follows:
the more successor checkpoints are available on the GPU cache, the
higher the likelihood of a cache hit in the near future, which trans-
lates to a higher restore throughput. Figure 7 shows the average
prefetch distance and corresponding restore throughput achieved
by our score-based approach at every restore operation for uniform-
sized checkpoints for the case of sequential read order. As can be
observed, the number of checkpoints prefetched in advance is sig-
nificant (up to 4 checkpoints per process), which provides enough

reserve to amortize unexpected or slow prefetches that delay the
restore operations. We also note that irrespective of zero consecu-
tive prefetches completed for the case of Single hint, our proposed
approach is able to achieve ∼6.3 GB/s restore rate. For the case of
No hints, the score-based approach performs the best towards the
end of the restore phase because it retains all checkpoints writ-
ten in the last iterations on the cache. For All hints, the number
of next prefetches completed grows steeply until the maximum
GPU cache size (4 GB accommodates 32 uniform-sized checkpoints
of 128 MB) after which it restores checkpoints up to iteration 96
from the host cache. Once all the checkpoints from the GPU and
host cache are consumed, we observe low prefetching distance for
further iterations due to slow reads from the file system.

5.4.5 Impact of Variable Checkpoint Interval and GPU Cache Size.
Next, we evaluate the impact of variable checkpoint interval and
cache sizes on the compared approaches. Again, we run 8 processes
(one per GPU) in embarrassingly parallel mode on a single compute
node. We focus on the irregular read order since it is the most prob-
lematic to handle. The Single hint scenario has a similar speedup as
in Figure 5b, thus we omit it from further evaluations and focus on
the extreme cases of No hints and All hints. Figure 8a shows simi-
lar checkpoint throughput for all approaches, except for ADIOS2,
which exhibits a significantly lower checkpoint throughput (consis-
tent with the previous experiments) regardless of the checkpoint
interval. Meanwhile, the restore throughput increases gradually
with an increasing checkpoint interval, reaching the peak device-
to-device bandwidth at a 30 ms checkpoint interval. This can be
explained by the fact that a larger checkpoint interval allows more
and/or larger prefetches to finish in time until the next read request
is issued. Next, we study the impact of varying GPU cache sizes
for a checkpoint interval of 10 ms. As expected, the checkpointing
throughput increases with larger GPU cache sizes, because evic-
tions are delayed. Figure 8b shows up to 2.6× faster checkpoint and
restore throughput of our approach as compared to the optimized
UVM approach. Since ADIOS2 does not feature a GPU cache, its
throughput remains unchanged, but we include it for reference.
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Figure 9: Scalability of checkpoint and restore throughput for variable checkpoint sizes and irregular restore order. Higher is
better. Note that Y-axis is log scale.

5.4.6 Scalability Study. We study the scalability of the compared
approaches using variable-sized checkpoints. Figure 9 shows the
stacked checkpoint and restore throughputs per process for an
increasing number of GPUs. At scale, synchronization can intro-
duce significant overheads, therefore we study both the case of
embarrassingly parallel and tightly coupled runs (as explained in
Section 5.3). In the former case, the competition for shared resources
(host memory, links between GPUs and host memory, SSD) due
to asynchronous flushes and prefetches is increasing at scale. In
the latter case, the competition for resources is reduced due to
synchronization at each iteration. Despite increasing competition
for resources, both the embarrassingly parallel and tightly cou-
pled cases maintain a relatively stable throughput for an increasing
number of GPUs regardless of the considered approach. This is
an important observation because it shows that our approach can
maintain its advantage over the other approaches at scale. Even at
scale, our approach still maintains 22.8× and 13× advantage over
the optimized UVM approach for the No hints and Single hint cases,
respectively. It is interesting to note that ADIOS2 suffers a drop in
checkpointing throughput for an increasing number of processes
and thus demonstrates limited scalability, while the opposite effect
can be observed for other approaches.

6 CONCLUSIONS
In this paper, we address the problem of managing large-scale in-
termediate data generated by the HPC applications that must be
checkpointed and restored with high frequency, typically in the
order of milliseconds. State-of-the-art solutions have limited sup-
port for such scenarios in which the access pattern of restoring
data from the saved checkpoint is often known in advance. Specif-
ically, checkpointing frameworks focus on minimizing I/O over-
head through asynchronous multi-level flushing techniques, while
transparent system-level memory management techniques, such as
UVM, can only make limited use of hints about the access pattern.
To address this gap, we designed and developed a checkpointing
strategy that co-optimizes asynchronous multi-level strategies for

flushing and prefetching of checkpoints by exploiting foreknowl-
edge about the access order. We conduct extensive evaluation with
different settings, such as checkpoint sizes, restore order, number
of prefetch hints, varying compute interval and cache sizes, all of
which are applicable to a wide range of application scenarios. Our
proposed approach shows up to an order of magnitude speedup
compared with state-of-the-art I/O runtimes, such as ADIOS2, as
well as transparent system-level memory management, such as
UVM. We demonstrated these benefits both for synchronized and
interleaved checkpoint and restore phase at scale.

In the future, we plan to explore how to share the host cache
across different processes and nodes to load balance variable-sized
checkpoints and incorporate support for Nvidia GPUDirect storage.
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