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Introduction

Although numerous finite products and sums containing trigonometric functions have been collected and published by Hansen [START_REF] Hansen | A Table of Series and Products[END_REF] and Bowser [START_REF] Edward | A Treatise on Plane and Spherical Trigonometry And Its Applications to Astronomy and Geodesy[END_REF] along with extensive literature in [START_REF]NIST Digital Library of Mathematical Functions[END_REF] many significant gaps still remain. By browsing scholarly databases or reviewing textbooks and academic publications in the area of number theory, one may find specific research articles and academic publications on the finite sum of the Hurwitz-Lerch zeta function in the context of composite function evaluations and derivations using contour integration.

In this present work we derive a new expression for the Hurwitz-Lerch Zeta function Φ(z, s, a) in terms of the sum of two Hurwitz-Lerch zeta functions given by (1.1)

- n-1 p =0 i2 k+1 (i2 p ) k e im2 p+1 Φ -e i2 p+1 m , -k, 1 -i2 -p-1 log(a) +Φ e i2 p+1 m , -k, 1 -i2 -p-1 log(a) = i2 k+2 (i2 n ) k e im2 n+1 Φ e i2 n+1 m , -k, 1 -i2 -n-1 log(a) -i k e 2im Φ e 2im , -k, 1 - 1 2 i log(a)
where the variables k, a, m are general complex numbers and n is any prime number.

The derivations follow the method used by us in [START_REF] Reynolds | A Method for Evaluating Definite Integrals in Terms of Special Functions with Examples[END_REF]. This method involves using a form of the generalized Cauchy's integral formula given by (1.2)

y k Γ(k + 1) = 1 2πi C
e wy w k+1 dw, where y, w ∈ C and C is in general an open contour in the complex plane where the bilinear concomitant [START_REF] Reynolds | A Method for Evaluating Definite Integrals in Terms of Special Functions with Examples[END_REF] has the same value at the end points of the contour. This method involves using a form of equation (1.2) then multiplies both sides by a function, then takes the finite sum of both sides. This yields a finite sum in terms of a contour integral. Then we multiply both sides of equation (1.2) by another function and take the infinite sum of both sides such that the contour integral of both equations are the same.

The Hurwitz-Lerch Zeta function

We use equation (1.11.3) in [START_REF] Erdéyli | Higher Transcendental Functions[END_REF] where Φ(z, s, v) is the Lerch function which is a generalization of the Hurwitz zeta ζ(s, v) and Polylogarithm functions Li n (z). The Lerch function has a series representation given by

(2.1) Φ(z, s, v) = ∞ n=0 (v + n) -s z n
where |z|< 1, v ̸ = 0, -1, -2, -3, .., and is continued analytically by its integral representation given by

(2.2) Φ(z, s, v) = 1 Γ(s) ∞ 0 t s-1 e -(v-1)t e t -z dt
where Re(v) > 0, and either |z|≤ 1, z ̸ = 1, Re(s) > 0, or z = 1, Re(s) > 1.

3. Finite Sum of the Contour Integrals 3.1. Derivation of the first contour integral. We use the method in [START_REF] Reynolds | A Method for Evaluating Definite Integrals in Terms of Special Functions with Examples[END_REF]. The cut and contour are in the first quadrant of the complex w-plane with 0 < Re(w + m) < 1. The cut approaches the origin from the interior of the first quadrant and goes to infinity vertically and the contour goes round the origin with zero radius and is on opposite sides of the cut. Using a generalization of Cauchy's integral formula (1.2) we first replace y → log(a) + i2 p+1 (y + 1) then multiply both sides by -2ie im2 p+1 (y+1) and take the infinite and finite sums respectively over y ∈ [0, ∞) and p ∈ [0, n -1] and simplify in terms of the Hurwitz-Lerch Zeta function to get

(3.1) - n-1 p=0 i2 k+1 (i2 p ) k e im2 p+1 Φ e i2 p+1 m , -k, 1 -i2 -p-1 log(a) Γ(k + 1) = - 1 2πi ∞ y=0 n-1 p=0 C 2ia w w -k-1 e i2 p+1 (y+1)(m+w) dw = - 1 2πi C n-1 p=0 ∞ y=0 2ia w w -k-1 e i2 p+1 (y+1)(m+w) dw = 1 2πi C n-1 p=0 a w w -k-1 cot (2 p (m + w)) + ia w w -k-1 dw
from equation (1.232.1) in [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF] where Im(m + w) > 0, Re(m + w) > 0, n is a prime number in order for the sum to converge. We apply Tonelli's theorem for multiple sums, see page 189 in [START_REF] Gelca | Putnam and Beyond[END_REF] as the summand is of bounded measure over the space

C × [0, n -1] × [0, ∞).

The Additional Contour

Integral. Using a generalization of Cauchy's integral formula (1.2) we first replace y → log(a) and multiply both sides by i simplify to get

(3.2) n-1 p=0 i log k (a) Γ(k + 1) = 1 2πi C n-1 p=0 ia w w -k-1 dw 3.
3. Derivation of the second contour integral. Using a generalization of Cauchy's integral formula (1.2) we first replace y → log(a) + i2 p+1 (y + 1) then multiply both sides by -2i(-1) y e im2 p+1 (y+1) and take the infinite sum over y ∈ [0, ∞) and p ∈ [0, n -1] and simplify in terms of the Hurwitz-Lerch Zeta function to get

(3.3) - n-1 p=0 i2 k+1 (i2 p ) k e im2 p+1 Φ -e i2 p+1 m , -k, 1 -i2 -p-1 log(a) Γ(k + 1) = - 1 2πi C ∞ y=0 n-1 p=0 2ia w w -k-1 e i(2 p+1 (y+1)(m+w)+πy) dw = - 1 2πi C n-1 p=0 ∞ y=0 2ia w w -k-1 e i(2 p+1 (y+1)(m+w)+πy) dw = 1 2πi C n-1 p=0 a w w -k-1 tan (2 p (m + w)) -ia w w -k-1 dw
from equation (1.232.1) in [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF] where Im(m + w) > 0, Re(m + w) > 0, n is a prime number in order for the sum to converge. We apply Tonelli's theorem for multiple sum, see page 189 in [START_REF] Gelca | Putnam and Beyond[END_REF] as the summand is of bounded measure over the space

C × [0, n -1] × [0, ∞).
3.4. The Additional Contour Integral. Using a generalization of Cauchy's integral formula (1.2) we first replace y → log(a) and multiply both sides by i simplify to get

(3.4) - n-1 p=0 i log k (a) Γ(k + 1) = - 1 2πi C n-1 p=0 ia w w -k-1 dw
4. Infinite Sum of the Contour Integral 4.1. Derivation of the first contour integral. We use the method in [START_REF] Reynolds | A Method for Evaluating Definite Integrals in Terms of Special Functions with Examples[END_REF]. Using a generalization of Cauchy's integral formula (1.2) we first replace y → log(a) + 2i(y + 1) then multiply both sides by -4ie 2im(y+1) and take the infinite sum over y ∈ [0, ∞) and simplify in terms of the Hurwitz-Lerch Zeta function to get

(4.1) i k-1 2 k+2 e 2im Φ e 2im , -k, 1 -1 2 i log(a) Γ(k + 1) = - 1 2πi ∞ y=0 C 4ia w w -k-1 e 2i(y+1)(m+w) dw = - 1 2πi C ∞ y=0 4ia w w -k-1 e 2i(y+1)(m+w) dw = 1 2πi C 2a w w -k-1 cot(m + w) + 2ia w w -k-1 dw
from equation (1.232.1) in [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF] where Im(n(m + w)) > 0 in order for the sum to converge.

The Additional Contour

Integral. Using a generalization of Cauchy's integral formula (1.2) we first replace y → log(a) and multiply both sides by 2i simplify to get

(4.2) 2i log k (a) Γ(k + 1) = 1 2πi C 2ia w w -k-1 dw 4.
3. Derivation of the second contour integral. We use the method in [START_REF] Reynolds | A Method for Evaluating Definite Integrals in Terms of Special Functions with Examples[END_REF]. Using a generalization of Cauchy's integral formula (1.2) we first replace y → log(a)+i2 n+1 (y +1) then multiply both sides by 4ie im2 n+1 (y+1) and take the infinite sums over y ∈ [0, ∞) and simplify in terms of the Hurwitz-Lerch zeta function to get

(4.3) i2 k+2 (i2 n ) k e im2 n+1 Φ e i2 n+1 m , -k, 1 -i2 -n-1 log(a) Γ(k + 1) = 1 2πi ∞ y=0 C 4ia w w -k-1 e i2 n+1 (y+1)(m+w) dw = 1 2πi C ∞ y=0 4ia w w -k-1 e i2 n+1 (y+1)(m+w) dw = 1 2πi C -2a w w -k-1 cot (2 n (m + w)) -2ia w w -k-1 dw
from equation (1.232.1) in [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF] where Im(n(m + w)) > 0 in order for the sum to converge.

(4.4)

- 2i log k (a) Γ(k + 1) = - 1 2πi C 2ia w w -k-1 dw
5. Finite Sum of the Hurwitz-Lerch Zeta function in terms of two Hurwitz-Lerch Zeta functions Theorem 5.1. For all k, a, m ∈ C and n any prime number then,

(5.1) - n-1 p=0 i2 k+1 (i2 p ) k e im2 p+1 Φ -e i2 p+1 m , -k, 1 -i2 -p-1 log(a) +Φ e i2 p+1 m , -k, 1 -i2 -p-1 log(a) = i2 k+2 (i2 n ) k e im2 n+1 Φ e i2 n+1 m , -k, 1 -i2 -n-1 log(a) -i k e 2im Φ e 2im , -k, 1 - 1 2 i log(a)
Proof. Observe that the addition of the right-hand sides of equations (3.1) and (3.2) and (3.3) and (3.4), is equal to the addition of the right-hand sides of equations (4.1) and (4.2) and (4.3) and (4.4) so we may equate the left-hand sides and simplify using Example (74) in [START_REF] Edward | A Treatise on Plane and Spherical Trigonometry And Its Applications to Astronomy and Geodesy[END_REF] and the Gamma function to yield the stated result. □

Example 5.2. The degenerate case.

(5.2)

n-1 p=0 2 csc m2 p+1 = 2 (cot(m) -cot (m2 n ))
Proof. Use equation (5.1) and set k = 0 and simplify using entry (4) below (64:12:7) in [START_REF] Oldham | An Atlas of Functions: With Equator, the Atlas Function Calculator[END_REF]. □

Finite Trigonometric Products, Sums and Recurrence Identities

In this section we will evaluate equation (5.1) for various ranges of the parameters involved and apply the method in [START_REF] Reynolds | A Note on the Infinite Sum of the Lerch function[END_REF] to derive a recursive identity and finite products involving trigonometric functions. Example 6.1.

(6.1) n-1 p=0 tan 2 2 p-2 x tan (2 p x) cot 3 2 p-1 x 2 -p-2 = 1 sin 3 2 x 2 sin x 4 sin(x) sin 2 -n-1 2 n-1 x sin -2 -n-1 (2 n x) cos -2 -n 2 n-2 x cos 2 -n 2 n-1 x tan -2 -n 2 n-2 x tan 2 -n 2 n-1 x
Proof. Use equation (5.1) and set k = 1, a = 1, m = x and apply the method in section (8) in [START_REF] Reynolds | A Note on the Infinite Sum of the Lerch function[END_REF]. □ Example 6.2. Recurrence identity with consecutive neighbours

(6.2) Φ(z, s, a) = 2 1-s zΦ z 2 , s, a + 1 2 + Φ(-z, s, a)
Proof. Use equation (5.1) and set n = 1, a = e 2i(a-1) , k = -s, m = log(z)/(2i) and simplify. □ Example 6.3. Recurrence identity with consecutive neighbours

(6.3) Φ(-z, s, a) -Φ(z, s, a) = 4 -s -2 s z Φ -z 2 , s, a + 1 2 + Φ z 2 , s, a + 1 2 -2z 3 Φ z 4 , s, a + 3 4 
Proof. Use equation ( 5 Proof. Use equation (6.2) and set z = i and simplify in terms of the Hurwitz zeta function using entry (4) in Table below (64:12:7) in [START_REF] Oldham | An Atlas of Functions: With Equator, the Atlas Function Calculator[END_REF]. Next take the first partial derivative with respect to s and set s = 0 and simplify in terms of the log-gamma function using equation (25.11.18) in [START_REF]NIST Digital Library of Mathematical Functions[END_REF]. □ Example 6.5. Finite product involving quotient tangent and exponential cosine and sine functions.

(6.5) n-1 p=0 e i csc(2 p+1 x)-i csc(2 p x) tan 2 p-1 x cot (2 p x) π2 -p-1 = sin π x 2 sin -π (x) cos π(-2 -n ) 2 n-1 x cos π2 -n (2 n x) tan π(-2 -n ) 2 n-1 x tan π2 -n (2 n x) e -i(csc(x)-csc(2 n x))
Proof. Use equation (5.1) and set k = 1, a = -1, m = x and apply the method in section (8) in [START_REF] Reynolds | A Note on the Infinite Sum of the Lerch function[END_REF]. Note n is any prime number. □ Example 6.6. Finite product involving quotient tangent and exponential cosine and sine functions.

(6.6) n-1 p=0 e -2i(csc(2 p x)-csc(2 p+1 x)) tan 2 p-1 x cot (2 p x) π2 -p-1 = sin π x 2 sin -π (x) cos π(-2 -n ) 2 n-1 x cos π2 -n (2 n x) tan π(-2 -n ) 2 n-1 x tan π2 -n (2 n x) e -2i(csc(x)-csc(2 n x))
Proof. Use equation (5.1) and set k = 1, a = i, m = x and apply the method in section (8) in [START_REF] Reynolds | A Note on the Infinite Sum of the Lerch function[END_REF]. Note n is any prime number. □ Example 6.7. Finite product involving quotient tangent and exponential cosine and sine functions.

(6.7) n-1 p=0 tan (2 p x) cot 2 p-1 x 2 -p-1 e 1 2 csc(2 p x) sec(2 p x)-csc(2 p x) = 2 cos x 2 cos 2 -n 2 n-1 x cos -2 -n (2 n x) tan 2 -n 2 n-1 x tan -2 -n (2 n x) e csc(2 n x)-cot( x 2 )+cot(x)
Proof. Use equation (5.1) and set k = 1, a = e, m = x and apply the method in section (8) in [START_REF] Reynolds | A Note on the Infinite Sum of the Lerch function[END_REF]. Note n is any prime number. □ Example 6.8. Finite product involving the sine and cosine functions raised to powers. (6.8) n-1 p=0 sin 2 3-p 2 p-3 x sin -72 1-p 2 p-2 x sin 7 2 -p 2 p-1 x sin -2 -p (2 p x)

cos -2 3-p 2 p-3 x cos 7 2 1-p 2 p-2 x cos -72 -p 2 p-1 x cos 2 -p (2 p x) = 1 64 cos 12 x 4 sec 16 x 8 sec 2 x 2 sin -2 3-n 2 n-3 x sin 3 2 2-n 2 n-2 x sin -2 2-n 2 n-1 x cos 2 3-n 2 n-3 x cos -2 4-n 2 n-2 x cos 5 2 1-n 2 n-1 x cos -2 1-n (2 n x) tan -2 2-n 2 n-2 x tan 3 2 1-n 2 n-1 x tan -2 1-n (2 n x)
Proof. Use equation (5.1) and set k = 2, a = 1, m = x and apply the method in section (8) in [START_REF] Reynolds | A Note on the Infinite Sum of the Lerch function[END_REF]. □ Example 6.9. A generalized case for the finite product of trigonometric functions. For all x, a, β ∈ C, n ∈ Z + , (6.9)

n-1 p=0 e csc(2 p+1 x)-csc 2 p+1 x β tan (2 p x) cot 2 p x β ia2 -p-1 = e cot( 2 n x β )-cot(2 n x)-cot( x β )+cot(x) sin(x) csc x β ia csc (2 n x) sin 2 n x β ia2 -n
Proof. Use equation (5.1) and set k = 2, a = 1, m = x and apply the method in section (8) in [START_REF] Reynolds | A Note on the Infinite Sum of the Lerch function[END_REF]. □ Example 6.10. Finite product involving the ratio of tangent functions.

(6.10)

n-1 p=0 tan (2 p r) tan (2 p m) 2 -p = e -2i(m-r) e i2 n (m-r) sin (2 n m) sin (2 n r) 2 1-n sin(r) sin(m) 2 
Proof. Use equation (5.1) and form a second equation by replacing m by r and take their difference and set k = -1, a = 1 and simplify using entry (3) in Table below (64:12:7) in [START_REF] Oldham | An Atlas of Functions: With Equator, the Atlas Function Calculator[END_REF]. □ Example 6.11. Extended Nielsen-Gauss Formula.

(6.11)

n-1 p=0 Γ 1 2 1 + 2 -p z = 2 2(-1+2 -n )z π n/2 Γ(1 + z) Γ (1 + 2 -n z)
Proof. Use equation (5.1) and set m = 0 and simplify in terms of the Hurwitz zeta function using entry (4) in Table below (64:12:7) in [START_REF] Oldham | An Atlas of Functions: With Equator, the Atlas Function Calculator[END_REF]. Next take the first partial derivative with respect to k and set k = 0 and simplify in terms of the log-gamma function using equation (25.11.18) in [START_REF]NIST Digital Library of Mathematical Functions[END_REF]. Next take the exponential function of both sides and simplify with replacing a → e zi . Similar forms are published in section (5.5) in [START_REF]NIST Digital Library of Mathematical Functions[END_REF] in the works by Sándor et. al [START_REF] Sándor | A remark on the gamma function[END_REF] and equation (1.6.7) in [START_REF] Nielsen | Handbuch der Theorie der Gammafunktion[END_REF], the infinite form by Knar, see equation (1.6) in [START_REF] Erdéyli | Higher Transcendental Functions[END_REF] and equation [START_REF] Gelca | Putnam and Beyond[END_REF] in [START_REF] Pearson | Viète's Formula, Knar's Formula, and the Geometry of the Gamma Function[END_REF]. □

The Nielsen form is given by by simply algebraic manipulation of equation (6.11) given by; (6.12) Γ(1 + z) = 2 2(2 -n -1)z π n/2 Γ 1 + 2 -n z n-1 p=0 Γ 1 2 1 + 2 -p z

Conclusion

In this paper, we have presented a method for deriving new finite trigonometric product formulae along with an interesting recurrence identity similar to those published in current literature with many more possible, using contour integration. The results presented were numerically verified for both real and imaginary and complex values of the parameters using Mathematica by Wolfram.

. 1 )Example 6 . 4 .

 164 and set n = 2, a = e 2i(a-1) , k = -s, m = log(z)/(2i) and simplify.□ Difference of the first partial derivative of the Hurwitz-Lerch zeta function in terms of the log-gamma function.(6.4) Φ ′ (-i, 0, a) -Φ ′ (i, 0, a)