Alice Pellet-Mary
email: alice.pellet-mary@math.u-bordeaux.fr

Nam Tran

Reductions from module lattices to free module lattices

Introduction

Lattice-based algorithmic problems using algebraic lattices, such as the NTRU problem [HPS06], the Ring LWE [SSTX09, LPR13] and Ring SIS [LM06, PR06] problems, or the Module LWE and Module SIS problems [BGV14, LS15], have been used as security foundation for many cryptographic primitives. As an example of the importance of such problems, 3 out of 4 algorithms standardized by the NIST in July 2022 are based on one of these algebraic lattice problems. 4One of the main advantages of using algebraic lattices compared to standard lattices is that the extra structure added to the lattices allows for less resource for storage and enables faster algorithms for computation, thus improving efficiency. Another advantage of the algebraic structure is that it allows to multiply elements, which can be useful for applications like homomorphic encryption [Gen09a,Gen09b] or obfuscation [GGH + 16].

All the five algorithmic problems mentioned above enjoy reductions from (various) worst-case problems over algebraically structured lattices, called module and ideal lattices (see [PS21,FPS22] for the reductions to the NTRU problem, [LM06, PR06] for Ring SIS, [SSTX09, LPR13] for Ring LWE,and [LS15] for module SIS and module LWE). These worst-case algorithmic problems over modules and ideals provide lower bounds on the hardness of the NTRU, Ring/Module SIS and Ring/Module LWE problems, and hence on the security of the schemes based upon them. At a high level, a module can be seen as a lattice, but defined over a ring which is not the ring Z. More formally, let K be a number field of degree d. For simplicity in this introduction, we will focus on K = Q[X]/(X d +1) with d a power-of-two, which is a cyclotomic field. This field has a ring of integers O K , which in our example is equal to Z[X]/(X d + 1). An O K -module M in K m is a subset of K m generated by a finite set of vectors v 1 , . . . , v k ∈ K m , i.e.,

M := {α 1 v 1 + . . . + α k v k : α 1 , . . . , α k ∈ O K } .
An ideal is a special case of the above definition, corresponding to the case where the generating set is a finite subset of K (i.e., m = 1 in the definition above). An important remark in this definition is that the vectors v 1 , . . . , v k are not required to be linearly independent: they generate the module, but they might not be a basis of the module.

This remark actually highlights a key difference between modules over the ring of integers O K and lattices over the ring Z. Indeed, the ring O K is usually not a principal ideal domain (at least for our running example with K cyclotomic). This means that module lattices do not always have bases over O K (contrary to lattices which always have bases over Z). Instead, a module M over O K admits pseudo-bases, which consist in n linearly independent vectors b 1 , . . . , b n of K m and n ideals I 1 , . . . , I n such that M = { i x i b i | x i ∈ I i }. The integer n is called the rank of the module M .

In some cases, a module M admits a basis, that is, a pseudo-basis where all the coefficient ideals I i are equal to O K . In this case, the module M is said to be a free module. In the case of ideals (i.e., modules included in K), an ideal admitting a basis is usually called a principal ideal (and not a free ideal). We note that, in our example rings, free modules represent a very small portion of the set of all modules.5 Moreover, even when a module M is free, computing a basis of it from a generating set (or a pseudo-basis) might be challenging. It can be performed in quantum polynomial time, but only in subexponential classical time so far (more details can be found in preliminaries). In this article, the main question we try to answer is the following: if we restrict ourselves to free modules represented by a basis (and not any pseudo-basis), do algorithmic problems like the shortest vector problem or the closest vector problem become easier to solve? (When compared to the problems over arbitrary modules, represented by a pseudo-basis.)

So far, the answer to this question is not so clear. There have been some algorithms exploiting the specific structure of free modules or principal ideals, but these algorithms were later extended to all modules or all ideals. For example, [CDPR16] introduced in 2016 an algorithm to compute relatively short elements in principal ideals of a cyclotomic field, which was generalized to all ideals one year later in [CDW17]. Another example is the LLL algorithm for module lattices from [LPSW19], which runs in classical polynomial time for free modules (represented by a basis) but only in quantum polynomial time for arbitrary modules. Again, it was showed a few years later in [DM22] that one can have a classical algorithm also for arbitrary modules. At the moment, we are not aware of any algorithm that would behave significantly better on free modules (respectively principal ideals) than on arbitrary modules (respectively arbitrary ideals). This might highlight the fact that free modules are not really weaker than arbitrary modules, when it comes to algorithmic problems such as the shortest vector problem.

Contributions. In this article, we give more evidence that free modules already capture all the hardness contained in arbitrary modules, for modules of rank ≥ 2. More formally, we prove that it is possible to reduce three algorithmic problems from their variant over module lattices to their variant over free-module lattices (represented by a basis). The three problems we consider in this work are: the shortest vector problem (SVP), the Hermite shortest vector problem (HSVP) and a variant of the closest vector problem (CVP cov). In the variant of CVP we consider, we want to find a lattice point s close to a target t, such that ∥t -s∥ ≤ γ • cov(L), where γ ≥ 1 is some approximation factor and cov(L) is the covering radius of the lattice L (in the standard CVP problem, we usually asks that ∥t -s∥ ≤ γ • dist(t, L), where dist(t, L) is the minimal distance between t and a point of L).

For an algorithmic problem P, let us write n-module-P the worst-case problem P restricted to module lattices of rank n included in K n , and n-freemodule-P the worst-case problem P restricted to free-module lattices of rank n included in K n and represented by a basis. We prove the following theorem.

Theorem 1.1 (Informal, see Theorems 6.1, 6.2 and 6.3). Let n ≥ 2 be an integer. Then, there exist probabilistic polynomial time reductions from n-module-SVP to n-free-module-SVP; from n-module-HSVP to n-free-module-HSVP; from n-module-CVP cov to n-free-module-CVP cov .

The approximation factors achieved by these reductions are polynomial in some quantities depending on the number fields, in n, and in the approximation factor of the oracle solving the problem in free modules (see Theorems 6.1, 6.2, 6.3 for more details). Moreover, one can check that the reductions from the theorem require only two calls to an oracle solving the free-module-P problem in order to solve one instance of the module-P problem (where P ∈ {SVP, HSVP, CVP cov }).

Techniques. The three reductions, for SVP, HSVP and CVP cov follow the same framework. Let P be one of the three problems. We first reduce P in modules to P is free modules and HSVP in ideals (Section 3). Then, we reduce HSVP in ideals to P in free modules of rank 2 (Section 4). Finally, we reduce P in free modules of rank 2 to P in free modules of rank n ≥ 2 (Section 5). Combining these three reductions, we obtain a reduction from P in modules of rank n to P in free modules of rank n for any n ≥ 2.

Let us focus a bit more on each of the three subreductions. For the reduction from module-P to free-module-P and HSVP in ideal lattices, the main idea is to use an almost-free representation of the input module M , that is, a pseudo-basis of M of the form ((b i , I i)) 1≤i≤n with I i = O K for all i ≤ n -1. Such a pseudobasis can be computed in probabilistic polynomial time from any pseudo-basis of M . Then, we use the oracle solving HSVP in ideals to compute a short element x ∈ I n , and we consider the free module N given by the basis (c i) 1≤i≤n , where c i = b i for i ≤ n -1 and c n = x • b n . One can check that N is a free module included in M . It can also be checked that N is not much sparser than M . Both properties imply that solving P in N also provides a solution to P in M , with some controlled loss in the approximation factor.

In the second step of the reduction, we want to find a short element of an ideal, given access to an oracle solving P in free modules of rank 2. Here, the main idea is to consider a two-element representation of the input ideal, that is, two elements of K that, together, generate the ideal. This two-element representation can be computed in probabilistic polynomial time from any basis of the ideal. We then show that, by solving a free-module-P instance in a free module of rank 2 constructed from the two elements found before, it is possible to find a short element of the input ideal. Similar techniques were used in [DM22] in order to transform modules of rank 2 into free modules of rank 4.

Finally, the last part of the reduction is to reduce P from free modules of rank 2 to free modules of rank n ≥ 2. The strategy here is quite natural: we embed the input module of rank 2 into a larger module of rank n. The naive strategy is, for instance, to consider the direct orthogonal sum of the input module M with the free module O n-1 K of rank n -2 (possibly scaled). This works well for SVP and CVP cov , but surprisingly, this does not seem to work for HSVP. Instead, for HSVP, we construct a module of rank n from M by gluing ⌊n/2⌋ orthogonal copies of M together, and adding an extra orthogonal copy of O K if n is odd. This provides a reduction for HSVP which has some significant loss in the approximation factor when n is odd (whereas we had almost no loss for SVP and CVP cov). We believe that it would be an interesting open problem to reduce this loss in the HSVP case (or, on the contrary, show that this loss is mandatory).

Discussion. In this introduction, we focused on the special case of cyclotomic number fields. However, our results are not restricted to cyclotomic number fields, but can be used in any number field K. In full generality, number fields might be principal, or have a very small class number. This means that in this case, most of the modules in these number fields are free (the cyclotomic fields are quite the exception, with their very large class number). However, even if all O K -modules are free, our reduction might still be interesting. Indeed, we have seen that it is in general hard to compute a basis of a free module without a quantum computer. Our reduction provides a way to transform classically a problem over a free module represented by a pseudo-basis into two instances of the same problem over free modules represented by a basis.

One of the consequence of our results is that it provides an alternative proof to obtain a fully classical LLL algorithm over any module. Recall that the authors of [LPSW19] described an LLL algorithm for modules, which was by default a quantum algorithm (if given as input a pseudo-basis of a module), but could be run in classical polynomial time in the specific case where the input module was free and represented by a basis. This algorithm was made fully classical (for all modules) in [DM22]. In this work, the authors focused on the quantum steps of the LLL algorithm for modules from [LPSW19], and showed that these steps could actually be run in classical polynomial time, by using some techniques similar to the ones we use in Section 4. Our reductions allow to obtain a similar result in a more straightforward way: one can simply use the reduction from module-SVP to free-module-SVP from Theorem 1.1, and then apply the classical polynomial time LLL algorithm for free modules from [LPSW19], in order to solve classically the two free-module-SVP instances produced by the reduction.

In this article, we restricted ourselves to prove reductions for three lattice problems, namely SVP, HSVP and CVP cov , which we thought were somewhat standard and representative of the variety of lattice problems. We did not try to see if our reduction framework could be adapted to the large set of other lattice problems (see, e.g., [Ste15, page 1] for a non-exhaustive list of problems). However, we did try to use our framework to prove a reduction for the standard CVP problem,6 instead of the variant CVP cov that we used, but did not succeed. The issue with the standard formulation of CVP stems from the fact that if a target is unexpectedly close to a lattice point, then we may have to find a lattice point whose distance to the target is significantly smaller than the covering radius of the lattice. Interestingly, it seems that our framework can be used in the cases where the target is very close to the lattice (closer than the minimal distance of the lattice) or relatively far away (at a distance of the order of the covering radius of the lattice), but we do not know how to handle the cases in between. We leave it as an open problem to obtain a reduction similar to ours, for the standard CVP problem.

Finally, we remark that another way to obtain reductions from (non free) module problems to free module problems could be to use the reductions from worst-case ideal/module problems to NTRU, Ring/Module LWE or Ring/Module SIS. Indeed, the NTRU, Ring/Module LWE and Ring/Module SIS problems can be reduced to problems over modules (either the shortest vector problem or the bounded distance decoding problem), and the modules that are produced by these reductions are often free and with an easily computable basis. As an example, a Ring LWE instance with good parameters can be reduced to a bounded distance decoding problem in a module M of rank 2 in O 2 K spanned by three vectors (a 1 , a 2) T , (q, 0) T and (0, q) T . If a 1 is coprime with q (which should happen with relatively high probability), then there exists u, v ∈ O K such that ua 1 + vq = 1 and in this case the two vectors (1, ua 2) T and (0, q) T form a basis of the module M (which is then free). Even if this approach seems a possible alternative way to obtain reductions from arbitrary modules to free modules, we would like to highlight some advantages of the approach we chose in this article. First of all, the reductions from worst-case ideal/module problems to Ring/Module LWE and Ring/Module SIS do not preserve the rank of the modules, whereas our reductions transform modules into free modules of the same rank (this is also a limitation for the reduction to NTRU from [PS21], but not for the reduction from [FPS22], which preserves the rank). Another limitation of the approach using Ring/Module LWE is that the reductions from worst-case problem to Ring/Module LWE are quantum, whereas our reductions are classical (this is a limitation only for Ring/Module LWE, not for NTRU or Ring/Module SIS which enjoy classical reductions). Finally, one last advantage of our reductions is that the framework is quite simple, and does not require the heavy machinery of the worst-case to average-case reductions of NTRU, Ring/Module LWE and Ring/Module SIS. In particular, our reduction could be easily implemented, and should be quite efficient. Also, we believe that the general framework we describe might be used to derive reductions for other algorithmic problems, in case they are needed.

Preliminaries

We let Z, Q, R, C denote the set of integers, rationals, real and complex numbers respectively. For a positive real number x, we let log(x) denote the logarithm of x in base 2. Throughout this article, we let bold lowercase letters denote vectors. All vectors are column vectors with the coordinates denoted by normal lowercase letter with subsripted index, for example

v =    v 1 . . . v d    ∈ R d is a column vectors with coordinates v 1 , . . . , v d ∈ R.
We let v T denote the transpose of v. We write ∥v∥ 2 = i v 2 i and ∥v∥ ∞ = max i |v i | to denote the ℓ 2 -norm and the ℓ ∞ -norm respectively. We mostly work with the ℓ 2 -norm and ignore the subscript index when there is no confusion.

Lattices

A lattice L is a set of linear combinations with integer coefficients of R-linearly independent vectors b 1 , . . . , b n ∈ R m L = {a 1 b 1 + . . . + a n b n : a 1 , . . . , a n ∈ Z} .
The (ordered) set of vectors {b 1 , . . . , b n } forms a basis of L, and can be represented by a matrix B ∈ R m×n whose columns are the vectors b 1 , . . . , b n . The integer n is the rank of the lattice L. Given a basis B ∈ R m×n of L, the determinant (or volume) det(L) is defined as det(B T B) 1/2 . The determinant of a lattice is invariant with respect to any choice of its basis.

For a lattice L and i ∈ {2, ∞}, we let λ

(i)
1 (L) = min {∥v∥ i : v ∈ L\{0}} be the length of a shortest non-zero vector of L with respect to the ℓ i -norm. We will also use λ

(i) n (L)
, where n is the rank of L, which is the smallest radius r > 0 such that there exists n linearly independent vectors in L of ℓ i -norm ≤ r. Again, we mostly work with the ℓ 2 -norm and we drop the superscript index when there is no confusion.

Theorem 2.1 (Minkowski's bound). For a rank-n lattice L, we have

λ (∞) 1 (L) ≤ det(L) 1/n ; λ (2) 1 (L) ≤ √ n • det(L) 1/n .
We write Span R (L) the real span of a lattice L (not necessarily full rank). The covering radius cov(L) of a (not necessarily full rank) lattice L is defined as cov(L) = max t∈Span R (L) min s∈L ∥t -s∥. Equivalently, cov(L) is the minimal real number r > 0 such that for all t ∈ Span R (L), there exists s ∈ L with ∥t -s∥ ≤ r. The covering radius of a lattice is a priori hard to compute, but we can show that for any rank-n lattice L, it holds that

cov(L) ≤ n • λ (2) n (L). (1) Indeed, let b 1 , • • • , b n be linearly independent vectors of L satisfying ∥b i ∥ ≤ λ (2) n (L) and let t = i t i b i ∈ Span R (L). Then s = i ⌊t i ⌋b i ∈ L and satisfies ∥t -s∥ ≤ i ∥b i ∥ ≤ n • λ (2) n (L).
On the other hand, we also know that cov(L) ≥ 1/2 • λ

(2) 1 (L). Indeed, if s is a shortest nonzero vector of L, then 1/2 • s has to be at distance ≥ λ

(2) 1 (L)/2 from any lattice point, since otherwise we would have a nonzero vector in L of euclidean norm < λ

(2) 1 (L).

Number Fields

Let K be a number field of degree d and O K be its ring of integers. The ring O K is a free Z-module of rank d. There exists d embeddings from K to C, denoted by σ 1 , . . . , σ d . The canonical embedding σ is defined as

∀x ∈ K, σ(x) = (σ 1 (x), . . . , σ d (x)) ∈ C d .
The number field K, embedded into C d via the canonical embedding, has a geometry induced by the geometry of C d . For x ∈ K, the ℓ 2 -norm of x, denoted by ∥x∥, is defined as the (Hermitian) ℓ 2 -norm of the vector σ(x) in the space C d , i.e., ∥x∥ := ∥σ(x)∥. A similar definition also applies for the ℓ ∞ -norm, i.e., ∥x∥ ∞ := ∥σ(x)∥ ∞ for x ∈ K. For x, y ∈ K, we have the following bound

∥xy∥ ≤ ∥x∥ ∞ • ∥y∥ ≤ ∥x∥ • ∥y∥ . The image σ(O K) is a rank-d lattice, living in C d ≃ R 2d (it is not a full rank lattice in C d). The volume of σ(O K) is equal to ∆ 1/2
K , where ∆ K is the absolute discriminant of the number field K and is given by

∆ K = det (σ i (r j)) 1≤i,j≤d 2 ,
where r 1 , . . . , r d is a Z-basis of O K . The value of ∆ K is invariant from the choice of the basis r 1 , . . . , r d of O K . We will also consider the quantity λ ∞ d (σ(O K)), which we will write λ (∞) d (O K) to simplify notations. In the case of cyclotomic fields, we know that λ

(∞) d (O K) = 1 (
since there is a basis of O K made of roots of unity). For general number fields, the quantity λ (∞) d (O K) can be larger, but it cannot be too large, as stated in the following lemma from [BST + 20] (the original result from [BST + 20]

only states that λ ∞ d (O K) = O(∆ 1/d K), but the constant in the big O can be worked out). Lemma 2.1 (Adapted from [BST + 20, Theorem 3.1]). For any number field K, it holds that λ ∞ d (O K) ≤ ∆ 1/d K .
Algorithms. In this article, when we say that an algorithm is probabilistic polynomial time, we mean that the algorithm is a Las Vegas type algorithm,7 whose expected running time is polynomial in the input size of the algorithm and in log ∆ K . We emphasize that even when ∆ K is not part of the input of the algorithm, we consider that log ∆ K is a polynomial quantity.

Ideals

A fractional ideal I of K is an O K -submodule of K for which there exists a ∈ O K \{0} such that aI ⊂ O K . When I ⊂ O K , we say that I is an integral ideal.

The sum and product of two fractional ideals I and I ′ , defined as,

I + I ′ := {x + y : x ∈ I, y ∈ I ′ } II ′ := n i=1 x i y i : n ∈ Z >0 , x i ∈ I, y i ∈ I ′
are also fractional ideals. Any non-zero fractional ideal I of K is invertible, meaning that there exists some fractional ideal I -1 such that

I • I -1 = O K .
An ideal p is said to be prime if the quotient ring O K /p is an integral domain.

For x ∈ K, we write ⟨x⟩ = xO K to denote the principal ideal generated by x. We remark that O K is a Dedekind domain, in which nonzero proper ideals are uniquely factorized into product of power of prime ideals (the uniqueness is up to the order of the prime factors).

Ideal lattices and algebraic norm. The image σ(I) of a fractional ideal I is a rank-d lattice of C d . We also refer to such lattices as ideal lattices. The algebraic norm of a fractional ideal I, denoted by N (I), is defined to be the determinant of the lattice σ(I) divided by ∆

1/2 K . Note that if I is integral, then N (I) is the index [O K : I]. Ideals norm is multiplicative, i.e. N (IJ) = N (I)
• N (J) for fractional ideals I, J. For a principal ideal ⟨x⟩, we write N (x) to denote the algebraic norm of ⟨x⟩. This corresponds to the absolute value of the usual definition of the algebraic norm of an element, i.e., N (x) = d i=1 σ i (x) . For any non-zero element x ∈ K, we have the following relation between the algebraic norm and euclidean norm of x, which is obtained from the inequality of arithmetic and geometric means applied to

(|σ i (x)| 2) i . √ d • N (x) 1/d ≤ ∥x∥. (2)
This implies in particular that for any element x ∈ O K , we have ∥x∥ ≥ √ d. For any fractional ideal I, it holds that

λ d (I) ≤ λ 1 (I) • λ (∞) d (O K). Indeed, if s ∈ I is
i •s∥ ≤ ∥r i ∥ ∞ •∥s∥ ≤ λ 1 (I)•λ (∞) d (O K).
Combining this with Minkowski's inequality and Equation (1) yields

cov(I) ≤ d 3/2 • λ (∞) d (O K) det(I) 1/d .
(3)

If I = xO K is principal, using (2) this can be rewritten cov(xO K) ≤ d • λ (∞) d (O K) • ∆ 1/2d K • ∥x∥. (4)
Two elements representation. Every fractional ideal I in K admits a two-element representation, which is a way to write I as a sum of two principal ideals ⟨x⟩ and ⟨y⟩. The following result states that the two-element representation of an ideal can be computed in expected polynomial time.

Theorem 2.2 (Adapted from Lemma 2.

of [PS21]

). There exists a probabilistic polynomial time algorithm taking a fractional ideal I ⊂ K and a nonzero x ∈ I as inputs, and computing y ∈ I such that I = ⟨x⟩ + ⟨y⟩.

Proof. The proof is nearly identical to that in [PS21], except that we repeat the algorithm until it outputs a valid pair (x, y), instead of allowing the algorithm to fail with small probability. Unwrapping the proof, one can see that the algorithm in [PS21] is obtained by taking the algorithm from [FS10, Fig. 1], and setting the element x 1 to be the input x in Step 1. In [FS10], it is proven that the probability p that the algorithm does not fail is at least 1/e. Hence, the expected number of iterations of our algorithm is 1/p ≤ e. ⊓ ⊔

Modules

Below, we recall the main results about modules that we will need in this article.

For more detailed references about the theoretical and computational aspects of modules over Dedekind domain, we refer the reader to [Hop98, Chapter 4] and [Coh12, Chapter 1]. Let M ⊂ K m be a finitely generated O K -module, then there exists K-linearly independent vectors b 1 , . . . , b n of K m and fractional ideals I 1 , . . . , I n such that

M = I 1 b 1 + . . . + I n b n .
The set of tuples ((I i , b i)) i≤n is called a pseudo-basis of M , the positive integer n is called the rank of M . In particular, fractional ideals of K are rank-1 O K -modules. For any rank-n module M in K m , there exists a canonical pseudobasis, called the HNF basis of M , which can be computed in polynomial time from any pseudo-basis of M (see, e.g., [Coh12]).

Free modules. A free module is a module M which has a pseudo basis ((I i , b i)) i≤n with all the ideals I i equal to O K . When this is the case, we say that (b 1 , . . . , b n) is a free basis of M . 8 We emphasize here that even if the module M is free, not all pseudo-bases of M are free bases. In particular, the HNF basis of a free module has no reason to be a free basis. Moreover, computing a free basis of a free module given as input an arbitrary pseudo-basis is not known to be doable in classical polynomial time. Indeed, computing a free basis of a free module amounts to computing generators of principal ideals, given as input an arbitrary Z-basis of the ideals (since one can efficiently transform any pseudo-basis of a free module into a new pseudo-basis where all the coefficient ideals are principal, using, e.g., the almost free representation discussed in the next section). This can be done in quantum polynomial time [BS16] but only in sub-exponential classical time [BF14] so far.

Almost free representations. For any rank-n module M , there exist pseudo-bases of the form ((b i , I i)) i , with I i = O K for all i = 1 to n -1 (i.e., only the last ideal is non-trivial). Such pseudo-bases are called almost-free representations of M (or Steinitz form). We denote this representation by (b 1 , . . . , b n , I), where I is the coefficient ideal corresponding to b n . Note that, contrary to the HNF basis, the almost-free representation is not unique: for a given module M , there are many pseudo-bases satisfying I i = O K for all i = 1 to n -1. Still, it is efficiently computable, as stated in the following lemma.

Lemma 2.2 ([BHJ22, Corollary A.3]

). There is a probabilistic polynomial time algorithm that takes as input any pseudo-basis of a rank-n module M in K n for some n ≥ 1, and returns an almost-free representation of M .

Module lattices. The canonical embedding can be extended to K m , by defining σ(v) for v = (v 1 , . . . , v m) T ∈ K m to be the concatenation of σ(v i). Then σ(v) is a vector of C md and σ(M) is a lattice of rank nd (i.e., non full rank). We refer to such lattices as module lattices. We will again abuse notations and write ∥v∥ 2 := ∥σ(v)∥ 2 and ∥v∥ ∞ := ∥σ(v)∥ ∞ for vectors v ∈ K m . Similarly, we use M instead of σ(M) when we view M as a lattice (e.g., λ 1 (M), det(M), . . .). In the rest of the article, we will use the observation that Span Q (σ(M)) = σ(Span K (M)), and we will again abuse notation and write Span K (M) for both.

For a rank-n module M in K n (i.e., a full rank module), we define the norm of M to be

N (M) = N (det B) • i N (I i),
where ((b i , I i)) i is a pseudo-basis of M and B is the n × n matrix with columns b i 's (so det(B) is an element of K). This quantity does not depend on the choice of the pseudo-basis. It is related to the volume of the lattice σ(M) by the formula det(σ

(M)) = ∆ n/2 K • N (M).

Algorithmic problems over module and ideal lattices

We will consider the following algorithmic problems over module and ideal lattices. These problems are worst-case, which means that we want an algorithm that succeeds on any possible input.

Definition 2.1 (Module-SVP). For γ ≥ 1 and a positive integer n, the module shortest vector problem ((γ, n)-module-SVP) asks, given as input any pseudobasis of any rank-n module M in K n , to find a nonzero vector s of M such that ∥s∥ ≤ γ • λ 1 (M).

Definition 2.2 (Free-module-SVP). For γ ≥ 1 and a positive integer n, the free module shortest vector problem ((γ, n)-free-module-SVP) asks, given as input any free basis of any rank-n free module M in K n , to find a nonzero vector s of M such that ∥s∥ ≤ γ • λ 1 (M).

Note that, for simplicity, we restricted our problems to full ranks modules, i.e., to modules of rank n living in K n . Regarding the choice of the input pseudobasis, we note that for the module-SVP problem, we can always assume that the module is represented by its HNF pseudo-basis, since it can be computed efficiently from any pseudo-basis. Doing so, we could define the problem as being worst-case only on the choice of the module. In the case of free-module-SVP however, we cannot do the same, since the module has to be represented by a free basis (recall that HNF bases are in general not free, even for free modules). In this definition, it is important that the algorithm succeeds for any free basis of a module.

We also define Hermite analogues of these two problems, named (γ, n)module-HSVP and (γ, n)-free-module-HSVP respectively, by replacing λ 1 (M) by √ nd • det(M) 1/(nd) in the definitions above. Note that by Minkowski's bound, we have immediate reductions from module-HSVP to module-SVP, and from free-module-HSVP to free-module-SVP, which preserve the rank of the module and the approximation factor. Finally, we define a variant of the CVP problem over modules, which we call CVP cov . In the CVP problem, the approximation factor is usually defined by comparing the distance between the target and the solution with the minimal distance from the target to the lattice. In the variant of CVP we consider, we instead compare this with the covering radius of the lattice. We believe that this variant is quite natural: this covers the "standard situation", where the target vector t has no reason to be particularly close to a lattice vector. This is in a sense similar to the Hermite variant of the shortest vector problem: we consider the expected distance from the target to the lattice (or the expected length of a shortest nonzero vector) instead of the actual distance to the lattice (or the actual length of a shortest vector).

Definition 2.3 (Module-CVP cov). For γ ≥ 1 and a positive integer n, the module closest vector problem with respect to the covering radius ((γ, n)-module-CVP cov) asks, given as input any pseudo-basis of any rank-n module M in K n and any target vector t ∈ Span K (M), to find a vector s of M such that ∥t -s∥ ≤ γ • cov(M).

The free-module closest vector problem with respect to the covering radius ((γ, n)-free-module-CVP cov) is defined analogously, by restricting the input module to being free and represented by (any) free basis.

When n = 1, the modules are ideals and we use the terminology γ-ideal-HSVP instead of (γ, 1)-module-HSVP.9

3 From module problems to free-module problems and ideal-HSVP

In this section, we show that solving SVP (respectively HSVP, CVP cov) in module lattices can be reduced to solving SVP (respectively HSVP, CVP cov) in free module lattices and solving HSVP in ideal lattices. The three reductions have exactly the same structure, hence we present the reductions in a unique algorithm, namely Algorithm 3.1 below, making queries to an oracle that solves either SVP, HSVP or CVP cov in free modules. We then present the analysis of the three different cases in separate subsections, since these analyses differ.

The high level idea of the reductions is as follows. First, we compute an almost free basis of our input module, let's say (b 1 , . . . , b n , I). Then, we solve HSVP in the ideal I to obtain a short element α ∈ I. The reduction finally calls the oracle solving SVP (respectively HSVP, CVP cov) in free modules on the free module N with basis (b 1 , . . . , αb n). This free module a submodule of M , and so a solution to SVP (respectively HSVP, CVP cov) in N is in particular also a solution in M . Analysing how much one looses during this reduction depends on the choice of the problem (SVP, HSVP, CVP cov), and will be done in separate propositions.

Let us first describe the reduction algorithm formally. Let us first observe that this reduction runs in polynomial time.

Proposition 3.1. Let n ≥ 1 be an integer and γ id , γ ≥ 1 be real numbers. Let O id be an oracle solving γ id -ideal-HSVP and O be an oracle solving (γ, n)-freemodule-SVP (respectively (γ, n)-free-module-HSVP, (γ, n)-free-module-CVP cov). Then given access to O id and O, Algorithm 3.1 runs in probabilistic polynomial time, and makes one call to O id and one call to O.

Proof. The only step of the algorithm which does not consist in calling an oracle is the computation of the almost-free pseudo-basis in the first step. This can be done in expected polynomial time thanks to Lemma 2.2.

⊓ ⊔

We will now analyze the correctness and the loss of the reductions.

The case of SVP

We start by an auxiliary lemma.

Lemma 3.1. Using the same notations as in Algorithm 3.1, we have

λ 1 (N) ≤ γ id • ∆ 1/d K • λ 1 (M). Proof. Take v ∈ M \{0} reaching λ 1 (M). We have v = α 1 b 1 + . . . + α n b n ,
where α 1 , . . . , α n-1 ∈ O K and α n ∈ I. Note that since α ∈ I, there exists some integral ideal J such that ⟨α⟩ = IJ. Since α is a solution to γ id -HSVP in I, we have ∥α∥ ≤

γ id • √ d • ∆ 1/(2d) K • N (I) 1/d , which implies N (J) = N (α) N (I) ≤ ∥α∥ d √ d d • N (I) d ≤ γ d id • ∆ 1/2 K ,
where the first inequality is obtained from Equation (2). Let u ∈ J\{0} reaching λ (∞) 1

(J), then u ∈ O K (recall that J is integral) and α n u ∈ ⟨α⟩. This implies that uv = α 1 ub 1 + . . . + α n ub n ∈ N.

From this, we finally obtain that

λ 1 (N) ≤ ∥uv∥ ≤ ∥u∥ ∞ • ∥v∥ ≤ λ (∞) 1 (J) • λ 1 (M) ≤ ∆ 1/2d K • N (J) 1/d • λ 1 (M) ≤ γ id • ∆ 1/d K • λ 1 (M). ⊓ ⊔ Proposition 3.2. If O solves (γ, n)-free-module-SVP, then on input a pseudo- basis of a rank-n module M in K n , Algorithm 3.1 outputs s ∈ M \ {0} such that ∥s∥ ≤ γ • γ id • ∆ 1/d K • λ 1 (M).
Proof. Observe first that N is a submodule of M , hence a non-zero vector of N is also a non-zero vector of M , and s ∈ M \ {0} as desired. The upper bound on ∥s∥ comes from the fact that s is a solution to (γ, n)-free-module-SVP in N , i.e., ∥s∥ ≤ γ • λ 1 (N), and the upper bound on λ 1 (N) from Lemma 3.1.

⊓ ⊔

Combining Proposition 3.2 with Proposition 3.1, we obtain the following corollary.

Corollary 3.1. Let γ, γ id ≥ 1 and n ≥ 1 be an integer. For any

γ ′ ≥ γ•γ id •∆ 1/d K ,
there is a probabilistic, polynomial-time reduction from solving (γ ′ , n)-module-SVP in K n to solving (γ, n)-free-module-SVP in K n and γ id -ideal-HSVP.

The case of HSVP

As in the SVP case, we start by an auxiliary lemma. Lemma 3.2. Using the same notations as in Algorithm 3.1, we have det

(N) ≤ γ d id • ∆ 1/2 K • det(M).
Proof. We know from preliminaries that

det N det M = N (N) N (M) = N (α) N (I) ≤ γ d id • ∆ 1/2 K ,
where the last inequality was proven in the proof of Lemma 3.1.

⊓ ⊔ Proposition 3.3. If O solves (γ, n)-free-module-HSVP, then on input a pseudo- basis of a rank-n module M , Algorithm 3.1 outputs s ∈ M \ {0} such that ∥s∥ ≤ γ 1/n id • γ • ∆ 1/2nd K • √ nd • (det M) 1/nd .
Proof. Let N be as in Algorithm 3.1. Observe that N is a submodule of M , hence a non-zero vector of N is also a non-zero vector of M , and s ∈ M \ {0} as desired. From Lemma 3.2, we know that det(N)

≤ γ d id • ∆ 1/2 K • det(M), hence it follows that ∥s∥ ≤ γ • √ nd • (det N) 1/nd ≤ γ 1/n id • γ • ∆ 1/2nd K • √ nd • (det M) 1/nd as desired. ⊓ ⊔
Combining Propositions 3.3 and 3.1, we obtain the following corollary.

Corollary 3.2. Let γ, γ id ≥ 1 and n ≥ 1 be an integer. For any γ ′ ≥ γ

1/n id • γ • ∆ 1/2nd K
, there is a probabilistic, polynomial-time reduction from solving (γ ′ , n)module-HSVP in K n to solving (γ, n)-free-module-HSVP in K n and γ id -ideal-HSVP.

The case of CVP cov

Similarly to the two previous cases, we start by an auxiliary lemma.

Lemma 3.3. Using the same notations as in Algorithm 3.1, we have cov(N) ≤

γ id • ∆ 1/d K • cov(M).
Proof. Let t ∈ Span K (N). We cant to prove the existence of a vector s ∈ N with ∥t -s∥ ≤ γ id • ∆

1/d K • cov(M).
Let u ∈ α • I -1 be a shortest nonzero vector of α • I -1 for the infinity norm. By Minkowski's theorem, we know that

∥u∥ ∞ ≤ det(α • I -1) 1/d = ∆ 1/2d K • N (α • I -1) 1/d ≤ γ id • ∆ 1/d K ,
where the last inequality was proven in the proof of Lemma 3.1. Note that since α ∈ I, then the ideal α • I -1 is integral and so in particular u ∈ O K . This, in turns, implies that for any x ∈ M , we have u

• x ∈ N . Now, let us define t ′ = u -1 • t. It holds that t ′ ∈ Span K (N) = Span K (M)
, so by definition of the covering radius, there exists s ′ ∈ M such that ∥t ′ -s ′ ∥ ≤ cov(M). From what we have seen above, s = u • s ′ is then a vector of N , and from the bound on ∥u∥ ∞ we finally obtain

∥t -s∥ ≤ ∥u∥ ∞ • ∥t ′ -s ′ ∥ ≤ γ id • ∆ 1/d K • cov(M), as desired. ⊓ ⊔ Proposition 3.4. If O solves (γ, n)-free-module-CVP cov , then on input a pseudo- basis of a rank-n module M and a target vector t ∈ Span K (M), Algorithm 3.1 outputs s ∈ M such that ∥t -s∥ ≤ γ • γ id • ∆ 1/d K • cov(M).
Proof. Let N be as in Algorithm 3.1. Since N is a submodule of M , and s ∈ N , then in particular we have s ∈ M . Moreover, from Lemma 3.3, we know that cov(N)

≤ γ id • ∆ 1/d K • cov(M), hence it follows that ∥t -s∥ ≤ γ • cov(N) ≤ γ • γ id • ∆ 1/d K • cov(N), as desired. ⊓ ⊔
Combining Propositions 3.4 and 3.1, we obtain the following corollary.

Corollary 3.3. Let γ, γ id ≥ 1 and n ≥ 1 be an integer. For any

γ ′ ≥ γ•γ id •∆ 1/d
K , there is a probabilistic, polynomial-time reduction from solving (γ ′ , n)-module-CVP cov in K n to solving (γ, n)-free-module-CVP cov in K n and γ id -ideal-HSVP.

4 From ideal-HSVP to rank-2 free-module problems

In this section, we show that solving ideal-HSVP can be reduced to solving freemodule-SVP (respectively free-module-HSVP, free-module-CVP cov) in modules of rank 2. Since HSVP reduces to SVP in the same lattice by Minkowski's theorem, we actually only need to prove two reductions, one to free-module-HSVP and one to free-module-CVP cov . We do so in the two subsections below.

The case of HSVP (and SVP)

In this subsection, we reduce ideal-HSVP to free-module-HSVP in modules of rank 2. The high level idea is to use a two-element representation of the input ideal to transform it into a free rank-2 module, such that any short vector of this free rank-2 module can be transformed back into a short vector of the input ideal. Similar ideas were used in [DM22] in order to transform a rank-2 module into a free rank-4 module.

More precisely, given an ideal I, we compute a two-element representation I = ⟨a⟩ + ⟨b⟩ and construct the free module M with a basis consisting of the columns of the following matrix

a b 0 ε ,
where ε > 0 is a rational number to be specified later. Observe that every s ∈ M is of the form x y T for x ∈ I and y ∈ ⟨ϵ⟩. Hence, if s is small, then its first coordinate x is a small element of I. Here, since the size of s is related to the determinant of M , which depends on the choice of ε, we want to take ε as small as possible. However, M also contains vectors of the form 0 vε T for v ∈ O K , so if ε is too small then the short vectors of M are of this form and result in x = 0. To avoid this case, we observe that when 0 vε T is a short vector of M then ε can be upper bounded by a quantity depending only on K, I and a. Thus by choosing ε greater than this quantity, we avoid the case where short vectors of M have their first coordinate equal to 0.

Proposition 4.1. For any γ ≥ 1 and

γ ′ > 2γ 2 • ∆ 1/2d
K , there exists a probabilistic polynomial-time reduction from solving γ ′ -ideal-HSVP to solving (γ, 2)-freemodule-HSVP in K 2 .

Proof. Let I be a non-zero ideal of K, without loss of generality we can assume that I is integral (otherwise we scale it to an integral ideal, which does not change its geometry). Compute a two-element representation I = ⟨a⟩ + ⟨b⟩ with a ̸ = 0 using the algorithm of Theorem 2.2 and consider the free module M ⊂ K 2 generated by the free basis (in columns)

a b 0 ε ,
for some ε > 0, rational, to be determined. We want to prove that any solution to γ-HSVP in M is of the form x y T , with x a solution to γ ′ -ideal-HSVP in I. Since a free basis of M is efficiently computable from I (in probabilistic polynomial time), this will give us a probabilistic polynomial time reduction from γ ′ -ideal-HSVP to (γ, 2)-free-module-HSVP as desired.

Let us first prove that if ε is large enough, then all solutions to γ-HSVP in M are of the form x y

T with x non-zero. To do so, assume by contradiction that 0 vε T is a solution to γ-HSVP in M , then v ∈ O K \{0} and there exists u ∈ O K such that ua + vb = 0. By definition of γ-HSVP, we have

ε • ∥v∥ ≤ γ • √ 2d • ∆ 1/2d K • N (M) 1/2d = γ • √ 2d • ∆ 1/2d K • ε 1/2 • N (a) 1/2d .
Next, we want to show that because of the equality ua + vb = 0, then v has to be quite large, and the inequality above cannot be satisfied. The equality ua+vb = 0 implies that ⟨u⟩ ⟨a⟩ = ⟨v⟩ ⟨b⟩. Assume for the moment that b ̸ = 0. Then, all ideals in the equation above are nonzero (since both a and b are nonzero, and v should also be nonzero). Since I = ⟨a⟩ + ⟨b⟩, there exists nonzero integral ideals J 1 , J 2 such that ⟨a⟩ = IJ 1 , ⟨b⟩ = IJ 2 and J 1 , J 2 do not have any common factor in their factorization into prime ideals. Since I is invertible (because it is non-zero), the equality ⟨u⟩ ⟨a⟩ = ⟨v⟩ ⟨b⟩ can be rewritten as ⟨u⟩ J 1 = ⟨v⟩ J 2 . Note that all ideals involved in this equality are integral (because u and v are in O K). Since J 1 and J 2 are coprime, it must be that J 1 divides ⟨v⟩, which implies in particular that N (v) ≥ N (J 1) = N (a)/N (I), where the last equality comes from the definition of J 1 . Finally, recall from Equation (2

) that ∥v∥ ≥ √ d • N (v) 1/d , which gives us ∥v∥ ≥ √ d • N (a) N (I) 1/d .
In the case b = 0, then N (a) = N (I) and thus the inequality still holds, since v ∈ O K . Combining this inequality with the one above we obtain

√ d • N (a) N (I) 1/d ≤ ∥v∥ ≤ γ • √ 2d • ∆ 1/2d K • N (a) 1/2d ε 1/2 , which results in ε ≤ 2γ 2 ∆ 1/d K • N (I) 2/d N (a) 1/d . Therefore choosing ε > 2γ 2 ∆ 1/d K N (I) 2/d /N (a) 1/d guarantees that the solution s = x y T to γ-SVP over M satisfies x ̸ = 0.
Now, we also choose ε such that

ε ≤ γ ′ 2 2γ 2 • N (I) 2/d N (a) 1/d . Note that γ ′ > 2γ 2 •∆ 1/2d K
implies the existence of such ε. Calling the free-module-HSVP oracle on input M , let s be the output and x be the first coordinate of s. The choice of ε guarantees that x ∈ I\{0} and

∥x∥ ≤ ∥s∥ ≤ γ • √ 2d • ∆ 1/2d K • ε 1/2 • N (a) 1/2d ≤ γ ′ • √ d • ∆ 1/2d K • N (I) 1/d = γ ′ • √ d • det(I) 1/d .
Hence x is a solution to γ ′ -ideal-HSVP over I.

⊓ ⊔

Since (γ, 2)-free-module-HSVP reduces to (γ, 2)-free-module-SVP (by definition and by Minkowski's bound), Proposition 4.1 implies the following proposition.

Proposition 4.2. For any γ ≥ 1 and

γ ′ > 2γ 2 • ∆ 1/2d
K , there exists a probabilistic polynomial-time reduction from solving γ ′ -ideal-HSVP to solving (γ, 2)-freemodule-SVP in K 2 .

The case of CVP cov

Let us now consider the reduction to CVP cov in free-modules of rank 2. The main ideas of the reduction are similar to the SVP/HSVP case, but the analysis is a bit different.

The idea is again to consider the free rank-2 module M spanned by the columns of the matrix a b 0 ε , where I = ⟨a⟩ + ⟨b⟩ and ε is small. We show that if ε is sufficiently small, then the covering radius of this lattice is roughly equal to det(I) 1/d (up to polynomial factors). Note that, contrary to the SVP/HSVP case, we have no lower bound on ε here. The ideal case would be ε = 0, but this would lead to a (non free) module of rank 1. Ensuring that the module has rank 2 is the only reason we take ε ̸ = 0. Then, in order to find a short vector in I, we simply solve CVP cov in M with a target vector of the form t = (t 0 , 0) T , where we choose t 0 just slightly above the covering radius of M , so that any solution s = (s 0 , s 1) T has s 0 ̸ = 0, and s 0 ∈ I is somewhat short.

Proposition 4.3. For any γ ≥ 1 and γ

′ ≥ 5 • γ • d • λ (∞) d (O K)
, there exists a probabilistic polynomial-time reduction from solving γ ′ -ideal-HSVP to solving (γ, 2)-free-module-CVP cov in K 2 .

Proof. Let I be an integral ideal in O K (we can assume that I is integral without loss of generality, if it is not we scale it). Let a, b ∈ O K be such that I = ⟨a⟩ + ⟨b⟩ (with a ̸ = 0), and ε > 0 be some rational number. Let M be the rank-2 free module spanned by the basis a b 0 ε . First, let us prove that

cov(M) ≤ ε • d • λ (∞) d (O K) • ∆ 1/2d K • (√ d + ∥a∥) + d 3/2 • λ (∞) d (O K) • det(I) 1/d . Let t = (t 0 , t 1) T ∈ Span K (M) = K 2 . Let w ∈ O K be such that ∥wε -t 1 ∥ ≤ cov(εO K) (i.e.
, wε is a closest point to t 1 in the ideal εO K). If we subtract w • (b, ε) T to t, we obtain a new vector t ′ = (t ′ 0 , t ′ 1) T , which is at the same distance to M than t (since w • (b, ε) T ∈ M), but whose second coordinates is small, namely ∥t ′ 1 ∥ ≤ cov(εO K). Let us now reduce the first coordinate. Let α ∈ I be a closest vector to t ′ 0 , that is, ∥α -t ′ 0 ∥ ≤ cov(I). Since I is generated by a and b, there exists u 0 and v 0 in O K such that α = u 0 a + v 0 b. We would like to take v 0 as small as possible (since adding v 0 times the second basis vector will make the second coordinate of our vector increase again). We know that any (u, v) = (u 0 + kb, v 0 -ka) with k ∈ O K also satisfies α = ua + vb. Hence, we can always reduce v modulo a and ensure that ∥v∥ = ∥v 0 -ka∥ ≤ cov(aO K).

Overall, we obtain (u, v) ∈ O 2 K with ∥v∥ ≤ cov(aO K) such that ∥ua + vbt ′ 0 ∥ ≤ cov(I). Taking s = u(a, 0) T + (v + w)(b, ε) T ∈ M finally gives us

∥t -s∥ = ∥t ′ -u(a, 0) T -v(b, ε) T ∥ = ∥(t ′ 0 -α, t ′ 1 -εv) T ∥ ≤ ∥t ′ 0 -α∥ + ∥t ′ 1 ∥ + ε∥v∥ ≤ cov(I) + cov(εO K) + ε • cov(aO K).
To conclude, recall from preliminaries (Equations (3) and (4)) that

cov(I) ≤ d 3/2 • λ (∞) d (O K) • det(I) 1/d , cov(aO K) ≤ d • λ (∞) d (O K) • ∆ 1/2d K • ∥a∥, cov(εO K) ≤ ε • d 3/2 • λ (∞) d (O K) • ∆ 1/2d K ,
where in the last inequality we used the fact that ε is rational and so ∥ε∥ = ε √ d. Combining everything, we obtain the desired upper bound on cov(M).

We can now describe our reduction from ideal-HSVP to free-module-CVP cov in modules of rank 2. Our algorithm takes as input some integral ideal I. It computes in probabilistic polynomial time a and b in O K such that I = ⟨a⟩ + ⟨b⟩, with a ̸ = 0 (see Lemma 2.2). Then, it sets ε > 0 rational such that ε ≤

∆ 1/(2d) K • (√ d + ∥a∥) -1
•det(I) 1/d , and compute the free basis a b 0 ε , spanning some rank-2 module M . The reduction also creates the target vector t = (δ, 0) T , with

δ ∈ Q such that δ ∈ (2, 3] • γ • dλ (∞) d (O K) • det(I) 1/d
. The reduction then runs the (γ, 2)-freemodule-CVP cov oracle on input M and t, to obtain a vector s = (s 0 , s 1) T , and it outputs s 0 .

One can check that the reduction in probabilistic polynomial time. Let us now prove that s 0 is a solution to γ ′ -HSVP in I with γ ′ as in the theorem statement.

First, s 0 ∈ I since a and b are both in I. Also, by choice of ε and using what we have proven above, we know that cov(M)

≤ 2d 3/2 • λ (∞) d (O K) • det(I) 1/d . This implies that ∥s 0 -δ∥ ≤ ∥s -t∥ ≤ γ • cov(M) < ∥δ∥,
using the fact that ∥δ∥ = √ dδ since δ ∈ Q ⊆ K. This means that s 0 is nonzero, and

∥s 0 ∥ ≤ ∥δ∥ + γ • cov(M) ≤ 5γ • d • λ (∞) d (O K) • √ d • det(I) 1/d , as desired. ⊓ ⊔
5 From rank-2 free-module problems to rank-n free-module problems

We conclude the reductions by proving a reduction from free-module-SVP (respectively HSVP, CVP cov) in modules of rank 2 to free-module-SVP (respectively HSVP, CVP cov) in modules of rank n ≥ 2. These reductions are not surprising, since they follow the intuition that the hardness of module problems increase when the rank of the module increase (for a fixed underlying field). Following this intuition, the reductions for SVP and CVP cov are easily obtained by embedding the rank 2 input module into a larger rank module, and padding the extra dimensions with dummy vectors. Surprisingly however, the reduction for HSVP is not as easy as the other two, and we even have some significant loss in the approximation factor when reducing to modules of rank n with n odd. The proof of Proposition 5.2 (the HSVP reduction) is the most interesting one of this section. We believe that improving the reduction for HSVP to obtain a smaller loss is an interesting open problem.

The case of SVP

In this subsection, we reduce SVP in rank-2 free modules in K 2 to SVP in rank-n free module, where n ≥ 2. This is naturally done by embedding the rank 2 free module into a larger rank free module. Let M 1 ⊂ K 2 be a rank-2 free modules with a free basis B ′ ∈ K 2×2 . We construct a rank-n free module M ⊂ K n generated by the columns of the following block matrix

B = B ′ 0 0 δI n-2 ∈ K n×n
where δ is a positive, rational number, to be determined later. Note that M 1 is the rank-2 free module generated by the first two columns of B. If we let M 2 be the rank-(n -2) free module generated by the remaining n -2 columns of B, then we see that M = M 1 ⊕ M 2 , and the sum is orthogonal.

Lemma 5.1. With the above notations, λ 1 (M) = min{λ 1 (M 1), λ 1 (M 2)}.

Proof. Let s ∈ M \{0} be a shortest vector, we have s = s 1 + s 2 , where s 1 ∈ M 1 , s 2 in M 2 and s 1 , s 2 are orthogonal (when viewed as vectors in C nd). If both s 1 and s 2 are nonzero vectors, then λ 1 (M) = ∥s∥ > min{∥s 1 ∥ , ∥s 2 ∥}, which is absurd. Thus one of s 1 and s 2 is zero vector, and the conclusion follows.

⊓ ⊔

Suppose that we have access to an oracle solving (γ, n)-free-module-SVP on input any free basis of any rank-n module in K n . Calling this oracle on input B will give a short vector s of M . The idea is to choose δ large enough such that M 2 does not contain any relatively short vector of M and thus the short vectors of M should be the short vectors of M 1 . In particular, if we choose δ such that λ 1 (M 2) ≥ γλ 1 (M 1), then a solution s to γ-SVP in M is also a solution to γ-SVP in M 1 (when projecting on the first two coordinates).

Lemma 5.2. If δ > γ • √ 2 • det(M 1) 1/(2d) , then λ 1 (M 2) > γ • λ 1 (M 1).
Proof. Let s = (0, 0, s 1 δ, . . . , s n-2 δ) T ∈ M 2 be a shortest nonzero vector of M 2 , where s i ∈ O K . Observe that there exists some i ∈ {1, . . . , n -2} such that s i ̸ = 0, then 2d) .

λ 1 (M 2) = ∥s∥ ≥ δ • ∥s i ∥ ≥ δ • √ d > γ • √ 2d • det(M 1) 1/(
By Minkowski's bound, it follows that λ 1 (M 2) > γλ 1 (M 1).

⊓ ⊔

We can now prove our reduction from rank 2 to rank n free modules.

Proposition 5.1. Let γ ≥ 1 be a reaul number and n ≥ 2 be an integer. There is a polynomial-time (deterministic) reduction from solving (γ, 2)-free-module-SVP in K 2 to (γ, n)-free-module-SVP in K n .

Proof. Consider a rank-2 free module M 1 given by a basis B ′ ∈ K 2×2 . We set δ = ⌈γ • 2 • det(M 1) 1/(2d) ⌉ and construct the block matrix

B = B ′ 0 0 δI n-2 ∈ K n×n
as above. Note that computing δ and constructing B can be performed in time polynomial in the size of B ′ and in log ∆ K (and the size of B is polynomial in these two quantities). We observe also that B is a free basis of a rank n module in K n . Calling the (γ, n)-free-module-SVP oracle on this module produces s = (s 1 , s 2 , . . . , s n) ∈ K n . Our reduction algorithm then outputs the vector formed by the first two coordinates of s.

We have seen that this procedure is polynomial time. Let us now show that the output vector is a solution to γ-SVP in M 1 . Since δ satisfies the condition of Lemma 5.2, we have λ 1 (M 2) > γλ 1 (M 1) ≥ λ 1 (M 1). By Lemma 5.1, it follows that λ 1 (M) = λ(M 1). The output s of the oracle then satisfies ∥s∥ ≤ γ•λ 1 (M 1) < λ 1 (M 2). This implies that s ′ = (s 1 , s 2) T is nonzero, in M 1 and of euclidean norm ≤ γ • λ 1 (M 1) as desired.

⊓ ⊔

The case of HSVP

In this section, we reduce HSVP in free modules of rank 2 to HSVP in free modules of rank n ≥ 2. The strategy is somewhat similar to the SVP case: we embed our rank-2 module into a rank-n module and use the oracle in this rank-n module. However, in the HSVP case, padding the extra dimensions of the modules with (scaled) identity vectors does not seem to work. Hence, we instead copy our rank-2 modules into n/2 orthogonal copies of itself. For this reason, the case with n odd behaves differently from the case with n even, and we obtain a worse approximation factor in this case of n odd (this is the only reduction in this section, where the new approximation factor is more than linear in the original approximation factor).

Proposition 5.2. Let n ≥ 2 be an integer and define ε n = 0 if n is even and

ε n = 1/(n -1) if n is odd. For any real numbers γ ≥ 1 and γ ′ ≥ γ 1+εn • √ n 1+εn • ∆ εn/2d K
, there exists a (deterministic) polynomial time reduction from solving (γ ′ , 2)-free-module-HSVP to solving (γ, n)-free-module-HSVP.

Note that the quantity ε n in the theorem is always ≤ 1/2, so by taking

γ ′ ≥ γ 3/2 • n 3/4 • ∆ 1/4d
K , the theorem's requirement is fulfilled.

Proof. Consider a rank-2 free module M 1 given by a basis B ′ ∈ K 2×2 . Consider the case when n is even, we construct the block matrix

B =      B ′ 0 • • • 0 0 B ′ • • • 0 0 0 • • • B ′      ∈ K n×n ,
which is a block diagonal matrix with diagonal elements consisting of n/2 blocks of B ′ . Observe the cost of constructing B and the size of B is polynomial in the size of B ′ . We observe also that B is a free basis of a rank n module in K n . Calling the (γ, n)-free-module-HSVP oracle on this module produces s = (s 1 , s 2 , . . . , s n) ∈ K n satisfying ∥s∥ ≤ γ • √ nd • det(M) 1/nd . Our reduction algorithm then selects an odd index i such that (s i , s i+1) is nonzero and outputs s ′ = (s i , s i+1). Such i always exists since s is nonzero, and s ′ ∈ M 1 and satisfies

∥s ′ ∥ ≤ ∥s∥ ≤ γ • √ nd • det(M) 1/nd = γ • √ nd • ∆ n/2 K • N (det B) 1/nd = γ • √ nd • ∆ 1/2d K • N (det B ′) n/2 1/nd = γ • √ nd • det(M 1) 1/2d ≤ γ ′ • √ 2d • det(M 1) 1/2d ,
the last inequality is obtained by the fact that γ ′ = γ √ n ≥ γ • n/2 when n is even. Hence, s ′ is a solution to γ ′ -HSVP in M 1 as desired. Now consider the case when n is odd, we construct the block matrix

B =          B ′ 0 0 • • • 0 0 0 B ′ 0 • • • 0 0 0 0 B ′ • • • 0 0 0 0 0 • • • B ′ 0 0 0 0 • • • 0 δ          ∈ K n×n ,
where δ is a rational number satisfying δ 0 < δ ≤ 2δ 0 , for

δ 0 = γ n/(n-1) • ∆ n/2d(n-1) K • (√ n) n/(n-1) • N (det B ′) 1/2d .
Note that B is a block diagonal matrix with diagonal elements consisting of (n -1)/2 blocks of B ′ and δ. Similarly to the case where n is even, B is a free basis of a rank n module in K n ; the cost of constructing B and the size of B is polynomial in the size of B ′ and log ∆ K . Calling the (γ, n)-free-module-HSVP oracle on this module produces s = (s 1 , s 2 , . . . , s n) ∈ K n satisfying ∥s∥ ≤ γ • √ nd • det(M) 1/nd . Our reduction algorithm now select an odd index i < n such that (s i , s i+1) is nonzero and outputs s ′ = (s i , s i+1). Now we show that such choice of i can always be made. Suppose by contradiction that the (γ, n)-free-module-SVP outputs s = (0, . . . , 0, δu) ∈ K n , where u ∈ O K \{0}. Note that we have

δ • ∥u∥ ≤ γ • √ nd • (det M) 1/nd = γ • √ nd • ∆ 1/2d K • N (det B ′) (n-1)/2nd • δ 1/n .
Since u ∈ O K \ {0}, we have ∥u∥ ≥ √ d, which implies δ ≤ γ n/(n-1) • ∆ n/2d(n-1) K

• (√ n) n/(n-1) • N (det B ′) 1/2d = δ 0 .

This contradicts the choice of δ. Thus the reduction algorithm in case n is odd can always outputs s ′ which is a nonzero vector of M 1 and satisfies

∥s ′ ∥ ≤ ∥s∥ ≤ γ • √ nd • det(M) 1/nd = γ • √ nd • ∆ 1/2d K • N (det B ′) (n-1)/2nd • δ 1/n ≤ γ • √ nd • ∆ 1/2d K • N (det B ′) (n-1)/2nd • 2 1/n • γ εn • ∆ εn/2d K • √ n εn • N (det B ′) 1/2nd ≤ γ 1+εn • √ n 1+εn ∆ εn/2d K • √ 2d • ∆ 1/2d K • N (det B ′) 1/2d ≤ γ ′ • √ 2d • det(M 1) 1/2d ,
as desired. ⊓ ⊔

The case of CVP cov

In this subsection, we reduce CVP cov in free modules of rank 2 to CVP cov in free modules of rank n ≥ 2. This is probably the simplest of the three reductions from this section. Like in the SVP case, we simply embed our rank-2 module M 1 into a rank-n module by padding the extra dimensions with (scaled) identity vectors. We only need to ensure that these vectors are smaller than the covering radius of M 1 , to be sure that these extra dimensions do not increase the covering radius of our module too much. Then, we create a target vector by padding zeros to the original target vector. Overall, we prove the following reduction.

Proposition 5.3. Let γ ≥ 1 a real number and n ≥ 2 an integer. There is a (deterministic) polynomial-time reduction from solving (γ ′ , 2)-free-module-CVP cov in K 2 to (γ, n)-free-module-CVP cov in K n , for any γ ′ ≥ √ 2 • γ.

Proof. Consider a rank-2 free module M 1 given by a basis B ′ ∈ K 2×2 and a target vector t 1 ∈ Span K (M 1) = K 2 . Let us assume without loss of generality that M 1 ⊆ O 2 K . The reduction algorithm computes δ ≤ (dn • λ d (O K)) -1 rational and constructs the block matrix (spanning a module called M)

B = B ′ 0 0 δ • I n-2 ∈ K n×n .
and the target vector t = (t 1 T , 0, . . . , 0) T (with n -2 zeros). The reduction then calls the oracle solving (γ, n)-free-module-CVP cov on input B and t, which outputs a vector s. Let us call s 1 the vector formed by the first two coordinates of s. The reduction algorithm finally outputs s 1 .

One can check that computing an appropriate value of δ can be done in polynomial time since we know from Lemma 2.1 that λ

(∞) d (O K) ≤ ∆ 1/d K .
Constructing B and t can also be performed in polynomial time, hence our reduction runs in polynomial time.

Let us now focus on correctness. From the definition of B, we know that s 1 ∈ M 1 . We also know that ∥t 1 -s 1 ∥ ≤ ∥t -s∥ ≤ γ • cov(M).

Let us analyse cov(M). Because of the special shape of B, we know that

cov(M) = cov(M 1) 2 + δ 2 • cov(O n-2 K) 2 ≤ cov(M 1) 2 + (δ • dn • λ d (O K)) 2 ≤ cov(M 1) 2 + 1
Moreover, we know from preliminaries that cov(M 1) ≥ 1/2 • λ 1 (M 1) ≥ √ d/2, where the last inequality follows from the fact that M 1 ⊆ O 2 K . Combining this with the previous inequality yields cov(M) ≤ √ 2 • cov(M 1).

Hence, our reduction solves (√ 2γ, 2)-CVP cov in M 1 as desired. ⊓ ⊔

Combining the reductions

In this last section, we combine the three reductions from Sections 3, 4 and 5 to prove our main theorems.

Theorem 6.1. Let γ ≥ 1 and n ≥ 2 be an integer. For any

γ ′ > 2 • γ 3 • ∆ 3/2d
K , there is a probabilistic, polynomial-time reduction from solving (γ ′ , n)-module-SVP in K n to solving (γ, n)-free-module-SVP in K n . Theorem 6.2. Let γ ≥ 1 and n ≥ 2 be an integer. For any

γ ′ > γ 2 • √ 2n•∆ 1/2d
K , there is a probabilistic, polynomial-time reduction from solving (γ ′ , n)-module-HSVP in K n to solving (γ, n)-free-module-HSVP in K n . Theorem 6.3. Let γ ≥ 1 and n ≥ 2 be an integer. For any

γ ′ ≥ γ 2 •5 √ 2•d•∆ 2/d
K , there is a probabilistic, polynomial-time reduction from solving (γ ′ , n)-module-CVP cov in K n to solving (γ, n)-free-module-CVP cov in K n .

We note that, in the statements above, we chose to make the lower bound on γ ′ as simple as possible, but not necessarily as tight as possible. If the reader is interested in tighter bounds, it might be worth combining the reductions from the previous sections in a more careful way.

Interestingly, the reduction for SVP is the less tight of the three reductions, if we ignore the factors depending on the field and the module rank. Indeed, in the SVP case, the new approximation factor γ ′ is cubic in the original approximation factor γ, when for the other two reductions, the new approximation factor γ ′ is only quadratic in γ. We do not know whether it is possible to decrease the loss to quadratic in γ in the SVP case too, and leave it as an open problem.

Algorithm 3. 1 :

 1 Reduction from module-SVP/HSVP/CVP cov to freemodule-SVP/HSVP/CVP cov Oracles: O id an oracle solving γ id -ideal-HSVP and O an oracle solving (γ, n)-free-module-SVP (or HSVP, or CVP cov)Input: A pseudo-basis (b i , I i) 1≤i≤n of a rank-n module M ⊂ K n ; optionally a target vector t ∈ Span K (M) if O solves free-module-CVP cov Output: A vector s ∈ M 1 Compute an almost-free representation (c 1 , • • • , c n , I) of M ; 2 Run O id on I to obtain α ∈ I \ {0};3 Let N be the free module spanned by b 1 , . . . , b n-1 , αb n ; 4 Run O on N (and optionally t in the case of CVP cov) to obtain s ∈ N ; 5 return s.

 a shortest nonzero element of I for the euclidean norm, and r 1 , . . . , r d are d linearly independent elements of O K satisfying ∥r i ∥ ∞ ≤ λ then the elements r i • s are d linearly independent elements of I and satisfy ∥r

	(∞) d	(O K) for
	all i's,	

https://csrc.nist.gov/projects/post-quantum-cryptography

In the case of ideals for instance, we know that the proportion of principal ideals among all ideals is equal to 1/hK , where hK is a quantity called the class number of the field K. When K is a cyclotomic field, it is known that hK grows more than exponentially in the degree d of the number field (see, e.g.,[Law97, Proposition 11.15]).

Recall that the standard CVP problem asks, given as input a target t, to find a point s of the lattice L such that ∥t -s∥ ≤ γ • dist(t, L), for some approximation factor γ.

That is, an algorithm whose output is always correct, but whose running time is a random variable.

Those are usually simply called "bases", by opposition to the pseudo-bases. But we prefer to add the adjective "free" in this work, to make the distinction even clearer.

The other problems will not be used for ideal lattices, so we do not give them a special name.

Acknowledgments

Alice Pellet-Mary is supported by the CHARM ANR-NSF grant (ANR-21-CE94-0003) and by the PEPR quantique France 2030 programme managed by the ANR (ANR-22-PETQ-0008 PQ-TLS). Nam Tran is supported by CSIRO Data61 PhD Scholarship and CSIRO Data61 Top-up Scholarship. This work was done when Nam Tran was a Master student in the University of Limoges (France) and doing his internship at Institute of Mathematics of Bordeaux (IMB, France), founded by IMB.

Proof (Proof of Theorem 6.1). Let γ 1 = γ ′ , γ 2 = γ ′ γ∆ 1/d K and γ 3 = γ 4 = γ. It holds by definition that γ 1 ≥ γ 4 • γ 2 • ∆ 1/d K hence, by Corollary 3.1, we have a reduction from (γ 1 , n)-module-SVP to (γ 4 , n)-free-module-SVP and γ 2 -ideal-HSVP. Then, observe that because of the lower bound on γ ′ in the theorem statement, we have

K , so by Proposition 4.2 there is a reduction from γ 2 -ideal-HSVP to (γ 3 , 2)-free-module-SVP. Finally, by Proposition 5.1, there is a reduction from (γ 3 , 2)-free-module-SVP to (γ 4 , n)-free-module-SVP. Combining the three reductions provides a reduction from (γ 1 , n)-module-SVP to (γ 4 , n)-free-module-SVP as required.

⊓ ⊔

For γ 3 , we treat the case n = 2 separately: if n = 2, we let

First, let us observe that by definition of γ 1 , γ 2 and γ 4 , it holds that γ 1 ≥ γ

. Hence, by Corollary 3.2, there is a reduction from (γ 1 , n)module-HSVP to (γ 4 , n)-free-module-HSVP and γ 2 -ideal-HSVP.

Then, observe that thanks to the lower bound on γ ′ in the theorem's statement, we have that

and so from Proposition 4.1, we have a reduction from γ 2 -ideal-HSVP to (γ 3 , 2)-free-module-HSVP.

Finally, let ε n be as in Proposition 5.2, that is ε n = 0 if n is even and ε n = 1/(n -1) if n is odd. Note that ε n = 0 when n = 2 and ε n ≤ 1/2 when n ≥ 3. With this in mind, one can check that γ 3 ≥ γ 1+εn 4

in both cases n = 2 and n ≥ 3. From Proposition 5.2, this implies the existence of a reduction from (γ 3 , 2)-free-module-HSVP to (γ 4 , n)-free-module-HSVP. Combining the three reductions provides a reduction from (γ 1 , n)-module-HSVP to (γ 4 , n)-free-module-HSVP as required.

⊓ ⊔

By definition and from the lower bound on γ ′ in the theorem statement, it holds that γ

K hence, by Corollary 3.3, we have a reduction from (γ 1 , n)-module-CVP cov to (γ 4 , n)-free-module-CVP cov and γ 2ideal-HSVP. Then, by definition of γ 2 and using the fact that λ

so by Proposition 4.3 there is a reduction from γ 2 -ideal-HSVP to (γ 3 , 2)-free-module-CVP cov . Finally, we have γ 3 ≥ √ 2 • γ 4 and so by Proposition 5.3, there is a reduction from (γ 3 , 2)-freemodule-CVP cov to (γ 4 , n)-free-module-CVP cov . Combining the three reductions provides a reduction from (γ 1 , n)-module-CVP cov to (γ 4 , n)-free-module-CVP cov as required.

⊓ ⊔