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Abstract. In this article, we give evidences that free modules (i.e., mod-
ules which admit a basis) are no weaker than arbitrary modules, when
it comes to solving cryptographic algorithmic problems (and when the
rank of the module is at least 2). More precisely, we show that for three
algorithmic problems used in cryptography, namely the shortest vector
problem, the Hermite shortest vector problem and a variant of the clos-
est vector problem, there is a reduction from solving the problem in any
module of rank n ≥ 2 to solving the problem in any free module of the
same rank n.

1 Introduction

Lattice-based algorithmic problems using algebraic lattices, such as the NTRU
problem [HPS06], the Ring LWE [SSTX09, LPR13] and Ring SIS [LM06, PR06]
problems, or the Module LWE and Module SIS problems [BGV14, LS15], have
been used as security foundation for many cryptographic primitives. As an ex-
ample of the importance of such problems, 3 out of 4 algorithms standardized
by the NIST in July 2022 are based on one of these algebraic lattice problems.4

One of the main advantages of using algebraic lattices compared to standard
lattices is that the extra structure added to the lattices allows for less resource
for storage and enables faster algorithms for computation, thus improving effi-
ciency. Another advantage of the algebraic structure is that it allows to multi-
ply elements, which can be useful for applications like homomorphic encryption
[Gen09a, Gen09b] or obfuscation [GGH+16].

All the five algorithmic problems mentioned above enjoy reductions from
(various) worst-case problems over algebraically structured lattices, called mod-
ule and ideal lattices (see [PS21, FPS22] for the reductions to the NTRU prob-
lem, [LM06, PR06] for Ring SIS, [SSTX09, LPR13] for Ring LWE, and [LS15] for
module SIS and module LWE). These worst-case algorithmic problems over mod-
ules and ideals provide lower bounds on the hardness of the NTRU, Ring/Module
SIS and Ring/Module LWE problems, and hence on the security of the schemes

4 https://csrc.nist.gov/projects/post-quantum-cryptography
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based upon them. At a high level, a module can be seen as a lattice, but defined
over a ring which is not the ring Z. More formally, let K be a number field of
degree d. For simplicity in this introduction, we will focus on K = Q[X]/(Xd+1)
with d a power-of-two, which is a cyclotomic field. This field has a ring of inte-
gers OK , which in our example is equal to Z[X]/(Xd+1). An OK-module M in
Km is a subset of Km generated by a finite set of vectors v1, . . . ,vk ∈ Km, i.e.,

M := {α1v1 + . . .+ αkvk : α1, . . . , αk ∈ OK} .

An ideal is a special case of the above definition, corresponding to the case where
the generating set is a finite subset of K (i.e., m = 1 in the definition above).
An important remark in this definition is that the vectors v1, . . . ,vk are not
required to be linearly independent: they generate the module, but they might
not be a basis of the module.

This remark actually highlights a key difference between modules over the
ring of integersOK and lattices over the ring Z. Indeed, the ringOK is usually not
a principal ideal domain (at least for our running example with K cyclotomic).
This means that module lattices do not always have bases over OK (contrary to
lattices which always have bases over Z). Instead, a module M over OK admits
pseudo-bases, which consist in n linearly independent vectors b1, . . . ,bn of Km

and n ideals I1, . . . , In such that M = {
∑

i xibi |xi ∈ Ii}. The integer n is called
the rank of the module M .

In some cases, a module M admits a basis, that is, a pseudo-basis where all
the coefficient ideals Ii are equal to OK . In this case, the moduleM is said to be a
free module. In the case of ideals (i.e., modules included inK), an ideal admitting
a basis is usually called a principal ideal (and not a free ideal). We note that, in
our example rings, free modules represent a very small portion of the set of all
modules.5 Moreover, even when a module M is free, computing a basis of it from
a generating set (or a pseudo-basis) might be challenging. It can be performed in
quantum polynomial time, but only in subexponential classical time so far (more
details can be found in preliminaries). In this article, the main question we try to
answer is the following: if we restrict ourselves to free modules represented by a
basis (and not any pseudo-basis), do algorithmic problems like the shortest vector
problem or the closest vector problem become easier to solve? (When compared
to the problems over arbitrary modules, represented by a pseudo-basis.)

So far, the answer to this question is not so clear. There have been some
algorithms exploiting the specific structure of free modules or principal ideals,
but these algorithms were later extended to all modules or all ideals. For ex-
ample, [CDPR16] introduced in 2016 an algorithm to compute relatively short
elements in principal ideals of a cyclotomic field, which was generalized to all
ideals one year later in [CDW17]. Another example is the LLL algorithm for
module lattices from [LPSW19], which runs in classical polynomial time for free

5 In the case of ideals for instance, we know that the proportion of principal ideals
among all ideals is equal to 1/hK , where hK is a quantity called the class number of
the field K. When K is a cyclotomic field, it is known that hK grows more than ex-
ponentially in the degree d of the number field (see, e.g., [Law97, Proposition 11.15]).
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modules (represented by a basis) but only in quantum polynomial time for ar-
bitrary modules. Again, it was showed a few years later in [DM22] that one
can have a classical algorithm also for arbitrary modules. At the moment, we
are not aware of any algorithm that would behave significantly better on free
modules (respectively principal ideals) than on arbitrary modules (respectively
arbitrary ideals). This might highlight the fact that free modules are not really
weaker than arbitrary modules, when it comes to algorithmic problems such as
the shortest vector problem.

Contributions. In this article, we give more evidence that free modules already
capture all the hardness contained in arbitrary modules, for modules of rank ≥ 2.
More formally, we prove that it is possible to reduce three algorithmic problems
from their variant over module lattices to their variant over free-module lattices
(represented by a basis). The three problems we consider in this work are: the
shortest vector problem (SVP), the Hermite shortest vector problem (HSVP)
and a variant of the closest vector problem (CVPcov). In the variant of CVP
we consider, we want to find a lattice point s close to a target t, such that
∥t−s∥ ≤ γ ·cov(L), where γ ≥ 1 is some approximation factor and cov(L) is the
covering radius of the lattice L (in the standard CVP problem, we usually asks
that ∥t− s∥ ≤ γ · dist(t,L), where dist(t,L) is the minimal distance between t
and a point of L).

For an algorithmic problem P, let us write n-module-P the worst-case prob-
lem P restricted to module lattices of rank n included in Kn, and n-free-
module-P the worst-case problem P restricted to free-module lattices of rank
n included in Kn and represented by a basis. We prove the following theorem.

Theorem 1.1 (Informal, see Theorems 6.1, 6.2 and 6.3). Let n ≥ 2 be
an integer. Then, there exist probabilistic polynomial time reductions

– from n-module-SVP to n-free-module-SVP;
– from n-module-HSVP to n-free-module-HSVP;
– from n-module-CVPcov to n-free-module-CVPcov.

The approximation factors achieved by these reductions are polynomial in some
quantities depending on the number fields, in n, and in the approximation factor
of the oracle solving the problem in free modules (see Theorems 6.1, 6.2, 6.3 for
more details). Moreover, one can check that the reductions from the theorem
require only two calls to an oracle solving the free-module-P problem in order to
solve one instance of the module-P problem (where P ∈ {SVP, HSVP,CVPcov}).

Techniques. The three reductions, for SVP, HSVP and CVPcov follow the same
framework. Let P be one of the three problems. We first reduce P in modules
to P is free modules and HSVP in ideals (Section 3). Then, we reduce HSVP in
ideals to P in free modules of rank 2 (Section 4). Finally, we reduce P in free
modules of rank 2 to P in free modules of rank n ≥ 2 (Section 5). Combining
these three reductions, we obtain a reduction from P in modules of rank n to P
in free modules of rank n for any n ≥ 2.
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Let us focus a bit more on each of the three subreductions. For the reduction
from module-P to free-module-P and HSVP in ideal lattices, the main idea is to
use an almost-free representation of the input module M , that is, a pseudo-basis
of M of the form ((bi, Ii))1≤i≤n with Ii = OK for all i ≤ n− 1. Such a pseudo-
basis can be computed in probabilistic polynomial time from any pseudo-basis
of M . Then, we use the oracle solving HSVP in ideals to compute a short element
x ∈ In, and we consider the free module N given by the basis (ci)1≤i≤n, where
ci = bi for i ≤ n − 1 and cn = x · bn. One can check that N is a free module
included in M . It can also be checked that N is not much sparser than M . Both
properties imply that solving P in N also provides a solution to P in M , with
some controlled loss in the approximation factor.

In the second step of the reduction, we want to find a short element of an
ideal, given access to an oracle solving P in free modules of rank 2. Here, the main
idea is to consider a two-element representation of the input ideal, that is, two
elements ofK that, together, generate the ideal. This two-element representation
can be computed in probabilistic polynomial time from any basis of the ideal.
We then show that, by solving a free-module-P instance in a free module of
rank 2 constructed from the two elements found before, it is possible to find a
short element of the input ideal. Similar techniques were used in [DM22] in order
to transform modules of rank 2 into free modules of rank 4.

Finally, the last part of the reduction is to reduce P from free modules of rank
2 to free modules of rank n ≥ 2. The strategy here is quite natural: we embed
the input module of rank 2 into a larger module of rank n. The naive strategy
is, for instance, to consider the direct orthogonal sum of the input module M
with the free module On−1

K of rank n − 2 (possibly scaled). This works well
for SVP and CVPcov, but surprisingly, this does not seem to work for HSVP.
Instead, for HSVP, we construct a module of rank n from M by gluing ⌊n/2⌋
orthogonal copies of M together, and adding an extra orthogonal copy of OK

if n is odd. This provides a reduction for HSVP which has some significant loss
in the approximation factor when n is odd (whereas we had almost no loss for
SVP and CVPcov). We believe that it would be an interesting open problem to
reduce this loss in the HSVP case (or, on the contrary, show that this loss is
mandatory).

Discussion. In this introduction, we focused on the special case of cyclotomic
number fields. However, our results are not restricted to cyclotomic number
fields, but can be used in any number field K. In full generality, number fields
might be principal, or have a very small class number. This means that in this
case, most of the modules in these number fields are free (the cyclotomic fields
are quite the exception, with their very large class number). However, even if
all OK-modules are free, our reduction might still be interesting. Indeed, we
have seen that it is in general hard to compute a basis of a free module without
a quantum computer. Our reduction provides a way to transform classically a
problem over a free module represented by a pseudo-basis into two instances of
the same problem over free modules represented by a basis.
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One of the consequence of our results is that it provides an alternative proof
to obtain a fully classical LLL algorithm over any module. Recall that the authors
of [LPSW19] described an LLL algorithm for modules, which was by default a
quantum algorithm (if given as input a pseudo-basis of a module), but could be
run in classical polynomial time in the specific case where the input module was
free and represented by a basis. This algorithm was made fully classical (for all
modules) in [DM22]. In this work, the authors focused on the quantum steps
of the LLL algorithm for modules from [LPSW19], and showed that these steps
could actually be run in classical polynomial time, by using some techniques
similar to the ones we use in Section 4. Our reductions allow to obtain a similar
result in a more straightforward way: one can simply use the reduction from
module-SVP to free-module-SVP from Theorem 1.1, and then apply the classical
polynomial time LLL algorithm for free modules from [LPSW19], in order to
solve classically the two free-module-SVP instances produced by the reduction.

In this article, we restricted ourselves to prove reductions for three lattice
problems, namely SVP, HSVP and CVPcov, which we thought were somewhat
standard and representative of the variety of lattice problems. We did not try
to see if our reduction framework could be adapted to the large set of other
lattice problems (see, e.g., [Ste15, page 1] for a non-exhaustive list of problems).
However, we did try to use our framework to prove a reduction for the standard
CVP problem,6 instead of the variant CVPcov that we used, but did not succeed.
The issue with the standard formulation of CVP stems from the fact that if a
target is unexpectedly close to a lattice point, then we may have to find a lattice
point whose distance to the target is significantly smaller than the covering
radius of the lattice. Interestingly, it seems that our framework can be used in
the cases where the target is very close to the lattice (closer than the minimal
distance of the lattice) or relatively far away (at a distance of the order of the
covering radius of the lattice), but we do not know how to handle the cases in
between. We leave it as an open problem to obtain a reduction similar to ours,
for the standard CVP problem.

Finally, we remark that another way to obtain reductions from (non free)
module problems to free module problems could be to use the reductions from
worst-case ideal/module problems to NTRU, Ring/Module LWE or Ring/Module
SIS. Indeed, the NTRU, Ring/Module LWE and Ring/Module SIS problems can
be reduced to problems over modules (either the shortest vector problem or the
bounded distance decoding problem), and the modules that are produced by
these reductions are often free and with an easily computable basis. As an ex-
ample, a Ring LWE instance with good parameters can be reduced to a bounded
distance decoding problem in a module M of rank 2 in O2

K spanned by three
vectors (a1, a2)

T , (q, 0)T and (0, q)T . If a1 is coprime with q (which should hap-
pen with relatively high probability), then there exists u, v ∈ OK such that
ua1 + vq = 1 and in this case the two vectors (1, ua2)

T and (0, q)T form a basis

6 Recall that the standard CVP problem asks, given as input a target t, to find a
point s of the lattice L such that ∥t − s∥ ≤ γ · dist(t,L), for some approximation
factor γ.
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of the module M (which is then free). Even if this approach seems a possible
alternative way to obtain reductions from arbitrary modules to free modules,
we would like to highlight some advantages of the approach we chose in this
article. First of all, the reductions from worst-case ideal/module problems to
Ring/Module LWE and Ring/Module SIS do not preserve the rank of the mod-
ules, whereas our reductions transform modules into free modules of the same
rank (this is also a limitation for the reduction to NTRU from [PS21], but not
for the reduction from [FPS22], which preserves the rank). Another limitation
of the approach using Ring/Module LWE is that the reductions from worst-case
problem to Ring/Module LWE are quantum, whereas our reductions are classical
(this is a limitation only for Ring/Module LWE, not for NTRU or Ring/Module
SIS which enjoy classical reductions). Finally, one last advantage of our reduc-
tions is that the framework is quite simple, and does not require the heavy
machinery of the worst-case to average-case reductions of NTRU, Ring/Module
LWE and Ring/Module SIS. In particular, our reduction could be easily imple-
mented, and should be quite efficient. Also, we believe that the general framework
we describe might be used to derive reductions for other algorithmic problems,
in case they are needed.

2 Preliminaries

We let Z,Q,R,C denote the set of integers, rationals, real and complex numbers
respectively. For a positive real number x, we let log(x) denote the logarithm of
x in base 2. Throughout this article, we let bold lowercase letters denote vectors.
All vectors are column vectors with the coordinates denoted by normal lowercase
letter with subsripted index, for example

v =

v1
...
vd

 ∈ Rd

is a column vectors with coordinates v1, . . . , vd ∈ R. We let vT denote the
transpose of v. We write ∥v∥2 =

√∑
i v

2
i and ∥v∥∞ = maxi |vi| to denote the

ℓ2-norm and the ℓ∞-norm respectively. We mostly work with the ℓ2-norm and
ignore the subscript index when there is no confusion.

2.1 Lattices

A lattice L is a set of linear combinations with integer coefficients of R-linearly
independent vectors b1, . . . ,bn ∈ Rm

L = {a1b1 + . . .+ anbn : a1, . . . , an ∈ Z} .

The (ordered) set of vectors {b1, . . . ,bn} forms a basis of L, and can be repre-
sented by a matrix B ∈ Rm×n whose columns are the vectors b1, . . . ,bn. The
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integer n is the rank of the lattice L. Given a basis B ∈ Rm×n of L, the de-
terminant (or volume) det(L) is defined as det(BTB)1/2. The determinant of a
lattice is invariant with respect to any choice of its basis.

For a lattice L and i ∈ {2,∞}, we let λ
(i)
1 (L) = min {∥v∥i : v ∈ L\{0}} be

the length of a shortest non-zero vector of L with respect to the ℓi-norm. We

will also use λ
(i)
n (L), where n is the rank of L, which is the smallest radius r > 0

such that there exists n linearly independent vectors in L of ℓi-norm ≤ r. Again,
we mostly work with the ℓ2-norm and we drop the superscript index when there
is no confusion.

Theorem 2.1 (Minkowski’s bound). For a rank-n lattice L, we have

λ
(∞)
1 (L) ≤ det(L)1/n;

λ
(2)
1 (L) ≤

√
n · det(L)1/n.

We write SpanR(L) the real span of a lattice L (not necessarily full rank).
The covering radius cov(L) of a (not necessarily full rank) lattice L is defined as
cov(L) = maxt∈SpanR(L) mins∈L ∥t− s∥. Equivalently, cov(L) is the minimal real
number r > 0 such that for all t ∈ SpanR(L), there exists s ∈ L with ∥t−s∥ ≤ r.
The covering radius of a lattice is a priori hard to compute, but we can show
that for any rank-n lattice L, it holds that

cov(L) ≤ n · λ(2)
n (L). (1)

Indeed, let b1, · · · ,bn be linearly independent vectors of L satisfying ∥bi∥ ≤
λ
(2)
n (L) and let t =

∑
i tibi ∈ SpanR(L). Then s =

∑
i⌊ti⌋bi ∈ L and satisfies

∥t− s∥ ≤
∑

i ∥bi∥ ≤ n · λ(2)
n (L).

On the other hand, we also know that cov(L) ≥ 1/2 · λ(2)
1 (L). Indeed, if s is

a shortest nonzero vector of L, then 1/2 · s has to be at distance ≥ λ
(2)
1 (L)/2

from any lattice point, since otherwise we would have a nonzero vector in L of

euclidean norm < λ
(2)
1 (L).

2.2 Number Fields

Let K be a number field of degree d and OK be its ring of integers. The ring OK

is a free Z-module of rank d. There exists d embeddings from K to C, denoted
by σ1, . . . , σd. The canonical embedding σ is defined as

∀x ∈ K,σ(x) = (σ1(x), . . . , σd(x)) ∈ Cd.

The number field K, embedded into Cd via the canonical embedding, has
a geometry induced by the geometry of Cd. For x ∈ K, the ℓ2-norm of x, de-
noted by ∥x∥, is defined as the (Hermitian) ℓ2-norm of the vector σ(x) in the
space Cd, i.e., ∥x∥ := ∥σ(x)∥. A similar definition also applies for the ℓ∞-norm,
i.e., ∥x∥∞ := ∥σ(x)∥∞ for x ∈ K. For x, y ∈ K, we have the following bound

∥xy∥ ≤ ∥x∥∞ · ∥y∥ ≤ ∥x∥ · ∥y∥ .
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The image σ(OK) is a rank-d lattice, living in Cd ≃ R2d (it is not a full rank

lattice in Cd). The volume of σ(OK) is equal to ∆
1/2
K , where ∆K is the absolute

discriminant of the number field K and is given by

∆K =
∣∣∣det (σi(rj))1≤i,j≤d

∣∣∣2 ,
where r1, . . . , rd is a Z-basis of OK . The value of ∆K is invariant from the choice
of the basis r1, . . . , rd of OK . We will also consider the quantity λ∞

d (σ(OK)),

which we will write λ
(∞)
d (OK) to simplify notations. In the case of cyclotomic

fields, we know that λ
(∞)
d (OK) = 1 (since there is a basis of OK made of roots

of unity). For general number fields, the quantity λ
(∞)
d (OK) can be larger, but

it cannot be too large, as stated in the following lemma from [BST+20] (the

original result from [BST+20] only states that λ∞
d (OK) = O(∆

1/d
K ), but the

constant in the big O can be worked out).

Lemma 2.1 (Adapted from [BST+20, Theorem 3.1]). For any number

field K, it holds that λ∞
d (OK) ≤ ∆

1/d
K .

Algorithms. In this article, when we say that an algorithm is probabilistic poly-
nomial time, we mean that the algorithm is a Las Vegas type algorithm,7 whose
expected running time is polynomial in the input size of the algorithm and in
log∆K . We emphasize that even when ∆K is not part of the input of the algo-
rithm, we consider that log∆K is a polynomial quantity.

2.3 Ideals

A fractional ideal I of K is an OK-submodule of K for which there exists a ∈
OK\{0} such that aI ⊂ OK . When I ⊂ OK , we say that I is an integral ideal.
The sum and product of two fractional ideals I and I ′, defined as,

I + I ′ := {x+ y : x ∈ I, y ∈ I ′}

II ′ :=

{
n∑

i=1

xiyi : n ∈ Z>0, xi ∈ I, yi ∈ I ′

}

are also fractional ideals. Any non-zero fractional ideal I of K is invertible,
meaning that there exists some fractional ideal I−1 such that I · I−1 = OK .
An ideal p is said to be prime if the quotient ring OK/p is an integral domain.
For x ∈ K, we write ⟨x⟩ = xOK to denote the principal ideal generated by x.
We remark that OK is a Dedekind domain, in which nonzero proper ideals are
uniquely factorized into product of power of prime ideals (the uniqueness is up
to the order of the prime factors).

7 That is, an algorithm whose output is always correct, but whose running time is a
random variable.
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Ideal lattices and algebraic norm. The image σ(I) of a fractional ideal I is a
rank-d lattice of Cd. We also refer to such lattices as ideal lattices. The algebraic
norm of a fractional ideal I, denoted by N (I), is defined to be the determinant of

the lattice σ(I) divided by ∆
1/2
K . Note that if I is integral, then N (I) is the index

[OK : I]. Ideals norm is multiplicative, i.e. N (IJ) = N (I) · N (J) for fractional
ideals I, J . For a principal ideal ⟨x⟩, we write N (x) to denote the algebraic
norm of ⟨x⟩. This corresponds to the absolute value of the usual definition of the

algebraic norm of an element, i.e., N (x) =
∣∣∏d

i=1 σi(x)
∣∣.

For any non-zero element x ∈ K, we have the following relation between the
algebraic norm and euclidean norm of x, which is obtained from the inequality
of arithmetic and geometric means applied to (|σi(x)|2)i.

√
d · N (x)1/d ≤ ∥x∥. (2)

This implies in particular that for any element x ∈ OK , we have ∥x∥ ≥
√
d.

For any fractional ideal I, it holds that λd(I) ≤ λ1(I) · λ(∞)
d (OK). Indeed, if

s ∈ I is a shortest nonzero element of I for the euclidean norm, and r1, . . . , rd
are d linearly independent elements of OK satisfying ∥ri∥∞ ≤ λ

(∞)
d (OK) for

all i’s, then the elements ri · s are d linearly independent elements of I and

satisfy ∥ri ·s∥ ≤ ∥ri∥∞ ·∥s∥ ≤ λ1(I)·λ(∞)
d (OK). Combining this with Minkowski’s

inequality and Equation (1) yields

cov(I) ≤ d3/2 · λ(∞)
d (OK) det(I)1/d. (3)

If I = xOK is principal, using (2) this can be rewritten

cov(xOK) ≤ d · λ(∞)
d (OK) ·∆1/2d

K · ∥x∥. (4)

Two elements representation. Every fractional ideal I inK admits a two-element
representation, which is a way to write I as a sum of two principal ideals ⟨x⟩
and ⟨y⟩. The following result states that the two-element representation of an
ideal can be computed in expected polynomial time.

Theorem 2.2 (Adapted from Lemma 2.6 of [PS21]). There exists a prob-
abilistic polynomial time algorithm taking a fractional ideal I ⊂ K and a nonzero
x ∈ I as inputs, and computing y ∈ I such that I = ⟨x⟩+ ⟨y⟩.

Proof. The proof is nearly identical to that in [PS21], except that we repeat the
algorithm until it outputs a valid pair (x, y), instead of allowing the algorithm to
fail with small probability. Unwrapping the proof, one can see that the algorithm
in [PS21] is obtained by taking the algorithm from [FS10, Fig.1], and setting the
element x1 to be the input x in Step 1. In [FS10], it is proven that the probability
p that the algorithm does not fail is at least 1/e. Hence, the expected number
of iterations of our algorithm is 1/p ≤ e. ⊓⊔
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2.4 Modules

Below, we recall the main results about modules that we will need in this article.
For more detailed references about the theoretical and computational aspects of
modules over Dedekind domain, we refer the reader to [Hop98, Chapter 4] and
[Coh12, Chapter 1].

LetM ⊂ Km be a finitely generated OK-module, then there existsK-linearly
independent vectors b1, . . . ,bn of Km and fractional ideals I1, . . . , In such that

M = I1b1 + . . .+ Inbn.

The set of tuples ((Ii,bi))i≤n is called a pseudo-basis of M , the positive
integer n is called the rank of M . In particular, fractional ideals of K are rank-1
OK-modules. For any rank-n module M in Km, there exists a canonical pseudo-
basis, called the HNF basis of M , which can be computed in polynomial time
from any pseudo-basis of M (see, e.g., [Coh12]).

Free modules. A free module is a moduleM which has a pseudo basis ((Ii,bi))i≤n

with all the ideals Ii equal to OK . When this is the case, we say that (b1, . . . ,bn)
is a free basis of M .8 We emphasize here that even if the module M is free, not
all pseudo-bases of M are free bases. In particular, the HNF basis of a free
module has no reason to be a free basis. Moreover, computing a free basis of a
free module given as input an arbitrary pseudo-basis is not known to be doable
in classical polynomial time. Indeed, computing a free basis of a free module
amounts to computing generators of principal ideals, given as input an arbitrary
Z-basis of the ideals (since one can efficiently transform any pseudo-basis of a
free module into a new pseudo-basis where all the coefficient ideals are principal,
using, e.g., the almost free representation discussed in the next section). This
can be done in quantum polynomial time [BS16] but only in sub-exponential
classical time [BF14] so far.

Almost free representations. For any rank-n module M , there exist pseudo-bases
of the form ((bi, Ii))i, with Ii = OK for all i = 1 to n−1 (i.e., only the last ideal
is non-trivial). Such pseudo-bases are called almost-free representations of M
(or Steinitz form). We denote this representation by (b1, . . . ,bn, I), where I is
the coefficient ideal corresponding to bn. Note that, contrary to the HNF basis,
the almost-free representation is not unique: for a given module M , there are
many pseudo-bases satisfying Ii = OK for all i = 1 to n−1. Still, it is efficiently
computable, as stated in the following lemma.

Lemma 2.2 ([BHJ22, Corollary A.3]). There is a probabilistic polynomial
time algorithm that takes as input any pseudo-basis of a rank-n module M in Kn

for some n ≥ 1, and returns an almost-free representation of M .

8 Those are usually simply called “bases”, by opposition to the pseudo-bases. But we
prefer to add the adjective “free” in this work, to make the distinction even clearer.

10



Module lattices. The canonical embedding can be extended to Km, by defining
σ(v) for v = (v1, . . . , vm)T ∈ Km to be the concatenation of σ(vi). Then σ(v) is
a vector of Cmd and σ(M) is a lattice of rank nd (i.e., non full rank). We refer to
such lattices as module lattices. We will again abuse notations and write ∥v∥2 :=
∥σ(v)∥2 and ∥v∥∞ := ∥σ(v)∥∞ for vectors v ∈ Km. Similarly, we use M instead
of σ(M) when we view M as a lattice (e.g., λ1(M), det(M), . . . ). In the rest of
the article, we will use the observation that SpanQ(σ(M)) = σ(SpanK(M)), and
we will again abuse notation and write SpanK(M) for both.

For a rank-n module M in Kn (i.e., a full rank module), we define the norm
of M to be

N (M) = N (detB) ·
∏
i

N (Ii),

where ((bi, Ii))i is a pseudo-basis of M and B is the n×n matrix with columns
bi’s (so det(B) is an element of K). This quantity does not depend on the choice
of the pseudo-basis. It is related to the volume of the lattice σ(M) by the formula

det(σ(M)) = ∆
n/2
K · N (M).

2.5 Algorithmic problems over module and ideal lattices

We will consider the following algorithmic problems over module and ideal lat-
tices. These problems are worst-case, which means that we want an algorithm
that succeeds on any possible input.

Definition 2.1 (Module-SVP). For γ ≥ 1 and a positive integer n, the mod-
ule shortest vector problem ((γ, n)-module-SVP) asks, given as input any pseudo-
basis of any rank-n module M in Kn, to find a nonzero vector s of M such that
∥s∥ ≤ γ · λ1(M).

Definition 2.2 (Free-module-SVP). For γ ≥ 1 and a positive integer n, the
free module shortest vector problem ((γ, n)-free-module-SVP) asks, given as input
any free basis of any rank-n free module M in Kn, to find a nonzero vector s of
M such that ∥s∥ ≤ γ · λ1(M).

Note that, for simplicity, we restricted our problems to full ranks modules,
i.e., to modules of rank n living in Kn. Regarding the choice of the input pseudo-
basis, we note that for the module-SVP problem, we can always assume that
the module is represented by its HNF pseudo-basis, since it can be computed
efficiently from any pseudo-basis. Doing so, we could define the problem as being
worst-case only on the choice of the module. In the case of free-module-SVP
however, we cannot do the same, since the module has to be represented by a
free basis (recall that HNF bases are in general not free, even for free modules).
In this definition, it is important that the algorithm succeeds for any free basis
of a module.

We also define Hermite analogues of these two problems, named (γ, n)-
module-HSVP and (γ, n)-free-module-HSVP respectively, by replacing λ1(M) by√
nd · det(M)1/(nd) in the definitions above. Note that by Minkowski’s bound,

11



we have immediate reductions from module-HSVP to module-SVP, and from
free-module-HSVP to free-module-SVP, which preserve the rank of the module
and the approximation factor.

Finally, we define a variant of the CVP problem over modules, which we call
CVPcov. In the CVP problem, the approximation factor is usually defined by
comparing the distance between the target and the solution with the minimal
distance from the target to the lattice. In the variant of CVP we consider, we
instead compare this with the covering radius of the lattice. We believe that this
variant is quite natural: this covers the “standard situation”, where the target
vector t has no reason to be particularly close to a lattice vector. This is in a
sense similar to the Hermite variant of the shortest vector problem: we consider
the expected distance from the target to the lattice (or the expected length of
a shortest nonzero vector) instead of the actual distance to the lattice (or the
actual length of a shortest vector).

Definition 2.3 (Module-CVPcov). For γ ≥ 1 and a positive integer n, the
module closest vector problem with respect to the covering radius ((γ, n)-module-
CVPcov) asks, given as input any pseudo-basis of any rank-n module M in Kn

and any target vector t ∈ SpanK(M), to find a vector s of M such that ∥t− s∥ ≤
γ · cov(M).

The free-module closest vector problem with respect to the covering radius
((γ, n)-free-module-CVPcov) is defined analogously, by restricting the input mod-
ule to being free and represented by (any) free basis.

When n = 1, the modules are ideals and we use the terminology γ-ideal-
HSVP instead of (γ, 1)-module-HSVP.9

3 From module problems to free-module problems and
ideal-HSVP

In this section, we show that solving SVP (respectively HSVP, CVPcov) in mod-
ule lattices can be reduced to solving SVP (respectively HSVP, CVPcov) in free
module lattices and solving HSVP in ideal lattices. The three reductions have
exactly the same structure, hence we present the reductions in a unique algo-
rithm, namely Algorithm 3.1 below, making queries to an oracle that solves
either SVP, HSVP or CVPcov in free modules. We then present the analysis of
the three different cases in separate subsections, since these analyses differ.

The high level idea of the reductions is as follows. First, we compute an
almost free basis of our input module, let’s say (b1, . . . ,bn, I). Then, we solve
HSVP in the ideal I to obtain a short element α ∈ I. The reduction finally calls
the oracle solving SVP (respectively HSVP, CVPcov) in free modules on the free
module N with basis (b1, . . . , αbn). This free module a submodule of M , and
so a solution to SVP (respectively HSVP, CVPcov) in N is in particular also a

9 The other problems will not be used for ideal lattices, so we do not give them a
special name.
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solution in M . Analysing how much one looses during this reduction depends on
the choice of the problem (SVP, HSVP, CVPcov), and will be done in separate
propositions.

Let us first describe the reduction algorithm formally.

Algorithm 3.1: Reduction from module-SVP/HSVP/CVPcov to free-
module-SVP/HSVP/CVPcov

Oracles: Oid an oracle solving γid-ideal-HSVP and O an oracle solving
(γ, n)-free-module-SVP (or HSVP, or CVPcov)

Input: A pseudo-basis (bi, Ii)1≤i≤n of a rank-n module M ⊂ Kn;
optionally a target vector t ∈ SpanK(M) if O solves
free-module-CVPcov

Output: A vector s ∈ M
1 Compute an almost-free representation (c1, · · · , cn, I) of M ;
2 Run Oid on I to obtain α ∈ I \ {0};
3 Let N be the free module spanned by b1, . . . ,bn−1, αbn;
4 Run O on N (and optionally t in the case of CVPcov) to obtain s ∈ N ;
5 return s.

Let us first observe that this reduction runs in polynomial time.

Proposition 3.1. Let n ≥ 1 be an integer and γid, γ ≥ 1 be real numbers. Let
Oid be an oracle solving γid-ideal-HSVP and O be an oracle solving (γ, n)-free-
module-SVP (respectively (γ, n)-free-module-HSVP, (γ, n)-free-module-CVPcov).
Then given access to Oid and O, Algorithm 3.1 runs in probabilistic polynomial
time, and makes one call to Oid and one call to O.

Proof. The only step of the algorithm which does not consist in calling an oracle
is the computation of the almost-free pseudo-basis in the first step. This can be
done in expected polynomial time thanks to Lemma 2.2. ⊓⊔

We will now analyze the correctness and the loss of the reductions.

3.1 The case of SVP

We start by an auxiliary lemma.

Lemma 3.1. Using the same notations as in Algorithm 3.1, we have λ1(N) ≤
γid ·∆1/d

K · λ1(M).

Proof. Take v ∈ M\{0} reaching λ1(M). We have v = α1b1 + . . . + αnbn,
where α1, . . . , αn−1 ∈ OK and αn ∈ I. Note that since α ∈ I, there exists some
integral ideal J such that ⟨α⟩ = IJ . Since α is a solution to γid-HSVP in I, we

have ∥α∥ ≤ γid ·
√
d ·∆1/(2d)

K · N (I)1/d, which implies

N (J) =
N (α)

N (I)
≤ ∥α∥d

√
d
d
· N (I)d

≤ γd
id ·∆

1/2
K ,
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where the first inequality is obtained from Equation (2).

Let u ∈ J\{0} reaching λ
(∞)
1 (J), then u ∈ OK (recall that J is integral) and

αnu ∈ ⟨α⟩. This implies that

uv = α1ub1 + . . .+ αnubn ∈ N.

From this, we finally obtain that

λ1(N) ≤ ∥uv∥ ≤ ∥u∥∞ · ∥v∥ ≤ λ
(∞)
1 (J) · λ1(M)

≤ ∆
1/2d
K · N (J)1/d · λ1(M)

≤ γid ·∆1/d
K · λ1(M).

⊓⊔

Proposition 3.2. If O solves (γ, n)-free-module-SVP, then on input a pseudo-
basis of a rank-n module M in Kn, Algorithm 3.1 outputs s ∈ M \ {0} such that

∥s∥ ≤ γ · γid ·∆1/d
K · λ1(M).

Proof. Observe first that N is a submodule of M , hence a non-zero vector of N
is also a non-zero vector of M , and s ∈ M \ {0} as desired. The upper bound
on ∥s∥ comes from the fact that s is a solution to (γ, n)-free-module-SVP in N ,
i.e., ∥s∥ ≤ γ · λ1(N), and the upper bound on λ1(N) from Lemma 3.1. ⊓⊔

Combining Proposition 3.2 with Proposition 3.1, we obtain the following
corollary.

Corollary 3.1. Let γ, γid ≥ 1 and n ≥ 1 be an integer. For any γ′ ≥ γ ·γid·∆1/d
K ,

there is a probabilistic, polynomial-time reduction from solving (γ′, n)-module-
SVP in Kn to solving (γ, n)-free-module-SVP in Kn and γid-ideal-HSVP.

3.2 The case of HSVP

As in the SVP case, we start by an auxiliary lemma.

Lemma 3.2. Using the same notations as in Algorithm 3.1, we have det(N) ≤
γd
id ·∆

1/2
K · det(M).

Proof. We know from preliminaries that

detN

detM
=

N (N)

N (M)
=

N (α)

N (I)
≤ γd

id ·∆
1/2
K ,

where the last inequality was proven in the proof of Lemma 3.1. ⊓⊔

Proposition 3.3. If O solves (γ, n)-free-module-HSVP, then on input a pseudo-
basis of a rank-n module M , Algorithm 3.1 outputs s ∈ M \ {0} such that ∥s∥ ≤
γ
1/n
id · γ ·∆1/2nd

K ·
√
nd · (detM)

1/nd
.

14



Proof. Let N be as in Algorithm 3.1. Observe that N is a submodule of M ,
hence a non-zero vector of N is also a non-zero vector of M , and s ∈ M \ {0} as

desired. From Lemma 3.2, we know that det(N) ≤ γd
id ·∆

1/2
K · det(M), hence it

follows that

∥s∥ ≤ γ ·
√
nd · (detN)1/nd

≤ γ
1/n
id · γ ·∆1/2nd

K ·
√
nd · (detM)

1/nd

as desired. ⊓⊔

Combining Propositions 3.3 and 3.1, we obtain the following corollary.

Corollary 3.2. Let γ, γid ≥ 1 and n ≥ 1 be an integer. For any γ′ ≥ γ
1/n
id · γ ·

∆
1/2nd
K , there is a probabilistic, polynomial-time reduction from solving (γ′, n)-

module-HSVP in Kn to solving (γ, n)-free-module-HSVP in Kn and γid-ideal-
HSVP.

3.3 The case of CVPcov

Similarly to the two previous cases, we start by an auxiliary lemma.

Lemma 3.3. Using the same notations as in Algorithm 3.1, we have cov(N) ≤
γid ·∆1/d

K · cov(M).

Proof. Let t ∈ SpanK(N). We cant to prove the existence of a vector s ∈ N

with ∥t− s∥ ≤ γid ·∆1/d
K · cov(M).

Let u ∈ α · I−1 be a shortest nonzero vector of α · I−1 for the infinity norm.
By Minkowski’s theorem, we know that

∥u∥∞ ≤ det(α · I−1)1/d = ∆
1/2d
K · N (α · I−1)1/d ≤ γid ·∆1/d

K ,

where the last inequality was proven in the proof of Lemma 3.1. Note that since
α ∈ I, then the ideal α · I−1 is integral and so in particular u ∈ OK . This, in
turns, implies that for any x ∈ M , we have u · x ∈ N .

Now, let us define t′ = u−1 · t. It holds that t′ ∈ SpanK(N) = SpanK(M),
so by definition of the covering radius, there exists s′ ∈ M such that ∥t′ − s′∥ ≤
cov(M). From what we have seen above, s = u · s′ is then a vector of N , and
from the bound on ∥u∥∞ we finally obtain

∥t− s∥ ≤ ∥u∥∞ · ∥t′ − s′∥ ≤ γid ·∆1/d
K · cov(M),

as desired. ⊓⊔

Proposition 3.4. If O solves (γ, n)-free-module-CVPcov, then on input a pseudo-
basis of a rank-n module M and a target vector t ∈ SpanK(M), Algorithm 3.1

outputs s ∈ M such that ∥t− s∥ ≤ γ · γid ·∆1/d
K · cov(M).
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Proof. Let N be as in Algorithm 3.1. Since N is a submodule of M , and s ∈ N ,
then in particular we have s ∈ M . Moreover, from Lemma 3.3, we know that

cov(N) ≤ γid ·∆1/d
K · cov(M), hence it follows that

∥t− s∥ ≤ γ · cov(N)

≤ γ · γid ·∆1/d
K · cov(N),

as desired. ⊓⊔

Combining Propositions 3.4 and 3.1, we obtain the following corollary.

Corollary 3.3. Let γ, γid ≥ 1 and n ≥ 1 be an integer. For any γ′ ≥ γ ·γid·∆1/d
K ,

there is a probabilistic, polynomial-time reduction from solving (γ′, n)-module-
CVPcov in Kn to solving (γ, n)-free-module-CVPcov in Kn and γid-ideal-HSVP.

4 From ideal-HSVP to rank-2 free-module problems

In this section, we show that solving ideal-HSVP can be reduced to solving free-
module-SVP (respectively free-module-HSVP, free-module-CVPcov) in modules
of rank 2. Since HSVP reduces to SVP in the same lattice by Minkowski’s the-
orem, we actually only need to prove two reductions, one to free-module-HSVP
and one to free-module-CVPcov. We do so in the two subsections below.

4.1 The case of HSVP (and SVP)

In this subsection, we reduce ideal-HSVP to free-module-HSVP in modules of
rank 2. The high level idea is to use a two-element representation of the input
ideal to transform it into a free rank-2 module, such that any short vector of
this free rank-2 module can be transformed back into a short vector of the input
ideal. Similar ideas were used in [DM22] in order to transform a rank-2 module
into a free rank-4 module.

More precisely, given an ideal I, we compute a two-element representation
I = ⟨a⟩ + ⟨b⟩ and construct the free module M with a basis consisting of the
columns of the following matrix (

a b
0 ε

)
,

where ε > 0 is a rational number to be specified later. Observe that every s ∈ M

is of the form
(
x y
)T

for x ∈ I and y ∈ ⟨ϵ⟩. Hence, if s is small, then its first
coordinate x is a small element of I. Here, since the size of s is related to the
determinant of M , which depends on the choice of ε, we want to take ε as small

as possible. However, M also contains vectors of the form
(
0 vε

)T
for v ∈ OK ,

so if ε is too small then the short vectors of M are of this form and result in
x = 0. To avoid this case, we observe that when

(
0 vε

)T
is a short vector of M

then ε can be upper bounded by a quantity depending only on K, I and a. Thus
by choosing ε greater than this quantity, we avoid the case where short vectors
of M have their first coordinate equal to 0.
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Proposition 4.1. For any γ ≥ 1 and γ′ > 2γ2 ·∆1/2d
K , there exists a probabilis-

tic polynomial-time reduction from solving γ′-ideal-HSVP to solving (γ, 2)-free-
module-HSVP in K2.

Proof. Let I be a non-zero ideal of K, without loss of generality we can assume
that I is integral (otherwise we scale it to an integral ideal, which does not
change its geometry). Compute a two-element representation I = ⟨a⟩+ ⟨b⟩ with
a ̸= 0 using the algorithm of Theorem 2.2 and consider the free module M ⊂ K2

generated by the free basis (in columns)(
a b
0 ε

)
,

for some ε > 0, rational, to be determined. We want to prove that any solution

to γ-HSVP in M is of the form
(
x y
)T

, with x a solution to γ′-ideal-HSVP
in I. Since a free basis of M is efficiently computable from I (in probabilistic
polynomial time), this will give us a probabilistic polynomial time reduction
from γ′-ideal-HSVP to (γ, 2)-free-module-HSVP as desired.

Let us first prove that if ε is large enough, then all solutions to γ-HSVP in

M are of the form
(
x y
)T

with x non-zero. To do so, assume by contradiction

that
(
0 vε

)T
is a solution to γ-HSVP in M , then v ∈ OK\{0} and there exists

u ∈ OK such that ua+ vb = 0. By definition of γ-HSVP, we have

ε · ∥v∥ ≤ γ ·
√
2d ·∆1/2d

K · N (M)1/2d = γ ·
√
2d ·∆1/2d

K · ε1/2 · N (a)1/2d.

Next, we want to show that because of the equality ua+vb = 0, then v has to be
quite large, and the inequality above cannot be satisfied. The equality ua+vb = 0
implies that ⟨u⟩ ⟨a⟩ = ⟨v⟩ ⟨b⟩. Assume for the moment that b ̸= 0. Then, all ideals
in the equation above are nonzero (since both a and b are nonzero, and v should
also be nonzero). Since I = ⟨a⟩+ ⟨b⟩, there exists nonzero integral ideals J1, J2
such that ⟨a⟩ = IJ1, ⟨b⟩ = IJ2 and J1, J2 do not have any common factor in their
factorization into prime ideals. Since I is invertible (because it is non-zero), the
equality ⟨u⟩ ⟨a⟩ = ⟨v⟩ ⟨b⟩ can be rewritten as ⟨u⟩ J1 = ⟨v⟩ J2. Note that all ideals
involved in this equality are integral (because u and v are in OK). Since J1 and
J2 are coprime, it must be that J1 divides ⟨v⟩, which implies in particular that
N (v) ≥ N (J1) = N (a)/N (I), where the last equality comes from the definition
of J1. Finally, recall from Equation (2) that ∥v∥ ≥

√
d · N (v)1/d, which gives us

∥v∥ ≥
√
d ·
(
N (a)

N (I)

)1/d

.

In the case b = 0, then N (a) = N (I) and thus the inequality still holds, since
v ∈ OK . Combining this inequality with the one above we obtain

√
d ·
(
N (a)

N (I)

)1/d

≤ ∥v∥ ≤
γ ·

√
2d ·∆1/2d

K · N (a)1/2d

ε1/2
,
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which results in

ε ≤ 2γ2∆
1/d
K · N (I)2/d

N (a)1/d
.

Therefore choosing ε > 2γ2∆
1/d
K N (I)2/d/N (a)1/d guarantees that the solution

s =
(
x y
)T

to γ-SVP over M satisfies x ̸= 0.
Now, we also choose ε such that

ε ≤ γ′2

2γ2
· N (I)2/d

N (a)1/d
.

Note that γ′ > 2γ2·∆1/2d
K implies the existence of such ε. Calling the free-module-

HSVP oracle on input M , let s be the output and x be the first coordinate of s.
The choice of ε guarantees that x ∈ I\{0} and

∥x∥ ≤ ∥s∥ ≤ γ ·
√
2d ·∆1/2d

K · ε1/2 · N (a)1/2d

≤ γ′ ·
√
d ·∆1/2d

K · N (I)1/d = γ′ ·
√
d · det(I)1/d.

Hence x is a solution to γ′-ideal-HSVP over I. ⊓⊔

Since (γ, 2)-free-module-HSVP reduces to (γ, 2)-free-module-SVP (by defini-
tion and by Minkowski’s bound), Proposition 4.1 implies the following proposi-
tion.

Proposition 4.2. For any γ ≥ 1 and γ′ > 2γ2 ·∆1/2d
K , there exists a probabilis-

tic polynomial-time reduction from solving γ′-ideal-HSVP to solving (γ, 2)-free-
module-SVP in K2.

4.2 The case of CVPcov

Let us now consider the reduction to CVPcov in free-modules of rank 2. The
main ideas of the reduction are similar to the SVP/HSVP case, but the analysis
is a bit different.

The idea is again to consider the free rank-2 module M spanned by the

columns of the matrix

(
a b
0 ε

)
, where I = ⟨a⟩+ ⟨b⟩ and ε is small. We show that

if ε is sufficiently small, then the covering radius of this lattice is roughly equal
to det(I)1/d (up to polynomial factors). Note that, contrary to the SVP/HSVP
case, we have no lower bound on ε here. The ideal case would be ε = 0, but
this would lead to a (non free) module of rank 1. Ensuring that the module has
rank 2 is the only reason we take ε ̸= 0.

Then, in order to find a short vector in I, we simply solve CVPcov in M with
a target vector of the form t = (t0, 0)

T , where we choose t0 just slightly above
the covering radius of M , so that any solution s = (s0, s1)

T has s0 ̸= 0, and
s0 ∈ I is somewhat short.
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Proposition 4.3. For any γ ≥ 1 and γ′ ≥ 5 · γ · d · λ(∞)
d (OK), there exists

a probabilistic polynomial-time reduction from solving γ′-ideal-HSVP to solving
(γ, 2)-free-module-CVPcov in K2.

Proof. Let I be an integral ideal in OK (we can assume that I is integral without
loss of generality, if it is not we scale it). Let a, b ∈ OK be such that I = ⟨a⟩+⟨b⟩
(with a ̸= 0), and ε > 0 be some rational number. Let M be the rank-2 free

module spanned by the basis

(
a b
0 ε

)
. First, let us prove that

cov(M) ≤ ε ·
(
d · λ(∞)

d (OK) ·∆1/2d
K · (

√
d+ ∥a∥)

)
+ d3/2 · λ(∞)

d (OK) · det(I)1/d.

Let t = (t0, t1)
T ∈ SpanK(M) = K2. Let w ∈ OK be such that ∥wε − t1∥ ≤

cov(εOK) (i.e., wε is a closest point to t1 in the ideal εOK). If we subtract
w · (b, ε)T to t, we obtain a new vector t′ = (t′0, t

′
1)

T , which is at the same
distance to M than t (since w · (b, ε)T ∈ M), but whose second coordinates is
small, namely ∥t′1∥ ≤ cov(εOK).

Let us now reduce the first coordinate. Let α ∈ I be a closest vector to t′0,
that is, ∥α − t′0∥ ≤ cov(I). Since I is generated by a and b, there exists u0 and
v0 in OK such that α = u0a+ v0b. We would like to take v0 as small as possible
(since adding v0 times the second basis vector will make the second coordinate
of our vector increase again). We know that any (u, v) = (u0 + kb, v0 − ka) with
k ∈ OK also satisfies α = ua+ vb. Hence, we can always reduce v modulo a and
ensure that ∥v∥ = ∥v0 − ka∥ ≤ cov(aOK).

Overall, we obtain (u, v) ∈ O2
K with ∥v∥ ≤ cov(aOK) such that ∥ua + vb −

t′0∥ ≤ cov(I). Taking s = u(a, 0)T + (v + w)(b, ε)T ∈ M finally gives us

∥t− s∥ = ∥t′ − u(a, 0)T − v(b, ε)T ∥
= ∥(t′0 − α, t′1 − εv)T ∥
≤ ∥t′0 − α∥+ ∥t′1∥+ ε∥v∥
≤ cov(I) + cov(εOK) + ε · cov(aOK).

To conclude, recall from preliminaries (Equations (3) and (4)) that

cov(I) ≤ d3/2 · λ(∞)
d (OK) · det(I)1/d,

cov(aOK) ≤ d · λ(∞)
d (OK) ·∆1/2d

K · ∥a∥,

cov(εOK) ≤ ε · d3/2 · λ(∞)
d (OK) ·∆1/2d

K ,

where in the last inequality we used the fact that ε is rational and so ∥ε∥ = ε
√
d.

Combining everything, we obtain the desired upper bound on cov(M).
We can now describe our reduction from ideal-HSVP to free-module-CVPcov

in modules of rank 2. Our algorithm takes as input some integral ideal I. It
computes in probabilistic polynomial time a and b in OK such that I = ⟨a⟩ +
⟨b⟩, with a ̸= 0 (see Lemma 2.2). Then, it sets ε > 0 rational such that ε ≤
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(
∆

1/(2d)
K · (

√
d+ ∥a∥)

)−1

·det(I)1/d, and compute the free basis

(
a b
0 ε

)
, spanning

some rank-2 module M .
The reduction also creates the target vector t = (δ, 0)T , with δ ∈ Q such

that δ ∈ (2, 3] ·γ ·dλ(∞)
d (OK) ·det(I)1/d. The reduction then runs the (γ, 2)-free-

module-CVPcov oracle on input M and t, to obtain a vector s = (s0, s1)
T , and

it outputs s0.
One can check that the reduction in probabilistic polynomial time. Let us

now prove that s0 is a solution to γ′-HSVP in I with γ′ as in the theorem
statement.

First, s0 ∈ I since a and b are both in I. Also, by choice of ε and using what

we have proven above, we know that cov(M) ≤ 2d3/2 ·λ(∞)
d (OK) ·det(I)1/d. This

implies that

∥s0 − δ∥ ≤ ∥s− t∥ ≤ γ · cov(M) < ∥δ∥,

using the fact that ∥δ∥ =
√
dδ since δ ∈ Q ⊆ K. This means that s0 is nonzero,

and ∥s0∥ ≤ ∥δ∥+ γ · cov(M) ≤ 5γ · d · λ(∞)
d (OK) ·

√
d · det(I)1/d, as desired. ⊓⊔

5 From rank-2 free-module problems to rank-n
free-module problems

We conclude the reductions by proving a reduction from free-module-SVP (re-
spectively HSVP, CVPcov) in modules of rank 2 to free-module-SVP (respec-
tively HSVP, CVPcov) in modules of rank n ≥ 2. These reductions are not
surprising, since they follow the intuition that the hardness of module problems
increase when the rank of the module increase (for a fixed underlying field).
Following this intuition, the reductions for SVP and CVPcov are easily obtained
by embedding the rank 2 input module into a larger rank module, and padding
the extra dimensions with dummy vectors. Surprisingly however, the reduction
for HSVP is not as easy as the other two, and we even have some significant loss
in the approximation factor when reducing to modules of rank n with n odd.
The proof of Proposition 5.2 (the HSVP reduction) is the most interesting one
of this section. We believe that improving the reduction for HSVP to obtain a
smaller loss is an interesting open problem.

5.1 The case of SVP

In this subsection, we reduce SVP in rank-2 free modules in K2 to SVP in rank-n
free module, where n ≥ 2. This is naturally done by embedding the rank 2 free
module into a larger rank free module.

Let M1 ⊂ K2 be a rank-2 free modules with a free basis B′ ∈ K2×2. We con-
struct a rank-n free module M ⊂ Kn generated by the columns of the following
block matrix

B =

(
B′ 0

0 δIn−2

)
∈ Kn×n
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where δ is a positive, rational number, to be determined later. Note that M1 is
the rank-2 free module generated by the first two columns of B. If we let M2 be
the rank-(n − 2) free module generated by the remaining n − 2 columns of B,
then we see that M = M1 ⊕M2, and the sum is orthogonal.

Lemma 5.1. With the above notations, λ1(M) = min{λ1(M1), λ1(M2)}.

Proof. Let s ∈ M\{0} be a shortest vector, we have s = s1+ s2, where s1 ∈ M1,
s2 in M2 and s1, s2 are orthogonal (when viewed as vectors in Cnd). If both
s1 and s2 are nonzero vectors, then λ1(M) = ∥s∥ > min{∥s1∥ , ∥s2∥}, which is
absurd. Thus one of s1 and s2 is zero vector, and the conclusion follows. ⊓⊔

Suppose that we have access to an oracle solving (γ, n)-free-module-SVP on
input any free basis of any rank-n module in Kn. Calling this oracle on input B
will give a short vector s of M . The idea is to choose δ large enough such that
M2 does not contain any relatively short vector of M and thus the short vectors
of M should be the short vectors of M1. In particular, if we choose δ such that
λ1(M2) ≥ γλ1(M1), then a solution s to γ-SVP in M is also a solution to γ-SVP
in M1 (when projecting on the first two coordinates).

Lemma 5.2. If δ > γ ·
√
2 · det(M1)

1/(2d), then λ1(M2) > γ · λ1(M1).

Proof. Let s = (0, 0, s1δ, . . . , sn−2δ)
T ∈ M2 be a shortest nonzero vector of M2,

where si ∈ OK . Observe that there exists some i ∈ {1, . . . , n − 2} such that
si ̸= 0, then

λ1(M2) = ∥s∥ ≥ δ · ∥si∥ ≥ δ ·
√
d > γ ·

√
2d · det(M1)

1/(2d).

By Minkowski’s bound, it follows that λ1(M2) > γλ1(M1). ⊓⊔

We can now prove our reduction from rank 2 to rank n free modules.

Proposition 5.1. Let γ ≥ 1 be a reaul number and n ≥ 2 be an integer. There is
a polynomial-time (deterministic) reduction from solving (γ, 2)-free-module-SVP
in K2 to (γ, n)-free-module-SVP in Kn.

Proof. Consider a rank-2 free module M1 given by a basis B′ ∈ K2×2. We set
δ = ⌈γ · 2 · det(M1)

1/(2d)⌉ and construct the block matrix

B =

(
B′ 0

0 δIn−2

)
∈ Kn×n

as above. Note that computing δ and constructing B can be performed in time
polynomial in the size of B′ and in log∆K (and the size of B is polynomial in
these two quantities). We observe also that B is a free basis of a rank n module
in Kn. Calling the (γ, n)-free-module-SVP oracle on this module produces s =
(s1, s2, . . . , sn) ∈ Kn. Our reduction algorithm then outputs the vector formed
by the first two coordinates of s.
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We have seen that this procedure is polynomial time. Let us now show that
the output vector is a solution to γ-SVP in M1. Since δ satisfies the condition
of Lemma 5.2, we have λ1(M2) > γλ1(M1) ≥ λ1(M1). By Lemma 5.1, it follows
that λ1(M) = λ(M1). The output s of the oracle then satisfies ∥s∥ ≤ γ ·λ1(M1) <
λ1(M2). This implies that s′ = (s1, s2)

T is nonzero, in M1 and of euclidean norm
≤ γ · λ1(M1) as desired. ⊓⊔

5.2 The case of HSVP

In this section, we reduce HSVP in free modules of rank 2 to HSVP in free
modules of rank n ≥ 2. The strategy is somewhat similar to the SVP case:
we embed our rank-2 module into a rank-n module and use the oracle in this
rank-n module. However, in the HSVP case, padding the extra dimensions of the
modules with (scaled) identity vectors does not seem to work. Hence, we instead
copy our rank-2 modules into n/2 orthogonal copies of itself. For this reason, the
case with n odd behaves differently from the case with n even, and we obtain
a worse approximation factor in this case of n odd (this is the only reduction
in this section, where the new approximation factor is more than linear in the
original approximation factor).

Proposition 5.2. Let n ≥ 2 be an integer and define εn = 0 if n is even and
εn = 1/(n−1) if n is odd. For any real numbers γ ≥ 1 and γ′ ≥ γ1+εn ·

√
n
1+εn ·

∆
εn/2d
K , there exists a (deterministic) polynomial time reduction from solving

(γ′, 2)-free-module-HSVP to solving (γ, n)-free-module-HSVP.

Note that the quantity εn in the theorem is always ≤ 1/2, so by taking

γ′ ≥ γ3/2 · n3/4 ·∆1/4d
K , the theorem’s requirement is fulfilled.

Proof. Consider a rank-2 free module M1 given by a basis B′ ∈ K2×2. Consider
the case when n is even, we construct the block matrix

B =


B′ 0 · · · 0
0 B′ · · · 0
...

...
. . .

...
0 0 · · · B′

 ∈ Kn×n,

which is a block diagonal matrix with diagonal elements consisting of n/2 blocks
of B′. Observe the cost of constructing B and the size of B is polynomial in
the size of B′. We observe also that B is a free basis of a rank n module
in Kn. Calling the (γ, n)-free-module-HSVP oracle on this module produces
s = (s1, s2, . . . , sn) ∈ Kn satisfying ∥s∥ ≤ γ ·

√
nd · det(M)1/nd. Our reduction

algorithm then selects an odd index i such that (si, si+1) is nonzero and outputs
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s′ = (si, si+1). Such i always exists since s is nonzero, and s′ ∈ M1 and satisfies

∥s′∥ ≤ ∥s∥ ≤ γ ·
√
nd · det(M)1/nd

= γ ·
√
nd ·

(
∆

n/2
K · N (detB)

)1/nd
= γ ·

√
nd ·∆1/2d

K ·
(
N (detB′)

n/2
)1/nd

= γ ·
√
nd · det(M1)

1/2d ≤ γ′ ·
√
2d · det(M1)

1/2d,

the last inequality is obtained by the fact that γ′ = γ
√
n ≥ γ ·

√
n/2 when n

is even. Hence, s′ is a solution to γ′-HSVP in M1 as desired. Now consider the
case when n is odd, we construct the block matrix

B =



B′ 0 0 · · · 0 0
0 B′ 0 · · · 0 0
0 0 B′ · · · 0 0
...

...
. . .

...
...

0 0 0 · · · B′ 0
0 0 0 · · · 0 δ


∈ Kn×n,

where δ is a rational number satisfying δ0 < δ ≤ 2δ0, for

δ0 = γn/(n−1) ·∆n/2d(n−1)
K · (

√
n)n/(n−1) · N (detB′)

1/2d
.

Note that B is a block diagonal matrix with diagonal elements consisting of
(n − 1)/2 blocks of B′ and δ. Similarly to the case where n is even, B is a
free basis of a rank n module in Kn; the cost of constructing B and the size
of B is polynomial in the size of B′ and log∆K . Calling the (γ, n)-free-module-
HSVP oracle on this module produces s = (s1, s2, . . . , sn) ∈ Kn satisfying ∥s∥ ≤
γ ·

√
nd · det(M)1/nd. Our reduction algorithm now select an odd index i < n

such that (si, si+1) is nonzero and outputs s′ = (si, si+1).

Now we show that such choice of i can always be made. Suppose by contra-
diction that the (γ, n)-free-module-SVP outputs s = (0, . . . , 0, δu) ∈ Kn, where
u ∈ OK\{0}. Note that we have

δ · ∥u∥ ≤ γ ·
√
nd · (detM)1/nd = γ ·

√
nd ·∆1/2d

K · N (detB′)(n−1)/2nd · δ1/n.

Since u ∈ OK \ {0}, we have ∥u∥ ≥
√
d, which implies

δ ≤ γn/(n−1) ·∆n/2d(n−1)
K · (

√
n)n/(n−1) · N (detB′)

1/2d
= δ0.
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This contradicts the choice of δ. Thus the reduction algorithm in case n is odd
can always outputs s′ which is a nonzero vector of M1 and satisfies

∥s′∥ ≤ ∥s∥ ≤ γ ·
√
nd · det(M)1/nd

= γ ·
√
nd ·∆1/2d

K · N (detB′)(n−1)/2nd · δ1/n

≤ γ ·
√
nd ·∆1/2d

K · N (detB′)
(n−1)/2nd · 21/n · γεn ·∆εn/2d

K ·
√
n
εn · N (detB′)

1/2nd

≤ γ1+εn ·
√
n
1+εn

∆
εn/2d
K ·

√
2d ·∆1/2d

K · N (detB′)1/2d

≤ γ′ ·
√
2d · det(M1)

1/2d,

as desired. ⊓⊔

5.3 The case of CVPcov

In this subsection, we reduce CVPcov in free modules of rank 2 to CVPcov in
free modules of rank n ≥ 2. This is probably the simplest of the three reductions
from this section. Like in the SVP case, we simply embed our rank—2 module
M1 into a rank-n module by padding the extra dimensions with (scaled) identity
vectors. We only need to ensure that these vectors are smaller than the covering
radius of M1, to be sure that these extra dimensions do not increase the covering
radius of our module too much. Then, we create a target vector by padding zeros
to the original target vector. Overall, we prove the following reduction.

Proposition 5.3. Let γ ≥ 1 a real number and n ≥ 2 an integer. There is a (de-
terministic) polynomial-time reduction from solving (γ′, 2)-free-module-CVPcov

in K2 to (γ, n)-free-module-CVPcov in Kn, for any γ′ ≥
√
2 · γ.

Proof. Consider a rank-2 free module M1 given by a basis B′ ∈ K2×2 and a
target vector t1 ∈ SpanK(M1) = K2. Let us assume without loss of generality
that M1 ⊆ O2

K .

The reduction algorithm computes δ ≤ (dn · λd(OK))−1 rational and con-
structs the block matrix (spanning a module called M)

B =

(
B′ 0

0 δ · In−2

)
∈ Kn×n.

and the target vector t = (t1
T , 0, . . . , 0)T (with n − 2 zeros). The reduction

then calls the oracle solving (γ, n)-free-module-CVPcov on input B and t, which
outputs a vector s. Let us call s1 the vector formed by the first two coordinates
of s. The reduction algorithm finally outputs s1.

One can check that computing an appropriate value of δ can be done in

polynomial time since we know from Lemma 2.1 that λ
(∞)
d (OK) ≤ ∆

1/d
K . Con-

structing B and t can also be performed in polynomial time, hence our reduction
runs in polynomial time.
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Let us now focus on correctness. From the definition of B, we know that
s1 ∈ M1. We also know that

∥t1 − s1∥ ≤ ∥t− s∥ ≤ γ · cov(M).

Let us analyse cov(M). Because of the special shape of B, we know that

cov(M) =
√
cov(M1)2 + δ2 · cov(O n−2

K )2

≤
√
cov(M1)2 + (δ · dn · λd(OK))

2 ≤
√
cov(M1)2 + 1

Moreover, we know from preliminaries that cov(M1) ≥ 1/2 · λ1(M1) ≥
√
d/2,

where the last inequality follows from the fact that M1 ⊆ O2
K . Combining this

with the previous inequality yields

cov(M) ≤
√
2 · cov(M1).

Hence, our reduction solves (
√
2γ, 2)-CVPcov in M1 as desired. ⊓⊔

6 Combining the reductions

In this last section, we combine the three reductions from Sections 3, 4 and 5 to
prove our main theorems.

Theorem 6.1. Let γ ≥ 1 and n ≥ 2 be an integer. For any γ′ > 2 · γ3 ·∆3/2d
K ,

there is a probabilistic, polynomial-time reduction from solving (γ′, n)-module-
SVP in Kn to solving (γ, n)-free-module-SVP in Kn.

Theorem 6.2. Let γ ≥ 1 and n ≥ 2 be an integer. For any γ′ > γ2 ·
√
2n·∆1/2d

K ,
there is a probabilistic, polynomial-time reduction from solving (γ′, n)-module-
HSVP in Kn to solving (γ, n)-free-module-HSVP in Kn.

Theorem 6.3. Let γ ≥ 1 and n ≥ 2 be an integer. For any γ′ ≥ γ2 ·5
√
2·d·∆2/d

K ,
there is a probabilistic, polynomial-time reduction from solving (γ′, n)-module-
CVPcov in Kn to solving (γ, n)-free-module-CVPcov in Kn.

We note that, in the statements above, we chose to make the lower bound on
γ′ as simple as possible, but not necessarily as tight as possible. If the reader is
interested in tighter bounds, it might be worth combining the reductions from
the previous sections in a more careful way.

Interestingly, the reduction for SVP is the less tight of the three reductions, if
we ignore the factors depending on the field and the module rank. Indeed, in the
SVP case, the new approximation factor γ′ is cubic in the original approximation
factor γ, when for the other two reductions, the new approximation factor γ′ is
only quadratic in γ. We do not know whether it is possible to decrease the loss
to quadratic in γ in the SVP case too, and leave it as an open problem.
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Proof (Proof of Theorem 6.1). Let γ1 = γ′, γ2 = γ′

γ∆
1/d
K

and γ3 = γ4 = γ. It holds

by definition that γ1 ≥ γ4 ·γ2 ·∆1/d
K hence, by Corollary 3.1, we have a reduction

from (γ1, n)-module-SVP to (γ4, n)-free-module-SVP and γ2-ideal-HSVP. Then,
observe that because of the lower bound on γ′ in the theorem statement, we have

γ2 > 2γ2
3 ·∆

1/2d
K , so by Proposition 4.2 there is a reduction from γ2-ideal-HSVP

to (γ3, 2)-free-module-SVP. Finally, by Proposition 5.1, there is a reduction from
(γ3, 2)-free-module-SVP to (γ4, n)-free-module-SVP. Combining the three reduc-
tions provides a reduction from (γ1, n)-module-SVP to (γ4, n)-free-module-SVP
as required. ⊓⊔

Proof (Proof of Theorem 6.2). Let γ1 = γ′, γ2 =
(

γ′

γ

)n
· ∆−1/2d

K and γ4 = γ.

For γ3, we treat the case n = 2 separately: if n = 2, we let γ3 = γ ·
√
n and if

n ≥ 3 we take γ3 = γ3/2 · n3/4 ·∆1/4d
K .

First, let us observe that by definition of γ1, γ2 and γ4, it holds that γ1 ≥
γ
1/n
2 · γ4 · ∆1/2nd

K . Hence, by Corollary 3.2, there is a reduction from (γ1, n)-
module-HSVP to (γ4, n)-free-module-HSVP and γ2-ideal-HSVP.

Then, observe that thanks to the lower bound on γ′ in the theorem’s state-

ment, we have that γ2 > 2 · (γ3/2 · n3/4 · ∆1/4d
K )2 · ∆1/2d

K when n ≥ 3 and

γ2 > 2 · (γ ·
√
n)2 · ∆1/2d

K when n = 2. In both cases, by choice of γ3, it holds

that γ2 > 2γ2
3 · ∆1/2d

K and so from Proposition 4.1, we have a reduction from
γ2-ideal-HSVP to (γ3, 2)-free-module-HSVP.

Finally, let εn be as in Proposition 5.2, that is εn = 0 if n is even and
εn = 1/(n − 1) if n is odd. Note that εn = 0 when n = 2 and εn ≤ 1/2 when

n ≥ 3. With this in mind, one can check that γ3 ≥ γ1+εn
4 ·

√
n
1+εn · ∆εn/2d

K in
both cases n = 2 and n ≥ 3. From Proposition 5.2, this implies the existence of
a reduction from (γ3, 2)-free-module-HSVP to (γ4, n)-free-module-HSVP. Com-
bining the three reductions provides a reduction from (γ1, n)-module-HSVP to
(γ4, n)-free-module-HSVP as required. ⊓⊔

Proof (Proof of Theorem 6.3). Let γ1 = γ′, γ2 = γ · 5
√
2 · d · ∆1/d

K , γ3 =
√
2γ

and γ4 = γ. By definition and from the lower bound on γ′ in the theorem

statement, it holds that γ1 ≥ γ4 · γ2 · ∆1/d
K hence, by Corollary 3.3, we have

a reduction from (γ1, n)-module-CVPcov to (γ4, n)-free-module-CVPcov and γ2-

ideal-HSVP. Then, by definition of γ2 and using the fact that λ
(∞)
d (OK) ≤ ∆

1/d
K

(see Lemma 2.1), we have γ2 ≥ 5γ3 · d ·λ(∞)
d (OK), so by Proposition 4.3 there is

a reduction from γ2-ideal-HSVP to (γ3, 2)-free-module-CVPcov. Finally, we have
γ3 ≥

√
2 · γ4 and so by Proposition 5.3, there is a reduction from (γ3, 2)-free-

module-CVPcov to (γ4, n)-free-module-CVPcov. Combining the three reductions
provides a reduction from (γ1, n)-module-CVPcov to (γ4, n)-free-module-CVPcov

as required. ⊓⊔
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In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in Cryptology -
ASIACRYPT 2021, volume 13090. Springer, 2021.
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