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Abstract

We study the boundary controllability of 2 × 2 system of heat equations by using a flatness approach.
According to the relation between the diffusion coefficients of the heat equation, it is known that the system can
be not null-controllable or null-controllable for any T > T0 where T0 ∈ [0,∞]. Here we recover this result in the
case that T0 ∈ [0,∞) by using the flatness method, and we obtain an explicit formula for the control and for the
corresponding solutions. In particular, the state and the control have Gevrey regularity in time and in space.

1 Introduction

We consider the boundary controllability of the following system coupling two heat equations:

∂ty1 − ∂2xy1 = 0 in (0, T )× (0, 1),

∂ty2 −
1

d
∂2xy2 = y1 in (0, T )× (0, 1),

y1(t, 0) = 0, y1(t, 1) = u(t) in (0, T ),
y2(t, 0) = y2(t, 1) = 0 in (0, T ),

y1(0, ·) = y01 , y2(0, ·) = y01 in (0, 1),

(1.1)

where d > 0. This is a “cascade” system: the control u acts on y1 (at x = 1) whereas y2 is controlled through y1.
The controllability of coupled heat equations has been studied by several authors, and we refer the reader to the
survey paper [3] for results until 2011. In the case of distributed controls, it is possible to obtain general results such
as Kalman criterion to show the null-controllability of the corresponding system for any time T > 0 (see [1] and
also [24] in the case of Stokes systems instead of heat equations). In the case of boundary controls, we can quote
for instance [4–6] where the authors obtain in particular that the minimal time of controllability can be positive.

For system (1.1), the controllability properties depend on the coefficient d: if d = 1, then the system is null-
controllable for any T > 0 (see [2] and [12]), whereas if d ̸= 1 and

√
d ∈ Q, then the system is not null-controllable

for any T > 0. In the case
√
d /∈ Q, the system is null-controllable at any time T > c(Λd) and not null-controllable

for any T < c(Λd) (see [4, Theorem 6.17]), where c(Λd) is the index of condensation of the sequence

Λd :=

{
(πn)2

d
, (πn)2

}
n⩾1

.

In that case, one can show (see [4, Relation (6.16)]) that

c(Λd) = max(l1, l2), l1 := lim sup
n→∞

− ln
∣∣∣sin( πn√

d

)∣∣∣
π2n2

d

, l2 := lim sup
n→∞

− ln
∣∣∣sin(πn√d)∣∣∣
π2n2

. (1.2)
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Using the differential flatness, our aim is to show that the system is null-controllable, as soon as d = 1 or
√
d /∈ Q

with c(Λd) <∞. The flatness approach comes from the study of finite-dimensional control systems and has already
been applied to several partial differential equations: the heat equation [16,18], general parabolic equations [17], the
Schrödinger equation [19], the linear Korteweg–de Vries equation [15] and a class of semi-linear heat equations [14].
The authors of the present paper have used this method to show some controllability properties of some free
boundary models: the Stefan problem, in [9] and a cross-diffusion problem in [10].

In order to state our mains results, we first recall the notion of Gevrey functions. A function f : R → R is a
Gevrey function of order σ ⩾ 1 if it is C∞ and if for any compact subset K of R, there exist M,R ∈ R∗

+ such that
its derivatives satisfy ∣∣∣f (ℓ)(t)∣∣∣ ⩽M

ℓ!σ

Rℓ
(ℓ ∈ N, t ∈ K).

Similarly, g : R2 → R is a Gevrey function of order (σ1, σ2) if it is C
∞ and if for any compact subset K of R2, there

exist M,R1, R2 ∈ R∗
+ such that∣∣∂ℓt∂kxg(t, x)∣∣ ⩽M

ℓ!σ1

Rℓ
1

k!σ2

Rk
2

(ℓ, k ∈ N, (t, x) ∈ K).

One of the interests in such functions for controllability properties comes from the fact that one can construct
Gevrey function with compact support or which are constant on some intervals. For instance, for any σ > 1, the
function

θσ(t) :=


0 if t ⩽ 0,

e−(t
−cσ )

e−((1−t)−cσ ) + e−(t−cσ )
if t ∈ (0, 1),

1 if t ⩾ 1,

(1.3)

with cσ = (σ−1)−1 is a Gevrey function of order σ (see, for instance [11, Appendix B]). In particular, this function
satisfies

θ(ℓ)σ (0) = θ(ℓ)σ (1) = 0 (ℓ ⩾ 1),

and one can show the existence of M,R > 0 such that∣∣∣θ(ℓ)σ (t)
∣∣∣ ⩽M

ℓ!σ

Ri
(ℓ ∈ N, t ∈ R).

For more information on the Gevrey functions, one can refer for instance to [22,23,25].
We are now in position to state our main results.

Theorem 1.1. Assume d ̸= 1 and
√
d /∈ Q with c(Λd) <∞. For any σ ∈ (1, 2), T > c(Λd) and (y01 , y

0
2) ∈ L2(0, 1)2,

there exists a control u Gevrey of order σ in [0, T ] such that the solution (y1, y2) of (1.1) is Gevrey of order (σ, 1)
in (0, T ]× [0, 1] and such that

y1(T, ·) = y2(T, ·) = 0.

Theorem 1.2. Assume d = 1. For any σ ∈ (1, 2), T > 0 and (y01 , y
0
2) ∈ L2(0, 1)2, there exists a control u Gevrey

of order σ in [0, T ] such that the solution (y1, y2) of (1.1) is Gevrey of order (σ, 1) in (0, T ]× [0, 1] and such that

y1(T, ·) = y2(T, ·) = 0.

Remark 1.3. We recall that if
√
d is irrational and algebraic, then c(Λd) = 0. Moreover, for any T0 > 0, there

exists d such that c(Λd) = T0 (see [4, Proposition 6.20]).

We also consider the particular case where the initial and final conditions of our control problem are stationary
states, that is, solutions of 

−∂2xy1 = 0 in (0, 1),

−1

d
∂2xy2 = y1 in (0, 1),

y1(0) = 0, y1(1) = u,
y2(0) = 0, y2(1) = 0,
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for u ∈ R. The explicit solutions of the above system are

y1(x) = ux, y2(x) =
d

6
u
(
x− x3

)
(x ∈ [0, 1]). (1.4)

For such particular control problem, one obtain the exact controllability for any d > 0 and any T > 0:

Theorem 1.4. Assume d > 0, T > 0 and σ ∈ (1, 2). For any stationary states
(
y1

(1), y2
(1)

)
and

(
y1

(2), y2
(2)

)
,

there exists a control u Gevrey of order σ in [0, T ] such that the solution (y1, y2) of (1.1) is Gevrey of order (σ, 1)
in (0, T ]× [0, 1] and such that

y1(0, ·) = y1
(1), y1(0, ·) = y2

(1) in (0, 1)

and
y1(T, ·) = y1

(2), y2(T, ·) = y2
(2) in (0, 1).

The outline of the paper is the following: in Section 2, we recall the flatness method that we use in our main
results. Then we show Theorem 1.1 in Section 3, Theorem 1.2 in Section 4 and Theorem 1.4 in Section 5. Finally,
the Section 6 conclude this paper with some open problems.

2 Flatness approach

2.1 The general method

Following the approach developed in [16] for a single heat equation, we look for solutions of (1.1) of the form

y1(t, x) =

∞∑
k=0

ak(t)
x2k+1

(2k + 1)!
, y2(t, x) =

∞∑
k=0

bk(t)
x2k+1

(2k + 1)!
.

Inserting these expressions into the two first equations of (1.1) leads to the following induction formulae:

ak+1 = a′k, bk+1 = d(b′k − ak) (k ⩾ 0)

so that the sequences (ak) and (bk) can be expressed through a := a0 and b := b0. More precisely, we obtain

y1(t, x) =

∞∑
k=0

a(k)(t)
x2k+1

(2k + 1)!
, y2(t, x) =

∞∑
k=0

(
dkb(k)(t)− d

dk − 1

d− 1
a(k−1)(t)

)
x2k+1

(2k + 1)!
, if d ̸= 1, (2.1)

y1(t, x) =

∞∑
k=0

a(k)(t)
x2k+1

(2k + 1)!
, y2(t, x) =

∞∑
k=0

(
b(k)(t)− ka(k−1)(t)

) x2k+1

(2k + 1)!
, if d = 1, (2.2)

where we denote by a(k) the k-th derivative of a.

Remark 2.1. We could also add in the solutions a series for the even powers of x, but, as in the case of the heat
equation alone (see, [16]), one can see that the corresponding coefficients are 0 due to the homogeneous Dirichlet
boundary conditions at x = 0.

In order to have that (2.1) or (2.2) are well-defined, we will search a and b as Gevrey functions and use the
following result.

Lemma 2.2. Assume that a and b are Gevrey functions of order σ ∈ (1, 2) in R. Then y1 and y2 defined either
by (2.1) or (2.2) are well-defined and are Gevrey functions of order (σ, 1) in R2. They satisfy the two first equations
of (1.1) and the Dirichlet boundary conditions y1(t, 0) = y2(t, 0) = 0 for all t.
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Proof. We only show that y1 and y2 are well-defined and are Gevrey functions of order (σ, 1) in R2, the fact that
they satisfy the two first equations of (1.1) and the Dirichlet boundary conditions at x = 0 can be obtained by
standard computations.

To show that the series in (2.1) or (2.2) are convergent and correspond to Gevrey functions, we see that they
have the general form

y(t, x) =

∞∑
k=0

ck(t)
x2k+1

(2k + 1)!
, (2.3)

where ck are C∞ functions such that for any compact K of R, there exist M,R ∈ R∗
+ such that∣∣∣c(ℓ)k (t)

∣∣∣ ⩽M
(ℓ+ k)!σ

Rℓ+k
(ℓ, k ∈ N, t ∈ K).

Let us consider r > 0 and let us set

gk(t, x) := ck(t)
x2k+1

(2k + 1)!
.

Then, ∂ℓt∂
j
xgk = 0 if 2k + 1 < j, and if 2k + 1 ⩾ j, we have

∣∣∂ℓt∂jxgk(t, x)∣∣ ⩽M
(ℓ+ k)!σ

Rℓ+k

r2k+1−j

(2k + 1− j)!
(t ∈ K, |x| ⩽ r).

Combining this relation with the formula (ℓ+ k)! ⩽ 2ℓ+kℓ!k!, leads to

∣∣∂ℓt∂jxgk(t, x)∣∣ ⩽ 2Mr
2σℓℓ!σj!

Rℓrj

(
4(2σ)r2

R

)k
k!σ

(2k + 1)!
(t ∈ K, |x| ⩽ r).

Since σ < 2, we have ∑
k⩾0

(
4(2σ)r2

R

)k
(k)!σ

(2k + 1)!
<∞

and we deduce that formula (2.3) defines a C∞ function y and that there exist M1, R1 > 0 such that

∣∣∂ℓt∂jxy(t, x)∣∣ ⩽M1
(ℓ)!σj!

Rℓ
1r

j
(t ∈ K, |x| ⩽ r).

This concludes the proof of the lemma.

2.2 The boundary conditions at x = 1

The control u will be given by the trace of y1 at x = 1, that is

u(t) =

∞∑
k=0

a(k)(t)

(2k + 1)!
, (2.4)

but it remains to deal with the Dirichlet boundary condition of y2 at x = 1:

y2(t, 1) = 0 (t ∈ (0, T )). (2.5)

One of the main difficulties in this method based on the flatness approach for the controllability of partial differential
equations is coming from this boundary conditions. The particular form of the solutions ((2.1), (2.2)) yields directly
the boundary conditions at x = 0 but it can be quite difficult to check any boundary condition at x = 1.
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Let us start by a formal computation in the case d ̸= 1 (the case d = 1 can be treated similarly). First,
using (2.1), we write (2.5) as

∞∑
k=0

dk

(2k + 1)!
b(k)(t) =

∞∑
k=1

d
dk − 1

d− 1

a(k−1)(t)

(2k + 1)!
(t ∈ (0, T )). (2.6)

Let us assume that
a(k)(0) = b(k)(0) = 0 (k ⩾ 0) (2.7)

and let us consider the Laplace transforms of a and b:

â(s) :=

∫ ∞

0

e−tsa(t) dt, b̂(s) :=

∫ ∞

0

e−tsb(t) dt (s > 0).

Then, the relation (2.6) for T = ∞ yields that

∞∑
k=0

dksk

(2k + 1)!
b̂(s) =

∞∑
k=1

d
dk − 1

d− 1

sk−1

(2k + 1)!
â(s) (s > 0).

One possible solution of the above equation is

â(s) =

∞∑
k=0

dksk

(2k + 1)!
f̂(s), b̂(s) =

∞∑
k=1

d
dk − 1

d− 1

sk−1

(2k + 1)!
f̂(s) (s > 0),

for some function f . If we assume that f satisfies the same property (2.7) as a and b, this leads us to consider the
following form for a and b (if d ̸= 1):

a(t) =

∞∑
m=0

dm

(2m+ 1)!
f (m)(t), b(t) =

∞∑
m=1

d
dm − 1

d− 1

f (m−1)(t)

(2m+ 1)!
. (2.8)

In the case d = 1, a similar formal computation leads to the following formulae

a(t) =

∞∑
m=0

f (m)(t)

(2m+ 1)!
, b(t) =

∞∑
m=1

m
f (m−1)(t)

(2m+ 1)!
. (2.9)

Remark 2.3. Without condition (2.7), the relation (2.6) for T = ∞ yields a formula of the form

∞∑
k=0

dkpk

(2k + 1)!
b̂(p)−

∞∑
k=1

d
dk − 1

d− 1

pk−1

(2k + 1)!
â(p) = R(p) (p > 0),

for a function R that can be expressed as a series of s. Such a Bézout identity may be difficult to solve in the
general case and one can quote the recent article [21] where the author presents a practical algorithm for computing
this kind of Bézout relations. A similar difficulty appears for the controllability by a flatness approach of the beam
equation where there are four boundary conditions: the authors in [13] are using Mikusiński’s operators (see [20])
to overcome this problem.

The following result gives a rigorous framework to the above formal computations:

Lemma 2.4. Assume f is a Gevrey function of order σ ∈ (1, 2). Then formulae (2.8) (respectively (2.9)) de-
fine Gevrey functions a and b of order σ. Moreover, if (y1, y2) is defined by (2.2) (respectively (2.1)), then y2
satisfies (2.5).
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Proof. Assume K is a compact of R and consider M,R such that∣∣∣f (m)(t)
∣∣∣ ⩽M

m!σ

Rm
(m ∈ N, t ∈ K).

Then ∣∣∣∣ dℓdtℓ
(

dm

(2m+ 1)!
f (m)

)
(t)

∣∣∣∣ ⩽M
2σℓℓ!σ

Rℓ

(
2σd

R

)m
m!σ

(2m+ 1)!
(ℓ,m ∈ N, t ∈ K)

and we deduce that a defined by (2.8) or (2.9) is a C∞ function satisfying∣∣∣a(ℓ)(t)∣∣∣ ⩽M1
2σℓℓ!σ

Rℓ
(ℓ ∈ N, t ∈ K)

for some M1 > 0. This shows that a is a Gevrey function of order σ. A similar estimate holds for b, leading to the
fact that b is a Gevrey function of order σ.

Moreover, a similar computation shows that we can apply the Fubini theorem in the following computations.
If d ̸= 1, using (2.1), deduce that

y2(t, 1) =

∞∑
k=0

dk
b(k)(t)

(2k + 1)!
−

∞∑
k=1

d
dk − 1

d− 1

a(k−1)(t)

(2k + 1)!

=

∞∑
k=0

∞∑
m=1

dk+1 d
m − 1

d− 1

f (m+k−1)(t)

(2k + 1)!(2m+ 1)!
−

∞∑
k=1

∞∑
m=0

dm+1 d
k − 1

d− 1

f (m+k−1)(t)

(2m+ 1)!(2k + 1)!

= 0.

If d = 1, using (2.2), we find similarly

y2(t, 1) =

∞∑
k=0

b(k)(t)

(2k + 1)!
−

∞∑
k=1

k
a(k−1)(t)

(2k + 1)!

=

∞∑
k=0

∞∑
m=1

m
f (m+k−1)(t)

(2k + 1)!(2m+ 1)!
−

∞∑
k=1

∞∑
m=0

k
f (m+k−1)(t)

(2m+ 1)!(2k + 1)!

= 0.

Remark 2.5. We notice that in Lemma 2.4, we do not need the condition (2.7) for a, b or f . In particular, by
combining Lemmas 2.2 and 2.4, we have obtained that for any Gevrey function f of order σ ∈ (1, 2), the formulas
(2.1) and (2.8) (for d ̸= 1) and (2.2) and (2.9) (for d = 1) yield Gevrey functions y1 and y2 satisfying the first four
equations of (1.1) with the control u defined by (2.4).

It remains to determine f so that the corresponding solutions satisfy the desired initial and final conditions.
This is the aim of the next sections.

3 Proof of Theorem 1.1

With the above section, we can construct solutions of (1.1) by using the formulas (2.1) and (2.8) (for d ̸= 1) or
(2.2) and (2.9) (for d = 1). In this construction, we need to determine a suitable function f . To this end, we first
consider the operator associated with (1.1)

D(A) :=
[
H2(0, 1) ∩H1

0 (0, 1)
]2
, A : D(A) → L2(0, 1)2,

[
y1
y2

]
7→

[
−∂2xy1

− 1
d∂

2
xy2 − y1

]
. (3.1)

6



The operator −A is the infinitesimal generator of an analytic semigroup and if there is no control (that is if u = 0),
the system (1.1) writes

d

dt

[
y1
y2

]
+A

[
y1
y2

]
= 0,

[
y1
y2

]
(0) =

[
y01
y02

]
. (3.2)

One can compute the eigenvalues and eigenvectors of A in classical way, and we have the following standard result
(see, for instance, [4]).

Proposition 3.1. Assume d ̸= 1. The spectrum of A is composed of eigenvalues

σ(A) = {λ1,n, λ2,n}n⩾1 , λ1,n =
(πn)2

d
, λ2,n = (πn)2

and a corresponding family of eigenfunctions is

ψ1,n(x) =

[
0

sin(nπx)

]
, ψ2,n(x) =

[
sin(nπx)
d

(1−d)n2π2 sin(nπx)

]
(x ∈ [0, 1]).

The eigenvalues of A are simple if and only if
√
d /∈ Q.

In particular, if (y01 , y
0
2) ∈ L2(0, 1)2, then the solution of (1.1) with u = 0 (or equivalently of (3.2)) has the form[

y1
y2

]
(t) =

∑
n⩾1

α1,nψ1,ne
−λ1,nt +

∑
n⩾1

α2,nψ2,ne
−λ2,nt, (3.3)

with (α1,n)n, (α2,n)n ∈ ℓ2(N∗). This shows in particular, that (y1, y2) is analytic at any (t, x) ∈ (0, T ] × [0, 1] and
we have

y1(T, x) =
∑
n⩾1

α2,n sin(nπx)e
−λ2,nT , (3.4)

y2(T, x) =
∑
n⩾1

α1,n sin(nπx)e
−λ1,nT +

∑
n⩾1

α2,n
d

(1− d)n2π2
sin(nπx)e−λ2,nT . (3.5)

In order to prove Theorem 1.1, we use the linearity of our system, and we construct our solution as the difference
of the solution (3.3) associated with the initial conditions (y01 , y

0
2) ∈ L2(0, 1)2 and with u = 0 and a solution with

initial conditions
y1(0, ·) = y2(0, ·) = 0 in (0, 1) (3.6)

and with the final conditions given by (3.4) and (3.5). As explained in Section 2, to build such solutions, we only
need to define the Gevrey function f of order σ ∈ (1, 2) such that the corresponding solution (y1, y2) satisfies the
above initial and final conditions.

Remark 3.2. Finding a suitable function f can be a difficult task in general. In order to do this, we can start by
searching a function f̃ such that the solutions (3.3) can be written formally under the form (2.1) and (2.8) where

in the last relation f is replaced by f̃ .
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Relation (3.3) implies

y1(t, x) =
∑
k⩾0

∑
n⩾1

(−1)kα2,n(nπ)
2k+1e−λ2,nt

x2k+1

(2k + 1)!
,

y2(t, x) =
∑
k⩾0

∑
n⩾1

(−1)k(nπ)2k+1

[
α1,ne

−λ1,nt +
d

(1− d)n2π2
α2,ne

−λ2,nt

]
x2k+1

(2k + 1)!
.

By identifying with (2.1), we obtain that

a(k)(t) =
∑
n⩾1

(−1)kα2,n(nπ)
2k+1e−λ2,nt,

dkb(k)(t)− d
dk − 1

d− 1
a(k−1)(t) =

∑
n⩾1

(−1)k(nπ)2k+1

[
α1,ne

−λ1,nt +
d

(1− d)n2π2
α2,ne

−λ2,nt

]
.

Combining these two equations, we deduce

b(k)(t) =
∑
n⩾1

[
(nπ) (−λ1,n)k α1,ne

−λ1,nt +
d

(1− d)nπ
α2,n (−λ2,n)k e−λ2,nt

]
.

We thus need to find a function f̃ such that (see (2.8)):

∞∑
m=0

dm

(2m+ 1)!
f̃ (m+k)(t) =

∑
n⩾1

(nπ)α2,n(−λ2,n)ke−λ2,nt, (3.7)

∞∑
m=1

d
dm − 1

d− 1

f̃ (m+k−1)(t)

(2m+ 1)!
=

∑
n⩾1

[
(nπ) (−λ1,n)k α1,ne

−λ1,nt +
d

(1− d)nπ
α2,n (−λ2,n)k e−λ2,nt

]
. (3.8)

This suggests to search f̃ under the form

f̃(t) :=
∑
n⩾1

β1,ne
−λ1,nt +

∑
n⩾1

β2,ne
−λ2,nt.

We see below that one can indeed find (β1,n) and (β2,n) so that f̃ satisfies (3.7) and (3.8). Finally, to recover (3.6),

we use a Gevrey function η equal to 0 for t ⩽ 0 and equal to 1 for t ⩾ T , and we then set f := f̃η. In what follows,
we apply this strategy to prove Theorem 1.1.

Let us consider T0 > c(Λd), σ ∈ (1, 2) and let us define

η(t) := θσ

(
t− T0
T − T0

)
,

where θσ is given by (1.3). The function η is Gevrey of order σ and satisfies η ≡ 0 in (−∞, T0], η(T ) = 1 and
η(k)(T ) = 0 for all k ⩾ 1. We set

β1,n := α1,n
π4n4(d− 1)

d5/2 sin
(

πn√
d

) , β2,n := α2,n
π2n2

√
d

sin(πn
√
d)
, (3.9)

and we define
f̃(t) :=

∑
n⩾1

β1,ne
−λ1,nt +

∑
n⩾1

β2,ne
−λ2,nt and f := f̃η.
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From (1.2), for any T0 > c(Λd), there exists a constant C > 0 such that for all n ⩾ 1,∣∣∣∣∣∣α1,n
π4n4(d− 1)

d5/2 sin
(

πn√
d

)
∣∣∣∣∣∣ ⩽ C |α1,n| eT0λ1,n ,

∣∣∣∣∣α2,n
π2n2

√
d

sin(πn
√
d)

∣∣∣∣∣ ⩽ C |α2,n| eT0λ2,n

In particular, f̃ is an analytic function in (T0,∞) and f is a Gevrey function of order σ in R. Moreover, we have

f (m) =

m∑
j=0

(
m

j

)
f̃ (j)η(m−j)

so that
f (m)(0) = 0, f (m)(T ) = f̃ (m)(T ) =

∑
n⩾1

β1,n (−λ1,n)m e−λ1,nT +
∑
n⩾1

β2,n (−λ2,n)m e−λ2,nT .

In particular, from (2.8), for every k ⩾ 0 we have

a(k)(0) = b(k)(0) = 0, (3.10)

a(k)(T ) =

∞∑
m=0

dm

(2m+ 1)!

∑
n⩾1

β1,n (−λ1,n)m+k
e−λ1,nT +

∑
n⩾1

β2,n (−λ2,n)m+k
e−λ2,nT

 , (3.11)

b(k)(T ) =

∞∑
m=0

dm − 1

d− 1

d

(2m+ 1)!

∑
n⩾1

β1,n (−λ1,n)m+k−1
e−λ1,nT +

∑
n⩾1

β2,n (−λ2,n)m+k−1
e−λ2,nT

 . (3.12)

We also have
∞∑

m=0

dm

(2m+ 1)!
(−λ1,n)m = 0,

∞∑
m=0

dm

(2m+ 1)!
(−λ2,n)m =

sin(πn
√
d)

πn
√
d

,

∞∑
m=0

(−λ1,n)m

(2m+ 1)!
= sin

(
πn√
d

) √
d

πn
,

∞∑
m=0

(−λ2,n)m

(2m+ 1)!
= 0.

Using the above formula into (3.11) and (3.12) and applying the Fubini theorem, we deduce

a(k)(T ) =
∑
n⩾1

β2,n (−λ2,n)k
sin(πn

√
d)

πn
√
d

e−λ2,nT ,

b(k)(T ) =
∑
n⩾1

−d
d− 1

β1,n sin

(
πn√
d

) √
d

πn
(−λ1,n)k−1

e−λ1,nT +
∑
n⩾1

d

d− 1
β2,n

sin(πn
√
d)

πn
√
d

(−λ2,n)k−1
e−λ2,nT .

Finally, using these formulae into (2.1) leads to

y1(T, x) =
∑
n⩾1

β2,n
sin(πn

√
d)

πn
√
d

e−λ2,nT
∞∑
k=0

(−λ2,n)k
x2k+1

(2k + 1)!
,

y2(T, x) =

∞∑
k=0

dk
x2k+1

(2k + 1)!

∑
n⩾1

−d
d− 1

β1,n sin

(
πn√
d

) √
d

πn
(−λ1,n)k−1

e−λ1,nT

+

∞∑
k=0

dk
x2k+1

(2k + 1)!

∑
n⩾1

d

d− 1
β2,n

sin(πn
√
d)

πn
√
d

(−λ2,n)k−1
e−λ2,nT

−
∞∑
k=0

d
dk − 1

d− 1

∑
n⩾1

β2,n (−λ2,n)k−1 sin(πn
√
d)

πn
√
d

e−λ2,nT
x2k+1

(2k + 1)!
.
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The above relation can be written as

y1(T, x) =
∑
n⩾1

β2,n
sin(πn

√
d)

π2n2
√
d

sin(nπx)e−λ2,nT , (3.13)

y2(T, x) =
∑
n⩾1

d5/2

π4n4(d− 1)
β1,n sin

(
πn√
d

)
sin(nπx)e−λ1,nT

+
∑
n⩾1

d

n2π2(1− d)
β2,n

sin(πn
√
d)

π2n2
√
d

sin(nπx)e−λ2,nT . (3.14)

Using (3.9) into (3.13) and (3.14) yields (3.4) and (3.5). This concludes the proof of Theorem 1.1.

4 Proof of Theorem 1.2

The proof of Theorem 1.2 is similar to the proof of Theorem 1.1. We start by considering the spectral analysis of
the operator A defined by (3.1) (with d = 1).

Proposition 4.1. Assume d = 1. The spectrum of A is composed of simple eigenvalues

σ(A) = {λn}n⩾1 , λn = (πn)2,

with algebraic multiplicity equal to 2. A corresponding family of generalized eigenfunctions is

ψ1,n(x) =

[
0

sin(nπx)

]
, ψ2,n(x) =

[
sin(nπx)

0

]
(x ∈ [0, 1]).

In particular, if (y01 , y
0
2) ∈ L2(0, 1)2, then the solution of (1.1) with u = 0 (or equivalently of (3.2)) has the form[

y1
y2

]
(t) =

∑
n⩾1

α1,nψ1,ne
−λnt +

∑
n⩾1

α2,nψ2,ne
−λnt +

∑
n⩾1

α2,nψ1,nte
−λnt,

with (α1,n)n, (α2,n)n ∈ ℓ2(N∗). This shows that (y1, y2) is analytic at any (t, x) ∈ (0, T ]× [0, 1] and we have

y1(T, x) =
∑
n⩾1

α2,n sin(nπx)e
−λnT , y2(T, x) =

∑
n⩾1

α1,n sin(nπx)e
−λnT +

∑
n⩾1

α2,n sin(nπx)Te
−λnT . (4.1)

In order to prove Theorem 1.2, we are going to construct a solution of (1.1) with initial conditions

y1(0, ·) = y2(0, ·) = 0 in (0, 1)

and with the final conditions given by (4.1). As explained in Section 2, we build such solutions in the form (2.1),
where a and b are given by (2.8). It remains to define the Gevrey function f of order σ ∈ (1, 2) such that the
corresponding solution (y1, y2) satisfies the above initial and final conditions.

Let us define

η(t) := θσ

(
t

T

)
,

where θσ is given by (1.3). The function η is Gevrey of order σ and satisfies η ≡ 0 in (−∞, 0], η(T ) = 1 and
η(k)(T ) = 0 for all k ⩾ 1. We now set

β1,n := 2(−1)n+1n2π2

(
α1,n − 3

2nπ
α2,n

)
, β2,n := 2(−1)n+1n2π2α2,n (4.2)
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and we define
f̃(t) :=

∑
n⩾1

β1,ne
−λnt +

∑
n⩾1

β2,nte
−λnt, f := f̃η.

In particular, f̃ is an analytic function in (0,∞) and f is a Gevrey function of order σ in R. Moreover, we have

f (m) =

m∑
j=0

(
m

j

)
f̃ (j)η(m−j)

so that

f (m)(0) = 0,

f (m)(T ) = f̃ (m)(T ) =
∑
n⩾1

β1,n (−λn)m e−λnT +
∑
n⩾1

β2,n

(
(−λn)m T +m (−λn)m−1

)
e−λnT .

In particular, from (2.9), for every k ⩾ 0 we have

a(k)(0) = b(k)(0) = 0, (4.3)

a(k)(T ) =

∞∑
m=0

1

(2m+ 1)!

∑
n⩾1

β1,n (−λn)m+k
e−λnT

+
∑
n⩾1

β2,n

(
(−λn)m+k

T + (m+ k) (−λn)m+k−1
)
e−λnT

 , (4.4)

b(k)(T ) =

∞∑
m=0

m

(2m+ 1)!

∑
n⩾1

β1,n (−λn)m+k−1
e−λnT

+
∑
n⩾1

β2,n

(
(−λn)m+k−1

T + (m+ k − 1) (−λn)m+k−2
)
e−λnT

 . (4.5)

We also have

∞∑
m=0

(−λn)m−1

(2m+ 1)!
= 0,

∞∑
m=0

m (−λn)m−1

(2m+ 1)!
=

1

2

(−1)n+1

nπ
,

∞∑
m=0

m(m− 1) (−λn)m−2

(2m+ 1)!
=

3

4

(−1)n+1

n2π2
.

Using the above formula into (4.4) and (4.5), we deduce

a(k)(T ) =
∑
n⩾1

β2,n (−λn)k e−λnT
1

2

(−1)n+1

nπ

b(k)(T ) =
∑
n⩾1

β1,n (−λn)k
1

2

(−1)n+1

nπ
e−λnT

+
∑
n⩾1

β2,n

(
1

2

(−1)n+1

nπ
(−λn)k T + k (−λn)k−1 1

2

(−1)n+1

nπ
+ (−λn)k

3

4

(−1)n+1

n2π2

)
e−λnT .

Finally, using these formulae into (2.2) leads to

y1(T, x) =
∑
n⩾1

β2,n
(−1)n+1

2n2π2
sin(nπx)e−λnT ,
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y2(T, x) =
∑
n⩾1

β1,n
(−1)n+1

2n2π2
sin(nπx)e−λnT +

∑
n⩾1

β2,n
(−1)n+1

2n2π2
sin(nπx)Te−λnT

+
∑
n⩾1

β2,n
3

4

(−1)n+1

n3π3
sin(nπx)e−λnT

and in particular,

y2(T, x) =
∑
n⩾1

(−1)n+1

2n2π2

(
β1,n +

3

2

β2,n
nπ

)
sin(nπx)e−λnT +

∑
n⩾1

β2,n
(−1)n+1

2n2π2
sin(nπx)Te−λnT .

By using the formula (4.2) into the above relations we deduce (4.1) and this ends the proof of Theorem 1.2.

5 Proof of Theorem 1.4

In order to prove Theorem 1.4, we follow again the strategy of Section 2 and build solutions in the form (2.1)
or (2.2), where a and b are given by (2.8) or (2.9). It remains to define the Gevrey function f of order σ ∈ (1, 2)
such that the corresponding solution (y1, y2) satisfies the above initial and final conditions.

Let us consider two stationary states
(
y1

(1), y2
(1)

)
and

(
y1

(2), y2
(2)

)
. They are given by the formula (1.4) for

some u(1), u(2) ∈ R.
Let us define

f(t) :=
(
u(2) − u(1)

)
θσ

(
t

T

)
+ u(1),

where θσ is given by (1.3). The function f is Gevrey of order σ and satisfies

f(0) = u(1), f(T ) = u(2), f (m)(0) = f (m)(T ) = 0 (m ⩾ 1).

In particular, since a and b are given by (2.8) or (2.9), we have

a(0) = u(1), a(T ) = u(2), a(k)(0) = a(k)(T ) = 0 (k ⩾ 1),

b(0) = d
6u

(1), b(T ) = d
6u

(2), b(k)(0) = b(k)(T ) = 0 (k ⩾ 1).

In particular, y1 and y2 given by (2.1) or (2.2) satisfy

y1(0, x) = u(1)x, y2(0, x) =
d

6
u(1)(x− x3),

y1(T, x) = u(2)x, y2(T, x) =
d

6
u(2)(x− x3).

This ends the proof of Theorem 1.4.

6 Conclusion

We have obtained the null-controllability of a coupled system of heat equations in dimension 1 in space by using
the flatness approach. The system is in “cascade”, with a control acting only on one boundary of the first equation.
This is a particular example of the general case treated in [4]

∂ty − (D∂2x +A)y = 0 in (0, T )× (0, 1),
y(t, 0) = 0 in (0, T ),

y(t, 1) = Bu(t) in (0, T ),
y(0, ·) = y0 in (0, 1),

(6.1)
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where y = (y1, . . . , yn), A ∈ Mn(R), D = diag
(

1
d1
, . . . , 1

dn

)
, u = (u1, . . . , um) and B ∈ Mn,m(R). We have treated

the case n = 2 and m = 1, with

A =

[
0 0
1 0

]
and B =

[
1
0

]
.

For this particular example, we have managed to recover the controllability results in [4] with the flatness method.
Note that we avoid in particular the use of any bi-orthogonal basis as it is standard for the study of the controllability
of such systems.

In the future, we would like to generalize our result and in particular to deal with general systems of the
form (6.1). Another interesting problem would be to consider, as in [6], the case where in the equation of y2 in (1.1)
we replace the right-hand side by cy1 with a function c depending on x. Finally, one could wonder if this flatness
method can be applied to systems of heat equations coupled from the boundary: see, for instance [7], where the
coupling is done with Robin boundary condition, or [8], with Kirchhoff boundary conditions.
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condition for the localized distributed controllability of a class of linear parbolic systems. J. Evol. Equ.,
9(2):267–291, 2009.

[2] Farid Ammar-Khodja, Assia Benabdallah, Manuel González-Burgos, and Luz De Teresa. The Kalman condition
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