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A B S T R A C T

The behavior of confined flows at the nanometer scale remains largely unpredictable, especially when
hydrodynamic separation is of the same order of magnitude of the surface roughness. Here we propose
a continuum mechanics-based model integrating solid deformation, fluid compressibility and solicitation
frequency to capture and predict the squeeze of a heterogeneous confined thin film between two nanometer-
thin antagonistic adsorbed layers on solid surfaces, in both static and dynamic oscillating situations. Validated
by direct confrontation to theoretical and experimental results, this model allowed us to provide physical
insights in the squeeze mechanisms, confirming the role of the fluid compressibility at the onset of contact,
discussing the influence of the adsorbed layer shear elastic modulus for instance, and defining a viscosity-
frequency equivalence. It also permitted to assess the mechanical properties of the nanometer-thin adsorbed
layers in both situations, when separated by a fluid film and when in contact.
1. Introduction

The control and the understanding of confined flows at the nanome-
ter scale are of prior importance in the problem of lubrication that
raises the question of stress transmission at a solid interface through
a thin liquid film. Because of the increasing use of low-viscosity flu-
ids, the hydrodynamic separation reaches the order of magnitude of
the solid surface roughness. Literature has therefore focused on fric-
tion modifier additives adsorbed onto the surfaces where they form
nanometer-thick layers, and their role in the friction mechanisms (see
for instance [1–7]). Their structural and chemical properties have been
characterized thanks to the development of various advanced exper-
imental techniques, among others Neutron reflectometry [8], Atomic
Force Microscope (AFM) and Surface Force Apparatus (SFA) [9] and
its derived techniques [10–12]. For instance, [6] showed the existence
of 1.6-nm-thick adsorbed layer of palmitic acid on smooth iron oxide
surfaces; [13,14] detected irregular islands of stearic acid on mica
surfaces and [2,15] evidenced the influence of polymeric layers ad-
sorbed on the surfaces on drainage properties. Moreover, the rheology
of the boundary layers formed by the interactions between the lubricant
molecules and the surfaces is a key parameter both in the friction
control and in the full-film forming capability of contacts. The presence
of these thin molecular layers at the extreme surface also modifies the
overall interfacial shearing as well as the slip conditions at the wall.

However, the first approaches relied on the assumption of no-slip
boundary conditions. For instance, for the modeling of the drainage
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of a confined film between two solids, Chan and Horn [16] applied
Reynolds’s equation to a system consisting of two cylinders separated
by a homogeneous Newtonian viscous fluid. Assuming that there is
no deformation of the substrates and neglecting both gravitational
and inertial contributions, the film can be fully characterized using
its damping behavior as a function of the separation distance and the
fluid viscosity. Hadzioannou and Montfort [17] then generalized Chan
and Horn’s model [16] to the case of an incompressible viscoelastic
fluid. With this model, the film has both stiffness and damping behavior
depending on its shear elastic modulus. More sophisticated modeling
have then been proposed, some of them taking the surface deformation
into account. For instance, in the case of a sphere/plane contact,
Auslender et al. [18] developed an analytical model considering an
elastic fluid film confined between two surfaces. The key role of the film
compressibility was highlighted, leading to the development of a oedo-
metric thin film model. Later, Trifa et al. [19] extended the generalized
oedometric Reynolds model [18] to take the elastic substrates into
account. Recently, Movchan et al. [20] presented accurate asymptotic
solutions using the principle of Saint-Venant for the axisymmetric
deformation of thin films constrained by two rigid solids. The solutions
are valid in the whole range of Poisson’s ratio, and make it possible
to distinguish compressible, nearly incompressible and incompressible
films.

These models perfectly describe the behavior of a homogeneous
fluid film during squeeze, assuming no-slip conditions. However, in the
vailable online 6 May 2023
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Abbreviations

𝑥, 𝑦, 𝑧 Cartesian coordinates
𝑟, 𝜃 Polar coordinates
𝑅 Sphere radius
𝐸′ Reduced Young’s modulus
𝜂 Fluid viscosity
𝐾𝑓 Bulk modulus of the fluid
𝐺𝑓 Shear modulus of the fluid
𝐾𝑐 Bulk modulus of the adsorbed layer
𝐺𝑐 Shear modulus of the adsorbed layer
𝑀𝑜𝑑 Oedometric modulus
𝐸, 𝜈 Young modulus and Poisson ratio
ℎ Surface separation distance
𝛿𝐷 Imposed displacement of the sphere
𝐹𝑛 Static contact force
ℜ(∙) Real part of ∙
ℑ(∙) Imaginary part of ∙
𝐾𝑧 Dynamic interface stiffness
𝐼𝑚𝑧 Dynamic interface damping
𝜔 Pulsation of imposed displacement oscilla-

tion
𝜎, 𝑢 Stress and displacement of confined film
𝑤𝑟 Relative elastic deformation of solid sur-

faces in the contact zone
𝑎, 𝛿 and 𝜎𝑜 Contact zone radius, static penetration and

normal stress obtained by Hertz theory
𝑍 Nominal position of the sphere to the plane

without solid deformation at the center 𝑟 =
0

𝐷𝑜 Adsorbed layer thickness
𝐿𝐻 Thickness of the "immobile" layer on each

surface
𝜎𝑛 Hertzian contact pressure
𝜎𝑜 Maximum Hertzian contact pressure
𝑉𝑧 Velocity of the sphere towards the plane in

the vertical direction

case of the drainage of more complex fluid with adsorbed species on
the surfaces or in the case of squeeze including surface deformations,
numerous experimental works [2,4,15,21,22] highlighted large discrep-
ancies with these theories. These discrepancies result from a structural
heterogeneity in the confined film, such as:

• the existence of an adsorbed homogeneous layer of simple
molecules [21,23], considered of infinite viscosity, that shifts the
no-slip boundary conditions to a distance 2𝐷𝑜, with 𝐷𝑜 corre-
sponding to the thickness of the immobile layer on each surface,
immobile layer which do not participate to the hydrodynamic
flow. Moreover, a viscoelastic behavior of the layer not only
induces a divergence in the damping evolution compared to the
theoretical one, but also leads to a divergence in the overall
stiffness behavior, especially at a short distance between solid
surfaces.

• the existence of an adsorbed layer of polymers, with a gradient of
viscous properties [2], that shifts the no-slip boundary conditions
and induces a divergence in the damping evolution compared to
the theoretical one. In addition, the gradient of viscous properties
is not sufficient to explain the increase in stiffness at a short
distance between two facing solid surfaces.

Attempts to account for the existence of these boundary layers on
the surface were theoretically made by Tonck [10], Auslender [24]
2

for rigid surfaces and later, numerically, by Trifa [25] for compliant
surfaces. Tonck [10] proposed an annular model based on the superpo-
sition of parallel assembly of different local rheological models defined
on elementary rings while Auslender [24] and Trifa [25] models based
on the generalized oedometric Reynolds model [18]. Without direct
interaction between the sphere and supported films, to measure the
mechanical properties of adsorbed layer, Leroy et al. [26] used the
elasto-hydrodynamic (EHD) interaction of a sphere with a flat elastic
surface. This method consists in applying the lubrication equation [27]
for the drainage flow of the fluid between the sphere and the plane
using the Green function as the zeroth-order Hankel transforms for the
relationship between the normal displacement of adsorbed layer on
the flat and the contact pressure [28]. They were then able to estab-
lish a phase diagram of the EHD interaction which defines different
behaviors of the resulting contact force response in order to optimize
experimental conditions. These above-mentioned models allowed one
to measure the mechanical properties of micrometer-thick adsorbed
layers for large separation distances without contact between adsorbed
layers. Nevertheless, according to the phase diagram of the EHD inter-
action [26], the transition from the viscous regime to the elastic one
depends on the thickness of adsorbed layer. When dealing with a very
thin adsorbed layer at a nanometric scale, it requires a much smaller
distance between the sphere and layer. This reduces the efficiency
of these without-contact SFA measurements. In addition, this model
was limited to the case of purely elastic film and homogeneous fluid.
Therefore, it cannot predict experimental situations with viscoelastic
films and heterogeneous fluid as observed in the literature (see [22]
for instance).

Furthermore, the above-mentioned models cannot monitor the evo-
lution of the contact quantities or mechanical properties of adsorbed
layers when contact between layer/layer or layer/solid occurs. One of
the main additional issues in modeling the squeeze behavior taking
into account the existence of an adsorbed layer is the question of the
onset of static contact between these molecular thin layers when the
surfaces start interacting. Some authors [4,5,23,29] considered in a
first approximation that no deformation of these molecular layers take
place due to a high surface coverage inducing high compressibility of
the adsorbed layer under pressure. The substrate deformation could
then be determined using a non-adhesive (typically Hertz’) or an adhe-
sive (JKR or DMT’s) theory depending on the associated experimental
measurements. However, the important role of film compressibility
and substrate deformation cannot be ignored, especially for a thin
film as highlighted in [19,24,30]. Thus, in these works, to model
the contact between the two adsorbed layers, they assumed a hyper-
elastic behavior of these boundary layers using a Mooney–Rivlin-like
energy in which a term of compressibility was added. They obtained
very different rheological properties of the layers in a static contact
analysis compared to those obtained in a dynamic analysis, under small
oscillations, using the generalized oedometric Reynolds model [24].
This discrepancy was attributed to the use of independent solving
methods for the static and dynamic analysis.

Various numerical methods can indeed be implemented to model
the interactions of two coated surfaces. The JKR theory [31] was
extended to the case of thin layers by semi-analytical methods [32,33]
where the coating response associates the zeroth-order Hankel trans-
forms of the normal displacement to the contact pressure [28]. Besides,
the finite element method (FEM) is widely used [34–38]. To overcome
the highly expensive time computation using FEM, some authors [39–
41] also solved the problem by finding analytically coefficients which
link the contact stress and displacements. These coefficients were con-
verted from the elastic field solution in the frequency domain, by using
a conversion method based on the fast Fourier transform. Iterative
methods have been often used when the contact region is not known in
advance. However, when the Young modulus of the nanometric layer
is much smaller than that of the substrates (for instance a polymer film

on a glass substrate), the convergence of the iterative resolution for
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Fig. 1. Geometry of the squeeze of a thin fluid film of viscosity 𝜂, between a sphere and a plane, both covered with an adsorbed layer of thickness 𝐷𝑜. 𝑍 is the nominal distance
between the supposedly undeformed solids at 𝑟 = 0. This distance 𝑍 can be measured experimentally. 𝑅 is the sphere radius. 𝑤𝑟(𝑟) is the deformation of the solids with r the
istance to the center in polar coordinates.
w
o
p

s
o

𝐹

w
i
b

𝛿

w
i

t
i
h
t
a
w
f
f
b
i

2
e

m
R
d
c
t
a
s

he nonlinear contact problem is not always ensured, especially for a
early incompressible film [42]. Molecular dynamic (MD) simulations
lso predicted the adsorption of stearic acids and allowed to discuss the
rganization as a function of the amount of molecules/surface [43–46].
tomic interaction forces between molecules were described using the
REIDING force field [47] or the Morse potential function [45]. The
ajor drawbacks of molecular simulations are that the system has to

perate for a limited number of molecules, on short-time scales and
nrealistic approaching velocity between the two solids.

In this context, this paper aims at developing a numerical model
ased on continuum mechanics which fully simulates the squeeze of a
eterogeneous confined thin film between two nanometric antagonistic
dsorbed layers on solid surfaces. This model accounts for the film
ompressibility and the deformation of substrates in both static and
ynamic situations. On the one hand, our model can predict quantities
n the contact zone such as contact stress or complex stiffness. On the
ther hand, it provides physical insights of the squeeze mechanisms.

The manuscript is organized as follows. In Section 2, we describe
he numerical model by presenting its formulation and the strategy
eveloped to simultaneously solve the static and dynamic contact
nteractions. In Section 3, numerical results are validated by a direct
onfrontation to theoretical or experimental ones for model cases. Our
odel is then applied in Section 4 to investigate the influence of the
echanical properties of both adsorbed layers and fluid in both static

nd dynamic conditions in more complex situations. We also discuss
he outcome in terms of coupling between the confined fluid and the
urfaces.

. Numerical model for the squeezed thin-film between elastic
olecular layers adsorbed on solid surfaces

.1. Description of the problem of a squeezed thin film between two solids

The problem of a squeezed fluid film between two solids (here, a
phere and a plane) is schematically illustrated in Fig. 1. A molecular
ayer of thickness 𝐷𝑜 is adsorbed on each solid surface. The sphere can
e moved towards and away from the plane in three directions (x, y,
nd z).

The distance between the two solid surfaces, ℎ𝑠, can be classically
ritten as:

𝑠(𝑟) = 𝑍 + 𝑟2

2𝑅
+𝑤𝑟(𝑟) (1)
3

where 𝑍 is the distance between the undeformed solids at 𝑟 = 0.
Under harmonic oscillation of small amplitude, imposed on the
sphere, the distance ℎ(𝑟, 𝑡) becomes:

ℎ(𝑟, 𝑡) = ℎ𝑠(𝑟) + 𝛿𝐷𝑒𝑖𝜔𝑡 (2)

here ℎ𝑠(𝑟, 𝑡) is the static sphere — plane distance, 𝛿𝐷 is the amplitude
f imposed harmonic oscillation on the sphere and 𝜔 is the oscillation
ulsation.

The force 𝐹𝑛(𝑡) generated by this movement is subsequently mea-
ured and decomposed into a static component 𝐹𝑠(𝑡) and a dynamic
ne as follows:

𝑛(𝑡) = 𝐹𝑠 + (𝛿𝐹 ′ + 𝑖𝛿𝐹 ′′)𝑒𝑖𝜔𝑡 (3)

here 𝛿𝐹 ′ and 𝛿𝐹 ′′ respectively represent the components in phase and
n quadrature of phase of the dynamic force. These two components can
e written in the form:
𝛿𝐹 ′ = 𝐾𝑧𝛿𝐷

𝐹 ′′ = 𝐼𝑚𝑧𝛿𝐷
(4)

here 𝐾𝑧 and 𝐼𝑚𝑧 represent the stiffness and damping behavior of the
nterface respectively.

The force 𝐹𝑛(𝑡) results from several contributions [21]: the wet-
ing force due to the fluid meniscus, the contact forces due to the
nteractions between the solids (and/or the adsorbed layers) and the
ydrodynamic force due to the flow of fluid between the sphere and
he plane. Wetting and contact forces are both independent of the
pproaching velocity and contribute only to the static force. Here,
e neglected both the wetting force variation due the size of the

luid meniscus, large compared to the contact and the hydrodynamic
orce. The calculation of the hydrodynamic force due to the fluid flow
etween the sphere and the plane, detailed in Appendix A, confirmed
t could be neglected.

.2. Generalized Reynolds model for the squeeze of a thin film between
lastic molecular layers adsorbed on solid surfaces

Since the squeezed film is much thinner in comparison with the di-
ensions of the substrates, we adopted here the oedometric generalized
eynolds model developed in [24] and extended it to the case of solid
eformation [19]. This model can be used for the squeezing of both
ompressible and incompressible films. We further extended this model
o heterogeneous films, that is to say two adsorbed layers separated by
fluid film, during squeeze between elastic solids, at both large and

mall distances.
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t

Fig. 2. (a) Normal stress distribution in the case of an incompressible interfacial layer squeezed between two rigid surfaces and (b) Influence of film compressibility. In (a) the
numerical solution (dots) superimposes on the analytical one (line). Results in both figures were obtained with a shear modulus 𝐺 = 10 MPa, 𝛿𝐷 = 0.4 nm, 𝑍 = 4.2 nm, 𝑅 = 1.94 mm.
Fig. 3. (a) Resulting contact force evolution as a function of distance 𝑍 and (b) Normal stress distribution corresponding to two different static penetration 𝛿. The two identical
layers of thickness 𝐷𝑜 = 2.1 nm have here the same mechanical properties as those of the solids. The layers were squeezed between a sphere of radius 𝑅 = 1.94 mm and a flat
plane.
c
o
a
c

The squeezed interfacial film mechanical behavior was assumed to
follow isotropic linear elastic Hooke’s law, written as:

𝜎𝑖𝑗 = 𝐾𝜖𝑖𝑖𝛿𝑖𝑗 + 2𝐺𝑒𝑖𝑗 (5)

where 𝐾 and 𝐺 are respectively the bulk and the shear modulus. 𝜖𝑖𝑗
and 𝑒𝑖𝑗 denote the strain tensor and its deviator. The strain boundary
conditions could be defined as:
{

𝑢 = 𝛿𝐷 if 𝑧(𝑟) = ℎ

𝑢 = 0 if 𝑧(𝑟) = 0
(6)

To account for the existence of both the adsorbed molecular layers
and the fluid, the interfacial film was considered as heterogeneous.
Therefore, following the work of [18] on the oedometric Reynolds
model, the stress tensor was written as a function of z as follows:

𝜎 =

⎧

⎪

⎨

⎪

⎩

𝛾(𝑧)𝜎𝑧 0 𝜏1
0 𝛾(𝑧)𝜎𝑧 𝜏2
𝜏1 𝜏2 𝜎𝑧

⎫

⎪

⎬

⎪

⎭

(7)

where

𝛾(𝑧) =
𝐾(𝑧) − 2∕3𝐺(𝑧)
𝐾(𝑧) + 4∕3𝐺(𝑧)

As in [24,25], in the case of a very thin films, it was assumed that
he vertical stress was independent of z and the terms 𝜕𝑢𝛼

𝜕𝑧 were predom-
inant in the calculation of the shear stresses. Assuming a relative elastic
4

o

substrate deformation, 𝑤𝑟, at small separation distance and following
mathematical manipulations detailed in Appendix B, we obtained a
partial differential equation in the cylindrical coordinate system:

𝐶𝑜(𝑟)𝜎𝑧(𝑟) −
1
𝑟
𝑑
𝑑𝑟

(

𝑟𝐿𝑜(𝑟)
𝑑𝜎𝑧
𝑑𝑟

)

= 𝛿𝐷 −𝑤𝑟 (8)

where 𝐶𝑜 and 𝐿𝑜 are determined using Eqs. (B.6) and (B.14).
The resolution of Eq. (8) provided with the normal stress 𝜎𝑧. The

resulting contact force could then be determined as follows:

𝐹𝑛 = ∫

𝑅

0
2𝜋𝜎𝑧(𝑟)𝑑𝑟 (9)

2.3. Numerical steps for the resolution of the static contact between ad-
sorbed molecular layers on the solid surfaces

The contact between the two adsorbed layers occurs when the dis-
tance ℎ between two solid surfaces (Fig. 1) is smaller than the thickness
2𝐷𝑜. It was assumed that the static force 𝐹𝑠(𝑡) only results from the
ontact between the two elastic molecular layers and the contribution
f the fluid was neglected. The generalized Reynolds model was also
dopted here. An explicit approach for the resolution of the static
ontact problem was chosen, based on small incremental displacement

f the sphere towards the plan.
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𝑅

b

Fig. 4. Evolution of the resulting normal contact force as a function of distance 𝑍 (a), normal stress (b) and surface separation distance (c) corresponding to the maximal value
of static force in the case of a static contact between two identical layers of thickness 𝐷𝑜 = 2.1 nm with a shear modulus 𝐺𝑐 = 0.4 MPa squeezed between a sphere of radius

= 1.94 mm and a flat plane, numerical values taken from [4]. The effect of an increase of the bulk modulus, from 𝐾𝑐=100 to 10000 MPa, can be seen from left to right.
𝜎

The steps for the determination of the static solution are described
elow:

∙ In the first step, at the position 𝑧𝑖 of the sphere, the contact was
defined when the distance between the two antagonistic surfaces
was smaller than the thickness of two molecular layers:

ℎ𝑖 ≤ 2𝐷𝑜

∙ In the second step, the imposed displacement is equal to 𝛥𝐷𝑠 =
𝑧𝑖+1 − 𝑧𝑖. For the considered small displacement, we used
Eq. (B.24) to calculate the incremental stress 𝛥𝜎𝑟 and the relative
displacement of solids is then determined using Eq. (B.21). In the
case of heterogeneous film as shown in Eqs. (7), (B.6), (B.12)
and (B.14), the displacement of the molecular layers can be
determined using the oedometric assumption:

𝑢(𝑟, 𝑧) =
∫ 𝑧
0 1∕𝑀𝑜𝑑 (𝑧)𝑑𝑧
ℎ𝑖

𝛥𝐷𝑠(𝑟)
5

∫0 1∕𝑀𝑜𝑑 (𝑧)𝑑𝑧
where 𝑀𝑜𝑑 = 𝐸 1−𝜈
(1+𝜈)(1−2𝜈) is the oedometric modulus (under

oedometric conditions = vertical compression without lateral dis-
placement). 𝐸, 𝜈 are respectively the Young modulus and Poisson
ratio of adsorbed layers.

∙ In the third step, the distance between the antagonistic surfaces
was updated as follows:

ℎ𝑖+1 = ℎ𝑖 − 𝛥𝐷𝑠 + 𝛥𝑤𝑟

2.4. Extension to the harmonic solicitation

It is noteworthy that the generalized Reynolds model presented in
Section 2.2 was assumed still valid in the case with an harmonic solic-
itation in agreement with [25,30]. Applying a harmonic displacement
𝑢(ℎ(𝑟)) = 𝛿𝐷𝑒𝑖𝜔𝑡 with 𝜔 the pulsation, to the sphere, only resulted in
complex values of the mechanical properties such as bulk and shear
modulus in Eq. (5). The resolution of Eq. (8) gave the complex solution
̃𝑧 = 𝛴̃𝑒𝑖𝜔𝑡 with 𝛴̃ the complex amplitude of the harmonic normal
contact stress. The complex resulting force 𝛥𝐹𝑛 was obtained using
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Fig. 5. Relative difference between numerical and experimental complex stiffness by
varying bulk modulus 𝐾𝑐 and 𝐾𝑓 with 𝐺𝑐 = 0.4 MPa and 𝜂 = 1.5 mPa s under harmonic
solicitation at a frequency of 38 Hz. Experimental data come from [4]. This relative
difference is defined as: |𝐾𝑧−𝐾𝑧𝑒𝑥𝑝𝑒 |+|𝐼𝑚𝑧−𝐼𝑚𝑧𝑒𝑥𝑝𝑒 |

|𝐾𝑧𝑒𝑥𝑝𝑒 |+|𝐼𝑚𝑧𝑒𝑥𝑝𝑒 |
.

Fig. 6. Dynamic phase diagram for an adsorbed layer bulk modulus 𝐾𝑐 = 200 MPa and
a fluid compressibility 𝐾𝑓 = 4 MPa. The dashed lines define the boundaries between
different domains (i.e. thick/thin, incompressible/compressible and elastic/viscous
films). The green dash and dotted lines are the boundaries below which the substrate
compliance and fluid compressibility respectively play an important role in the contact
complex stiffness. The formulations of these boundaries can be found in [26]. The
continuous black line corresponds to the experimental case [4] with nanometric elaidic
acid adsorbed layer on the surfaces separated by dodecane, with 𝐺𝑐 = 0.4 MPa,
𝜂 = 1.5 mPa s under harmonic solicitation at a frequency of 38 Hz.

Eq. (9). The stiffness 𝐾𝑧 and damping 𝐼𝑚𝑧 were then determined as
the real and imaginary parts of the ratio between the complex resulting
force 𝛥𝐹𝑛 and the amplitude of the imposed harmonic solicitation 𝛿𝐷:

𝐾𝑧 = ℜ(𝛥𝐹𝑛
𝛿𝐷

) and 𝐼𝑚𝑧 = ℑ(𝛥𝐹𝑛
𝛿𝐷

) (10)

where ℜ(∙) and ℑ(∙) signify the real and imaginary parts of ∙ respec-
tively.
6

3. Validation of the numerical model

The model was here confronted to both analytical and experimental
results. The first validation was the classical case of a squeezed homoge-
neous incompressible film with rigid substrates, for which an analytical
solution can be deduced. Then, a static contact between molecular
layers on solid surfaces was modeled and compared with Hertz’s theory.
Finally, the model was validated in the dynamic case of a squeezed
heterogeneous compressible film under harmonic solicitation by means
of the prediction of experimental data from the literature: a first
example of identification of the adsorbed layers mechanical properties
was illustrated.

3.1. Homogeneous incompressible interfacial film

In the case of homogeneous incompressible film (bulk modulus K→
∞) squeezed between rigid substrates, Eq. (B.18) becomes:

− 1
𝑟
𝑑
𝑑𝑟

(

𝑟𝐿𝑜(𝑟)
𝑑𝜎𝑧
𝑑𝑟

)

= 𝛿𝐷 (11)

The resolution of this equation with the boundary conditions in
Eq. (B.19) gives the analytical solution [24]:

𝜎𝑧(𝑟) =
3𝐺𝑅𝛿𝐷
ℎ(𝑟)2

(12)

Fig. 2a shows the normal contact stress calculated with our numer-
ical model compared to the analytical solution (Eq. (12)) with a shear
modulus 𝐺 = 10 MPa, 𝛿𝐷 = 0.4 nm, 𝑍 = 4.2 nm, 𝑅 = 1.94 mm.
These values of oscillation amplitude, distance and sphere radius are
consistent with experimental values [4], used later in the text for
comparison/validation. It can be seen here that the solution obtained
by the FE model superimposes on the analytical one. The relative
difference is inferior to 1%. In addition, Fig. 2b highlights the strong
influence of the film compressibility on the normal contact stress. For
a near incompressible Poisson coefficient 𝜈 which is very close to the
level of incompressibility 𝜈𝑚𝑎𝑥 = 0.5, the normal resulting contact
force 𝐹𝑛 decreases significantly in comparison with that obtained for an
incompressible film 𝐹 incompressible

𝑛 . This confirms the key role of the film
compressibility on the interface mechanical properties, as previously
observed in [18].

3.2. Static contact between two elastic molecular layers on the solid surfaces

In this section, we consider a static contact between two molecular
layers of thickness 𝐷𝑜, adsorbed on solid surfaces. For the numeri-
cal model validation, the presence of adhesive forces was neglected.
Assuming no deformation of these adsorbed layers i.e. a high com-
pressibility 𝐾𝑐 , according to Hertz’s theory, the contact pressure 𝜎𝑛 is
deduced using Eq. (13).

𝜎𝑛 = 𝜎𝑜

√

1 − 𝑟2

𝑎2
if 𝑟 ≦ 𝑎 (13)

where 𝑎, 𝛿 and 𝜎𝑜 are the contact radius, the static deformation of the
solids and the maximum pressure respectively.

𝑎 =
(

3𝐹𝑛𝑅
2𝐸′

)1∕3
; 𝛿 = 𝑎2

𝑅
and 𝜎𝑜 =

2𝑎𝐸′

𝜋𝑅
(14)

Numerically, we set the radius of the sphere 𝑅 = 1.94 mm and an
identical thickness 𝐷𝑜 = 2.1 nm on each surface, both values taken
from [4]. The sphere moves incrementally with a displacement of
𝐷𝑜∕1000 as described in Section 2.3.

Firstly, in order to compare the model with Hertz theory, we as-
sumed that the adsorbed layers have the same mechanical properties as
those of the solids (sphere and plane). The resulting contact force and
the normal stress distribution corresponding to the force maximal value
were close to those obtained with Hertz solution as shown in Fig. 3a
and b, despite of fluctuations due to the explicit approach.



Tribology International 186 (2023) 108558V.-V. Lai et al.

3

m
t
t
s
d
l
n
t

Fig. 7. Normal force, stiffness and inverse of damping evolution with 𝐾𝑐 = 200 MPa, 𝐺𝑐 = 0.4 MPa, 𝜂 = 1.5 mPa s and 𝐾𝑓 = 4 MPa under harmonic solicitation at a frequency of
8 Hz. Experimental data come from [4].
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Secondly, to focus on the effects related to the compressibility of
olecular layers, we set an identical shear modulus 𝐺𝑐 = 0.4 MPa for

he molecular layers, taken from [4] as an example, and we varied
heir bulk modulus 𝐾𝑐 . Fig. 4 shows the resulting contact force, normal
tress and the surface separation distance numerically calculated for
ifferent bulk modulus compared to the Hertz’ theory predictions. For
ow bulk modulus, for instance 𝐾𝑐 = 100 MPa, the contact force and the
ormal stress are smaller than those obtained from Hertz’ theory while
he contact dimension is larger. By increasing the bulk modulus 𝐾𝑐 ,

the difference between the FE solution and Hertz’ solution decreases.
We can observe the increase in normal contact stress as well as the
decrease in the contact zone dimension. For a very high bulk modulus,
𝐾𝑐 = 10000 MPa, meaning that the behavior of the layer is in the nearly
incompressible domain, the solution is close to that obtained with
Hertz’ theory. These observations were also confirmed for the evolution
of the distance between solid surfaces as shown in Fig. 4c. For a very
high bulk modulus, the thickness of the molecular layers in the effective
contact zone is almost equal to their initial thickness. This indicates
that there is no deformation of these layers and the elastic deformation
of the solids is predominant compared to that of the molecular layers.
These conclusions were in agreement with experimental findings in [4].
Thanks to these results, it can be concluded that this model is rather
robust for the modeling of the squeezing of both compressible and
incompressible thin layers.

3.3. Squeeze of an heterogeneous thin film under harmonic solicitation

The numerical model allowed one to predict the evolution of the
stiffness, of the damping and of the static normal force when a har-
monic displacement of small amplitude 𝛿𝐷 and pulsation 𝜔 is super-
7

imposed on the sphere. The thin fluid film has thus a complex shear
modulus [48]:

𝐺𝑓 (𝑖𝜔) = 𝑖𝜂𝜔. (15)

In order to fully validate our model, literature data from [4] were
used, leading to 𝐺𝑐 = 0.4 MPa for the elaidic acid adsorbed layer of
thickness 𝐷𝑜 = 2.1 nm and to a viscosity 𝜂 = 1.5 mPa s for the dodecane
with 𝑅 = 1.94 mm, a frequency of 38 Hz and 𝛿𝐷 = 0.45 nm. With
these known parameters, the full comparison between experimental
data and numerical results required to adjust the two only remaining
parameters: the compressibility of the dodecane, 𝐾𝑓 , and the bulk

odulus of the adsorbed layer, 𝐾𝑐 . This adjustment was performed by
inimizing the relative difference between numerical and experimental

omplex stiffness as shown in Fig. 5. This lead to an optimal couple
𝑐 ≈ 200 MPa and 𝐾𝑓 ≈ 4 MPa.

The validity of our assumptions was also checked by plotting the dy-
amic phase diagram issued from [26] for bulk modulus 𝐾𝑐 = 200 MPa
nd fluid compressibility 𝐾𝑓 = 4 MPa. Fig. 6 shows that the considered
xperimental case with nanometric adsorbed layers is almost situated
n the compressible thin film domain together with the important
nfluence of the substrate compliance and fluid compressibility. So,
he assumptions made in the adopted model (film compressibility with
ubstrate compliance) are still valid.

A final comparison between numerical and experimental data was
erformed. Fig. 7 shows the corresponding normal static force, the
tiffness and the damping variation with the position of the sphere 𝑍
t a frequency of 38 Hz. For 𝑍 ≫ 2𝐷𝑜 that is to say when no contact
etween adsorbed layers occurred, as shown in Fig. 7c the numerical
eciprocal of the damping was equal to the theoretical one, which is
linear function of the surface separation distance 𝑍 (Eq. (16)), as

xpected at large separation distances [2,21].

𝑚𝑧𝑡 =
6𝜋𝜂𝑅2𝜔 (16)

𝑍 − 2𝐿𝐻
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Fig. 8. Normal force, stiffness and damping evolution for different 𝐺𝑐 with 𝐾𝑐 = 200 MPa (a and b) and 𝐾𝑐 = 50 MPa (respectively c and d), for 𝜂 = 1.5 mPa s and 𝐾𝑓 = 5 MPa
under harmonic solicitation at a frequency of 38 Hz.
o
d
t

s

Fig. 9. Stiffness at 𝑍 = 𝐷𝑜 for different 𝐾𝑐 and 𝜈 with 𝜂 = 1.5 mPa s and 𝐾𝑓 = 5 MPa
under harmonic solicitation at a frequency of 38 Hz.

with 𝐿𝐻 = 𝐷𝑜 for a dense adsorbed monolayer.

In addition, from the phase diagram plotted in Fig. 6, the separation
distance 𝑍 defining the elastic/viscous transition was estimated from
8

𝐷𝑘𝑚𝑖𝑛 = 2𝐷𝑜 + 0.12 nm to 𝐷𝑘𝑚𝑎𝑥 = 2𝐷𝑜 + 0.7 nm for 𝐾𝑐 in the range
f 50–1000 MPa. Fig. 7d shows a zoom of the complex stiffness at
istances around these values, 𝑍 ≈ 2𝐷𝑜, confirming the occurrence of
he elastic/viscous transition (𝐾𝑧 > 𝐼𝑚𝑧) between 𝐷𝑘𝑚𝑖𝑛 and 𝐷𝑘𝑚𝑎𝑥.

It is noteworthy that the identified bulk modulus 𝐾𝑐 together with
hear modulus 𝐺𝑐 = 0.4 MPa gives the Poisson ratio 𝜈 ≥ 0.499 and

Young modulus 𝐸 ≈ 1.2 MPa. This nearly incompressible Poisson ratio
confirmed that the elaidic acid absorbed layers are highly dense and
stiff, limiting the interpenetration between monolayers [4,5].

4. Towards a better understanding of the squeeze mechanisms

The numerical model was further used to discuss the squeeze mech-
anisms: the shear elastic modulus of the adsorbed layer as well as
the fluid compressibility and fluid viscosity were numerically varied
in the following parts. The effect of the oscillation frequency was also
investigated.

4.1. Dependence of the shear elastic modulus of the adsorbed layer

Fig. 8 shows the normal static force and complex stiffness that were
calculated for different values of 𝐺𝑐 , giving Poisson ratio of 0.3 and
0.49 for the adsorbed layers. Overall, with a smaller Poisson ratio
(corresponding to a larger shear modulus), the static force and stiffness
are larger. On the one hand, for the bulk modulus 𝐾𝑐 = 200 MPa,

as shown in Fig. 8 a and b, the normal static force and complex
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stiffness remain similar for both large and small separation distance
𝑍, regardless of the value of 𝐺𝑐 with a difference inferior to 2% for
he largest value of 𝐾𝑧. This seems to indicate that for a very thin film
ith a large bulk modulus, the shear modulus of adsorbed layers has

ittle impact on interfacial properties in the vertical direction. On the
ther hand, for a smaller bulk modulus 𝐾𝑐 = 50 MPa, as shown in Fig. 8
and d, the influence of the shear modulus of adsorbed layers on the

tatic force and stiffness is more visible with a difference that can reach
0% for the largest values of 𝐾𝑧 and 𝐹𝑛. Thus, it can be concluded that
he influence of the shear modulus on the contact properties cannot be
gnored in the case of a squeezed thin film with a strong compressibility
small value of 𝐾𝑐).

This evolution was summarized in the mapping shown in Fig. 9
here the complex stiffness at 𝑍 = 𝐷𝑜 was calculated for different
alues of 𝐺𝑐 with Poisson ratio varying from 0.1 to 0.49 for the
dsorbed layers. We can see that the relative influence of the shear
odulus 𝐺𝑐 depends on the compressibility 𝐾𝑐 . This also confirms the

mportance of measuring the tangential stiffness as in [12] to reduce the
umber of adjustable parameters in the identification of the mechanical
roperties.

.2. Role of the fluid compressibility

Fig. 10 shows a significant influence of the fluid bulk modulus
n the complex contact stiffness of the interface, especially at short
eparation distances, before the onset of contact between the two
dsorbed layers: the contact stiffness, 𝐾𝑧 starts increasing before the
istance reaches 2𝐷𝑜 and the damping is also very sensitive to the
luid bulk modulus, as shown in Fig. 10b. The peak observed on the
amping increases and its position shifts to larger separation distances
ith increasing fluid bulk modulus. As the distance decreases, this
eak disappears due to the increase of the relative contribution of the
dsorbed layers.

In addition, following a similar approach as developed in [26], one
an model the force response by spring-and-dashpot in series, each
lement corresponding to the fluid compressibility, layer and substrate
eformation as well as the fluid friction coefficient associated to the
eynolds force. The detail of this theoretical calculation can be found

n Appendix C. The equivalent stiffness was then obtained for 𝑍 ≫ 2𝐷𝑜
n Eq. (17).

𝑧𝑡 = 18𝜋𝜂2𝑅3𝜔2

(

1
(𝑍 − 2𝐷𝑜)2𝐾𝑓

+
2𝐷𝑜

𝑀𝑜𝑑 (𝑍 − 2𝐷𝑜)3
+

𝜋
√

2𝑅
𝐸′(𝑍 − 2𝐷𝑜)5∕2

)

(17)

This shows that the role of the fluid compressibility is predominant
at large distances 𝑍 ≫ 2𝐷𝑜. On the one hand, with rigid layer and
substrates, the real stiffness tends to zero with an incompressible fluid
(𝐾𝑓 → ∞). On the other hand, as shown in Fig. 10c, the numerical
stiffness is close to the theoretical one at large distances, confirming
once more the validity of the numerical model. This theoretical model
can also be used to identify the fluid compressibility value.

4.3. Role of the fluid viscosity and the oscillation frequency

In Fig. 11a and b, a significant influence of the fluid viscosity
and the oscillation frequency on the complex contact stiffness of the
interface can be seen with the viscosity varying from 3 to 100 mPa s
and the oscillation frequency ranging from 38 to 220 Hz. The increase
in the damping 𝐼𝑚𝑧 by increasing the fluid viscosity 𝜂 or the oscillation
frequency can be easily explained by Eq. (16). Nevertheless, it is
interesting to observe here is that increasing the fluid viscosity and/or
the oscillation frequency leads to increasing the contact stiffness, 𝐾𝑧,
at both large and small separation distances. This can be attributed to
the fluid complex shear modulus, 𝐺𝑓 , as described in Eq. (15). The
increase in fluid viscosity and/or frequency also results in a larger
9

distance at which the elastic/viscous transition (𝐾𝑧 > 𝐼𝑚𝑧) occurs. This
observation was supported by the dynamic phase diagram plotted for
various 𝜂𝜔 in Fig. 11c.

These predicted evolutions can be successfully compared to experi-
mental measurements. On the one hand, Fig. 12a presents the influence
of the fluid viscosity, 1.5 mPa s for the dodecane and 24 mPa s for the
polyalpha olefin fluid (PAO), separating stearic acid adsorbed layers at
a fixed frequency of 38 Hz. On the other hand, Fig. 12b highlights the
effect of the oscillation frequency from 10 to 110 Hz for elaidic acid
boundary layers separated by hexadecane (viscosity of 3.4 mPa s).

5. Conclusions

A numerical model based on continuum mechanics was developed
to predict the squeeze behavior of a confined thin film between solid
surfaces in both static and dynamic situations with the presence of
adsorbed boundary layers. To do so, we used the generalized oedo-
metric Reynolds model [19,24] with thin film assumptions and elastic
deformation of solids. Numerically, this was done thanks to an explicit
approach of resolution with a small incremental descending step of the
sphere towards the plane. This model was validated by confrontation
to analytical and experimental results, especially for nanometric-thin
boundary layers.

We showed that this model, integrating solid deformation and com-
pressibility of the layer as well as the frequency dependence, was able
to provide the mechanical properties of the thin adsorbed layers, in
both viscous and elastic regimes, at large distances and under con-
fined situations. The dependence of the shear elastic modulus of the
adsorbed layers was discussed and the role of fluid compressibility was
confirmed. In addition, we highlighted the equivalence between fluid
viscosity and frequency in the mechanical response of the interface.

This model was based on assumptions such as pure elastic behavior
of the adsorbed layers, constant mechanical properties regardless of the
normal load. For more complex layers, this model can easily take into
account the potential viscoelastic behavior as well as the non-linearities
of the film mechanical properties. Moreover, this model can be further
extended into a three-dimensional one by integrating the roughness of
the solid surfaces.
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Fig. 10. (a) Normal stiffness and damping evolution for various fluid bulk modulus 𝐾𝑓 . 𝐾𝑓 was varied from 1 MPa to 20 MPa. (b) shows a zoom of stiffness and damping at small
eparation distances. (c) stiffness evolution compared to the theoretical value using Eq. (17) with 𝐷𝑛 =

√(8𝜂𝜔2𝐷𝑜𝑅∕𝑀𝑜𝑑 ). Results are obtained with shear modulus 𝐺𝑐 = 0.4 MPa,
𝑐 = 200 MPa, R = 1.94 mm and 𝐷𝑜=2.1 nm.
ppendix A. Hydrodynamic force calculation

In the case of undeformed solid surfaces and with a constant fluid
iscosity 𝜂, the hydrodynamic pressure (stress) on solid surfaces, when
sphere moves towards a plane with a velocity 𝑉𝑧, was given by Chan

nd Horn [16]:

=
−3𝜂𝑅𝑉𝑧

ℎ2
(A.1)

The total hydrodynamic force 𝐹𝐻 is obtained by integrating the total
tress on the sphere/plane surface, giving:

𝐻 = ∫

𝑅

0
2𝜋𝑟𝑝𝑑𝑟 =

6𝜋𝜂𝑅2𝑉𝑧
ℎ

(A.2)

where ℎ is the solid surface separation distance and 𝑅 is the radius of
the sphere.

In addition, the fluid viscosity can depend on the pressure [5]:

𝜂 = 𝜂𝑜 exp(𝛼𝑝) (A.3)

where the pressure–viscosity coefficient 𝛼 = 22 GPa−1 in the case of
hydrocarbon fluids.

Appendix B. Generalized oedometric Reynolds model for the
squeeze of a heterogeneous thin film confined between a sphere
and a plane

In the case of a very thin film, as in [24] assumptions are made as
follows:
10
- Vertical stress is constant according to z
- The termes 𝜕𝑢𝛼

𝜕𝑧 are predominant in the calculation of the shear
stresses, which allows to write:

⎧

⎪

⎨

⎪

⎩

𝜏12 = 𝜏21 = 0

𝜏23 = 𝐺(𝑧)𝜕𝑢2∕𝜕𝑧

𝜏13 = 𝐺(𝑧)𝜕𝑢1∕𝜕𝑧

(B.1)

As in [18,19,24], one uses the equation ‘‘debit’’ to establish the
equation of the problem of the squeezed film. One denotes the debit:

𝑞𝛼 = ∫

ℎ

0
𝑢𝛼𝑑𝑧 𝛼 ∈ {1, 2} (B.2)

and the quantity:

𝐸debit = ∫

ℎ

0
𝜖𝑖𝑖𝑑𝑧 = ∫

ℎ

0
𝜖𝛼𝛼𝑑𝑧 + 𝛿𝐷 (B.3)

By some mathematical manipulations, Auslender et al. [24] demon-
strated that:

𝐸debit = 𝑞𝛼,𝛼 + 𝛿𝐷 (B.4)

On the other hand, by combining Eqs. (7) and (B.3), we have:

𝐸debit = ∫

ℎ

0
𝜖𝑖𝑖𝑑𝑧 = ∫

ℎ

0

𝜎𝑖𝑖
3𝐾(𝑧)

𝑑𝑧 = ∫

ℎ

0

1
𝐾(𝑧) + 4∕3𝐺(𝑧)

𝑑𝑧𝜎𝑧 = 𝐶𝑜𝜎𝑧

(B.5)

where

𝐶𝑜 =
ℎ 1 𝑑𝑧 (B.6)
∫0 𝐾(𝑧) + 4∕3𝐺(𝑧)
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Fig. 11. Normal stiffness and damping evolution for various fluid viscosity 𝜂 (a) and frequencies (b) as well as dynamic phase diagram for various 𝜂𝜔 (c). In (a) 𝜂 was varied
from 3mPas to 100 mPas with the frequency of 38 Hz. In (b) the frequency was varied from 38 to 220 Hz with the fluid viscosity of 1.5 mPa s. In (c), the dashed lines define the
boundary between different domains (elastic/viscous films). The continuous line corresponds to the considered experimental and modeled conditions. These results were obtained
with values of 𝐺𝑐 = 0.4 MPa, 𝐾𝑐 = 200 MPa, 𝐾𝑓 = 5 MPa, R = 1.94 mm and 𝐷𝑜 = 2.1 nm.
Fig. 12. Illustrative examples. Experimental evolution of the complex stiffness 𝐾𝑧 and 𝐼𝑚𝑧 for stearic acid absorbed layers separated with different fluid viscosities (a) and for
elaidic acid absorbed layers separated by hexadecane under different oscillation frequencies (b).
By applying the equation of equilibrium on the stress tensor Eq. (7)
we have:

𝛾(𝑧)
𝜕𝜎𝑧 +

𝜕𝜏𝛼 = 0 (B.7)
11

𝜕𝑥𝛼 𝜕𝑧
and by integration, we obtain:

𝜏𝛼(𝑧) = −
𝜕𝜎𝑧 𝑧

𝛾(𝑦)𝑑𝑦 + 𝜏𝛼𝑜 (B.8)

𝜕𝑥𝛼 ∫0
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By using Eq. (B.1), we have:

𝜕𝑢𝛼
𝜕𝑧

= −
𝜕𝜎𝑧
𝜕𝑥𝛼 ∫

𝑧

0

𝛾(𝑥)
𝐺(𝑧)

𝑑𝑥 +
𝜏𝛼𝑜
𝐺(𝑧)

(B.9)

thus:

𝑢𝛼(𝑧) = −
𝜕𝜎𝑧
𝜕𝑥𝛼 ∫

𝑧

0

1
𝐺(𝑦) ∫

𝑦

0
𝛾(𝑥)𝑑𝑥𝑑𝑦 + 𝜏𝛼𝑜 ∫

𝑧

0

𝑑𝑦
𝐺(𝑦)

+ 𝑢𝛼𝑜 (B.10)

By taking into account the boundary conditions Eq. (6), the dis-
placement is obtained as:

𝑢𝛼(𝑧) =
𝜕𝜎𝑧
𝜕𝑥𝛼

(

𝐼(ℎ)
𝐽 (ℎ)

𝐽 (𝑧) − 𝐼(𝑧)
)

(B.11)

where

⎧

⎪

⎨

⎪

⎩

𝐼(𝑧) = ∫

𝑧

0

1
𝐺(𝜖) ∫

𝜖

0
𝛾(𝜁 )𝑑𝜁𝑑𝜖

𝐽 (𝑧) = ∫

𝑧

0

𝑑𝜖
𝐺(𝜖)

(B.12)

The integration of Eq. (B.11) gives:

𝑞𝛼 = ∫

ℎ

0
𝑢𝛼(𝑧)𝑑𝑧 =

𝜕𝜎𝑧
𝜕𝑥𝛼

(

𝐼(ℎ)
𝐽 (ℎ) ∫

ℎ

0
𝐽 (𝑧)𝑑𝑧 − ∫

ℎ

0
𝐼(𝑧)𝑑𝑧

)

= 𝐿𝑜
𝜕𝜎𝑧
𝜕𝑥𝛼

(B.13)

where

𝐿𝑜 =
(

𝐼(ℎ)
𝐽 (ℎ) ∫

ℎ

0
𝐽 (𝑧)𝑑𝑧 − ∫

ℎ

0
𝐼(𝑧)𝑑𝑧

)

(B.14)

By replacing 𝑞𝛼 et 𝐸 in Eq. (B.4), we obtain a partial differential
equation:

𝐶𝑜𝜎𝑧 =
𝜕

𝜕𝑥𝛼

(

𝐿𝑜
𝜕𝜎𝑧
𝜕𝑥𝛼

)

+ 𝛿𝐷 (B.15)

We can write Eq. (B.15) in the form:

𝐶𝑜𝜎𝑧 − div(𝐿𝑜.grad𝜎𝑧) = 𝛿𝐷 (B.16)

and in the cylindrical coordinate system combining with the symmetry
of revolution:

𝐶𝑜(𝑟)𝜎𝑧(𝑟) −
1
𝑟
𝑑
𝑑𝑟

(

𝑟𝐿𝑜(𝑟)
𝑑𝜎𝑧
𝑑𝑟

)

= 𝛿𝐷 (B.17)

Assuming a relative elastic substrate deformation, 𝑤𝑟, at small
separation distance, Eq. (8) was written as:

𝐶𝑜(𝑟)𝜎𝑧(𝑟) −
1
𝑟
𝑑
𝑑𝑟

(

𝑟𝐿𝑜(𝑟)
𝑑𝜎𝑧
𝑑𝑟

)

= 𝛿𝐷 −𝑤𝑟 (B.18)

Eq. (B.18) was associated with the following boundary conditions:

𝜎𝑧|𝑟=𝑅 = 0
𝜎𝑧
𝑑𝑟

|𝑟=0 = 0
(B.19)

Resolution of Eq. (B.18) was carried out thanks to FEM. By multi-
plying Eq. (B.18) by a test function 𝑃 (𝑟) and by partial integration in
the domain [𝑂,𝑅], we obtained the weak formulation of the problem:

∫

𝑅

0
𝑟𝐶𝑜𝜎𝑧𝑃𝑟𝑑𝑟 + ∫

𝑅

0

(

𝑟𝐿𝑜
𝑑𝜎𝑧
𝑑𝑟

𝑑𝑃𝑟
𝑑𝑟

)

𝑑𝑟

= ∫

𝑅

0
𝛿𝐷𝑟𝑃𝑟𝑑𝑟 − ∫

𝑅

0
𝛿𝑤𝑟𝑟𝑃𝑟𝑑𝑟

(B.20)

By discretizing [𝑂,𝑅] in several finite elements, the approached
solution was written as follows:

𝜎𝑧 = 𝐍Σ𝐳 ; 𝑃𝑟 = 𝐍𝐏𝐫 and 𝑤𝑟 = 𝐍𝐖𝐫 (B.21)

where 𝐍 is the shape function vector. Here, the linear shape function
was chosen for all elementary calculation.
12
Fig. C.13. Schematic modeling of the fluid compressibility effect. 𝜆 (𝐷) is the damping
function of the liquid and 𝐾𝑙𝑖𝑞𝑢𝑖𝑑 is its stiffness.

By substituting Eq. (B.21) in Eq. (B.20), we obtained:

𝐏𝐓
𝐫

(

∫

𝑅

0
𝑟𝐶𝑜𝐍𝐓𝐍𝑑𝑟 + ∫

𝑅

0

(

𝑟𝐿𝑜
𝑑𝐍𝐓

𝑑𝑟
𝐍
𝑑𝑟

)

𝑑𝑟

)

Σ𝐳

= 𝐏𝐓
𝐫 ∫

𝑅

0
𝛿𝐷𝑟𝐍𝐓𝑑𝑟 − 𝐏𝐓

𝐫 ∫

𝑅

0
𝑟𝐍𝐖𝐫𝐍𝐓𝑑𝑟

(B.22)

We obtained the equation in a discretized form:

𝐀Σ𝐳 = 𝐁 −𝐌𝐖𝐫 (B.23)

where 𝐌 = ∫ 𝑅
0 𝑟𝐍𝐓𝐍𝑑𝑟 and 𝐖𝐫 = 𝐻Σ𝐳, with 𝐇 determined by the

elastic half-space solution as in [19,49,50].
Thus, Eq. (B.23) became:

(𝐀 +𝐌𝐇)Σ𝐳 = 𝐁 (B.24)

𝐶𝑜, 𝐿𝑜 and integrals in Eqs. (B.6), (B.12), (B.14) and (B.22) were
numerically computed using the function trapz in Matlab. As the film
thickness at the center was very small compared to the sphere radius,
the contact pressure is mainly localized around the center point, 𝑟 = 0.
Thus, the mesh size varied from ℎ𝑜∕1000 around the center point, 𝑟 = 0,
up to ℎ𝑜 at 𝑟 = 𝑅∕20. This choice of mesh size was validated by
comparing numerical results and analytical solutions.

Appendix C. Theoretical contact stiffness at large distance with a
compressible fluid

At large distance, the interface consists of a compressible liquid
interacting with the substrate and the layer that are both considered as
rigid materials. The interface was schematically modeled by the series
combination of a viscous damper and springs associated to the liquid
stiffness, the substrate stiffness and the layer stiffness, respectively, as
shown in the following figure. In the remaining, distance 𝐷 is defined
as 𝐷 = 𝑍 − 2𝐷0 (see Fig. C.13).

In such case, the hydrodynamic force 𝐹𝐻 due to the displacement
amplitude ℎ0 is simply:

𝐹𝐻 = 𝜆 (𝐷)ℎ0 =
6𝜋𝜂𝜔ℎ0𝑅2

𝐷
(C.1)

It balances the elastic force due to the substrate deformation, the
liquid and the layer compressibility. This force is 𝐾𝑡 (𝐷) × 𝛿, where 𝛿 is
the elastic displacement of the liquid layer and 𝐾𝑡 (𝐷) is such as:

1
𝐾𝑡 (𝐷)

= 1
𝐾𝑙𝑖𝑞𝑢𝑖𝑑 (𝐷)

+ 1
𝐾𝑙𝑎𝑦𝑒𝑟 (𝐷)

+ 1
𝐾𝑠 (𝐷)

(C.2)

Thus, it can be written:

𝛿 =
6𝜋𝜂𝜔𝑅2

(C.3)

ℎ0 𝐾𝑡 (𝐷)𝐷
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t

𝐾

m

𝐾

R

At large distance, it is shown that the complex elastic modulus 𝐺 (𝜔)
can be approximated [26] by:

𝐺 (𝜔) ≃ 𝑖𝜔𝜆 (𝐷)
[

1 − 𝑖 𝛿
ℎ0

]

(C.4)

It comes from the latter equation that the normal stiffness 𝐾𝑧 (𝐷) of
he interface is:

𝑧 (𝐷) = 𝑅𝑒 [𝐺 (𝜔)] ≃
18𝜋𝜂2𝜔2𝑅3

𝐾𝑓𝐷2

[

1 +
2𝐷0
𝐷

×
𝐾𝑓

𝑀𝑜𝑑
+
√

2𝑅
𝐷

×
𝜋𝐾𝑓

𝐸′

]

(C.5)

As at large distance (2𝐷0 ≪ 𝑍), the terms proportional to 1∕𝐷 are
uch smaller than 1, it comes:

𝑧 (𝐷) ≃
18𝜋𝜂2𝜔2𝑅3

𝐾𝑓𝐷2
(C.6)

eferences

[1] Lundgren SM, Ruths M, Danerlöv K, Persson K. Effects of unsaturation on film
structure and friction of fatty acids in a model base oil. J Colloid Interface Sci
2008;326(2):530–6.

[2] Cayer-Barrioz J, Mazuyer D, Tonck A, Yamaguchi E. Drainage of a wetting liquid:
Effective slippage or polymer depletion? Tribol Lett 2008;32(2):81–90.

[3] Levine O, Zisman W. Physical properties of monolayers adsorbed at the solid–air
interface. I. Friction and wettability of aliphatic polar compounds and effect of
halogenation. J Phys Chem 1957;61(8):1068–77.

[4] Crespo A, Morgado N, Mazuyer D, Cayer-Barrioz J. Effect of unsaturation on
the adsorption and the mechanical behavior of fatty acid layers. Langmuir
2018;34(15):4560–7.

[5] Abouhadid F, Crespo A, Morgado N, Mazuyer D, Cayer-Barrioz J. Friction laws
for saturated/unsaturated fatty acid layers. Tribol Lett 2021;69(2):1–10.

[6] Campana M, Teichert A, Clarke S, Steitz R, Webster JR, Zarbakhsh A. Surfactant
adsorption at the metal–oil interface. Langmuir 2011;27(10):6085–90.

[7] Tadokoro C, Araya S, Okubo H, Nakano K, Sasaki S. Polarization observations
of adsorption behavior of fatty acids using optical anisotropy of liquid crystal.
Tribol Lett 2016;64(2):1–9.

[8] Daillant J, Gibaud A. X-ray and neutron reflectivity: Principles and applications,
Vol. 770. Springer; 2008.

[9] Tabor D, Winterton RS. The direct measurement of normal and retarded van der
Waals forces. Proc R Soc Lond Ser A Math Phys Eng Sci 1969;312(1511):435–50.

[10] Tonck A. Développement d’un appareil de mesures de forces de surface et de
nanorhéologie (Ph.D. thesis), Ecully, Ecole centrale de Lyon; 1989.

[11] Tonck A, Georges J, Loubet J. Measurements of intermolecular forces and
the rheology of dodecane between alumina surfaces. J Colloid Interface Sci
1988;126(1):150–63.

[12] Crespo A, Mazuyer D, Morgado N, Tonck A, Georges J-M, Cayer-Barrioz J.
Methodology to characterize rheology, surface forces and friction of con-
fined liquids at the molecular scale using the ATLAS apparatus. Tribol Lett
2017;65(4):1–10.

[13] Campen S, Green J, Lamb G, Spikes H. In situ study of model organic friction
modifiers using liquid cell AFM: self-assembly of octadecylamine. Tribol Lett
2015;58(3):1–15.

[14] Campen S, Green J, Lamb G, Spikes H. In situ study of model organic friction
modifiers using liquid cell AFM; saturated and mono-unsaturated carboxylic
acids. Tribol Lett 2015;57(2):1–20.

[15] Cayer-Barrioz J, Mazuyer D, Tonck A, Yamaguchi E. Frictional rheology of a
confined adsorbed polymer layer. Langmuir 2009;25(18):10802–10.

[16] Chan DY, Horn R. The drainage of thin liquid films between solid surfaces. J
Chem Phys 1985;83(10):5311–24.

[17] Montfort J, Hadziioannou G. ‘‘Equilibrium’’and dynamic behavior of thin films
of a perfluorinated polyether. J Chem Phys 1988;88(11):7187–96.

[18] Auslender F, Trifa M, Sidoroff F. Material compressibility effects for the squeeze
of very thin films. Eur J Mech A Solids 1999;18(3):499–515.

[19] Trifa M, Auslender F, Sidoroff F. Nanorheological analysis of the sphere plane
contact problem with interfacial films. Internat J Engrg Sci 2002;40(2):163–76.

[20] Movchan AB, Rebrov KR, Rodin GJ. Axisymmetric deformation of compressible,
nearly incompressible, and incompressible thin layers between two rigid surfaces.
Int J Solids Struct 2021;214:61–73.
13
[21] Georges J, Millot S, Loubet J, Tonck A. Drainage of thin liquid films between
relatively smooth surfaces. J Chem Phys 1993;98(9):7345–60.

[22] Delamarre S, Gmür T, Spencer ND, Cayer-Barrioz J. Polymeric friction modifiers:
Influence of anchoring chemistry on their adsorption and effectiveness. Langmuir
2022;38(37):11451–8.

[23] Mazuyer D, Tonck A, Cayer-Barrioz J. Friction control at the molecular level:
from superlubricity to stick-slip. In: Superlubricity. Elsevier; 2007, p. 397–426.

[24] Auslender F, Sidoroff F. Nanorheological behaviour of confined liquid layers for
normal contact. Tribol Ser 1996;31:195–204.

[25] Trifa M. Nanorhéologie du contact sphère-plan avec couche mince interfaciale
(Ph.D. thesis), Ecully, Ecole centrale de Lyon; 1999.

[26] Leroy S, Charlaix E. Hydrodynamic interactions for the measurement of thin film
elastic properties. J Fluid Mech 2011;674:389–407.

[27] Hocking LM. The effect of slip on the motion of a sphere close to a wall and of
two adjacent spheres. J Eng Math 1973;7(3):207–21.

[28] Gacoin E, Frétigny C, Chateauminois A, Perriot A, Barthel E. Measurement of
the mechanical properties of thin films mechanically confined within contacts.
Tribol Lett 2006;21(3):245–52.

[29] Mazuyer D, Cayer-Barrioz J, Tonck A, Jarnias F. Friction dynamics of confined
weakly adhering boundary layers. Langmuir 2008;24(8):3857–66.

[30] Auslender F. Nanorhéologie des couches minces confinées application aux
appareils à forces de surface (Ph.D. thesis), Ecully, Ecole centrale de Lyon; 1996.

[31] Johnson KL, Kendall K, Roberts a. Surface energy and the contact of elastic
solids. Proc R Soc Lond Ser A Math Phys Eng Sci 1971;324(1558):301–13.

[32] Barthel E, Perriot A, Chateauminois A, Frétigny C. Elastic contact to nearly
incompressible coatings: Stiffness enhancement and elastic pile-up. Phil Mag
2006;86(33–35):5359–69.

[33] Barthel E. Adhesive contact of a compliant sphere to an elastic coated substrate:
the thin film limit. J Adhes 2007;83(8):729–39.

[34] Chen J, Bull S. Finite element analysis of contact induced adhesion
failure in multilayer coatings with weak interfaces. Thin Solid Films
2009;517(13):3704–11.

[35] Djabella H, Arnell R. Finite element analysis of elastic stresses in multilayered
systems. Thin Solid Films 1994;245(1–2):27–33.

[36] Sridhar I, Zheng Z, Johnson K. A detailed analysis of adhesion mechanics
between a compliant elastic coating and a spherical probe. J Phys D: Appl Phys
2004;37(20):2886.

[37] Kot M. Contact mechanics of coating-substrate systems: Monolayer and multilayer
coatings. Arch Civ Mech Eng 2012;12(4):464–70.

[38] Assogba OC, Tan Y, Zhou X, Zhang C, Anato JN. Numerical investigation of the
mechanical response of semi-rigid base asphalt pavement under traffic load and
nonlinear temperature gradient effect. Constr Build Mater 2020;235:117406.

[39] Yu C, Wang Z, Wang QJ. Analytical frequency response functions for contact of
multilayered materials. Mech Mater 2014;76:102–20.

[40] Zhang J, Wang T, Zhang C, Wang L, Ma X, Yin L, et al. A two-dimensional contact
model between a multilayered solid and a rigid cylinder. Surf Coat Technol
2019;360:382–90.

[41] Wallace ER, Chaise T, Nelias D. Rolling contact on a viscoelastic multi-layered
half-space. Int J Solids Struct 2022;239:111388.

[42] Nikravesh S, Ryu D, Shen Y-L. Instabilities of thin films on a compliant substrate:
direct numerical simulations from surface wrinkling to global buckling. Sci Rep
2020;10(1):1–19.

[43] Doig M, Warrens CP, Camp PJ. Structure and friction of stearic acid and
oleic acid films adsorbed on iron oxide surfaces in squalane. Langmuir
2014;30(1):186–95.

[44] Cui S, Cummings P, Cochran H. Molecular simulation of the transition from
liquidlike to solidlike behavior in complex fluids confined to nanoscale gaps. J
Chem Phys 2001;114(16):7189–95.

[45] Fang T-H, Wu J-H. Molecular dynamics simulations on nanoindentation
mechanisms of multilayered films. Comput Mater Sci 2008;43(4):785–90.

[46] Peng P, Liao G, Shi T, Tang Z, Gao Y. Molecular dynamic simulations of
nanoindentation in aluminum thin film on silicon substrate. Appl Surf Sci
2010;256(21):6284–90.

[47] Mayo SL, Olafson BD, Goddard WA. DREIDING: A generic force field for
molecular simulations. J Phys Chem 1990;94(26):8897–909.

[48] Zwanzig R, Mountain RD. High-frequency elastic moduli of simple fluids. J Chem
Phys 1965;43(12):4464–71.

[49] Yang P, Wen S. Pure squeeze action in an isothermal elastohydrodynamically
lubricated spherical conjunction Part 1. Theory and dynamic load results. Wear
1991;142(1):1–16.

[50] Larsson R, Hoglund E. Numerical simulation of a ball impacting and rebounding
a lubricated surface. Int J Multiph Flow 1996;22(S1):148–9.

http://refhub.elsevier.com/S0301-679X(23)00345-6/sb1
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb1
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb1
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb1
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb1
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb2
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb2
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb2
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb3
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb3
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb3
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb3
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb3
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb4
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb4
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb4
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb4
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb4
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb5
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb5
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb5
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb6
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb6
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb6
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb7
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb7
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb7
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb7
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb7
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb8
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb8
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb8
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb9
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb9
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb9
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb10
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb10
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb10
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb11
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb11
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb11
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb11
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb11
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb12
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb12
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb12
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb12
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb12
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb12
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb12
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb13
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb13
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb13
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb13
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb13
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb14
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb14
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb14
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb14
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb14
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb15
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb15
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb15
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb16
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb16
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb16
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb17
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb17
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb17
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb18
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb18
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb18
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb19
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb19
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb19
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb20
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb20
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb20
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb20
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb20
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb21
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb21
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb21
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb22
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb22
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb22
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb22
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb22
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb23
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb23
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb23
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb24
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb24
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb24
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb25
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb25
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb25
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb26
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb26
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb26
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb27
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb27
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb27
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb28
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb28
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb28
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb28
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb28
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb29
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb29
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb29
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb30
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb30
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb30
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb31
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb31
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb31
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb32
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb32
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb32
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb32
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb32
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb33
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb33
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb33
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb34
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb34
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb34
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb34
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb34
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb35
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb35
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb35
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb36
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb36
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb36
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb36
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb36
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb37
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb37
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb37
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb38
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb38
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb38
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb38
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb38
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb39
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb39
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb39
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb40
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb40
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb40
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb40
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb40
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb41
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb41
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb41
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb42
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb42
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb42
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb42
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb42
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb43
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb43
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb43
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb43
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb43
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb44
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb44
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb44
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb44
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb44
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb45
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb45
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb45
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb46
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb46
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb46
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb46
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb46
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb47
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb47
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb47
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb48
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb48
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb48
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb49
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb49
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb49
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb49
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb49
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb50
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb50
http://refhub.elsevier.com/S0301-679X(23)00345-6/sb50

	Modeling the squeezed-thin film using generalized oedometric Reynolds equations
	Introduction
	Numerical model for the squeezed thin-film between elastic molecular layers adsorbed on solid surfaces
	Description of the problem of a squeezed thin film between two solids
	Generalized Reynolds model for the squeeze of a thin film between elastic molecular layers adsorbed on solid surfaces
	Numerical steps for the resolution of the static contact between adsorbed molecular layers on the solid surfaces
	Extension to the harmonic solicitation

	Validation of the numerical model
	Homogeneous incompressible interfacial film
	Static contact between two elastic molecular layers on the solid surfaces
	Squeeze of an heterogeneous thin film under harmonic solicitation

	Towards a better understanding of the squeeze mechanisms
	Dependence of the shear elastic modulus of the adsorbed layer
	Role of the fluid compressibility
	Role of the fluid viscosity and the oscillation frequency

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	
	Appendix A. Hydrodynamic force calculation
	Appendix B. Generalized oedometric Reynolds model for the squeeze of a heterogeneous thin film confined between a sphere and a plane
	Appendix C. Theoretical contact stiffness at large distance with a compressible fluid
	References


