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Abstract

We consider a general class of �nite-player stochastic games with mean-�eld

interaction, in which the linear-quadratic cost functional includes linear oper-

ators acting on controls in L2. We propose a novel approach for deriving the

Nash equilibrium of the game explicitly in terms of operator resolvents, by re-

ducing the associated �rst order conditions to a system of stochastic Fredholm

equations of the second kind and deriving their closed form solution. Fur-

thermore, by proving stability results for the system of stochastic Fredholm

equations we derive the convergence of the equilibrium of the N -player game

to the corresponding mean-�eld equilibrium. As a by-product we also derive

an ε-Nash equilibrium for the mean-�eld game, which is valuable in this setting

as we show that the conditions for existence of an equilibrium in the mean-

�eld limit are less restrictive than in the �nite-player game. Finally we apply

our general framework to solve various examples, such as stochastic Volterra

linear-quadratic games, models of systemic risk and advertising with delay, and

optimal liquidation games with transient price impact.
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1 Introduction

Large population stochastic games and their mean-�eld limits have attracted a con-
siderable attention in the past decades since the pioneering work of Lasry and Lions
[29] and Huang, Malhamé, and Caines [24], which was further developed by Bardi and
Priuli [5], Gomes et al. [18], Carmona and Delarue [8], Lacker [25], Feleqi [15], Fischer
[16], Cardaliaguet et al. [7], among others. The tractability and convergence proper-
ties of this versatile class of interacting particle systems has applications in various
research areas such as mathematical �nance, economics, population modeling, and
marketing (see, e.g., Chapter 1 of [8]).

One of the main challenges in the area of �nite population stochastic games is
to derive explicitly the Nash equilibrium of the system. Motivating examples from
mathematical �nance include price impact games with competition for liquidity be-
tween agents [36, 12, 14, 35, 32], systemic risk games introduced by Carmona et al.
[9, 10], Fouque and Zhang [17], as well as optimal investment problems studied
in Lacker and Zariphopoulou [28], Lacker and Soret [27]. In various important ex-
tensions of the aforementioned models it turns out that the state variables of the
players and their objective functionals naturally depend on the entire trajectory of
the controls. These generalizations give rise to in�nite dimensional dynamic stochas-
tic games. In such a setting, deriving a Nash equilibrium of the system is in general
considered to be intractable, and solutions to such games only appear in very partic-
ular examples; see Section 3 for a comprehensive survey of such problems.

In this work we develop a novel approach for solving a general class of in�nite-
dimensional stochastic games with mean-�eld interaction between the players. One
of the key ideas of our method hinges upon writing the in�nite-dimensional N -player
game in a static form. Speci�cally, we consider N -player stochastic games in which
each agent i has an objective functional of the form

J i(ui) :=E
[
−⟨ū,A1ū⟩L2 − ⟨ui,A2u

i⟩L2 − ⟨ui, (A3 +A∗
3)ū⟩L2

+⟨bi, ui⟩L2 + ⟨b0, ū⟩L2 + ci
]
,

(1.1)

where ui represents the agent's control and ū = N−1
∑N

i=1 u
i captures a mean-�eld in-

teraction between all agents. Here, the symbolsAi, i = 1, 2, 3 denote non-anticipative
linear operators on L2([0, T ],R); (bis)s∈[0,T ], (b

0
s)s∈[0,T ] are progressively measurable

stochastic processes; and ci is a random variable. The inner product is de�ned in
the usual sense as ⟨f, g⟩L2 :=

∫ T

0
f(s)g(s)ds for f, g ∈ L2([0, T ],R).

The main goal of this work is to derive explicitly the Nash equilibrium of �nite-
player games with reward functionals (1.1). In order to achieve this, we develop a
new technique to solve simultaneously for all agents i ∈ {1, . . . , N} their individual
path-dependent stochastic control problem

J i(ui) → max
ui

(1.2)
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over progressively measurable and square-integrable ui's. Moreover, we also apply
our method to solve the corresponding simpler limiting mean-�eld game when the
number of agents N tends to in�nity and provide a convergence result of the �nite-
player equilibrium strategies towards their mean-�eld limits.

Our approach uses variational calculus in order to establish su�cient �rst order
conditions for a Nash equilibrium which take the form of stochastic Fredholm equa-
tions with both forward and backward components. The derivation of the equilibrium
then relies on explicitly solving this system of equations for which we develop a new
method of solution. The approach is versatile enough to allow for non-Markovian and
non-semimartingale settings with no additional e�ort, in the sense that the controls
are allowed to depend on the entire trajectories of the inputs (bi)

N
i=0 which are only

assumed to be progressively measurable; that is, neither necessarily semimartingales
nor independent. Our framework uni�es and extends major examples of stochastic
dynamical games that have appeared in the literature beyond the Markovian and
semimartingale case and were often considered as intractable (see Section 3). In the
following, we give a concrete summary of the contribution of the methods developed
in this paper.

Our contributions. In Theorems 2.7 and 2.8, we use calculus of variations to
compute the �rst order conditions of the optimization problems in (1.2), which leads
to the following stochastic Fredholm equation for ū with both forward and backward
components:

ūt = ft −
∫ t

0

K(t, r)ūrdr −
∫ T

t

L(r, t)Etūrdr, t ∈ [0, T ], (1.3)

where f is progressively measurable and K,L are deterministic kernels determined by
the inputs of the model (A1,A2,A3, b

i, b0, ci). One of our main innovations is that we
derive an explicit solution to (1.3) using a novel approach (see Proposition 5.1). Then,
we utilize the solution to (1.3) to disentangle and solve the optimisation problem
of each player and hence to derive explicitly the Nash equilibrium. In addition to
solving (1.3), we derive a stability result for (1.3) (see Proposition 5.3). This stability
result is the crucial ingredient for deriving the convergence of the �nite-player game
equilibrium toward its mean-�eld game equilibrium limit in Theorem 4.14.

The framework developed in this paper is unique in that the solvability, stability,
and consistency of �nite-player games with mean-�eld interaction boil down to the
study of the stochastic Fredholm equation (1.3). To the best of our knowledge, our
approach gives the �rst canonical method for deriving explicitly the unique Nash
equilibrium to this general class of stochastic games. The closest result to Theorems
2.10 and 2.8 appeared in Huang et al. [23], where the authors derived a �rst order
condition for a special case of (1.1) in terms of a system of stochastic integral equations
but they did not obtain a solution to the system. We also refer to Bensoussan et al.
[6] where �rst order conditions for linear-quadratic stochastic games with delays in
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the state and the control were derived. In Section 3.4 we show that we can compute
explicit solutions to this class of games as a corollary of our main results.

In Section 3, we highlight the versatility of the objective functional in (1.1) by
showing that it nests several important, challenging and diverse examples of dynam-
ical stochastic games beyond the Markovian and semimartingale case. In particular,
we introduce in Section 3.1 a general class of Linear-Quadratic Stochastic Volterra
games whose objective functional is shown to be equivalent to (1.1). Then, we show
how such framework accommodates, extends and solves three major examples that
appeared in the literature: (i) inter-bank lending and borrowing models with delay
in the control which were studied in Carmona et al. [10], Fouque and Zhang [17] (see
Section 3.3); (ii) advertising models à la Nerlove and Arrow [33], Gozzi and Marinelli
[19] with mean-�eld e�ect and delay in the state (Section 3.4); (iii) multi-player price
impact games with a general propagator in the spirit of Abi Jaber and Neuman
[2], Neuman and Voÿ [35] (Section 3.2).

Convergence results of the �nite-player Nash equilibrium to the corresponding
mean-�eld equilibrium in Markovian settings have attracted considerable attention
recently. Laurière and Tangpi [30] proved such convergence results for open-loop
equilibria of games with idiosyncratic noise for each of the players. Neuman and Voÿ
[35] studied the corresponding problem for portfolio liquidation games with common
noise. Lacker and Le Flem [26] and Djete [11] proved the convergence of closed-loop
solutions (under the a priori assumption that they exist) to the mean-�eld solution
in the case where each player is in�uenced by idiosyncratic and common noise. In
these papers (except for [35]) the presence of idiosyncratic noise is crucial to estab-
lish the convergence. In order to illustrate the strength of our methods we provide
in Theorems 4.6 and 4.11 the equilibrium of the in�nite-player mean-�eld game in
our non-Markovian setting and show that the conditions to obtain the latter are less
restrictive than in the corresponding �nite N -player game in Theorems 2.7 and 2.8.
Moreover, in Theorem 4.14 we derive the aforementioned convergence which does
not require the presence of idiosyncratic noise. Indeed, we show that convergence
is obtained as a corollary of a stability result for the associated stochastic Fredholm
equation (see Proposition 5.3). For the sake of completeness, we also provide in The-
orem 4.16 the associated ε-Nash equilibrium result to our class of in�nite-dimensional
games. In other words, we show that the mean-�eld equilibrium strategy gives close
to optimal rewards for each player in the N -player game when N is su�ciently large.

Finally, let us illustrate in the following toy example that our choice of objective
functionals of type (1.1), which we refer to as static games, also include dynamical
games, as the objectives explicitly contain state variables. We refer to Section 3 for
the generalisation of this equivalence to functional games as in (1.1).

Motivating example. Let us consider a simple dynamical Markovian N -player
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game with controlled state variables given by

dX i
t =

(
aX i

t + ui
t

)
dt+ dW i

t , X i
0 = 0, i = 1, . . . , N, (1.4)

where ui is the control of the i-th player, a ∈ R and (W 1, . . . ,WN) is anN -dimensional
Brownian motion. Each player i ∈ {1, . . . , N} wishes to maximize following objective
functional with mean-�eld interaction in the controls

J i(ui) = E

[∫ T

0

(
−(ui

t)
2 +

1

N

N∑
j=1

uj
t

)
dt+ (X i

T )
2

]
. (1.5)

We will show how this dynamical game can be transformed into a static game without
state variables as in (1.1). Indeed, note that we can rewrite (X i

T )
2 by �rst using the

variation of constants formula to solve for X i in (1.4), i.e.,

X i
t =

∫ t

0

ea(t−s)ui
sds+

∫ t

0

ea(t−s)dW i
s ,

and then apply Fubini's theorem to obtain

(X i
T )

2 = 2

∫ T

0

ui
s

(∫ s

0

ea(2T−s−r)ui
rdr

)
ds

+ 2

∫ T

0

(∫ T

0

ea(2T−s−r)dW i
r

)
ui
sds+

(∫ T

0

ea(T−s)dW i
s

)2

.

This shows that the objective functional (1.5) can be written in the form

J i(ui) = E
[
−⟨ui,A2u

i⟩L2 + ⟨bi, ui⟩L2 + ⟨b0, ū⟩L2 + ci
]
, (1.6)

where

(A2u)(s) = us − 2

∫ s

0

ea(2T−s−r)urdr, s ≤ T,

and

bis = 2

∫ T

0

ea(2T−s−r)dW i
r , b0s = 1, ci =

(∫ T

0

ea(T−s)dW i
s

)2

,

and ū = 1
N

∑N
j=1 u

j. Hence, we observe that the objective functional in (1.6) cor-
responds to a static game without state variables. Moreover, this representation
very naturally lends itself to directly employing �rst order variational calculus. This
motivates us to study more general static objective criterions in the spirit of (1.6).

Structure of the paper. In Section 2 we present the class of �nite-player
stochastic games and state our main result on the explicit derivation of the Nash equi-
librium. In Section 3 we describe important multi-agent models that are included in
our framework. Section 4 is dedicated to the derivation of the Nash equilibrium in the
corresponding in�nite-player mean-�eld game, as well as related ε-Nash equilibrium
and convergence results. In Section 5 we derive some essential results on the solution
and stability of stochastic Fredholm equations. Finally, Sections 6�7 are dedicated to
the proofs of our main results.
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2 The Finite-Player Game

In this section we derive explicitly the Nash equilibrium of (1.1). Before stating
this result, we introduce some essential de�nitions of function spaces and integral
operators.

2.1 Function spaces, integral operators

We denote by ⟨·, ·⟩L2 the inner product on L2([0, T ],R), that is

⟨f, g⟩L2 =

∫ T

0

f(s)g(s)ds, f, g ∈ L2 ([0, T ],R) ,

where ∥·∥L2 the induced norm. We de�ne L2 ([0, T ]2,R) to be the space of measurable
kernels G : [0, T ]2 → R such that∫ T

0

∫ T

0

|G(t, s)|2dtds < ∞.

For any kernel G ∈ L2 ([0, T ]2,R), we denote by G the integral operator induced by
the kernel G that is

(Gf)(s) =

∫ T

0

G(s, u)f(u)du, f ∈ L2 ([0, T ],R) .

G is a linear bounded operator from L2 ([0, T ],R) into itself. We denote by G∗ the
adjoint kernel of G for ⟨·, ·⟩L2 , that is

G∗(s, u) = G(u, s), (s, u) ∈ [0, T ]2,

and by G∗ the corresponding adjoint integral operator.

2.2 De�nition of the N-player game

We present the class of functional stochastic games which are studied in this paper.
Let T > 0 denote a �nite deterministic time horizon and let N ≥ 2 be an integer. We
�x a �ltered probability space (Ω,F ,F := (Ft)0≤t≤T ,P) satisfying the usual conditions
of right continuity and completeness and use the notation Et = E[·|Ft] to represent
the conditional expectation with respect to Ft. Let bi = (bit)0≤t≤T , i = 0, . . . , N be
progressively measurable processes satisfying∫ T

0

E
[
(bis)

2
]
ds < ∞, E[ci] < ∞, i = 0, . . . , N. (2.1)
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We say that a measurable Volterra kernel G : [0, T ]2 → R, i.e. such that G(t, s) =
0 whenever s ≥ t, is nonnegative de�nite if for every f ∈ L2 ([0, T ],R) we have∫ T

0

∫ T

0

(
G(t, s) +G(s, t)

)
f(s)f(t)dsdt ≥ 0. (2.2)

Next we de�ne the class of Volterra kernels which will be used in our setting.

De�nition 2.1 (Class of admissible kernels G). We say that a nonnegative de�nite
Volterra kernel G : [0, T ]2 7→ R+ is in the class of kernels G if it satis�es the following
conditions:

sup
t≤T

∫ T

0

|G(t, s)|2ds+ sup
s≤T

∫ T

0

|G(t, s)|2dt < ∞.

De�nition 2.2 (Admissible Volterra operator). We say that an integral operator G
in an admissible Volterra operator if it is induced by the kernel G ∈ G.

Remark 2.3. Observe that if G ∈ G, property (2.2) implies for any f ∈ L2 ([0, T ],R),

⟨f,Gf⟩L2 =
1

2
⟨f, (G+G∗)f⟩L2 ≥ 0.

We consider N agents i ∈ {1, . . . , N} who select their controls ui,N from the
admissible set

U :=

{
u : F-progressively measurable s.t.

∫ T

0

E
[
u2
s

]
ds < ∞

}
(2.3)

and let

u−i,N := (u1,N , . . . , ui−1,N , ui+1,N , . . . , uN,N), ūN :=
1

N

N∑
j=1

uj,N . (2.4)

In the following, we consider operators (A1,A2,A3) which satisfy the following
assumptions.

Assumption 2.4. We assume that A1 and A3 are admissible Volterra operators, and
A2 is given by

A2 := λid + Â2 (2.5)

where Â2 is an admissible Volterra operator, λ > 0 is a constant and id is the identity
operator, i.e.

(idf)(t) = f(t), for all t ∈ [0, T ], f ∈ L2 ([0, T ],R) .

8



Each agent i ∈ {1, . . . , N} has the following individual performance functional

J i,N(ui,N ;u−i,N) :=E
[
−⟨ūN ,A1ū

N⟩L2 − ⟨ui,N ,A2u
i,N⟩L2 − ⟨ui,N , (A3 +A∗

3)ū
N⟩L2

+⟨bi, ui,N⟩L2 + ⟨b0, ūN⟩L2 + ci
]
,

(2.6)
where ūN ∈ U describes the mean-�eld interaction between the agents.

Remark 2.5. Note that in the objective functional in (2.6) the processes (bit)0≤t≤T ,
i = 0, . . . , N , are fairly general. They can be thought of as incorporating simulta-
neously di�erent sources of noise: i.e., a common noise a�ecting all N players as
well as player i's independent individual source of noise; and also other random or
deterministic factors idiosyncratic to player i. We refer to Section 3 below for speci�c
examples.

Our main goal in this section is to solve simultaneously for each agent i ∈
{1, . . . , N} their individual optimal stochastic control problem

J i,N(ui,N ;u−i,N) → max
ui∈U

.

This solution will establish a Nash equilibrium in the following usual sense.

De�nition 2.6. A set of strategies ûN = (û1,N , . . . , ûN,N) ∈ UN is called a Nash
equilibrium if for all i ∈ {1, . . . , N} and for all admissible strategies v ∈ U it holds
that

J i,N(ûi,N ; û−i,N) ≥ J i,N(v; û−i,N).

2.3 Main results for the N-player game

For convenience, we introduce the following operators,

G :=
A1

N2
+ 2

A3

N
+ Â2,

H :=
A1

N
+A3.

(2.7)

Now we are ready to state our main results for the �nite-players game. The �rst
result derives an explicit closed form solution to the average control ūN in the Nash
equilibrium of the game. To formulate the result, we de�ne for any G ∈ G the kernel

Gt(s, r) = G(s, r)1{r≥t}

where 1{·} is the indicator set function. We denote by Gt the associated Volterra
operator.

We also set

b̄t :=
1

N

N∑
i=1

bit, 0 ≤ t ≤ T. (2.8)
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Theorem 2.7. Under Assumption 2.4 and (2.1) any Nash equilibrium ûN ∈ UN to
the game (2.4) is such that ūN := 1

N

∑N
j=1 û

j,N is given by

ūN
t =

(
(id−B)−1a

)
(t), 0 ≤ t ≤ T, (2.9)

where

at :=
1

2λ

(
b̄t +

1

N
b0t −

〈
1{t≤·}K(·, t),D−1

t 1{t≤·}Et

[
b̄· +

1

N
b0·

]〉
L2

)
,

B(t, s) := 1{s<t}
1

2λ

(〈
1{t≤·}K(·, t),D−1

t 1{t≤·}K(·, s)
〉
L2

−K(t, s)

)
,

K(t, s) :=
N − 1

N
H(t, s) +G(t, s),

(2.10)

and

Dt := 2λid +
N − 1

N
(Ht +H∗

t ) +Gt +G∗
t ,

for all t ∈ [0, T ].

Using the result of Theorem 2.7 we derive each player's Nash equilibrium strategy
ûi.

Theorem 2.8. Assume that (2.1) and Assumption 2.4 are satis�ed and let ū be as
in (2.9). The unique Nash equilibrium of the game (2.4) is given by

ûi,N
t =

(
(id−B)−1ai

)
(t), 0 ≤ t ≤ T, (2.11)

where

ait :=
1

2λ

(
Et

[
bit +

1

N
b0t − ((H +H∗)ūN)(t)

]
−
〈
1{t≤·}K̂(·, t), D̃−1

t 1{t≤·}Et

[
bi· +

1

N
b0· − ((H +H∗)ūN)(·)

]〉
L2

)
,

B(t, s) := 1{s<t}
1

2λ

(〈
1{t≤·}K̂(·, t), D̃−1

t 1{t≤·}K̂(·, s)
〉
L2

− K̂(t, s)

)
,

K̂(t, s) = G(t, s)− 1

N
H(t, s)

(2.12)
and

D̃t := 2λid− 1

N
(Ht +H∗

t ) +Gt +G∗
t ,

for all t ∈ [0, T ].

The proofs of Theorems 2.7 and 2.8 are given in Section 6.
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Remark 2.9. Our assumptions in Theorems 2.7 and 2.8 ensure that the operators
{Dt}t∈[0,T ], {D̃t}t∈[0,T ], (id − B) and (id − B) are invertible so that (ū, u) in (2.9)
and (2.11) are well de�ned.

Remark 2.10. The results of Theorems 2.7 and 2.8 signi�cantly improve various re-
sults for linear-quadratic (LQ) stochatic mean-�eld games that have appeared recently
in the literature. In [22, 23] a class of LQ stochastic game with state variables that
satisfy Volterra integral equations was studied. The solution to the game is described
in terms of a system of stochastic Volterra equations. Our results in this section
provide explicit solutions to this class of problems. See Section 3.1 for additional
details. In [20] a class of stochastic control problems with delay in the controls was
studied. The solution to the control problem was characterised in terms of a sys-
tem of integral equations. Our framework provides a solution for a single agent and
multiplayer games with delay in the controls, in the states and in the mean-�eld inter-
action. Our framework also allows common and non-semimartingale noise which are
not straightforward extensions in these models. See Sections 3.3 and 3.4 for an elab-
orate discussion on our contribution to stochastic games with delays in the controls
and the states.

Remark 2.11. In Section 3 we apply our general framework in order to solve vari-
ous well-known models, such as stochastic Volterra linear-quadratic games, models of
systemic risk and advertising with delay and optimal liquidation games with transient
price impact. As described in Section 3, many of the models in these classes do not
have a closed form solution, and our framework establishes a new approach to deriving
them. See Remarks 3.6, 3.8 and 3.11 for additional details.

Remark 2.12. The expressions (2.11) and (2.12) that determine the optimal strategy
ûi lend themselves naturally to numerical discretization schemes using the so-called
Nyström method where the time interval [0, T ] is discretized and the operators/kernels
are approximated by corresponding matrices, see for instance [2, Section 5] and the
Jupyter notebook cited therein for an example of implementation in a single player
case.

3 Important Examples

In this section we demonstrate the outreach and versatility of our general results in
Theorems 2.7 and 2.8, by showing that it solves several important, challenging and
diverse examples of stochastic dynamical games including:

� Delay in the control,

� Delay in the state and in the mean-�eld interaction,

� General propagator models,

11



� Mean-�eld interaction of controls (extended mean-�eld games),

� Common noise.

We �rst introduce in Section 3.1 a generic Linear-Quadratic Stochastic Volterra
game whose objective functional is shown to be of the form (2.6). Then, we show
how such framework accommodates and extends three major examples that have
appeared in the literature: optimal liquidation games with general transient price
impact kernels (also known as propagators) and signals (Section 3.2), an inter-bank
lending and borrowing model with delay in the control (Section 3.3) and advertising
models with mean-�eld e�ect and delay in the state (Section 3.4). For the sake of
readability we omit the superscript N from ui,N , ūN and u−i,N throughout this section.

3.1 Stochastic Volterra Linear-Quadratic games

We show that generic stochastic Volterra Linear-quadratic games are included in the
general framework which was developed in Section 2.

De�ne the following controlled Volterra state variables

X i
t = P i

t +

∫ t

0

G2(t, s)u
i
sds+

∫ t

0

G3(t, s)ūsds, i = 1, . . . , N, (3.1)

Y i
t = Ri

t +

∫ t

0

G1(t, s)ūsds, i = 1, . . . , N, (3.2)

for some progressively measurable processes P i, Ri and kernels G1, G2, G3. Set Z
i =

(X i, Y i)⊤ so that

Zi
t = dit +

∫ t

0

D(t, s)

(
ui
s

ūs

)
ds, (3.3)

with

dit =

(
P i
t

Ri
t

)
and D(t, s) =

(
G2(t, s) G3(t, s)

0 G1(t, s)

)
,

and consider the following objective functional to be maximized by the i-th player:

J i
V ol(u

i, u−i) = E
[∫ T

0

fV ol
i (Zi

t , u
i
t)dt+ gV ol

i (Zi
T )

]
, (3.4)

where the running and terminal criterion have a linear-quadratic dependence in
(Zi, ui) of the form

fV ol
i (z, u) = −pu2 − z⊤Qz + uz⊤q, (3.5)

gV ol
i (z) = −z⊤Sz + z⊤si, (3.6)
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such that p ≥ 0, Q,S ∈ R2×2, q ∈ R2 and si is an FT -measurable random variable in
R2, i = 1, . . . , N .

Since the dynamics of each Zi in (3.3) are linear in ui and ū and fV ol
i and gV ol

i

are linear-quadratic in (Zi, ui) it is clear that J i
V ol is a linear-quadratic functional in

(ui, ū) as in (2.6). This is summarized in the following Lemma.

Lemma 3.1. The objective functional (3.4) for the stochastic Volterra game can be
written in the form of (2.6) with the following coe�cients(
Â2(t, s) A3(t, s)
A3(t, s) A1(t, s)

)
= 1{s<t}D(T, t)⊤(S + S⊤)D(T, s)

+ 1{s<t}

∫ T

0

D(r, t)⊤(Q+Q⊤)D(r, s)dr −
1{s<t}

2

(
q⊤D(t, s)

0⊤R2

)
−

1{s<t}

2

(
D(t, s)⊤q 0R2

)
,

(
bit
b0t

)
= D(T, t)⊤

(
Et[s

i]− (S + S⊤)Et[d
i
T ]
)
−
∫ T

t

D(r, t)⊤(Q+Q⊤)Et[d
i
r]dr

+

(
(dit)

⊤q
0

)
,

ci = −
∫ T

0

(dit)
⊤Qditdt− (diT )

⊤SdiT + (diT )
⊤si, i = 1, . . . , N,

λ = p.

Proof. The proof is straightforward aplication of Fubini's Theorem and the tower
property of the conditional expectation.

Remark 3.2. The solutions that we derived in (2.11) and (2.12) apply to the par-
ticular case of stochastic Volterra LQ games of the form (3.1)-(3.2). Solutions to
Volterra LQ control problems can be characterised in some cases in terms of solutions
to operator Riccati equations and to L2-valued BSDEs; see [2, Section 6]. In other
cases they can be related to in�nite dimensional Riccati equations, see [3, 22, 37] for
single-player examples. Our derivation provides explicit operator solutions to such
Riccati equations for the case of dynamics without control in the volatility. Further-
more, we point out that our expressions share some similarities with formulas that
have recently appeared in the computations of Laplace transforms of some quadratic
functionals of non-controlled Volterra processes [1, 4].

In the following we will show that the dynamics (3.1) includes any stochastic
Volterra equation for the sate variables X i, where the drift has linear dependence in
X i itself and in X̄ := 1

N

∑N
j=1X

j. In order to do that we �rst introduce the notion
of the resolvent of a kernel.
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We recall the de�nition of the product of kernels. For any G,H ∈ L2 ([0, T ]2,R)
we de�ne the ⋆-product as follows

(G ⋆ H)(s, u) =

∫ T

0

G(s, z)H(z, u)dz, (s, u) ∈ [0, T ]2,

which is a well-de�ned kernel in L2 ([0, T ]2,R) due to Cauchy-Schwarz inequality.
Denoting by G and H the two integral operators induced by the kernels G and H,
we get that GH is an integral operator induced by the kernel G ⋆ H.

For a kernel K ∈ L2([0, T ]2,R), we de�ne its resolvent RT ∈ L2([0, T ]2,R) by the
unique solution to

RT = K +K ⋆ RT , K ⋆ RT = RT ⋆ K.

In terms of integral operators, this translates into

RT = K +KRT , KRT = RTK.

In particular, if K admits a resolvent, (id−K) is invertible and

(id−K)−1 = id +RT . (3.7)

Lemma 3.3. For i = 1, . . . , N , let M i be a progressively measurable process with
sample paths in L2([0, T ],R) and K,H : [0, T ]2 → R be two Volterra kernels in G.
The N-dimensional linear system of Volterra equations

X i
t = M i

t +

∫ t

0

K(t, s)X i
sds+

∫ t

0

H(t, s)X̄sds, i = 1, . . . , N, (3.8)

where X̄ = 1
N

∑N
j=1X

j, admits a unique solution given by

X i
t = M̃ i

t +

∫ t

0

RK(t, s)M̃ i
sds, i = 1, . . . , N, (3.9)

with

M̃ i
t = M i

t +

∫ t

0

H(t, s)M̄sds+

∫ t

0

(
H ⋆ RK+H

)
(t, s)M̄sds, i = 1, . . . , N,

M̄t =
1

N

N∑
j=1

M j
t ,

and RK , RK+H the resolvents of K and K +H, respectively.
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Proof. We �rst observe that any Volterra kernel in G admits a resolvent kernel, see for
instance Corollary 9.3.16 in [21]. Thanks to the resolvent equation (3.7), the explicit
solution to the linear Volterra equation satis�ed by the mean process X̄,

X̄t = M̄t +

∫ t

0

(K(t, s) +H(t, s)) X̄sds,

is given by

X̄t = M̄t +

∫ t

0

RK+H(t, s)M̄sds.

Plugging this expression back in (3.8) together with another application of (3.7) yields
(3.9).

Remark 3.4. A particular case of interest in our application of Lemma 3.3 to con-
trolled Volterra processes, is the case where

M i
t = P i

t +

∫ t

0

G(t, s)ui
sds+

∫ t

0

Ḡ(t, s)ūsds,

where P i is progressively measurable, G, Ḡ Volterra kernels in G and u is the control.
In particular, we will apply Lemma 3.3 with Ḡ = K ≡ 0 so that, using the fact that
H +H ⋆ RH = RH , the solution in (3.8) simpli�es to the form of (3.1), that is,

X i
t = M i

t +

∫ t

0

(
H +H ⋆ RH

)
(t, s)M̄sds

= M i
t +

∫ t

0

RH(t, s)M̄sds

= P i
t +

∫ t

0

RH(t, s)
1

N

N∑
j=1

P j
t ds+

∫ t

0

(RH ⋆ G)(t, s)ūsds+

∫ t

0

G(t, s)ui
sds,

for i = 1, . . . , N.

3.2 Propagator models: optimal liquidation with transient im-

pact and signals

The framework for optimal liquidation with transient impact and price predicting
signals was �rst introduced in [31]. The stochastic game, where several �nancial
agents aim to liquidate in an optimal way their positions in a risky asset was presented
in [35]. In the following we brie�y describe the model.
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The model. We consider N traders with an initial position of xi
0 ∈ R shares in a

risky asset for the i-th trader, i = 1, . . . , N . The number of shares the trader holds
at time t is prescribed as

X̃ i
t = xi

0 −
∫ t

0

ui
sds,

where (ui
s)s∈[0,T ] denotes the selling speed which is chosen by the trader. We assume

that the traders' individual and aggregated trading activity causes price impact on
the risky asset's execution price. The actual price at which the orders are executed
for the i-th trader is given by

Si
t := P i

t − λui
t − Ỹ ū

t , 0 ≤ t ≤ T,

where N i denotes some una�ected progressively measurable price process incorporat-
ing an individual (or common) trading signal. The process

Ỹ ū
t =

∫ t

0

G(t, s)ūsds, 0 ≤ t ≤ T,

captures an aggregated linear decaying price impact with a general propagator kernel
G and λ > 0 captures instantaneous slippage costs which are incurred by the i-th
trader's execution strategy.

Remark 3.5. In [34, 35] an exponential decaying kernel of the form G(t) = e−ρt

for some ρ > 0 is speci�ed, so the control problem can be regarded as Markovian.
However, in practice, the decay of the price impact has been shown to be slower than
exponential, and more realistically modeled by a power-law kernel, which makes the
problem non-Markovian and quite challenging to solve. For the single player case, the
problem with general propagator G ∈ G and a progressively measurable P was solved
recently in [2]. We refer to [2, Example 2.5] for some examples of realistic kernels
and to the references therein for the empirical motivation.

The objective criterion. The aim of each trader is to maximize the pro�t and
loss from implementing the trading strategy ui given by

−
∫ T

0

Si
tdX̃

i
t + P i

T X̃
i
T = −

∫ T

0

Si
tu

i
tdt+ P i

T X̃
i
T

in the presence of running and terminal penalizations on the trader's inventory of the
form ϕ(xi

t)
2 and ϱ(xi

T )
2 with ϕ, ϱ > 0, which encourage the trader to liquidate her

position. This leads to the following performance functional

J i
liq(u

i) = E

[∫ T

0

f liq
i (t, X̃ i

t , Ỹ
ū
t , u

i
t)dt+ gliqi (X̃ i

T )

]
, (3.10)
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with

f liq
i (t, x, y, u) = −λu2 − ϕx2 − uy + P i

tu, gliqi (x) = −ϱx2 + P i
Tx.

The correspondence with our Volterra game framework.

The optimal liquidation problem with aggregated transient price impact and
signals corresponds to a Volterra game in the sense of Section 3.1 with controlled
variables X i in (3.1) and Y i in (3.2) given by (X i, Y i) = (X̃ i, P i − Ỹ ū) with

G2(t, s) = −1s≤t, G3 = 0 G1 = −G P i = xi
0, Ri = P i.

The objective criterion in (3.10) can be written as in (3.4) in terms of fV ol

in (3.5) and gV ol in (3.6) where

p = λ, Q =

(
ϕ 0
0 0

)
, q = (0, 1)⊤, S =

(
ϱ 0
0 0

)
, si = (P i

T , 0)
⊤.

Remark 3.6 (Improvements with respect to the related literature). In [35] the
above game was explicitly solved for an exponential price impact kernels G(t, s) =
1{s<t}e

−ρ(t−s) for some constant ρ > 0. Such kernels turns the model into a Marko-
vian game, which can be solved via forward-backward stochastic di�erential equations.
The problem becomes quite intricate for more general kernels G ∈ G which are allowed
in our setup; e.g., power law kernels of the form G(t, s) = 1{s<t}(t − s)−α for some
α ∈ (0, 1/2). In the single player case, this problem was solved only very recently in [2]
by making an ansatz on the value function combined with a martingale veri�cation
argument. Our approach not only extends such results of [2] to a multi-player price
impact game but also provides a new and direct argument for deriving the solution for
the single player case.

3.3 Delay in the control: an inter-bank lending and borrowing

model

In this subsection we show how our results extend models on systemic risk with delay
studied in [10, 17].

The model. The log-monetary reserves xi of N banks, i = 1, . . . , N , are modeled as
follows

dxi
t =

(
hi(t) +

∫
[0,t]

ν(ds)ui
t−s

)
dt+ σidW

i
t , xi

0 ∈ R, (3.11)

with hi a progressively measurable process, (W 1, . . . ,WN) an N -dimensional Brow-
nian motion and ν a (signed) measure on [0, T ] of locally bounded variation. The
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control ui of the i-th bank corresponds to the rate of lending or borrowing (depending
on the sign of ui) from a central bank. The delay in the control re�ects the repay-
ments after a �xed time. The main example is given by ui

t − ui
t−τ which corresponds

to the case ν = δ0 − δτ for some �xed time τ ≥ 0. In this case, if the i-th bank
borrowed from the central bank an amount utdt at some time t, then xi

t increases by
utdt. In addition, since the amount needs to be paid back to the central bank at a
later time t+ τ , the log-monetary reserve xi

t+τ decreases by ui
(t+τ)−τdt = ui

tdt, which

explains the form of the drift ui
t − ui

t−τ at time t.

Remark 3.7. We note that in [10, 17], the dynamics of xi are stated slightly di�er-
ently using the convention of delayed di�erential equations:

dxi
t =

(∫
[0,τ ]

θ(ds)ui
t−s

)
dt+ σidW

i
t , xi

0 ∈ R,

for some �xed τ ≥ 0, with an initialization of the control of the form

ui
s = ϕi(s), for s ∈ [−τ, 0],

for some speci�ed function ϕ and measure θ. Setting ν(ds) = 1s≤τθ(ds) and hi(t) =
1t≤τ

∫
[t,τ ]

θ(ds)ui
t−s = 1t≤τ

∫
[t,τ ]

θ(ds)ϕi(t− s) yields the dynamics in (3.11).

The objective criterion. The i-th bank chooses the strategy ui to minimize the
following objective criterion that involves the aggregated average x̄ = 1

N

∑N
i=1 x

i:

J i
sys(u

i, u−i) = E
[∫ T

0

f sys(xi
t, x̄t, u

i
t)dt+ gsys(xi

T , x̄T )

]
,

with the running and terminal costs given by

f sys(x, x̄, u) =
u2

2
− βu(x̄− x) +

ε

2
(x̄− x)2,

gsys(x, x̄) =
c

2
(x̄− x)2.

The running cost of borrowing/lending is given by (ui)2/2, the parameter β > 0
controls the incentive to borrowing or lending depending on the di�erence with the
average capitalization level; the quadratic term in (x̄−x)2 in the running and terminal
costs penalize departure from the average. The condition β2 ≤ ϵ ensures convexity.

The correspondence with our Volterra game framework. Setting

G(t) := ν([0, t]), t ≥ 0,

writing (3.11) in integral form, and applying Lemma 3.9 below, we get the following
Volterra representation for xi:

xi
t = P i

t +

∫ t

0

G(t− s)ui
sds (3.12)
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with P i = xi
0 +

∫ ·
0
hi(s)ds+ σiW

i.

Clearly, this corresponds to a Volterra game in the sense of Section 3.1 where the
controlled variables X i in (3.1) and Y i in (3.2) are given by (X i, Y i) = (xi, x̄)
with

G1 = G2 = G, G3 = 0, Ri =
1

N

N∑
j=1

P j,

and where the objective criterion to be maximized in (3.4) is de�ned in terms
of fV ol as in (3.4) and gV ol as in (3.6) with the parameters

p =
1

2
, Q =

ϵ

2

(
1 −1
−1 1

)
, q = β(−1, 1)⊤, S =

c

ϵ
Q, si = (0, 0)⊤.

Example 3.1. We brie�y point out some important examples for G in this setting.

(i) If ν(ds) = g(s)ds for some locally integrable function g, then G(t) =
∫ t

0
g(s)ds,

for all t ≥ 0.

(ii) If ν(ds) = δ0 − δτ (ds) for some τ ≥ 0, then G(t) = 1{t≥0} − 1{t≥τ}.

Remark 3.8 (Improvements with respect to the related literature). In [10], the
equilibrium to the above inter-bank lending and borrowing game was characterised
as a solution to a system of integral equations [10, equations (41)-(45)]. Our main
results not only provide novel explicit operator formulas for the game, but also allow
with no additional e�ort, non-trivial realistic extensions of the game. First, we allow
the inclusion of lending and borrowing between the banks by introducing an interacting
term

1

N

N∑
j=1

(
xj
t − xi

t

)
,

in the drift of xi in (3.11). This term represents the rate at which bank i borrows from
or lends to bank j in the spirit of the model in [9] but with the addition of the delay
feature, which was not considered [10]. Second, we can include a common Brownian
noise W by updating P i to P i =

∫ ·
0
hi(s)ds+ σiW i + σ̃iW in (3.12). Third, we allow

the possibility of adding a more general independent and correlated noise which is not
necessarily a semimartingale, where the usual techniques that rely on Itô's formula
break down. Finally, we allow the inclusion of delays in the mean-�eld interacting
term in the drift, such feature is discussed in the next section.

Lemma 3.9. Let ν be a measure on R+ of locally �nite total variation. Set G(t) =
ν([0, t]), for all t ≥ 0, then, for any locally integrable measurable function u it holds
that ∫

[0,t]

G(t− s)usds =

∫
[0,t]

(∫
[0,l]

ul−rν(dr)

)
dl, t ≥ 0.
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Proof. This is an application of Fubini's theorem and the change of variables formula:∫
[0,t]

G(t− s)usds =

∫
[0,t]

(∫
[0,t−s]

ν(dr)

)
usds (def of G)

=

∫
[0,t]

(∫
[0,t]

1{r+s≤t}ν(dr)

)
usds

=

∫
[0,t]

(∫
[0,t]

1{r+s≤t}usds

)
ν(dr) (Fubini)

=

∫
[0,t]

(∫
[r,t+r]

1{l≤t}ul−rdl

)
ν(dr)

=

∫
[0,t]

(∫
[0,t]

1{r≤l≤t}ul−rdl

)
ν(dr)

=

∫
[0,t]

(∫
[0,t]

1{r≤l≤t}ul−rν(dr)

)
dl (Fubini)

=

∫
[0,t]

(∫
[0,l]

ul−rν(dr)

)
dl,

where we have done a change of variable l = r + s in inner integral, in the fourth
inequality.

3.4 Delay in the state: an advertising model with mean-�eld

e�ect

Our next application is motivated by problems of stochastic optimal advertising [33,
19, 6] with time-delay and persistence of advertising expenditures, in the presence of
competition between products or �rms.

The model. We consider a company launching N products such that the dynamics
for the advertising goodwill xi of the i-th product to be launched are given by

dxi
t =

(
βui

t + hi(t) +

∫
[0,t]

ν(ds)xi
t−s +

∫
[0,t]

µ(ds)x̄t−s

)
dt+ σidW

i
t , xi

0 ∈ R. (3.13)

Here ui is the intensity of advertising spending, (W 1, . . . ,WN) is a possibly correlated
N -dimensional Brownian motion, β ≥ 0 is a constant advertising e�ectiveness factor.
hi is a deterministic or external stochastic factor for image deterioration in the absence
of advertising which can be common to several products. ν is the distribution of the
forgetting time, and µ is the distribution of a time-delayed interactive competition
among the products. Note that when ν, hi, µ, and σi are identically zero, equation
(3.13) reduces to the classical model of Nerlove and Arrow [33].
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Remark 3.10. We note that the dynamics of xi are usually stated slightly di�erently
using the convention of delayed di�erential equations:

dxi
t =

(
βui

t +

∫
[0,τ ]

θ1(ds)x
i
t−s +

∫
[0,τ ]

θ2(ds)x̄t−s

)
dt+ σidW

i
t ,

for some �xed τ ≥ 0, with an initialization of the controlled variables of the form

xi
s = ϕi(s), for s ∈ [−τ, 0],

for some speci�ed functions ϕi and measures θ1 and θ2. Setting ν(ds) = 1s≤τθ1(ds),
µ(ds) = 1s≤τθ2(ds) and

hi(t) = 1t≤τ

∫
[t,τ ]

(
θ1(ds)x

i
t−s + θ2(ds)x̄t−s

)
= 1t≤τ

∫
[t,τ ]

(
θ(ds)ϕi(t− s) + θ2(ds)

1

N

N∑
j=1

ϕj(t− s)

)
,

yields the dynamics (3.11).

The objective criterion. The following objective functional to be maximized was
presented in [19, Section 6],

J i
adv(u

i, u−i) = E
[
−
∫ T

0

λ(ui
t)

2dt+ βxi
T

]
. (3.14)

The correspondence with our Volterra game framework. We start by showing
that the dynamics (3.13) can be written in the form (3.1). First, an application of
Lemma 3.9 shows that (3.13) can be written in the Volterra form

xi
t = M i

t +

∫ t

0

K(t− s)xi
sds+

∫ t

0

H(t− s)x̄sds, (3.15)

with M i =
∫ ·
0
hi(s)ds+ σiW

i +
∫ ·
0
βui

sds, K(t) = ν([0, t]) and H(t) = µ([0, t]). Then,
an application of Lemma 3.3 shows clearly that xi can be written in the form (3.1).
However, to ease notations, we will highlight the application of Lemma 3.3 for the
case ν = 0 and hi = 0, so that K = 0:
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Thanks to Remark 3.4 applied to (3.15) for the case ν = 0 and hi = 0, we can
deduce that the advertising problem with delay in the mean-�eld interaction
corresponds to a Volterra game where the controlled variables X i in (3.1) and
Y i in (3.2) are given by (X i, Y i) = (xi, 0) with

G2(t, s) = β1s≤t, G3(t, s) = β

∫ t

s

RH(t, u)du, G1 = 0,

P i = σiW
i +

∫ ·

0

RH(·, s) 1
N

N∑
j=1

σjW
j
s ds, Ri = 0,

where RH is the resolvent of H, and where the objective criterion in (3.4) is
de�ned in terms of fV ol of (3.4) and gV ol of (3.6) with

p = λ, Q = 0R2×2 , q = (0, 0)⊤, S = 0R2×2 , si = (β, 0)⊤.

Remark 3.11 (Improvements with respect to the related literature). To the best of
our knowledge, the advertising multiplayer game above has not been solved so far. A
similar advertising game has been brie�y presented in [6, Section 2.2] in the context
of certain Linear-Quadratic Stackelberg games. In [20], a one-player game has been
considered with µ and ν in (3.13) absolutely continuous with respect the Lebesgue
measure. Such control problem has been characterized, under the particular setting
of (3.14) in terms of a system of integral equations, see [20, equations (30)-(32)].
Our framework provides the �rst solution for a multiplayer advertising game with
delay in the individual state and in the mean-�eld state. What is more interesting,
is that our framework allows for the inclusion of delay in the control, common and
non-semimartingale noise which are not straightforward extensions usually. As the
authors point out in [20, Section 5]: the only technique that seems to work when
combining delay in the control and in the state is the framework of viscosity solutions
which does not provide enough regularity.

Remark 3.12. Combined with the ideas in Section 3.3, we can also incorporate linear
time delays in the control ui and in the dynamics of xi in (3.13); see Lemma 3.3 and
Remark 3.4. Our framework allows for an immediate solution even when the delays
depend on a measure, which usually introduces technical di�culties with the usual
in�nite dimensional lifts applied in the study of controlled delayed equations; see, for
instance, [19, Remark 1] and [20].

4 The Mean-Field Game

In this section we formulate and solve the corresponding asymptotic mean-�eld game
version of the �nite-player game from Section 2 when the number of players N tends
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to in�nity. We prove that the �nite-player Nash equilibrium strategies converge in the
in�nite population limit to the mean-�eld game equilibrium and prove that the latter
yields an approximate equilibrium for the �nite-player setup from Section 2. We �rst
consider a generic player in the mean-�eld game limit and then provide an equivalent
formulation in terms of in�nitely many players. The main advantage of the analysis
in this section is that the mean-�eld limit provides both simpler expressions to the
equilibrium strategies and more relaxed conditions for existence of an equilibrium,
with respect to the �nite-player game.

Let (Ω,FT ,F = (Ft)0≤t≤T ,P) denote the �ltered probability space from Section 2.
Recall that we use the notation Et = E[·|Ft] to represent the conditional expectation
with respect to Ft. Moreover, let c denote an FT -measurable random variable and let
β, β0 denote F-progressively measurable processes such that β0 is independent of β.
We set

b := β + β0 (4.1)

and denote by F0 := (F0
t )0≤t≤T the �ltration generated by β0 satisfying the usual

conditions.

Assumption 4.1. We assume that for all t ∈ [0, T ], F0
T and Ft are conditionally

independent given F0
t .

Remark 4.2. For instance, if we denote by (Fβ
t )t≤T the �ltration generated by the

process β. Then, the �ltration F de�ned by Ft := Fβ
t ∨ F0

t for all t ≤ T , satis�es
Assumption 4.1.

In addition to the set U introduced in (2.3) we also de�ne the subset of processes

U0 :=

{
v : F0-progressively measurable s.t.

∫ T

0

E[v2s ]ds < ∞
}

⊂ U .

The paradigm of the mean-�eld game limit of the �nite-player game from Section 2
is the following: First, we consider a generic player who seeks to implement a strategy
v ∈ U in order to maximize for a �xed µ ∈ U0 the objective function

J(v;µ) :=E [−⟨µ,A1µ⟩L2 − ⟨v,A2v⟩L2 − ⟨v, (A3 +A∗
3)µ⟩L2

+⟨b, v⟩L2 + ⟨b0, µ⟩L2 + c
]
,

(4.2)

which is akin to (2.6) with same operators A1,A2,A3 as well as F-progressively
measurable process b0 as introduced above in Section 2. Then, we determine the
F0-measurable process µ such that a mean-�eld game equilibrium with common noise
β0 is obtained in the following sense.

De�nition 4.3. A pair (v̂, µ̂) ∈ U ×U0 is called a mean-�eld game equilibrium if the
control v̂ solves the optimization problem

J(v̂; µ̂) → max
v∈U

(4.3)
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under the consistency condition

E[v̂t|F0
T ] = µ̂t, Ω× [0, T ] almost everywhere. (4.4)

Remark 4.4. Note that due to Assumption 4.1, it holds in (4.4) that

E[v̂t|F0
T ] = E[v̂t|F0

t ]

for all t ∈ [0, T ]. Indeed, for all ξ ∈ F0
T it follows that

E[ξ E[v̂t|F0
t ]] = E[E[ξ|F0

t ]E[v̂t|F0
t ]] = E[E[ξv̂t|F0

t ]] = E[ξv̂t],

where the second equality is obtained from the conditional independence given by As-
sumption 4.1.

Remark 4.5. Observe that the process b de�ned in (4.1) in the generic player's ob-
jective functional in (4.2) encodes two di�erent sources of noise. Speci�cally, β0 can
be interpreted as representing some common noise a�ecting the whole system. β rep-
resents the generic player's independent individual source of noise; as well as other
random or deterministic factors, which are idiosyncratic to the generic player. In par-
ticular, the generic player in the mean-�eld game can be thought of as a representative
player chosen from a population of heterogeneous players who are allowed to have their
own β, which are not necessarily (statistically) identical; cf. also Remark 2.5 in the
�nite-player game.

To state the mean-�eld game equilibrium, it is convenient to introduce the follow-
ing two solution maps F and G of two associated Fredholm equations:

F (t, x) :=
(
(id− B̃)−1ã(x)

)
(t)

G(t, x) :=
(
(id− B̂)−1â(x)

)
(t)

(0 ≤ t ≤ T ), (4.5)

where

ãt(x) :=
1

2λ

(
xt − ⟨1{t≤·}Â2(·, t), D̃−1

t 1{t≤·}Et[x·]⟩L2

)
,

B̃(t, s) := 1{s≤t}
1

2λ

(
⟨1{t≤·}Â2(·, t), D̃−1

t 1{t≤·}Â2(·, s)⟩L2 − Â2(t, s)
)
,

D̃t := 2λid + (Â2)t + (Â∗
2)t;

(4.6)

and

ât(x) :=
1

2λ

(
xt − ⟨1{t≤·}Â2(·, t), D̂−1

t 1{t≤·}Et[x·]⟩L2

)
,

B̂(t, s) := 1{s≤t}
1

2λ

(
⟨1{t≤·}(Â2(·, t) + A3(·, t)), D̂−1

t 1{t≤·}(Â2(·, s) + A3(·, s))⟩L2

− (Â2(t, s) + Â3(t, s))
)
,

D̂t := 2λid + (Â2)t + (Â∗
2)t + (A3)t + (A∗

3)t.

(4.7)

We are now ready to provide the solution to the mean-�eld game:
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Theorem 4.6. Assume that (2.1) as well as Assumptions 2.4 and 4.1 are satis�ed.
Then, the unique mean-�eld game equilibrium (v̂, µ̂) ∈ U ×U0 in the sense of De�ni-
tion 4.3 is given by

v̂t = F (t, b−A3(µ̂)−A∗
3(E·µ̂)), (4.8)

µ̂t = G(t,E[β] + β0), (4.9)

for all t ∈ [0, T ], where F and G are de�ned in (4.5).

Remark 4.7. To be more explicit, note that the process that appears in the right-hand
side of (4.8) is

bs −A3(µ̂)(s)−A∗
3(Esµ̂)(s) = bs −

∫ s

0

A3(s, r)µ̂rdr −
∫ T

s

A3(r, s)Es[µ̂r]dr, s ≤ T.

The proof of Theorem 4.6 is given in Section 7. We note that Remarks 2.12 and 3.2
remain valid for the expressions (4.8) and (4.9).

4.1 The In�nite-Player Game Formulation

It is also very natural to formulate the limiting mean-�eld game of the �nite-player
game introduced in Section 2 as an in�nite-player game when the number of play-
ers N is sent to in�nity. We show below that the resulting in�nite-player mean-�eld
game Nash equilibrium is equivalent to a generic player's mean-�eld game equilibrium
derived above.

Speci�cally, consider a countable collection of controls (vi)i∈N ⊂ U associated
with in�nitely many agents indexed by i ∈ N. Moreover, we let ν ∈ U denote a
stochastic process which represents the limit of the control processes' averages. Then,
the in�nite-player game version of each player i's objective from (2.6) is given by

J i,∞(vi; ν) =E
[
−⟨ν,A1ν⟩L2 − ⟨vi,A2v

i⟩L2 − ⟨vi, (A3 +A∗
3)ν⟩L2

+⟨bi, vi⟩L2 + ⟨b0, ν⟩L2 + ci
]
,

(4.10)

with same operators A1,A2,A3, as well as F-progressively measurable processes
b0, (bi)i∈N and FT -measurable (ci)i∈N as introduced above in Section 2.

The notion of a Nash equilibrium in this in�nite-player mean-�eld game is to �rst
solve for a �xed ν ∈ U simultaneously for each player i ∈ N the optimal stochastic
control problem

J i,∞(vi; ν) → max
vi∈U

i ∈ N,

and then to determine the process ν in equilibrium in the following sense.
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De�nition 4.8. A collection of processes (ν̂, (v̂i)i∈N) ⊂ U is called a mean-�eld game
Nash equilibrium with mean-�eld strategy ν̂ if for all i ∈ N the control v̂i solves the
optimization problem

J i,∞(vi; ν̂) → max
vi∈U

(i ∈ N)

and ν̂ satis�es the consistency condition

lim
N→∞

sup
0≤t≤T

E

( 1

N

N∑
i=1

v̂it − ν̂t

)2
 = 0. (4.11)

We make the following assumption on the players' individual processes (bi)i∈N
in (4.10):

Assumption 4.9. We assume that there exists a unique F-progressively measurable
process b∞ ∈ L2(Ω × [0, T ]) and a bounded function h : R+ 7→ R+ with h(x) → 0 as
x → ∞ such that

sup
0≤t≤T

E

( 1

N

N∑
i=1

bit − b∞t

)2
 ≤ h(N), for all N ≥ 1. (4.12)

Remark 4.10. The general Assumption 4.9 can be made precise in speci�c examples.
For instance, consider the portfolio liquidation price impact game from Section 3.2
above. Suppose that for each agent i ∈ N the initial inventory is given by xi

0 ∈ R and
their trading signal is given by P i = Bi+B with idiosyncratic independent Brownian
motions (Bi)i≥1 which are also independent of a common noise Brownian motion B.
With this con�guration, we observe,

bit = 2(ϱ+ϕ(T−t))xi
0+Et

[
Bi

t −Bi
T

]
+Et [Bt −BT ] = 2(ϱ+ϕ(T−t))xi

0, t ≤ T.

Therefore, the condition in (4.12) boils down to requiring that the limit x∞ ∈ R of the
averages of all initial positions (xi

0)i∈N exists, i.e.,

x∞ = lim
N→∞

1

N

N∑
i=1

xi
0.

Moreover, the process b∞ in (4.12) is then given by

b∞t = 2(ϱ+ ϕ(T − t))x∞, t ≤ T.

Akin to Theorem 4.6, the solution to the in�nite-player mean-�eld game is char-
acterized as follows:
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Theorem 4.11. Assume that (2.1) as well as Assumptions 2.4 and 4.9 are satis�ed.
Then, the unique solution (ν̂, (v̂i)i∈N) ⊂ U of the in�nite-player mean-�eld game in
the sense of De�nition 4.8 is given by

v̂it = F (t, bi −A3(ν̂) +A∗
3(E·ν̂)), (4.13)

ν̂t = G(t, b∞) (4.14)

for all t ∈ [0, T ], where F and G are de�ned in (4.5).

The proof of Theorem 4.11 is deferred to Section 7.

In light of Theorems 4.6 and 4.11, we readily obtain the following connection
between the mean-�eld game and the in�nite-player game:

Remark 4.12. Suppose it holds that

bi = β + β0, b∞ = E[β] + β0.

Then, the generic player's mean-�eld game equilibrium strategy in the sense of Def-
inition 4.3 coincides with the i-th player's strategy in the in�nite-player mean-�eld
game Nash equilibrium in the sense of De�nition 4.8.

Remark 4.13. The Nash equilibrium of the in�nite-player mean-�eld game in The-
orem 4.11 is comparable with the Nash equilibrium of the �nite-player game pre-
sented in Theorem 2.8. The main di�erence is that the associated Fredholm equations
and hence their solutions in (4.5), (4.6) and (4.7) become considerably simpler in
the in�nite-player mean-�eld limit compared to their counterparts in the �nite-player
game in (2.9), (2.10), (2.11) and (2.12).

4.2 Convergence and Approximation Results

The connection between the �nite-player Nash equilibrium from Section 2 and the
in�nite-player Nash equilibrium from Section 4.1 is established in the next convergence
theorem.

Theorem 4.14. Assume that (2.1) as well as Assumptions 2.4 and 4.9 are satis�ed.
For any N ≥ 2, let (ûi,N)i=1,...,N ⊂ U denote the Nash equilibrium strategies of the
N-player game given in (2.11). Moreover, let (ν̂, (v̂i)i∈N) ⊂ U denote the Nash equi-
librium of the in�nite-player game given in (4.13) and (4.14). Then, there exists a
constant C > 0 such that

sup
0≤s≤T

E

(ν̂s − 1

N

N∑
i=1

ûi,N
s

)2
 ≤ C

(
1

N2
∨ h(N)

)
, for all N ≥ 1, (4.15)
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as well as

sup
0≤s≤T

E
[(
ûi,N
s − v̂is

)2] ≤ C

(
1

N2
∨ h(N)

)
, for all N ≥ 1, (4.16)

where h is given in (4.12).

The proof of Theorem 4.14 can be found in Section 7.

In addition we obtain that the in�nite-player Nash equilibrium from Section 4.1
provides an approximate Nash equilibrium for the �nite-player game from Section 2
in the sense of Theorem 4.17 below. To this end, we �rst recall the de�nition of an
ε-Nash equilibrium.

De�nition 4.15. Let U denote a class of admissible controls and �x ε > 0. A set
of controls {wj ∈ U : j = 1, . . . , N} forms an ε-Nash equilibrium with respect to a
collection of objective functionals {J j(·, ·) : j = 1, . . . , N} if it satis�es

J j(wj;w−j) ≤ sup
w∈U

J j(w;w−j) ≤ J j(wj;w−j) + ε, for all j = 1, . . . , N.

For any u ∈ U we introduce the following norm

∥u∥2,T =

(∫ T

0

E[u2
t ]dt

)1/2

.

We have following approximation result.

Theorem 4.16. Suppose that (2.1) as well as Assumptions 2.4 and 4.9 are satis�ed.
For any N ≥ 2, let J i,N be the performance functional of player i ∈ {1, . . . , N} in
the N-player game in (2.6). Moreover, let (v̂i)i∈N denote the equilibrium strategies of
the mean-�eld game from Theorem 4.11 and let v̂−i = (v̂1, . . . , v̂i−1, v̂i+1, . . . , v̂N) for
any 1 ≤ i ≤ N . Then, for all u ∈ U there exists a constant C > 0 independent of N
and u such that for all i ∈ {1, . . . , N} we have

J i,N(v̂i; v̂−i) ≤ J i,N(u; v̂−i) ≤ J i,N(v̂i; v̂−i) + C∥u∥22,T (1 ∨ ∥u∥22,T )(h(N)1/2 ∨N−1).

The proof of Theorem 4.16 is deferred to Section 7.

From Theorem 4.16 and Theorem 4.14 it follows that we can de�ne a subclass of
admissible strategies Ub ⊂ U that includes {(û1,N , . . . , ûN,N) : N ∈ N} from Theo-
rem 2.8 and (v̂i)i∈N from Theorem 4.11 such that

sup
u∈Ub

∥u∥22,T < ∞.

Then the following corollary follows immediately from Theorem 4.16.
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Corollary 4.17 (ε-Nash equilibrium). Suppose that (2.1) as well as Assumptions 2.4
and 4.9 are satis�ed. For any N ≥ 2, let J i,N be the performance functional of
player i ∈ {1, . . . , N} in the N-player game in (2.6). Moreover, let (v̂i)i∈N denote
the equilibrium strategies of the mean-�eld game from Theorem 4.11 and let v̂−i =
(v̂1, . . . , v̂i−1, v̂i+1, . . . , v̂N) for any 1 ≤ i ≤ N . Then, for all u ∈ Ub there exists a
constant C > 0 independent of N such that for all u ∈ Ub we have

J i,N(v̂i; v̂−i) ≤ sup
u∈Ub

J i,N(u; v̂−i) ≤ J i,N(v̂i; v̂−i) +O
(
(h(N)1/2 ∨N−1)

)
.

5 Stochastic Fredholm equations

In this section we derive general results on linear stochastic Fredholm equations of the
second kind, which appear in the �rst order condition of the N -player game and the
mean-�eld game. Our results on the explicit solution and the stability of the solution
to this class of equations are central ingredients in the proofs of the main results in
Sections 2 and 4. All the solutions to the equations considered in this section are
referred to as strong solutions.

Recall that for any G ∈ G we de�ne

Gt(s, r) = G(s, r)1{r≥t},

and we denote by Gt the associated Volterra operator.

The following proposition derives the solution to stochastic Fredholm equations
of the second kind.

Proposition 5.1. Let K,L : [0, T ]2 → R be two Volterra kernels in G such that
the operator (K + L∗) is self-adjoint and let (ft)0≤t≤T be a progressively measurable

process such that
∫ T

0
E[f 2

t ]dt < ∞. Then, the linear stochastic Fredholm equation

vt = ft −
∫ t

0

K(t, r)vrdr −
∫ T

t

L(r, t)Etvrdr, t ∈ [0, T ], (5.1)

admits a unique progressively measurable solution (vt)0≤t≤T in U given by

vt =
(
(id−B)−1a

)
(t), 0 ≤ t ≤ T,

where
at = ft − ⟨1{t<·}L(·, t),D−1

t 1{t<·}Etf·⟩L2

B(t, s) = 1{s<t}
(〈
1{t<·}L(·, t),D−1

t 1{t≤·}K(·, s)
〉
L2 −K(t, s)

)
,

(5.2)

Dt = id +Kt +L∗
t , (5.3)

and B is an integral operator induced by the kernel B.
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The proof of Proposition 5.1 is postponed to the end of this section.

Remark 5.2. Note that the assumption that (K +L∗) is self-adjoint in Proposition
5.1 can be replaced by the assumption that the operators Dt are invertible for all
0 ≤ t ≤ T and that (5.9) below is satis�ed.

We de�ne operator norm as follows,

∥G∥op = sup
f∈L2([0,T ],R)

∥Gf∥L2

∥f∥L2

,

for an operator G from L2 ([0, T ],R) to itself.

The following proposition derives a stability result for stochastic Fredholm equa-
tions of the second kind.

Proposition 5.3. Let KN , LN , L,K : [0, T ]2 → R be Volterra kernels in G and let
fN , f be progressively measurable processes on the probability space (Ω,F , (Ft)0≤t≤T ,P),
with sample paths in L2([0, T ],R), for N = 1, 2, . . . Assume further that there exist
bounded functions h1, h2 : R+ 7→ R+ such that limx→∞ hi(x) = 0 and

sup
t≤T

∫ T

0

(
KN(t, s)−K(t, s)

)2
ds ≤ h1(N), for all N ≥ 1,

sup
s≤T

∫ T

0

(
LN(t, s)− L(t, s)

)2
dt ≤ h1(N), for all N ≥ 1,

(5.4)

and
sup
t≤T

E
[
(fN

t − ft)
2
]
≤ h2(N). (5.5)

For each N ≥ 1 let vN be the solution to (5.1) with (KN , LN , fN). Then there exists
a constant C > 0 such that

sup
t∈[0,T ]

E
[
(vNt − vt)

2
]
≤ C(h1(N) + h2(N)), for all N ≥ 1,

where v is the solution of (5.1) with (K,L, f).

Proof. De�ne dNt = vNt − vt. Then from (5.19) it follows that

dNt = aNt − at +

∫ t

0

BN(t, s)vNs ds−
∫ t

0

B(t, s)vsds

= aNt − at +

∫ t

0

BN(t, s)dNs ds−
∫ t

0

(B(t, s)−BN(t, s))vsds

(5.6)

where a and B are as in (5.2) and
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aNt = fN
t − ⟨1{t<·}L

N(·, t), (DN
t )

−11{t<·}Etf
N
· ⟩L2

BN(t, s) = 1{s<t}
(〈
1{t≤·}L

N(·, t), (DN
t )

−11{t≤·}K
N(·, s)

〉
L2 −KN(t, s)

)
,

(5.7)

and
DN

t = id+KN
t + (LN

t )
∗. (5.8)

We will need the following lemma. Recall that Dt was de�ned in Proposition 5.1.

Lemma 5.4. For any 0 ≤ t ≤ T the operators Dt, {DN
t }N≥1 are invertible and we

have
sup
t≤T

∥D−1
t ∥op + sup

N≥1
sup
t≤T

∥(DN
t )

−1∥op < ∞. (5.9)

Proof. Since by assumption Kt,L
∗
t ,K

N
t , (LN

t )
∗ are nonnegative de�nite operators in

G and the operators (K + L∗), {(KN + (LN )∗)}N≥1 are self-adjoint, the proof is
similar to the proof of Lemma 7.2 in [2]. Indeed, by following the proof therein we
note that the uniform bound in N on ∥(DN

t )
−1∥op follows since DN

t in (5.8) are
positive de�nite uniformly in N , that is

⟨f,DN
t f⟩ ≥ ⟨f, idf⟩ ≥ ∥f∥, for all f ∈ L2([0, T ],R).

From Lemma 5.4 and (5.4) it follows that

sup
t≤T

∥DN
t −Dt∥op ≤ (h1(N))1/2, for all N ≥ 1. (5.10)

We observe that

(DN
t )

−1 − (Dt)
−1 = (DN

t )
−1
(
Dt −DN

t

)
(Dt)

−1. (5.11)

By taking the operator norm on both sides of (5.11) and using Lemma 5.4 and (5.10)
it follows that

sup
t≤T

∥∥(DN
t )

−1 − (Dt)
−1
∥∥
op

≤ C sup
t≤T

∥DN
t −Dt∥op

≤ C(h1(N))1/2, for all N ≥ 1.
(5.12)

From (5.2), (5.4), (5.5), (5.7), (5.12), and several applications of Cauchy-Schwartz
inequality we get for all N ≥ 1,

sup
t≤T

E
[
(aNt − at)

2
]
≤ C(h1(N) + h2(N)), (5.13)

and

sup
t≤T

∫ T

0

(
BN(t, s)−B(t, s)

)2
ds ≤ Ch1(N). (5.14)
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Recall the notation

∥v∥H2 = E
[∫ T

0

v2sds

]
.

By plugging (5.13) and (5.14) into (5.6) and using Cauchy-Schwarz inequality, we get
for all N su�ciently large,

E[(dNt )2] ≤ C

(
E[(aNt − at)

2] + E

[(∫ t

0

BN(t, s)dNs ds

)2
]

+ E

[(∫ t

0

(BN(t, s)−B(t, s))vsds

)2
])

≤ C

(
h1(N) + h2(N) + E

[∫ t

0

(dNs )
2ds

] ∫ t

0

(BN(t, s))2ds

+ ∥vs∥H2

∫ t

0

(BN(t, s)−B(t, s))2ds

)

≤ C

(
h1(N) + h2(N) + h1(N)E

[∫ t

0

(dNs )
2ds

])
.

Since C above is not depending on N and t we get using Fubini's theorem,

sup
s≤t

E[(dNs )2] ≤ C

(
h1(N) + h2(N) + h1(N)

∫ t

0

sup
r≤s

E[(dNr )2]ds
)
, for all 0 ≤ t ≤ T.

Since hi are bounded functions, from Gronwall lemma it follows that

sup
s∈[0,T ]

E[(vNs − vs)
2] = sup

s∈[0,T ]

E[(dNs )2] ≤ C(T )(h1(N) + h2(N)), for all N ≥ 1.

and this completes the proof.

Proof of Proposition 5.1. The proof of uniqueness is standard and it uses similar
bounds as in the proof of Lemma 5.4, hence it is omited.

We now derive the solution to (5.1). For �xed t ∈ [0, T ], we de�ne the process

mt(s) := 1{t≤s}Et[vs], s ∈ [0, T ].

Taking conditional expectation Et[·] in the linear Volterra equation in (5.1), multi-
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plying by 1{t≤s} and using the tower property of conditional expectation gives us

mt(s) = 1{t≤s}Etfs − 1{t≤s}

∫ t

0

K(s, r)vrdr − 1{t≤s}

∫ s

t

K(s, r)Etvrdr

− 1{t≤s}

∫ T

s

L(r, s)Etvrdr

= f v
t (s) − 1{t≤s}

∫ s

t

K(s, r)Etvrdr − 1{t≤s}

∫ T

s

L(r, s)Etvrdr

= f v
t (s) −

∫ s

t

Kt(s, r)mt(r)dr −
∫ T

s

L∗
t (s, r)mt(r)dr

= f v
t (s)− (Kt +L∗

t ) (mt)(s), s ∈ [0, T ], (5.15)

where

f v
t (s) := 1{t≤s}Etfs − 1{t≤s}

∫ t

0

K(s, r)vrdr, (5.16)

and where we used the de�nition Kt(s, r) = K(s, r)1r≥t.

Recall that Dt was de�ned in (5.3). Using Lemma 5.4 we can invert the equation
(5.15) to get

mt(s) = (D−1
t f v

t )(s), s ∈ [0, T ]. (5.17)

Plugging (5.17) into (5.1) we obtain

vt = ft −
∫ t

0

K(t, r)vrdr −
∫ T

t

L(r, t)(D−1
t f v

t )(r)dr. (5.18)

Next, we focus on the third term on the right-hand side of (5.18) and re-express it as
a linear functional in v. Using (5.16) we get∫ T

t

L(r, t)(D−1
t f v

t )(r)dr

= ⟨1{t≤·}L(·, t),D−1
t f v

t ⟩L2

= −
〈
1{t≤·}L(·, t),D−1

t 1{t≤·}

∫ t

0

K(·, r)vrdr
〉

L2

+ ⟨1{t≤·}L(·, t),D−1
t 1tEtf·⟩L2

= −
∫ t

0

〈
1{t≤·}L(·, t),D−1

t 1{t≤·}K(·, r)
〉
L2 vrdr + ⟨1{t≤·}L(·, t),D−1

t 1tEtf·⟩L2 .

Inserting the obtain expression back into (5.18) yields the following Fredholm equation
for v:

vt = at +

∫ t

0

B(t, s)vsds, (5.19)

with a and B as in (5.2).
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It is left to argue that (5.19) has a solution. Note that (5.19) is a linear Volterra
equation which admits a solution for any �xed ω ∈ Ω, whenever a(ω) ∈ L2([0, T ],R)
and B satis�es

sup
t≤T

∫ T

0

B(t, s)2ds < ∞.

Indeed, the solution is given in terms of the resolvent RB of B, which exists by virtue
of Corollary 9.3.16 in [21] and satis�es∫ T

0

∫ T

0

|RB(t, s)|dtds < ∞.

In this case, the solution u∗ to (5.19) is given by

u∗
t = at +

∫ t

0

RB(t, s)asds.

Note that RB is the kernel induced by the operator given by

RB = (id−B)−1.

One would still need to check that u∗ ∈ U de�ned as in (2.3). This follows from the
following lemma.

Lemma 5.5. Let v be as in (5.1) and a,B as in (5.2). Then the following hold:

(i) E
[∫ T

0
a2sds

]
< ∞,

(ii) supt≤T

∫ T

0
B(t, s)2ds < ∞,

(iii) E
[∫ T

0
(vs)

2ds
]
< ∞.

The proof of Lemma 5.5 is similar to the proof of Lemma 7.1 in [2]; hence, it is
omitted.

It follows that the equation (5.19) admits a unique solution v ∈ U which is given
by

vt =
(
(id−B)−1a

)
(t), 0 ≤ t ≤ T,

with a given in (5.2) and B is the integral operator induced by the kernel B in (5.2).
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6 Proofs of Theorems 2.7 and 2.8

This section is dedicated to the proofs of Theorems 2.7 and 2.8. In order to ease the
notation we omit the upper case N from uN , ūN , ui,N ect. throughout this section.

We �rst establish the strict concavity property of ui 7→ J i,N(ui;u−i) which is
crucial for the derivation of the Nash equilibrium. In order to ease notations, we drop
the N superscript in this section.

Lemma 6.1. Let i ∈ {1, . . . , N}. Then, under Assumption 2.4, for any u−i ∈ UN−1

�xed, the functional ui 7→ J i(ui;u−i) in (2.6) is strictly concave in ui ∈ U .

Proof. Fix i ∈ {1, . . . , N}, let ui ∈ U and u−i ∈ UN−1. First, using the notation
from (2.4), we have

⟨ū,A1ū⟩L2 =⟨u
i

N
+ ū−i,A1(

ui

N
+ ū−i)⟩L2

=⟨u
i

N
,A1

ui

N
⟩L2 + ⟨u

i

N
,A1ū

−i⟩L2 + ⟨ū−i,A1
ui

N
⟩L2 + ⟨ū−i,A1ū

−i⟩L2

=⟨u
i

N
,A1

ui

N
⟩L2 +

1

N
⟨ui, (A1 +A∗

1)ū
−i⟩L2 + ⟨ū−i,A1ū

−i⟩L2 .

Hence, we can rewrite the objective functional in (2.6) as follows

J i(ui;u−i)

= E
[
−⟨ū,A1ū⟩L2 − ⟨ui,A2u

i⟩L2 − ⟨ui, (A3 +A∗
3)ū⟩L2 + ⟨bi, ui⟩L2 + ⟨b0, ū⟩L2 + ci

]
= E

[
− ⟨ui,

(A1

N2
+

A3 +A∗
3

N
+A2

)
ui⟩L2 − ⟨ui, (A3 +A∗

3 +
A1 +A∗

1

N
)ū−i⟩L2

− ⟨ū−i,A1ū
−i⟩L2 + ⟨bi + 1

N
b0, ui⟩L2 + ⟨b0, ū−i⟩L2 + ci

]
.

(6.1)
Then, for any wi ∈ U such that wi ̸= ui, dP⊗dt-a.e. on Ω×[0, T ], and for all ε ∈ (0, 1),
a direct computation yields

J i(εui + (1− ε)wi;u−i)− εJ i(ui;u−i)− (1− ε)J i(wi;u−i)

= ε(1− ε)E
[
⟨ui − wi,

(A1

N2
+

A3 +A∗
3

N
+ Â2 + λid

)
(ui − wi)⟩L2

]
= ε(1− ε)

(
E
[
⟨ui − wi,

(A1

N2
+

A3 +A∗
3

N
+ Â2

)
(ui − wi)⟩L2

]
+ λE[∥ui − wi∥2L2 ]

)
> 0,

where we used the fact that ∥ui − wi∥2L2 > 0, P-a.s., Remark (2.3) and (2.5).

Let i ∈ {1, ..., N} and u−i ∈ UN−1. From Lemma 6.1, it follows that, the map
J i(·;u−i) : ui 7→ J i(ui;u−i) of player i's best response to all other players' �xed
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strategies u−i is strictly concave hence it admits a unique maximiser characterised by
the critical point at which the Gâteaux derivative

⟨∇J i(ui, u−i), h⟩ = lim
ϵ→0

J i(ui + ϵh, u−i)− J i(ui, u−i)

ϵ
,

vanishes for all h ∈ U . Therefore, a control ui ∈ U minimizes (2.6) if and only if ui

satis�es the �rst order condition

⟨∇J i(ui, u−i), h⟩ = 0, h ∈ U , (6.2)

(see Proposition 2.1 of [13, Chapter II]).

Using (6.1) and (2.7) we obtain by an application of Fubini's theorem, that

⟨∇J i(ui, u−i), h⟩ (6.3)

= E
[
⟨h, −2λui − (G+G∗)(ui)− (H +H∗)(ū−i) + bi⟩L2

]
=

∫ T

0

E
[
ht

(
−2λui

t − (G+G∗)(ui)(t)− (H +H∗)(ū−i)(t) + bit
)]

dt,

for any h ∈ U . By conditioning on Ft and using the tower property we get from (2.4),
(6.2) and (6.3) the following �rst order condition,

− 2λui
t − (G+G∗)(Etu

i)(t)− (H +H∗)(Etū
−i)(t) + bit

= −2λui
t −
(
G+G∗ − 1

N
(H +H∗)

)
(Etu

i)(t)− (H +H∗)(Etū)(t) + bit

= 0, dP⊗ dt-a.e. on Ω× [0, T ].

It follows that for the Nash equilibrium the following must hold for all i ∈ {1, . . . , N},

2λui
t = bit −

∫ t

0

H(t, r)ūrdr −
∫ T

t

H(r, t)Etūrdr −
∫ t

0

(
G(t, r)− 1

N
H(t, r)

)
ui
rdr

−
∫ T

t

(
G(r, t)− 1

N
H(r, t)

)
Etu

i
rdr, dP⊗ dt-a.e. on Ω× [0, T ].

(6.4)
By summing over i in (6.4), using (2.8) and scaling by 1/N we get the following
equation for ū:

2λūt = b̄t +
1

N
b0t −

∫ t

0

(
H(t, r) +G(t, r)− 1

N
H(t, r)

)
ūrdr

−
∫ T

t

(
G(r, t) +H(r, t)− 1

N
H(r, t)

)
Etūrdr

= b̄t +
1

N
b0t −

∫ t

0

(
N − 1

N
H(t, r) +G(t, r)

)
ūrdr

−
∫ T

t

(
N − 1

N
H(r, t) +G(r, t)

)
Etūrdr, dP⊗ dt-a.e. on Ω× [0, T ].

(6.5)

36



After establishing (6.5) we are now ready to prove Theorem 2.7.

Proof of Theorem 2.7. We now turn into the derivation of (2.9). We apply Proposi-
tion 5.1 to (6.5) for ū instead of v. Speci�cally we have

ft =
1

2λ
b̄t +

1

N
b0t , K = L =

1

2λ

(
N − 1

N
H +G

)
. (6.6)

In this case we have that Dt in (5.3) is of the form 1
2λ
Dt with

Dt = 2λid +Kt +L∗
t = 2λid +

N − 1

N
(Ht +H∗

t ) +Gt +G∗
t .

Note that K +L∗ = K +K∗ is clearly self-adjoint. From Assumption 2.4 and (2.7)
it follows that G,H ∈ G, therefore K,L ∈ G. Hence, together with (2.1) it follows
that the assumptions of Proposition 5.1 are satis�ed and we have

ūt =
(
(id−B)−1a

)
(t), 0 ≤ t ≤ T.

where

at :=
1

2λ

(
b̄t +

1

N
b0t −

〈
1{t≤·}K(·, t),D−1

t 1{t≤·}Et

[
b̄· +

1

N
b0·

]〉
L2

)
,

B(t, s) := 1{s<t}
1

2λ

(〈
1{t≤·}K(·, t),D−1

t 1{t≤·}K(·, s)
〉
L2

−K(t, s)

)
,

with K := 2λK for K as in (6.6). This agrees with (2.9) and completes the proof.

Proof of Theorem 2.8. Given the solution ū from Theorem 2.7, we can now continue
with solving the �rst order condition (6.4) separately for each ui, i ∈ {1, . . . , N} and
hence derive a Nash equilibrium to the game (2.4).

We apply Proposition 5.1 to (6.4) for ui instead of v. Speci�cally we have

ft =
1

2λ

(
Et

[
bit +

1

N
b0t

]
−
∫ t

0

H(t, r)ūrdr −
∫ T

t

H(r, t)Etūrdr

)
,

L = K =
1

2λ

(
G− 1

N
H

)
.

(6.7)

From (6.7), (2.7) and (2.5) it follows that L and K in Proposition 5.1 are given by

L = K = Â2 +
A3

N
.

Hence (K+L∗) is trivially self adjoint. By Assumption 2.4 it it follows that Â2,A3 ∈
G, therefore K,L ∈ G. Hence the assumptions of Proposition 5.1 are satis�ed. Note
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that Dt in Proposition 5.1 is of the form 1
2λ
D̃t with

D̃t := 2λid +Kt +L∗
t

= 2λid + Â2 + Â∗
2 +

A3 +A∗
3

N
.

Using Proposition 5.1 we obtain for all i ∈ {1, . . . , N} the representation

ûi
t =

(
(id−B)−1ai

)
(t), 0 ≤ t ≤ T

where

ait :=
1

2λ

(
Et

[
bit +

1

N
b0t − ((H +H∗)ū)(t)

]
−
〈
1{t≤·}K̂(·, t), D̃−1

t 1{t≤·}Et

[
bi· +

1

N
b0· − ((H +H∗)ū)(·)

]〉
L2

)
,

B(t, s) := 1{s<t}
1

2λ

(〈
1{t≤·}K̂(·, t), D̃−1

t 1{t≤·}K̂(·, s)
〉
L2

− K̂(t, s)

)
,

where K̂ =
(
G− 1

N
H
)
. This agrees with (2.11) and (2.12).

Next, we argue for uniqueness of the Nash equilibrium. Assume that (w1, . . . , wN)
in UN is another Nash equilibrium. Then, by De�nition 2.6 it holds that

J i(wi;w−i) ≥ J i(v;w−i), for all v ∈ U , i ∈ {1, . . . , N}.

In particular, for a �xed i ∈ {1, . . . , N}, wi maximizes the strictly concave functional
w → J i(w;w−i) (recall Lemma 6.1). This means that (6.2) is satis�ed with w in
place of u. It follows that w̄ satis�es the equation (6.5) with ū replaced by w̄. By
uniqueness of the solution to the Fredholm equation (6.5), see Proposition 5.1, we get
w̄ = ū, dP⊗ dt− a.e. on Ω× [0, T ]. Similarly, we obtain wi = vi from the uniqueness
of solutions to the Fredholm equation (6.4) where we replaced u by w. This concludes
the proof of uniqueness.

7 Proofs of the results from Section 4

Similar to the �nite-player game in Section 2, we have the following strict concavity
result.

Lemma 7.1. Under Assumption 2.4, for any µ ∈ U0, the functional v 7→ J(v;µ)
in (4.2) is strictly concave in v ∈ U .

Proof. This follows similar as in the proof of Lemma 6.1 above. Let v ∈ U and
µ ∈ U0. Then, for any w ∈ U such that w ̸= v dP ⊗ dt-a.e. on Ω × [0, T ] and for all
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ε ∈ (0, 1) a direct computation, combined with the de�nition of A2 in (2.5), shows
that

J(εv + (1− ε)w;µ)− εJ(v;µ)− (1− ε)J(w;µ)

= ε(1− ε)E [⟨v − w,A2(v − w)⟩L2 ]

= ε(1− ε)
(
E
[
⟨v − w, Â2(v − w)⟩L2

]
+ λE[∥v − w∥2L2 ]

)
> 0,

since E[∥v−w∥2L2 ] > 0 and the operator Â2 is nonnegative de�nite; recall Remark 2.3.

We are now ready to proof Theorem 4.6.

Proof of Theorem 4.6. We start with rewriting the cost functional J in (4.2) as

J(v;µ) =E [−⟨µ,A1µ⟩L2 − ⟨v,A2v⟩L2 − ⟨v, (A3 +A∗
3)µ⟩L2

+⟨b, v⟩L2 + ⟨b0, µ⟩L2 + c
]

=E
[
−⟨v,A2v⟩L2 + ⟨b̃, v⟩L2 + ĉ

]
,

where
b̃ = b− (A3 +A∗

3)µ,

c̃ = ⟨b0, µ⟩L2 + c− ⟨µ,A1µ⟩L2 .

By the strict concavity obtained in Lemma 7.1 and similarly to the proof of Theo-
rem 2.7 in the �nite-player game, observe that for a �xed process µ ∈ U0 the �rst
order condition for the generic player's best response is equivalent to

0 = −(A2 +A∗
2)(Etv)(t) + Etb̃t

= −2λvt − (Â2)(v)(t)− (Â∗
2)(Etv)(t) + Etb̃t

= −2λvt −
∫ t

0

Â2(t, s)vsds−
∫ T

t

Â2(s, t)Etvsds+ Etb̃t, for all t ∈ [0, T ],

where we used the fact that Â2 is a Volterra kernel. In other words, v̂ is optimal
in (4.3) (with µ ∈ U0 �xed) if and only if v̂ satis�es

2λv̂s = bs −
∫ s

0

A3(s, r)µrdr −
∫ T

s

A3(r, s)Esµrdr

−
∫ s

0

Â2(s, r)v̂rdr −
∫ T

s

Â2(r, s)Esv̂rdr.

(7.1)
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Taking conditional expectation with respect to F0
T , using the independence between

β and β0, the fact that µ is F0-progressively measurable and (4.1), we get

2λE[v̂s|F0
T ] = β0

s + E[βs]−
∫ s

0

A3(s, r)µrdr −
∫ T

s

A3(r, s)Es[µr]dr

−
∫ s

0

Â2(s, r)E[v̂r|F0
T ]dr −

∫ T

s

Â2(r, s)Es[E[v̂r|F0
T ]]dr. (7.2)

Together with the consistency condition in (4.4), this suggests a candidate equation
for µ̂ given by

2λµ̂s = β0
s+E[βs]−

∫ s

0

(
A3(s, r) + Â2(s, r)

)
µ̂rdr (7.3)

−
∫ T

s

(
A3(r, s) + Â2(r, s)

)
Es[µ̂r]dr.

An application of Proposition 5.1 yields the existence of a solution µ̂ to (7.3) given by
(4.9). In particular, µ̂ ∈ U0 as desired. Moreover, inserting µ̂ into equation (7.1) and
applying once more Proposition 5.1 yields that the corresponding v̂ is of the form (4.8)
and belongs to U . This proves that (v̂, µ̂) satisfy the requirement (4.3). To justify
that the consistency condition (4.4) is satis�ed, simply observe that equation (7.2)
with µ̂ in place of µ shows that (E[v̂s|F0

T ])s≤T solves the same equation as µ̂ in (7.3).
By uniqueness of the solution to the Fredholm equation, we deduce the consistency
condition (4.4) is indeed satis�ed. Uniqueness of the mean-�eld game equilibrium
follows from the uniqueness of the corresponding stochastic Fredholm equations that
characterize the optimum, along the lines of the uniqueness proof of Theorem 2.8.

Next, we address the proof of Theorem 4.11 in the in�nite-player game formulation
in Section 4.1. First, analogous to Lemmas 7.1, we have the following:

Lemma 7.2. Let i ∈ N. Under Assumption 2.4, for any ν ∈ U , the functional
vi 7→ J i,∞(vi; ν) in (4.10) is strictly concave in vi ∈ U .

Proof. This follows as in the proof of Lemma 7.1 above.

We are now ready to prove Theorem 4.11

Proof of Theorem 4.11. Similar to equation (7.1) in the proof of Theorem 4.6, we
obtain that for �xed ν ∈ U the �rst order condition for player i's best response is
given by

2λvis = bis −
∫ s

0

A3(s, r)νrdr −
∫ T

s

A3(r, s)Es[νr]dr (7.4)

−
∫ s

0

Â2(s, r)v
i
rdr −

∫ T

s

Â2(r, s)Esv
i
rdr.
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Solving (7.4) for vi (with ν ∈ U �xed) is an application of Proposition 5.1 and we get
for all i ∈ N the representation

vit = F (t, bi −A3(ν)−A∗
3(E·ν)). (7.5)

Next, we claim that the in�nite-player Nash equilibrium's mean-�eld strategy ν̂ must
satisfy the linear Volterra equation

2λν̂s =b∞s −
∫ s

0

(
Â2(s, r) + A3(s, r)

)
ν̂rdr

−
∫ T

s

(Â2(r, s) + A3(r, s))Es[ν̂r]dr,

(7.6)

where b∞ denotes the limit from Assumption 4.9. By virtue of Proposition 5.1, the
solution to (7.6) is given by

ν̂t = G(t, b∞). (7.7)

Then, plugging ν̂ in (7.7) back into (7.5) above will give us the desired mean-�eld
game equilibrium strategies in (4.13) and (4.14) in the sense of De�nition 4.8, which
we denote with (ν̂, v̂i)i∈N ⊂ U .

In order to justify our claim, it remains to show that the consistency condition
in (4.11) is satis�ed by ν̂ characterized by (7.6). To this end, we de�ne for all N ∈ N
the averages

ν̂N :=
1

N

N∑
i=1

v̂i.

Note that taking the average over i in (7.4) (with v̂i and ν̂) yields that ν̂N solves the
Volterra equation

2λν̂N
s =

1

N

N∑
i=1

bis −
∫ s

0

A3(s, r)ν̂rdr −
∫ T

s

A3(r, s)Es[ν̂r]dr (7.8)

−
∫ s

0

Â2(s, r)ν̂
N
r dr −

∫ T

s

Â2(r, s)Esν̂
N
r dr.

Hence, together with Assumption 4.9, the convergence in the consistency condition
in (4.11) follows from an application of the stability property of Fredholm equations
derived in Proposition 5.3 to equations (7.8) and (7.6). Uniqueness of the in�nite-
player game equilibrium follows from the uniqueness of the corresponding stochastic
Fredholm equations that characterize the optimum, along the lines of the uniqueness
proof of Theorem 2.8.

We �nish with providing the proofs of Section 4.2 and start with the convergence
result in Theorem 4.14.
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Proof of Theorem 4.14. We only prove (4.15) as the proof of the convergence in (4.16)
follows the same lines. From (6.5) above we get that

ūN
t :=

1

N

N∑
i=1

ûi,N
t

satis�es the Volterra equation in (5.1) with

fN
t =

1

2λ
b̄t, KN = LN =

1

2λ

(
N − 1

N
H +G

)
. (7.9)

From (7.6) it follows that ν̂ satis�es (5.1) with

ft =
1

2λ
b∞t , K = L =

1

2λ

(
Â2 + A3

)
. (7.10)

Emphasizing the dependence of G,H de�ned in (2.7) on N we write GN ,HN . From
(2.7) it follows that there exists C > 0 such that

∥GN − Â2∥op ≤ C(N−1), for all N ≥ 1,

∥HN −A3∥op ≤ C(N−1), for all N ≥ 1.
(7.11)

Moreover, from (7.9), (7.10) and (7.11) we get that

sup
0≤t≤T

∫ T

0

(
KN(t, s)−K(t, s)

)2
ds ≤ C(N−2), for all N ≥ 1,

sup
0≤s≤T

∫ T

0

(
LN(t, s)− L(t, s)

)2
dt ≤ C(N−2), for all N ≥ 1,

and Assumption 4.9 implies

sup
t≤T

E
[
(fN

t − ft)
2
]
≤ h(N), for all N ≥ 1.

Therefore, the convergence rate in (4.15) follows by an application of Proposition 5.3.

Next, in order to prove Theorem 4.16 the �rst ingredient is following auxiliary
result.

Lemma 7.3. Assume that (2.1) as well as Assumptions 2.4 and 4.9 are satis�ed.
Let (ν̂, (v̂i)i∈N) be the equilibrium strategies of the mean-�eld game in the sense of
De�nition 4.8. Then we have

sup
0≤t≤T

E

( 1

N

N∑
i=1

v̂it − ν̂t

)2
 = O (h(N)) , (7.12)

where h is given in (4.12).
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Proof. From (7.4) and (7.6) it follows that ν̂ satis�es (5.1) with

ft =
1

2λ
b∞t , K = L =

1

2λ

(
Â2 + A3

)
,

and 1
N

∑N
i=1 v̂

i
t satis�es (5.1) with

fN
t =

1

2λ

1

N

N∑
i=1

bit, K = L =
1

2λ

(
Â2 + A3

)
.

By applying Proposition 5.3 using (4.12) we get (7.12).

The second ingredient is Lemma 7.4 below which provides a bound on the di�er-
ence between the performance functional J i,∞ of the mean-�eld game in (4.10) and
the N -player game's performance functional J i,N in (2.6).

Lemma 7.4. Suppose that (2.1) as well as Assumptions 2.4 and 4.9 are satis�ed. Let
(ν̂, (v̂i)i∈N) be the equilibrium strategies of the mean-�eld game in the sense of De�-
nition 4.8. For any N ≥ 2 and 1 ≤ i ≤ N , de�ne v̂−i = (v̂1, . . . , v̂i−1, v̂i+1, . . . , v̂N).
Then, there exists a constant C > 0 independent of N such that for all u ∈ U and
i ∈ N we have∣∣J i,N(u, v̂−i)− J i,∞(u, ν̂)

∣∣ ≤ C∥u∥2,T (1 + ∥u∥2,T )
(
h(N) ∨N−1

)
.

Proof. Let u ∈ U . From (2.6) and (4.10) we get∣∣J i,N(u; v̂−i)− J i,∞(u; ν̂)
∣∣

≤

∣∣∣∣∣∣E
〈 1

N

(∑
j ̸=i

v̂j + u

)
,A1

(
1

N

(∑
j ̸=i

v̂j + u
))〉

L2

− ⟨ν̂,A1ν̂⟩L2

∣∣∣∣∣∣
+

∣∣∣∣∣∣E
〈u, (A3 +A∗

3)

(
1

N

(∑
j ̸=i

v̂j + u

)
− ν̂

)〉
L2

∣∣∣∣∣∣
+

∣∣∣∣∣∣E
〈b0, 1

N

(∑
j ̸=i

v̂j + u

)
− ν̂

〉
L2

∣∣∣∣∣∣
=: I1 + I2 + I3.

(7.13)

Using Fubini's Theorem, Jensen and Hölder inequalities we get for the second term I2

43



in (7.13):

I2 =

∣∣∣∣∣∣E
〈u, (A3 +A∗

3)

(
1

N

(∑
j ̸=i

v̂j + u

)
− ν̂

)〉
L2

∣∣∣∣∣∣
≤ C∥u∥2,T∥A3 +A∗

3∥op

∥∥∥∥∥ 1

N

(∑
j ̸=i

v̂j + u

)
− ν̂

∥∥∥∥∥
2,T

≤ C∥u∥2,T∥A3 +A∗
3∥op

∥∥∥∥∥ 1

N

N∑
j=1

v̂j − ν̂

∥∥∥∥∥
2,T

+
1

N

∥∥v̂i − u
∥∥
2,T


≤ C(h(N)1/2 ∨N−1)∥u∥2,T∥A3 +A∗

3∥op
(
1 + ∥v̂i∥2,T + ∥u∥2,T

)
≤ C(h(N)1/2 ∨N−1)(1 + ∥u∥2,T )∥u∥2,T ,

(7.14)

where we used Lemma 7.3 and the fact that v̂i ∈ U in the last two inequalities.
Similarly, using once more Fubini's Theorem, Jensen and Hölder inequalities we get
for the third I3 in (7.13):

I3 =

∣∣∣∣∣∣E
〈b0, 1

N

(∑
j ̸=i

v̂j + u

)
− ν̂

〉
L2

∣∣∣∣∣∣
≤ ∥b0∥2,T

∥∥∥∥∥ 1

N

(∑
j ̸=i

v̂j + u

)
− ν̂

∥∥∥∥∥
2,T

≤ ∥b0∥2,T

∥∥∥∥∥ 1

N

N∑
j=1

v̂j − ν̂

∥∥∥∥∥
2,T

+
1

N

∥∥v̂i − u
∥∥
2,T


≤ C(h(N)1/2 ∨N−1)∥b0∥2,T

(
1 + ∥v̂i∥2,T + ∥u∥2,T

)
∥u∥2,T

≤ C(h(N)1/2 ∨N−1)∥b0∥2,T (1 + ∥u∥2,T ) ∥u∥2,T ,

(7.15)

where we used again Lemma 7.3 and the fact that v̂i ∈ U in the last two inequalities.

Lastly, for the �rst term I1 in (7.13) we obtain

I1 =

∣∣∣∣∣∣E
〈 1

N

(∑
j ̸=i

v̂j + u

)
,A1

(
1

N

(∑
j ̸=i

v̂j + u
))〉

L2

− ⟨ν̂,A1ν̂⟩L2

∣∣∣∣∣∣
≤

∣∣∣∣∣∣E
〈 1

N

(∑
j ̸=i

v̂j + u

)
,A1

(
1

N

(∑
j ̸=i

v̂j + u
)
− ν̂

)〉
L2

∣∣∣∣∣∣
+

∣∣∣∣∣∣E
〈 1

N

(∑
j ̸=i

v̂j + u

)
− ν̂,A1ν̂

〉
L2

∣∣∣∣∣∣ .
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Once can repeat similar steps as in (7.14) and (7.15) by using Lemma 7.3 in order to
get

I3 ≤ C(h(N)1/2 ∨N−1) (1 + ∥u∥2,T ) ∥u∥2,T . (7.16)

Then, from (7.14), (7.15) and (7.16) we get the desired upper bound in (7.13).

We are now ready to prove Theorem 4.16.

Proof of Theorem 4.16. First, note that the inequality

J i,N(v̂i; v̂−i) ≤ sup
u∈U

J i,N(u; v̂−i)

holds trivially by the de�nition of the supremum. Next, by virtue of Lemma 7.4 we
get for any u ∈ U the upper bound

J i,N(u; v̂−i) ≤ J i,∞(u, ν̂) + C(h(N)1/2 ∨N−1)∥u∥2,T (1 + ∥u∥2,T )
≤ J i,∞(v̂i, ν̂) + C(h(N)1/2 ∨N−1)∥u∥2,T (1 + ∥u∥2,T ),

(7.17)

where C > 0 is a constant not depending on u or N and we used J i,∞(ûi, ν̂) =
supu∈U J i,∞(u, ν̂) in the second inequality. Moreover, using Lemma 7.4 again we get
for some constant C̃ > 0 the upper bound

J i,∞(v̂i, ν̂) ≤ J i,N(v̂i, v̂−i) + C(h(N)1/2 ∨N−1)∥v̂i∥2,T (1 + ∥v̂i∥2,T )
≤ J i,N(v̂i, v̂−i) + C̃(h(N)1/2 ∨N−1),

(7.18)

where we used Lemma 7.3 and the fact that v̂i ∈ U in the second inequality. Finally,
using (7.18) to bound the right hand side of (7.17), we get

J i,N(u; v̂−i) ≤ J i,N(v̂i, v̂−i) + C(h(N)1/2 ∨N−1)∥u∥22,T (1 ∨ ∥u∥22,T )

for all u ∈ U which completes the proof.
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