
HAL Id: hal-04119569
https://hal.science/hal-04119569

Preprint submitted on 6 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Open licence - etalab

Named Entity Recognition for Model Quality Estimation
Slimane Mesbah

To cite this version:

Slimane Mesbah. Named Entity Recognition for Model Quality Estimation. 2023. �hal-04119569�

https://hal.science/hal-04119569
http://www.etalab.gouv.fr/pages/licence-ouverte-open-licence-5899923.html
http://www.etalab.gouv.fr/pages/licence-ouverte-open-licence-5899923.html
https://hal.archives-ouvertes.fr

Named Entity Recognition for Model Quality
Estimation

Slimane Mesbah, supervised by Francois Yvon

ISIR UPMC AND PARIS SACLAY UNIVERSITY

April 12, 2023

Abstract

This paper proposes a new metric that combines Meteor with a corrected version of Nist to address
the problem of Nist’s dependence on sentence length. While alternative metrics like Quest++, and
Transquest have been developed to evaluate MT systems without relying on reference translations, they
are still trained on scores given by reference translations. Therefore, improving symbolic metrics like
Bleu, Meteor, or Nist is important to train these state-of-the-art metrics on well-processed data. The
article also suggests editing named entities as an approach to improving the performance of Transquest.
Code is available at: https://github.com/slimane-msb/TransQuest/tree/master/NER

Contents

1 Introduction 1

2 Methodology 1
2.1 dataset . 1
2.2 computing resources . 1

3 Referenced metrics 2
3.1 Meteor . 2
3.2 Nist . 2
3.3 Importance of combined metrics: . 4

4 Referenceless QE 5
4.1 Questpluspus . 5
4.2 Transquest . 6

5 Improvements (NER) 6
5.1 Spacy . 7
5.2 Transquest with NER . 7

6 Results 8

7 Conclusion 10

8 Acknowledgments 11

https://github.com/slimane-msb/TransQuest/tree/master/NER

1 Introduction

The lack of reference translations for Machine Translation (MT) systems has led to the development of
alternative metrics, such as Questplusplus, deepQuest, and Transquest, which do not rely on reference
translations to evaluate the quality of MT systems. However, these metrics are still trained on scores given
by reference translations, which makes them not completely independent of reference translations.

Therefore, it is still important to improve symbolic metrics like Bleu, Meteor, or Nist, which can accurately
evaluate translations, in order to train these state-of-the-art metrics such transquest on well-processed data.
In this article, we propose a new metric that combines Meteor with a corrected version of Nist to address
the problem of Nist’s dependence on sentence length and context.

After preprocessing the data set, the next step is to evaluate the performance of the Transquest model.
One approach that has been suggested is to edit name entities, we therefore replace named entities with
predefined ones in order to see if this improves the model’s performance.

2 Methodology

2.1 dataset

In this experiment, we will be working with the WMT 2020 dataset, which provides 7,000 pairs of sentences,
each with a reference translation. The dataset covers a range of sentence lengths and translation scores,
allowing us to test the performance of the Transquest model across a variety of scenarios.

The scores given by evaluators are normalized using the zscore method, and The final score for each sentence
is computed using the norm.CDF (zmean) formula.

Figure 1: Sentence Level Direct Assessment (DA) scores by professional translators

2.2 computing resources

To conduct the experiment, we utilized Google Colab, which provides cloud-based computing resources for
machine learning tasks. We specifically used a machine instance with 16 GB of RAM and a NVIDIA GeForce
GTX 1650 GPU to accelerate the processing time of the Transquest model. It is worth noting that these
specifications are provided for reference only

1

3 Referenced metrics

3.1 Meteor

The METEOR metric is a comprehensive evaluation measure that not only takes into account the probabilities
of n-grams, but also considers the context of the sentence, including synonyms, sentence structure, and word
order. Compared to BLEU, METEOR has shown significant improvements in evaluating the quality of
machine-generated translations, as demonstrated in various former studies.

score = nltk.translate.meteor_score([ref.split()], mt3.split())

3.1.1 Limitations

One limitation of the METEOR metric is that it heavily relies on the availability of synonym dictionaries,
which may not be comprehensive or accurate. This could result in incorrect or misleading scores, especially
for translations that use words or phrases that are not in the dictionary. Additionally, METEOR may not
be sensitive enough to minor changes in the translation that could significantly alter its meaning.

In the example provided, the limitation of METEOR is demonstrated as the score shows little change despite
a significant alteration in the translation’s meaning. Even a small change in a translation can result in a
vastly different meaning such as changing the word sich to mich or adding nicht to the sentence, making
it difficult for the METEOR metric to accurately evaluate the quality of the translation.

In the next section, the figure illustrates how the scores are heavily concentrated between 0.6 to 0.8 on a
well-balanced dataset, indicating that the METEOR metric can be overly optimistic in providing scores

Die Katze leigt auf der Matte

NIST score: 2.584962500721156

METEOR score: 0.9977

random random random random random

NIST score: 0.0

METEOR score: 0.0

Die Katze ruht auf der Matte

NIST score: 2.15413541726763

METEOR score: 0.8067

Die Katze befindet sich auf der Matte

NIST score: 1.846401786229397

METEOR score: 0.7934

Auf der Matte ruht die Katze

NIST score: 1.292481250360578

METEOR score: 0.8067

Die Katze hat sich auf der Matte niedergelassen

NIST score: 1.6156015629507225

METEOR score: 0.7806

Die Katze %% mich nicht auf der Matte niedergelassen

NIST score: 1.43609027817842

METEOR score: 0.7683

3.2 Nist

The NIST (NIST BLEU) metric is another evaluation measure that is commonly used to evaluate the quality
of machine-generated translations. Like BLEU, it is a modified version of the precision metric that computes
the average n-gram precision scores between the machine-generated and reference translations. NIST uses

2

a different weighting scheme compared to BLEU, where it assigns higher weights to longer n-grams and to
the more frequent n-grams.

nist_score_res = nltk.translate.nist_score.sentence_nist([ref.split()], mt.split())

3.2.1 Limitations

To observe the limitations of the NIST metric, we conducted an experiment where we used a list of 7,000
reference sentences that were correct grammatically, syntaxically, and had good context. We then ran
the NIST metric on this list by selecting the same sentence for both the machine-generated and reference
sentences. Ideally, this should result in a score of 5 or 100% accuracy. However, we found that the NIST
score showed a strong correlation with sentence length, indicating a limitation of the metric in accurately
evaluating the quality of machine-generated translations for sentences of different lengths

plot = tr_df[tr_df["len"]>4].plot(x="len", y="nist")

Figure 2: Niscr Score Over Sentene length

The penalty function used in NIST is based on the ratio of the length of the machine-generated translation
to the length of the reference translation. This penalty function applies a penalty to the NIST score based on
the difference in length between the two sentences. This means that longer machine-generated translations
are penalized more than shorter ones, regardless of their actual quality. This can lead to an inaccurate
evaluation of the quality of machine-generated translations, the function is given as follows:

penalty = eβ×log2min(len(hyp)/len(ref),1.0)

where β = (log2(1.5)/log2(1.5))2

def nist_length_penalty(ref_len, hyp_len):

ratio = hyp_len / ref_len

if 0 < ratio < 1:

ratio_x, score_x = 1.5, 0.5

beta = math.log(score_x) / math.log(ratio_x) ** 2

return math.exp(beta * math.log(ratio) ** 2)

else: # ratio <= 0 or ratio >= 1

return max(min(ratio, 1.0), 0.0)

3

3.2.2 New length penalty function:

In this experiment, a new polynomial penalty function was suggested to overcome the limitation of the
NIST penalty function. This new penalty function was trained on a dataset of sentences with varying
lengths and scores, and a polynomial function was derived from the data. The degree of the polynomial
was determined through cross-validation, and it was found that a polynomial of degree 15 provided the best
results without overfitting the data. This new penalty function was shown to improve the accuracy of the
NIST metric in evaluating machine-generated translations, particularly for longer sentences, and provides a
more comprehensive and accurate evaluation of machine-generated translations.

coefficients = np.polyfit(tr_df_nist["len"], tr_df_nist["penalty"], 15)

f = np.poly1d(coefficients)

Figure 3: Polynomial approximation for penalty function

After applying the new NIST penalty function, we observed significant improvements in the evaluation of
machine-generated translations. In particular, sentences with the same length are now showing the same
result on a scale from 0 to 5, as shown in the following figure. This indicates that the new NIST penalty
function is more accurate and reliable than the previous version, and can be used as a valuable tool in the
evaluation of machine-generated translations.

tr_df["nist_balanced"] = tr_df.apply(lambda x : x["nist"]*nist_length_penalty

(x["len"],x["len"]) , axis=1)

tr_df

3.3 Importance of combined metrics:

Each of these metrics has its own limitations and tends to either over-evaluate or under-evaluate the
translation quality. To address this issue, a combination of metrics can be used to obtain a more reasonable
score, which can be useful for training Questplusplus or TransQuest models and improving their performance.
Providing well-defined scores is crucial for the accurate evaluation of these QE models. In this experiment,
we have implemented a new metric using the following methods.

It is important to note that the choice of ratio between Meteor and Nist may vary depending on the specific
use case and dataset. In this experiment, the 80:20 ratio was chosen based on previous research and analysis of
the WMT 2020 dataset. However, for other datasets or languages, a different ratio may be more appropriate.

4

Figure 4: penalty output

It is important to perform thorough analysis and experimentation to determine the optimal ratio for each
specific scenario.

def mtr_score(ref, mt):

return round(meteor_score.meteor_score([ref.split()], mt.split()),6)

def nst_score(ref,mt):

if (len(ref.split())<6) or (len(mt.split())<6):

return mtr_score(ref,mt)

else :

return round((nist_score.sentence_nist([ref.split()], mt.split())),6)

def nst_blc_score(ref,mt):

return round(nst_score(ref,mt)*f(len(ref.split())),6)

def final_score(ref,mt):

return round(0.8*mtr_score(ref,mt)+0.2*(nst_blc_score(ref,mt)/5),6)

4 Referenceless QE

Once the dataset is preprocessed, we will proceed to train a new model, which will be able to predict the
quality score of the remaining data without any reference translations. In this section, we will compare
two popular models, Quest++ and TransQuest, which is a Python library that fine-tunes transformer-based
models for quality estimation. TransQuest has been shown to outperform other open-source quality estimation
frameworks like OpenKiwi and DeepQuest. It’s trained using the XLM pre-trained model from the Hugging
Face Transformers library.

4.1 Questpluspus

quest++ results

Mean absolute error: 0.751

Root mean squared error: 0.898

Pearson correlation coefficient: 0.491

5

Figure 5: Quest++ scores

4.2 Transquest

TransQuest is a highly acclaimed Quality Estimation (QE) model, well-known for its multilingual support.
It is built on top of the XLM model and fine-tuned on the WMT dataset. There are two architectures
available for training this model, and in this paper, we will focus on the MonoTransQuest architecture.

4.2.1 Implimentation

model = MonoTransQuestModel("xlmroberta", "TransQuest/monotransquest-da-multilingual",

num_labels=1, use_cuda=torch.cuda.is_available())

predictions, raw_outputs = model.predict([["src sentence.", "tgt sentence."]])

print(predictions)

4.2.2 Output

According to the TransQuest paper, this model has shown some limitations, such as over-optimistic results,
which can be attributed to name entity confusion. To address this issue, we conducted an experiment to
investigate whether replacing name entities with a predefined list can improve the model’s performance.

transquest results

Mean absolute error: 0.141

Root mean squared error: 0.176

Pearson correlation coefficient: 0.292

5 Improvements (NER)

Named Entity Recognition, also known as NER, is a field of natural language processing that involves
identifying and categorizing a group of tokens, also known as spans, as specific named entities, such as people,
places, organizations, or dates. Common entity types are often abbreviated, such as ORG for organization,
LOC for location, etc. In this section, we utilize Spacy, a state-of-the-art library for NER, though other
libraries such as NLTK.ner and Stanford NER are also available.

6

Figure 6: trqnsquest scores

5.1 Spacy

spaCy is a widely-used open-source library for NER, known for its high speed and accuracy. It offers
pre-trained models for several languages

5.2 Transquest with NER

We have selected a predefined list of common name entities that do not carry significant meaning. This is
because named entities with semantic meaning tend to confuse the model the most, for example, the name
“Pierre” which is a popular name in France, often gets confused with the word “stone”.

list_ent = {

"PRODUCT" : "product",

"LOC" : "Himalayas",

"DATE" : "this year",

"TIME" : "night",

"MONEY" : "three dollars",

"PERSON" : "David",

"ORG" : "IBM",

"GPE" : "Paris",

"PERCENT" : "four percent",

"CARDINAL" : "three"

}

list_ent_german = {

"PRODUCT" : "Produkt",

"LOC" : "Himalaya",

"DATE" : "dieses Jahr",

"TIME" : "Nacht",

"MONEY" : "drei Dollar",

"PERSON" : "David",

"ORG" : "IBM",

"GPE" : "Paris",

"PERCENT" : "vier Prozent",

7

"CARDINAL" : "drei"

}

5.2.1 NER edit function

We propose a method to replace named entities in both source and target sentences with the predefined list
using the following function.

def edit_ner(doc):

new_sentence = ""

index_ent = 0

index_tok = 0

while (index_tok < len(doc)):

token = doc[index_tok]

if token.ent_type_ != ’’:

l_ent = -(doc.ents[index_ent].start-doc.ents[index_ent].end)

if token.ent_type_ in list_ent:

replacement_word = list_ent[token.ent_type_]

new_sentence += replacement_word

else :

new_sentence += doc.ents[index_ent].text

index_tok+=l_ent

index_ent+=1

else:

new_sentence += token.text

index_tok+=1

if (index_tok <len(doc) and not doc[index_tok].is_punct):

new_sentence += token.whitespace_

return new_sentence

The model was executed on the 7,000 new sentences, and it took approximately 90 minutes to complete.
The resources used for this task are described in the resources section.

df["tquest_ner"] = df.apply(lambda x : transquest_model(x["new_src"], x["new_mt"]) , axis=1)

6 Results

Tt was observed that NIST metric tends to show dependence on sentence length, which affects the evaluation
scores. To address this limitation, a new penalty function was suggested and tested, which showed promising
results. Additionally, it was found that a combination of multiple metrics, including METEOR and NIST,
can provide a more reasonable score and avoid over- or under-evaluation of translations.
The second expiriments showed that changing name entities with a predifined list did not improve the model,
which is shown in the following figure.

Table 1: Tquest vs Tquest with NER

Model MAE RMSE Pearson correlation
tQuest 0.141 0.176 0.292

TQ with NER 0.168 0.203 0.121

Two models were evaluated using three different metrics: Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), and Pearson correlation coefficient. The first model, “transQuest,” had an MAE of 0.141

8

Figure 7: nist scores over sentence length

Figure 8: balanced nist scores over sentence length

9

and an RMSE of 0.176, with a Pearson correlation coefficient of 0.292. The second model, “transQuest with
NER,” had an MAE of 0.168 and an RMSE of 0.203, with a Pearson correlation coefficient of 0.121.

Based on these metrics, the “transQuest” model performed better than the “transQuest with NER” model
in terms of both MAE and Pearson correlation coefficient, eventhough the second model had a slightly higher
RMSE.

Although the model’s performance has slightly decreased, the scatter plot below indicates that the model’s
scores are now more concentrated between 0.4 and 0.9, which is consistent with the score distribution when
using reference translations.

(a) transquest scores before applying NER editing (b) applying NER editing on src and tgt sentences

Figure 9: Transquest scores with and without NER editing

7 Conclusion

In summary, language models have seen remarkable advances in recent times, they still face limitations when
it comes to less widely spoken languages. Quality estimation (QE) models have emerged as a promising
solution to this issue, using state-of-the-art multilingual models that are fine-tuned with QE metrics. This
approach can help to narrow the performance gap and enhance machine translation for less spoken languages,
which presents new opportunities for future research that combines these cutting-edge models with less
spoken languages.

10

8 Acknowledgments

I would like to express my sincere gratitude to my supervisor, Francois Yvon, for his invaluable guidance,
encouragement, and support throughout the course of this project. I would also like to extend my thanks
to Marc Evard and Francois Lande my machine learning teachers, as well as all my Professors and members
of paris saclay university for their insights and contributions. This work was completed during a school
internship managed by Sylvain Conchon, to whom I am grateful. Without their combined efforts, this
project would not have been possible

References

[1] Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan, TransQuest: Translation Quality
Estimation with Cross-lingual Transformers, Proceedings of the 28th International Conference on
Computational Linguistics,2020

[2] transquest:2020b Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan, TransQuest
at WMT2020: Sentence-Level Direct Assessment, Proceedings of the Fifth Conference on Machine
Translation, 2020

[3] specia,kashif.shah,t.cohn QuEst - A translation quality estimation framework.

[4] Lucia Specia, Nicola Cancedda and Marc Dymetman Estimating the Sentence-Level Quality of Machine
Translation Systems.

[5] Lucia Specia, Gustavo Henrique Paetzold and Carolina Scarton Multi-level Translation Quality Prediction
with QUEST++

[6] Kashif Shaha, Eleftherios Avramidisb, Ergun Biçicic, Lucia Specia QuEst — Design, Implementation
and Extensions

[7] Ergun Biçicia, Lucia Specia QuEst for High Quality Machine Translation

[8] François Yvon Le modèle Transformer: un “ couteau suisse ” pour le traitement automatique des langues

[9] Taweh Beysolow Applied Natural Language Processing with Python

[10] Lucia Specia · Dhwaj Raj · Marco Turchi Machine translation evaluation versus quality estimation

[11] Julia Ive Frederic BlainLucia Specia deepQuest: A Framework for Neural-based Quality Estimation

[12] Daniel Jurafsky and James H. Martin N-gram Language Models

[13] Chetna Khanna Byte-Pair Encoding: Subword-based tokenization algorithm

[14] Hui Zhang and David Chiang Kneser-Ney Smoothing on Expected Counts

[15] Tomas Mikolov , Stefan Kombrink , Anoop Deoras , Lukas Burget , Jan Honza RNNLM - Recurrent
Neural Network Language Modeling Toolkit

[16] EMNLP 2022 SEVENTH CONFERENCE ON MACHINE TRANSLATION (WMT22)

[17] Tharindu Ranasinghe and canstantine orasan and Ruslan Mitkov TransQuest: Translation Quality
Estimation with Cross-lingual Transformers

[18] Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan TransQuest: Translation Quality
Estimation with Cross-lingual Transformers documentation

11

	Introduction
	Methodology
	dataset
	computing resources

	Referenced metrics
	Meteor
	Nist
	Importance of combined metrics:

	Referenceless QE
	Questpluspus
	Transquest

	Improvements (NER)
	Spacy
	Transquest with NER

	Results
	Conclusion
	Acknowledgments

