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Abstract

The transport sector is a major contributor to greenhouse gas emissions in Europe.
Shifting to electric vehicles (EVs) powered by a low-carbon energy mix would
reduce carbon emissions. However, to support the development of electric mobility,
a better understanding of EV charging behaviours and more accurate forecast-
ing models are needed. To fill that gap, the Smarter Mobility Data Challenge
has focused on the development of forecasting models to predict EV charging
station occupancy. This challenge involved analysing a dataset of 91 charging
stations across four geographical areas over seven months in 2020-2021. The
forecasts were evaluated at three levels of aggregation (individual stations, ar-
eas and global) to capture the inherent hierarchical structure of the data. The
results highlight the potential of hierarchical forecasting approaches to accurately
predict EV charging station occupancy, providing valuable insights for energy
providers and EV users alike. This open dataset addresses many real-world chal-
lenges associated with time series, such as missing values, non-stationarity and
spatio-temporal correlations. Access to the dataset, code and benchmarks are
available at https://gitlab.com/smarter-mobility-data-challenge/tutorials to foster
future research.

1 Introduction

Electric mobility. The transport sector is currently one of the main contributors to greenhouse gas
emissions in Europe [1]. The development of electric vehicles (EVs) combined with a low-carbon
energy mix would make it possible to considerably reduce these emissions. Fortunately, the EV
initiative is one of the few programmes listed by the International Energy Agency (IEA) that aligns
with the IEA’s net-zero emissions goals. In 2021, China led global EV sales with 3.3 million units,
tripling its 2020 sales, followed by Europe with 2.3 million units, up from 1.4 million in 2020. The
U.S. market share of electric vehicles doubled to 4.5%, with 630,000 units sold. Meanwhile, electric
vehicle sales in emerging markets more than doubled [2]. Electric mobility development entails new
needs for energy providers and consumers [3]. Companies and researchers are proposing innovative
solutions including pricing strategies and smart charging [4–8]. However, their implementation
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requires a precise understanding of charging behaviours and better EV charging models are necessary
in order to better understand the impact of EVs on the grid [9, 10]. In particular, forecasting the
occupancy of a charging station can be a critical need for utilities to optimise their production units
according to charging demand. On the user side, knowing when and where a charging station will be
available is critical, but large-scale datasets on EVs are rare [11, 12]. This is why the dataset provided
in this challenge is valuable in itself. This challenge aims at testing statistical and machine learning
forecasting models to forecast the states of a set of charging stations in the Paris area at different
geographical resolutions.

Hierarchical forecasting The problem of the challenge presents an intrinsic structure, called
hierarchy, since it consists in forecasting quantities at increasing scales (stations, areas, and global).
Hierarchical time series forecasting has been studied for various other applications where the data is
directly hierarchically organised or where there is a latent hierarchical representation. For example, in
retail, goods are often classified into categories (such as food or clothing) and inventory management
can be done at different geographical (national, regional, shop) or temporal (week, month, season)
scales. Moreover, electricity systems often have an explicit (electricity network) or implicit (customer
types, tariff options...) hierarchy. Recent work shows that exploiting this structure can improve
forecasting performance at different levels of hierarchy. For instance, [13] focuses on tourism demand,
[14] on macroeconomic forecasting, and [15–17] on electricity consumption data.

Overview. The paper is structured as follows. Section 2 describes the forecasting problem at hand
and the baseline models. Section 3 presents the methods proposed by the three winning teams.
Finally, Section 4 summarizes the findings and discusses our results. The full dataset, as well as
the benchmark consisting of the baseline models, the winning solutions, and the aggregations, are
available at https://gitlab.com/smarter-mobility-data-challenge/tutorials and distributed under the
Open Database License (ODbL).

2 EV charging dataset and target

Dataset description The dataset is based on the real-time charging station occupancy information
of the Belib network, which is available on the Paris Data platform (ODbL) [18]. The Belib network
consists of 91 charging stations in Paris, each offering 3 plugs. Because Paris Data does not store
the data it daily produces, the EDF R&D team has set up a pipeline to collect this data every 15
minutes from July 2020 on the platform’s dedicated API. The data is then stored in a data lake based
on Hadoop technologies (HDFS, PySpark, Hive, and Zeppelin). For the purpose of the challenge, the
data has been divided into a training set and a test set. The training set contains Dtrain points ranging
from 2020-07-03 00:00 to 2021-02-18 23:45 CET. The test set contains Dtest points ranging from
2021-02-19 00:00 to 2021-03-10 23:45 CET. The test set has been divided into two subsets: a public
set for validation purposes and a private set used to quantify the performance while minimising the
risk of overestimating the performance of potential overfitting methods. To create the public and the
private sets, the dataset was split into three time periods. The first is assigned to the public set, and
the third to the private set. Then, we randomly draw points from the second period to assign 20% of
them to the public set and the rest to the private set. Another challenge related to the availability of
the data is the occurrence of missing values after 2020-10-22, as illustrated by Figure 1.

At any given time, a plug takes one of four states. Either it is plugged into a car and provides
electricity, corresponding to state c (charging). Either it is connected to a car that is already fully
charged, corresponding to state p (passive). Either the plug is free, corresponding to state a (available).
The special state o (other) regroups the cases where the plug does not work. We denote by yt,k =
(at,k, ct,k, pt,k, ot,k) ∈ {0, 1, 2, 3}4 the vector representing the state of station k ∈ {1, . . . , 91} at
time t, where at,k is the number of available plugs, ct,k the number of charging plugs, pt,k the
number of passive plugs, and ot,k the number of other plugs, at station k and time t. Of course,
at,k + ct,k + pt,k + ot,k = 3. The additional variables associated with station k are

• temporal data: date, tod, dow, and trend,
• spatial data: latitude, longitude, and area (south, north, east, and west) of the station.

The dow and tod features return respectively the day of week (1 for Monday to 7 for Sunday) and
the time of day, corresponding to the 15 minute step position in the day (0 for 00:00:00 to 95 for
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Figure 1: Percentage of missing values per day

Figure 2: The 91 stations (yellow dots on the left) and the 4 areas of Paris (colored on the right)

23:45:00). The trend feature returns the numerical conversion of the time index. The data is then
aggregated into 4 areas of about 20 stations each, as shown in Figure 2.

Evaluation The goal is to forecast the states of the different plugs at 3 hierarchical levels: individual
stations (denoted by yt,i, for i ∈ {1 . . . 91}), areas (yt,south, yt,north, yt,east, and yt,west), and global
(yt,global), where yt,zone =

∑
i∈zone yt,i is the sum of the plugs per state in a zone (south, north,

east, west, or global). Therefore, let zt = (yt,1, . . . , yt,91, ytsouth, yt,north, yt,east, yt,west, yt,global) be
the aggregated matrix containing the statutes of all stations at the different hierarchical levels at time
t. The goal is therefore to provide the best estimator ẑ of z. Performance is evaluated by the the
following loss function, which encodes each hierarchical level as a penalty.

L(zt, ẑt) = `station(zt, ẑt) + `area(zt, ẑt) + `global(zt, ẑt), (1)

where

`station(zt, ẑt) =

91∑
k=1

‖yt,k − ŷt,k‖1,

`area(zt, ẑt) =
∑

zone∈{south,north,east,west}

‖yt,zone − ŷt,zone‖1,

`global(zt, ẑt) = ‖yt,global − ŷt,global‖1,

and where ‖x‖1 =
∑p

k=1 |xk| is the usual `1 norm on Rp. Note that L(zt, ẑt) = ‖zt − ẑt‖1.

Baseline models An initial baseline of two simple models is established before evaluating the
performance of more complex solutions. The first naive estimator of zt consists in taking the median
of each coefficient of zt overDtrain for a given value of the temporal data. This amounts to computing
the median per type of day and quarter-hour, i.e.,

ẑt = median
t′∈Calt

{zt′},

3



Figure 3: Ranking of the competitors

where
Calt = {t′ ∈ Dtrain, dow(t′) = dow(t)} ∩ {t′ ∈ Dtrain, tod(t′) = tod(t)}.

Notice that the set Calt corresponds to the timestamps of the same day of the week and the same hour
of the day. The second baseline model is the parametric model called CatBoost. It is a tree-based
gradient boosting algorithm that specializes in regression for categorical data. It is implemented using
the python library CatBoost [19] and has demonstrated excellent performance for a great variety of
regression tasks [20–22]. The performance of these models is shown by the dotted lines in Figure 3.

3 Winning Solutions

This section describes the methods used by the three winning teams. The ranking of the competitors
is shown in Figure 3, where the confidence intervals are constructed by bootstrapping. A subsection
is dedicated to each of the winning teams, as their approaches are quite different and informative for
the analysis of the dataset. In the last subsection, their strengths are combined thanks to aggregation
methods.

3.1 Arthur Satouf (team Arthur75)

Handling missing values As shown in Figure 1, the dataset presents a lot of missing data. Common
techniques were considered to impute these [23], including computing the mean by station, forward
and backward filling, simple moving average, weighted moving average, and exponential moving
weighted average (EMW) [24]. These techniques are evaluated by measuring the mean absolute error
(MAE) on a validation subset of the training set. As a result, the EMW is the most effective technique,
and it is thus implemented for both forward and backward filling approaches. Specifically, we use
the last 8 known values to forward fill the first 8 missing values. The same procedure is applied to
backward filling.

Model selection The benchmark consists of usual time series models [25–27], such as SARIMAX,
LSTM, XGBoost, random forest, and CatBoost. The evaluation metric used is the MAE, and the time
series cross-validation technique is applied to evaluate the performance of the models [28, 29]. The
CatBoost algorithm is ultimately chosen for its fast optimization relying on parallelization and its
ability to handle categorical data without preprocessing. As explained in Section 2, the states of any
station k satisfy at any time t the equation at,k + ct,k + pt,k + ot,k = 3, which is enforced in the
CatBoost estimator as follows.
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Table 1: Example of a data conversion to a string
Given station at a given time Available Charging Passive Other Target

14h15-16/08/2021 1 2 0 0 1200
14h30-16/08/2021 0 1 1 1 0111
14h45-16/08/2021 0 0 3 0 0030

• At the station level, the problem is transformed from a multi-task regression problem to
a classification problem. This is achieved by concatenating the values of each task as a
string, resulting in 20 unique classes. In this approach, the sum of the four vectors always
equals three, given that there are three plugs. After predicting a given target, the target is
decomposed into four values. Table 1 provides an example.

• At the area level, CatBoost was also used as a regression problem, as shown in Figure 4.
However, each area had its own model, and each area used a combination of CatBoost
regressor and Regressor-Chain [30]. Regressor-Chain involves building a unique model for
each task and using the result of each task as an input for the next prediction model. The
output of each model, along with the previous output, is then used as input for the next task.
This approach helps to keep the sum of plug equal to the right number and takes into account
the correlation between tasks, making the prediction more robust.

• At the global level, the approach is similar to the one applied to the area level, with only 4
models as there are no longer areas.

A time series cross validation is used once again to tune the hyperparameters and to validate the
models. It relies on the mean absolute percentage error [31] at the area and the global levels, and on
the F-measure [32] at the station level. In total, 21 CatBoost models are used to forecast the private
datasets.

Figure 4: Using Regressor Chain with CatBoost-Regressor to train and forecast "area" data set.

3.2 Thomas Wedenig and Daniel Hebenstreit (team Charging-Boys)

Data exploration, preprocessing and postprocessing Our exploratory experiments does not
show any signs of a trend within the time series. Regarding stationarity, we run the Augmented
Dickey–Fuller test [33] on the daily averages of the target values for each station and find inconclusive
results. Therefore, we cannot assume stationarity for all target-station pairs, which is why we employ
differencing in the construction of our ARIMA model. As usual in statistical frameworks, we assume

5



that the noise interferes with the high frequencies of the signal. To denoise, we preprocess the time
series by computing a rolling window average with a window size of 2.5 hours [34].

During our data exploration, we encounter a significant change in the behavior of the individual
stations in the end of October 2020, just before the COVID-19 regulations were enforced in Paris.
We also assume that several stations were turned off after this event, as labels were missing over
large time intervals. Thus, we experiment with different methods of missing value imputation, but
find that simply dropping the timestamps with missing values performs best. We also add custom
features, namely a column indicating whether the current date is a French holiday, as well as sine and
cosine transforms of tod, dow, the month, and the position of the day in the year. To ensure that our
regression models return integer outputs that sum to 3 for each station and timestamp (since stations
have exactly 3 plugs), we round and rescale these predictions in a post-processing step.

Tree-based regression model Using skforecast, we train an autoregressive XGBoost model
[26] with 100 estimators. We train it on all of the 91 stations individually, each having 4 targets,
resulting in 364 models. Each model receives the last 20 target values, as well as the sine/cosine
transformed time information as input, and predicts the next target value. We also discard all features
that are constant per station (e.g., station name, longitude, and latitude). The final regression model
achieves a public leaderboard score of 177.67.

Tree-based classification model To effectively enforce structure in the predictions (i.e., that
they sum to 3), we transform the regression problem discussed above into a classification
problem. For a given station and timestamp, consider the set of possible target values C ={
x ∈ {0, 1, 2, 3}4 s.t.

∑4
i=1 xi = 3

}
. We treat each element c ∈ C as a separate class and only

predict class indices ∈ I = {0, . . . , 19} (since |C| = 20). While I loses the ordinal information
present in C, this approach empirically shows competitive performance. When training a single
XGBoost classifier with 300 estimators for all stations, we achieve a public leaderboard score of
178.9. We also experiment with autoregressive classification (i.e.,including predictions of previous
timestamps), but find no improvement in the validation error.

ARIMA model We fit a non-seasonal autoregressive integrated moving average (ARIMA) model
[35] for each target-station combination. To predict the value of a given target, we only consider
the last p = 2 past values of the same target (in the preprocessed time series) and do not use any
exogenous variables for prediction (e.g., time information). We apply first-order differencing to the
time series (d = 1) and design the moving average part of the model to be of first-order (q = 1).
We observe that the forecasts using these models have very low variance, i.e., each model outputs
an approximately constant time series. These predictions achieve a competitive score on the public
leaderboard (third place).

Ensemble method The final model is an ensemble of the tree-based regression model, the tree-
based classification model, and the ARIMA model. For a single target, we compute the weighted
average of the individual model predictions (per timestamp). The ensemble weights are chosen to
be roughly proportional to the public leaderboard score (wreg = 0.35, wclass = 0.25, wARIMA = 0.4).
Since the predictions of the tree-based models have high variance, we can interpret mixing in the
ARIMA model’s predictions as a regularizer, which decreases the variance of the final model. As the
tree-based models also use time information for their predictions, we use the entirety of the available
features.

3.3 Nathan Doumèche and Alexis Thomas (team Adorable Interns)

Data analysis Several challenges arise from the data, as shown in Figure 1. An interesting
phenomenon is the emergence of a change in the data distribution on 2020-10-22, characterized by
the appearance of missing data. A reasonable explanation is that the detection of missing values is due
to an update in the software that communicates with the stations. The update would have taken place
on 2020-10-22, allowing the software to detect new situations in which stations were malfunctioning.
This hypothesis is supported by the fact that the stations with missing values are those that were stuck
in states corresponding to the absence of a car, i.e., either the state a or the state o (see Figure 5). In
fact, 88% of the stations that were stuck in either a or o for the entire week before 2020-10-22 had
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Figure 5: Percentage of state o occurrences per outlier per day around 2020-10-22

missing values on 2020-10-22. Perhaps the users avoided the malfunctioning stations, or perhaps the
users tried to connect to the station, but the plug was unresponsive, so the users went undetected. An
important implication of this hypothesis is that the data before the change should not be invalidated,
since the behaviour of the well-functioning stations did not change. Another challenge of the dataset
was its shortness. In fact, we expect a yearly seasonal effect due to holidays [36] that cannot be
distinguished from a potential trend because there is less than one year of data. All these observations
suggest giving more weight to the most recent data.

Empirical loss As usual in the supervised learning setting, we need to choose a model F to
construct the estimator ẑt ∈ F . To estimate the entire Dtest period at once, we cannot rely on online
models such as autoregressive models or hidden-state neural networks (RNN, LTSM, transformers...),
although they perform well for time series forecasting [37], and in particular for EV charging station
occupancy forecasts [38, 39]. Once a modelF is chosen, we define an empirical loss L on the training
data. Then, a learning procedure, such as a gradient descent, fits the estimator ẑ that minimizesL, with
the hope that ẑ will minimize the expectation of the test loss (1) [40, 41]. Given a training set Ttrain ⊆
Dtrain, we consider two empirical losses. The first one is Lequal(ẑ) =

∑
t∈Ttrain

‖zt− ẑt‖1. It gives
equal weight to all data points. The second one is Lexp(ẑ) =

∑
t∈Ttrain

exp((t−tmax)/τ)‖zt−ẑt‖1,
where τ = 30 days and tmax = 2021-02-19 00:00:00. This time-adjusted loss function is common
for non-stationary processes [42] because it gives more weight to the most recent observations. This
makes it possible to give more credit to the data after the change in the data distribution and to capture
the latest effect of the trend, while using as much data as possible.

Benchmark phase To compare the performance of the models, we define a training period Ttrain,
which covers the first 95% of Dtrain, and a validation period Tval, which covers the last 5%. Models
are trained on Ttrain to minimize Lequal or Lexp, and then their performance is evaluated on Tval
by Lval(ẑ) =

∑
t∈Tval

‖zt − ẑt‖1. The Mean model estimates ŷt,k, Ât,k and Ĝt by their mean
over the training period for each value of (tod, dow). Idem for the Median model. They are robust
to missing values since the malfunctioning of a station k only affects ŷt,k. We compare them with
the CatBoost model presented in Section 2. Let C(d, i) be the CatBoost model of depth d trained
with i iterations using Lequal, and Cexp(d, i) the same model trained using Lexp. In this setting,
we train twelve CatBoost models: one for each pair of state (a, c, p, o) and hierarchical level. After
hyperparameter tuning, we found C(4, 150) and Cexp(5, 200) to be the best models in terms of
tradeoff between performance and number of parameters, knowing that early stopping and a small
number of parameters prevent overfitting [see, e.g., 43]. All of these models take advantage of the
fact that malfunctioning stations tend to stay in specific states.
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Table 2: Evaluation of the performance of the Adorable Interns’ models in both phases
Mean Median C(4, 150) Cexp(5, 200)

Benchmark Phase 316 309 292 261
Validation Phase 323 303 233 189

Validation phase The contest organizers allowed participants to test their models on a subset Tval
of Dtest. In this phase, we trained our best models on the entire Ddata period and sent them to
be tested with the test loss (1). Table 2 shows that the hierarchy of the models is preserved. The
submitted model was therefore Cexp(5, 200). Note that this model is also interesting because its
small number of parameters ensures robustness and scalability. In addition, tree-based models are
quite interpretable, which is paramount for operational use [44].

3.4 Aggregation of the teams’ forecasts

Naive aggregations of uncorrelated estimators are known to have good asymptotic [45] and online
[46] properties. In practice, they often achieve better performance than the individual estimators [see,
e.g., 47, 48]. Once again, this is the case in this challenge, as evidenced by Table 3, which shows the
performance of the top 3 teams compared to two aggregation techniques. The uniform aggregation
–denoted by Uniform agg.– corresponds to the mean of each team’s prediction, while the weighted
aggregation –denoted by Weighted agg.– is computed by gradient descent using the MLpol algorithm
[49] to minimise the error on the training set. Notice how the weighted aggregation outperforms the
other forecasts for the total loss, as well as for all the subdivisions of the loss by hierarchical level
and by state.

Table 3: Score by target of the top 3 teams and aggregations
Available Charging Passive Other Station Area Global Total

Arthur75 86 33 24 63 145 42 19 206
Charging Boys 84 39 26 61 145 43 22 210

Adorable Interns 86 34 24 77 155 40 25 220
Uniform agg. 83 33 22 63 142 40 20 202

Weighted agg. 82 33 22 59 137 40 19 196

4 Summary of findings and discussion

This paper presents a dataset in the context of hierarchical time series forecasting of EV charging
station occupancy, providing valuable insights for energy providers and EV users alike. The results
discussed in this paper focus on two key aspects of the Smarter Mobility Data Challenge: data
preprocessing and training the hierarchical forecasting model. As with any real-world data set,
specific techniques are required to deal with missing data and outliers (see, e.g., Section 3.1). Data
preprocessing was a crucial step, and the addition of relevant exogenous features, such as the national
holidays calendar, significantly improved the results, in contrast to the use of a more complex model
that could not perform well without prior augmentation of the data samples. All three winning
solutions described in this paper were robust enough to maintain a high private test score, showing
good generalization of the models. The choice of the empirical cost function that drives the training
process produced the best results when more recent data points were given greater weight (see, e.g.,
Section 3.3). Aggregating the forecasts of the three winning teams even yielded a better global score,
with a notable improvement at the station level. The hierarchical models presented are promising
and could help improve the overall EV charging network. This open dataset is interesting because
it encompasses many real-world problems related to time series matters, such as missing values,
non-stationarities, and spatiotemporal correlations. In addition, we believe that sharing the benchmark
models derived from this challenge will be useful for making comparisons in future research.

Limitations The deployment of electric vehicles (EVs) is progressing at a remarkable pace [50],
making any dataset merely a snapshot of a swiftly evolving world [see also 51]. To enhance forecasting

8



accuracy, additional features could be incorporated into a dataset. Numerous covariates, such as
mobility and traffic information, meteorological data, and vehicle characteristics, could be included.
In a forthcoming release of the dataset, we intend to incorporate traffic data and meteorological data.

Ethical concerns To the best of our knowledge, our work does not pose any risk of security threats
or human rights violations. Knowing when and where someone plugs in their EV could lead to a risk
of surveillance. However, this dataset does not contain any personal information about the user of the
plug or their car, so there is no risk of consent or privacy.
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