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SUMMARY
The neural mechanisms by which animals initiate goal-directed actions, choose between options, or explore
opportunities remain unknown. Here, we develop a spatial gambling task in whichmice, to obtain intracranial
self-stimulation rewards, self-determine the initiation, direction, vigor, and pace of their actions based on
their knowledge of the outcomes. Using electrophysiological recordings, pharmacology, and optogenetics,
we identify a sequence of oscillations and firings in the ventral tegmental area (VTA), orbitofrontal cortex
(OFC), and prefrontal cortex (PFC) that co-encodes and co-determines self-initiation and choices. This
sequence appeared with learning as an uncued realignment of spontaneous dynamics. Interactions between
the structures varied with the reward context, particularly the uncertainty associated with the different
options. We suggest that self-generated choices arise from a distributed circuit based on an OFC-VTA
core determining whether to wait for or initiate actions, while the PFC is specifically engaged by reward un-
certainty in action selection and pace.
INTRODUCTION

Animals often base decisions on internal representations of their

goals.1,2 This includes when to act but also which option to take.

When faced with several alternatives, they do not always exploit

the option with the highest reward expectation but instead

explore less rewarded options to gain information.3,4 The neural

mechanisms by which animals initiate goal-directed action,

decide between actions, and explore potentially informative

action are far from being understood. The computational theory

of reinforcement learning identifies phasic dopamine (DA)

release with a reward prediction error (RPE); i.e., the comparison

between actual and expected reward. The DA RPE would

constitute a teaching signal for learning appropriate stimulus-

action responses.5,6 In this framework, cortices would provide

subcortical areas with information about the current state and

environmental options, and the basal ganglia would select

among these options to initiate the goal-directed action.2,7

Hence, in these theories, frontal cortices and DA only indirectly

affect decisions by affecting subsequent trials of a task rather

than the current one.8,9

However, the basal ganglia might not be the only locus of ac-

tion selection.10 DA and frontal areas have also been described

as having more direct, online roles in decision-making. Good-

based models place the choice or comparison processes at
This is an open access article und
the level of the orbitofrontal cortex (OFC) and prefrontal cortex

(PFC).11–14 Theories of cognitive control assign a top-down,

potentially inhibitory role to the OFC and PFC through

computing goals, plans, and task rules; i.e., higher-order deci-

sion-making.15 These different accounts all point at a direct,

active role of frontal areas in ongoing choices. Phasic DA

also influences ongoing behavior and self-paced actions by

modulating the vigor of actions leading to rewards.16,17 Mixed

results have been obtained on DA facilitating action initiation it-

self, depending on the type of task, DA nuclei, and intensity

of DA manipulation.18–21 Mesolimbic DA (particularly in the nu-

cleus accumbens) has a major role in locomotion and

reward,17,22 but the effects of DA interaction with the broader

decision circuitry on ongoing motivation remain unclear. Given

the respective roles of DA and frontal cortices in value-based

decision making and action initiation, the question of the coor-

dination between nodes of this mesocortical circuit in learning

processes, decision-making and exploration, and motor execu-

tion arises.

Here we used an experimental paradigm where mice

perform a sequence of choices to obtain rewards associated

with intracranial self-stimulation.23–25 Mouse behavior dis-

played hallmarks of self-paced action, with initiation, pace,

and decisions underdetermined by environmental information

but influenced by internal representations of the reward
Cell Reports 42, 112523, May 30, 2023 ª 2023 The Author(s). 1
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Figure 1. Self-paced decisions in a mouse spatial task based on ICSS

(A) Left: task design. Three explicit locations in an open field are associated with a given probability of intracranial self-stimulation (ICSS) delivery (p = 100%, 50%,

25%) when the mouse is detected in the location area. Animals could not receive two consecutive ICSSs at the same location. Right: examples of trajectories

(5 min) showing that mice alternated between rewarding locations in the deterministic (D) and probabilistic (P) contexts.

(B) Animals varied between forward (Fo) trajectories, in whichmice keep the direction of their last choice, and U-turn (Ut) trajectories, in whichmice went backd to

their previous location.

(C) Left: example of instantaneous speed profiles after learning in the D context, showing that animals almost stopped at the ICSS time, upon location entry

(location entry [LE]), stayed immobile for a short dwelling period, then accelerated toward their next location. These bouts of activity can be described using three

observables: the dwell time (speed < 10 cm/s), time to maximal speed, and total time to goal from one location to the next. Right: distribution for these three

parameters, for all trials of all mice, at the end of the D context.

(D) In the D context, dwell time and time to goal were higher when mice performed Ut compared with Fo trajectories (dwell time: D = 0.27 s, paired two-sided

Wilcoxon signed-rank test, W(30) =�38, p < 0.001; time to goal: D = 1.16 s, paired Student’s t test, T(30) =�4.95, p < 0.001). Colored horizontal bars represent the

means.

(E) Coefficients of the generalized linear model (GLM) of time to goal in the D context: constant term (Tc), Ut (Ut or Fo) (Student’s t test, T(30) = 3.31, p = 0.0024),

dwell time (Dt) (two-sidedWilcoxon signed-rank test,W(30) = 496, p < 0.001), and time tomaximal speed (Ts) (Student’s t test, T(30) = 11.76, p < 0.001). Vertical bars

represent SEM. Asterisks indicate a significant impact on the time to goal.

(F) Time to goal, Dt, and proportion of Uts increased in the P context compared with the D context (time to goal: paired two-sided Wilcoxon signed-rank test,

D = 1.14 s, W(30) = 104, p = 0.005; Dt for all trajectories: paired Student’s t test, T(30) = �2.64, p = 0.01, D = 0.26 s; Dt for Fo trajectories only: Student’s t test,

T(30) = �3.27, p = 0.0027, for time to goal; Ut: paired Student’s t test, D = 0.20 s, T(30) = �4.64, p < 0.001). Colored horizontal bars represent the means.

(G) Proportion of choices of the three rewarding locations as a function of reward probability in the P and D contexts. Effect of the P context on choice distribution:

F(30,2) = 48.5, p < 0.001; same for D context: F(30,2) = 0.2, p = 0.81, one-way ANOVA. Effect of probabilities on choices in the P context: F(1,2) = 31.8, p < 0.001, two-

way ANOVA. Vertical bars represent SEM.

***p < 0.001,**p < 0.01,*p < 0.05.
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context.1,22 We show that the ventral tegmental area (VTA),

PFC, and OFC coordinated their activities into a sequence of

distributed firing and oscillations. Such a sequence emerged

with learning as a reorganization of existing dynamics.

Combining electrophysiology with causal manipulations, we

unveil that OFC-VTA interactions set self-initiation in every

reward context, with more specific PFC involvement in deci-

sions under uncertainty and exploration. The VTA and PFC

can act synergistically to self-pace the actions but may have

antagonistic roles in pondering the influence of uncertainty

on choices, particularly for exploration. Our study highlights

how the mesocortical circuit self-generates decisions through

distributed but distinct computations.
2 Cell Reports 42, 112523, May 30, 2023
RESULTS

Mouse actions underdetermined by stimulus cues, but
shaped by internal representations, indicate self-paced
decisions
We used a spatial version of a bandit task adapted to mice.23–25

Three equidistant locations explicitly marked in an open field

were associated with rewards delivered as intracranial self-stim-

ulation (ICSS) in the medial forebrain bundle (MFB)26 (Figure 1A,

left). Mice could not receive two consecutive ICSS at the same

location; they therefore alternated between rewarding locations

(Figure 1A, right). The task is thus a sequence of movements (i.e.,

trials) between rewarded locations. There is no stimulus cue to
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trigger the movement or to specify the direction or initiation of

each trial, but the animal can use environmental and explicit

cues on the floor to locate the position of the targets and guide

its behavior. Mice were initially trained in a deterministic

(D) context in which all locations were associated with a certain

ICSS delivery (p = 100%). Then, mice were subjected to a prob-

abilistic (P) context in which each location was associated with a

different probability of ICSS delivery (p = 100%, 50%, and 25%;

Figure 1A) to assess how self-paced actions and meso-cortical

representations depend on outcome expectations. Their

behavior in the task after learning in the D context consisted of

sequences of trials in between rewarding locations. First, on

each rewarded location, mice could either circle forward along

the three locations or perform a U-turn to come back to the pre-

vious (i-1) location (Figure 1B). Second, a trial was characterized

by a ‘‘template’’ bout of locomotion: a movement initiation to-

ward the next location, acceleration followed by deceleration,

and a pause at the next location (Figure 1C, left). Although the

ICSS itself caused a decrease in the velocity (random ICSS in

the home cage; Figure S1A), this effect was small compared

with the total restructuring of the locomotion pattern in the

task. Execution of this ballistic velocity profile was characterized

by an important trial-to-trial variability, notably regarding the time

during which animals dwelled at a rewarded location before initi-

ating a new trial, the time to reachmaximal speed, and the overall

time to goal (from one location entry to the next; Figure 1C, right).

Because these successive timings were nested within the

behavioral sequence, their variability could correspond to a

global decision on the overall timing of the trial. In such case,

variability of intermediate timings would be correlated either

positively (with the first timings already explaining the subse-

quent variability) or negatively (with the variability in each timing

compensating in a zero-sum fashion). Alternatively, successive,

independent addition of variability at each stage of the trial could

signal distinct decisions about movement direction, initiation,

and vigor. In the D context, the direction (U-turn or forward)

impacted the dwell duration (an early trial timing) and the time

to goal (Figure 1D). Multiple linear regressions (with orthogonal-

ized predictors, model p < 0.05 for every animal; STARMethods)

showed that the trajectory direction, dwell time, and time to

maximal speed all had (independent from each other) a signifi-

cant impact on the time to goal (Figure 1E). Hence, each stage

of a trial presented a successive addition of independent vari-

ability, suggesting that trajectory direction, initiation, and vigor

all constituted decisions for the animals.1,2

Self-paced decisions depend on the expected value of poten-

tial outcomes.1,22 We thus assessed whether the timings of the

trial were affected by the animals’ internal estimates of the po-

tential rewards by comparing behaviors in the D and P context

(with different probabilities of ICSS delivery at each location;

p = 100%, 50%. and 25%; Figure 1A). After training in the P

context, the time to goal and dwell time increased compared

with the D context, even when considering only forward trajec-

tories, suggesting decreased motivation because of a decrease

in reward frequency in the P context (Figure 1F). The proportion

of U-turns increased as well, reflecting an adjustment of the tra-

jectory directions to the respective payoffs of the locations; while

mice visited the three locations uniformly in the D context, in the
P context, they more often visited the locations associated with

the highest ICSS probabilities (Figure 1G). Hence, mouse

behavior displayed hallmarks of self-paced decisions; the direc-

tion, initiation, and vigor of actions presented independent vari-

ability and were not determined by a stimulus cue but, rather,

were influenced by the potential outcomes of the actions.

The distributed mesocortical sequence associated with
self-generated decisions is reward context dependent
We next characterized the mesocortical dynamics associated

with self-paced decisions. We recorded from putative DA neu-

rons (pDAns; n = 136 neurons) in the VTA from wild-type (WT)

mice (n = 12 mice) using extracellular multielectrodes (Figure 2A,

left). All neurons met the electrophysiological and pharmacolog-

ical criteria used to identify DA cells in vivo27,28 (Figure S1; STAR

Methods). In another group of mice, bipolar electrodes were also

chronically implanted bilaterally into the PFC and OFC (n = 23

mice), allowing us to record extracellular field potentials (EFP)

and population spiking activity (Figure 2A, right; Figures S1

and S2; STAR Methods).

At the end of the D context, pDAn displayed a transient in-

crease in firing frequency early in the trial (hereafter called ‘‘early

phasic’’ activity), after location entry and ICSS delivery, during

the dwelling period (Figure 2B; n = 65 cells). The OFC was char-

acterized by an increase in firing before the reward, followed by a

dip during the ICSS (potentially because of the stimulationmask-

ing spikes; hence, it was not analyzed further) and then a

rebound that was concurrent with pDAn early phasic activity

(Figure 2C, top). After the dwell time, when animals started to

move toward the next location (0.5- to 1.5-s window), oscillation

power in the q band (7–14 Hz) increased in the OFC EFP (Fig-

ure 2C, bottom). In contrast, no specific activity was observed

in the PFC around the location entry, neither in population

spiking nor in EFP (Figure 2D; as with the OFC, the activity during

the ICSS was not analyzed because of potential masking).

Consistent with this temporal order, firing and q oscillations in

the OFC displayed a lagged cross-correlation (Figure 2E), indi-

cating a transition from increased spiking to q oscillations around

the time of self-initiation of the trial by themice. Although some of

the oscillations in the PFC and OFC co-occurred, we did not

observe any increase in coherence in either context (Figure S3).

We next asked how mesocortical activity changed with the

reorganization of animals’ choices when faced with the uncer-

tainty of P reward delivery. pDAn early phasic activity was still

present at the end of the P context, and its amplitude was not

different from that in the D context (Figure 2F). However, different

trials in the P context correspond to distinct situations (reward

omissions, reward expectations, etc.) that are analyzed further

down (Figures 4 and 5). The increase in OFC firing during dwell-

ing and latter power increase in q oscillations were similar in both

contexts (Figure 2G). By contrast, in the P context, an increase in

population firing (0.5- to 1-s window after location entry, post

omission only) and d (3–6 Hz) oscillation power (0.5- to 1.5-s win-

dow after location entry) emerged in the PFC but only when ICSS

was omitted (Figure 2H). No preferential temporal lag was

observed between PFC firing and d oscillations after location en-

try (Figure 2I), suggesting no clear temporal order between firing

and oscillations. Overall, the mesocortical network, classically
Cell Reports 42, 112523, May 30, 2023 3
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Figure 2. VTA, PFC, and OFC during D and P reward contexts

(A) Left: filtered (600–6000 Hz) extracellular recordings in the VTA show multiple unit activities. Right: extracellular recordings in the OFC and PFC show

extracellular field potential (EFP; filtered 0.1–300 Hz) (top) or population activity (filtered 600–6000 Hz) (bottom).

(B) Normalized firing frequency from VTA pDAns around the LE; i.e., reward delivery in the D context (pDAnmean firing over 0.3–0.8 s is increased from baseline;

one-sample Wilcoxon test, W(64) = 1,572, p = 0.001). Data are presented as mean ± SEM across units.

(C) Top: normalized firing frequency from the OFC population (mean ± SEM across units) around LE in the D context (i.e., reward delivery) (OFC mean firing

over 0.3–0.8 s, Student’s t test, T(39) = 2.57, p = 0.01). Bottom: 0- to 30-Hz range time-resolved power spectral density (PSD; using a complex Morlet wavelet

transform) of OFC EFP around reward delivery. PSD is Z scored over the 2-s period preceding the LE (mean OFC q 7- to 14-Hz power over 0.5–1.5 s,

Student’s t test, T(22) = 5.12, p < 0.001 across units).

(D) Same as (C) for the PFC.

(E) Top: time lag between the maximal OFC q oscillation power and the maximal OFC firing (time of the maximum q power minus time of maximum firing: two-

sided Wilcoxon-Mann-Whitney test, U(78) = 1,371, p = 0.002). Bottom: superposition of OFC q oscillation and population firing frequency. Data are presented as

mean ± SEM across units.

(F–H) Same as (B)–(D) but in the P context. PFC and OFC firing are also given for LE (black) and LEICSS Omission (blue) conditions.

(F)Mean pDAn firing frequency is increased (frombaseline) over 0.3–0.8 s: one-sample t test, T(74) = 7.61, p < 0.001. Difference comparedwith the D setting shown

in (B): two-sided Wilcoxon-Mann-Whitney test, U(64) = 4,345, p = 0.32.

(G) Difference between P and D settings (all trials): Top: OFC mean firing frequency during 0.3–0.8 s: Student’s t test, T(91) = 0.56, p = 0.6. Bottom: OFC mean q

power during 0.5–1.5 s: Student’s t test, T(42) = 1.12, p = 0.3.

(H) Top:) PFC mean firing over 0.5–1 s post omission: two-sided Wilcoxon signed-rank test, W(49) = 866, p = 0.03. Bottom: the PFC PSD is centered on reward

omissions (LEICSS Omis.) to prevent the ICSS artifacts from obscuring the low frequency power. PFC d mean power during a 0.5- 1-s window post omission:

Student’s t test, T(20) = 2.07, p = 0.05; difference with the D context: two-sided Wilcoxon-Mann-Whitney test, U(20) = 355, p < 0.001.

(I) Top: time lag between the maximal PFC d oscillation power and the maximal PFC firing, post omission only (time of the maximum d power minus time of

maximum firing: paired two-sided Wilcoxon signed-rank test, W(47) = 2,121). Bottom: superposition of PFC d oscillation power and population firing frequency.

4 Cell Reports 42, 112523, May 30, 2023
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associated with stimulus-triggered decision-making,8,29,30 was

also recruited during self-paced decisions with or without

engagement of the PFC, depending on the context (P vs. D).31

A self-generated mesocortical sequence emerges with
learning as a reorganization of existing dynamics
The influence of reward context on VTA, PFC, and OFC activities

suggests that the mesocortical dynamics associated with self-

paced actions reorganize in response to the outcomes of these

actions. We thus investigated the emergence of these dynamics

with learning in naive mice in the D context (Figure 3A, left and

center). The number of reward locations visited per session

increased throughout the sessions (Figure 3A, right), confirming

place reinforcement. The time to goal (Figure 3B, left) and dwell

time (Figure 3B, center left) decreased accordingly, while

maximal speed increased (Figure 3B, center right). Finally, the

proportion of U-turns decreased (Figure 3B, right), indicating

that mice learned to optimize their trajectories and reduced the

motor cost associated with U-turns.23

This behavioral learning was associated with a modification

of VTA pDAn dynamics. The proportion of pDAns with a firing

rate significantly higher than baseline (STAR Methods)

increased with the training sessions (Figure 3C, left). Early in

learning, when the behavior is still dominated by spontaneous

locomotion, phasic pDAn firing was sometimes observed at

the time of the ICSS (Figure 3C, top right), but not in every

neuron (Figure S4A), and was never observed during the dwell

time. In contrast, at the end of learning, increased pDAn activ-

ity appeared at a specific time point during the dwell time (Fig-

ure 3C, bottom right). The time-locked increase in pDAn firing

and the increase in the number of trials with learning did not

result in an overall (session-wide) increase in pDAn firing fre-

quency (Figure 3D, left) nor in a shift of pDAn firing pattern to-

ward increased bursting overall32,33 (i.e., there was an in-

crease from naive mice to first sessions but not from first

session to last session), as estimated with the percentage of

spikes within bursts (%SWB; STAR Methods; Figure 3D, right).

Hence, early phasic activity in DA neurons did not rely on addi-

tional spikes or on increased burstiness but, rather, on dy-
Figure 3. Early VTA and OFC activities emerge with learning

(A) Left: schematic of learning in the D context with trajectory examples from ses

along learning (repeated-measures ANOVA, F(9,30) = 62.6, p < 0.001). Dots and ve

the number of rewards per individual (n = 31 animals).

(B) Same as (A), from left to right: time to goal (repeated-measures ANOVA, F(9,30) =

F(5,30) = 7, p < 0.001), maximal speed (repeated-measures ANOVA, F(9,30) = 48.6

p < 0.001) along the learning sessions. Dots and vertical bar are mean ± SEM.

(C) Left: proportion of pDAnsmodulated in between two locations along learning s

plots, centered on LE, for a VTA pDAn early in learning (top) and another at the e

(D) Average firing frequency (left) and% spikes within bursts (%SWB, right) throug

stage; first: sessions 1–5; last: sessions 6–10). Modification of firing frequency, AN

Horizontal bars represent the means.

(E) Left: proportion of OFC q power (7–14 Hz) modulated in between two locatio

examples of OFC time-resolved PSD centered on LE for one OFC early in learnin

(F) Mean Z-scored power of Fourier transform spectra of OFC during open-field ha

n = 20) and at the end of the learning (Det end, green, n = 19). Data are presented

box) shows a significant difference between the three conditions (ANOVA, F(2,6
(Student’s t test, T(43) = 2.80, p = 0.015, D = +0.003) and last (paired Student’s t te

difference between first and last sessions (Student’s t test, T(43) = 1.22, p = 0.23

***p < 0.001,**p < 0.01,*p < 0.05, n.s. p > 0.05.
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namic re-organization of spikes toward bursting activity at

behaviorally relevant times (Figures S4B and S4C). Similarly,

the total number of OFC EFPs in which time-locked q oscilla-

tion power was higher than baseline increased with learning

(Figure 3E, left; Figure S4D). These q oscillations emerged

consistently around the same time; i.e. just after the end of

the dwell time, after learning (Figure 3E, right; Figure S4E).

Compared with power spectra from naive animals undergoing

a habituation (Hab) session (Figure 3F) to the open field, total q

power increased in the first and last sessions of the D context

compared with naive animals, but no difference was observed,

on average, between the first and last sessions. Hence, q os-

cillations increased early in learning and reorganized to time

lock at mouse departure while learning progressed. By

contrast, no change in PFC oscillatory activity was observed

throughout learning, as found at the end of the D context (Fig-

ure 2). Overall, during learning in the D context, optimization of

trajectories and speed profiles was associated with reorgani-

zation of VTA DAns firing toward time-locked bursting during

dwell time and of OFC activity toward time-locked q oscilla-

tions when animals accelerate.

Early phasic activity of VTA DA cells, together with
frontal firing and oscillations, forms a distributed signal
for outcome discrepancy and expectations
Learning theories propose that behavior, and underlying brain

activity, reorganize when unexpected outcomes occur; the

discrepancy between received and expected reward (the RPE)

may be used by animals to update their internal representa-

tions.34–36 This RPE is thought to be computed in mesocortico-

limbic areas,9,37,38 most notably by VTA DA cells,6 but signals

related to evaluation of outcomes are also present in the frontal

cortex.39 Alternative interpretations, such as signaling outcome

expectancy or prediction, may account for observed increases

in neural activity associatedwith reward delivery.40We thus eval-

uated VTA, OFC, and PFC activities during expected rewards,

unexpected rewards, and omissions. This allowed us to disen-

tangle the direct effect of the ICSS on mesocortical activity

from the learned reward representation. Early bursting phasic
sion 1 (top center) and session 10 (bottom center). Right: number of rewards

rtical bar are mean ± SEM across subjects. Gray lines indicate modifications of

27, p < 0.001), Dt (only defined for sessions 5–10, repeated-measures ANOVA,

, p < 0.001), and proportion of Uts (repeated-measures ANOVA, F(9,30) = 20.7,

essions (n = 10 sessions) (c2 test, c2 = 300, p < 0.001). Right: examples of raster

nd of learning (bottom).

hout learning in the D context (Hab: open field without ICSS prior to the learning

OVA, F(2,115) = 1.8, p = 0.18; same for%SWB: ANOVA, F(2,115) = 3.12, p = 0.048.

ns along learning sessions (c2 test, c2 = 44.5, p < 0.001 across units). Right:

g (top) and for the same OFC at the end of learning (bottom).

bituation (Hab; black, n = 21; STARMethods), early in learning (Det first, purple,

as mean ± SEM across subjects. Power in the q-band frequency (7–14 Hz, gray

5) = 3.94, p = 0.024), with differences between the Hab session and the first

st, T(22) = -2.98, p = 0.02, D = +0.002) sessions of the D context. There were no

).



A B C Figure 4. VTA, OFC, and PFC activities

following expected reward, unexpected

omission, and unexpected reward

(A) From top to bottom: VTA pDAn normalized firing,

OFC q oscillation power, OFC normalized popula-

tion firing, PFC d oscillation power, and PFC

normalized population firing, centered on expected

reward delivery upon LE at the beginning of the P

context. Data are presented as mean ± SEM across

units (for spiking) and across subjects (for oscilla-

tions). ICSS artifacts masked spikes from OFC and

PFC population firing and induced a deflection in

OFC and PFC oscillations, so the time periods cor-

responding to ICSS duration were not analyzed for

these signals (gray shade; n.t. indicates that the time

point was not tested).

(B) Same as (A), centered on unexpected omission

of reward delivery upon LE at the beginning of the P

context.

(C) Same as (A), centered on unexpected reward

delivery upon random ICSS in the home cage,

before the beginning of the conditioning. Red, sig-

nificant increases; gray, ns activity; light blue, sig-

nificant decreases. The timescales and ordinates

are indicated for each line on the right and are

identical for the three conditions shown on the same

line.

n.s. p>0.05
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activity in pDAns at the beginning of the P context occurred dur-

ing the dwelling period (Figure 4A, top row; Figure S5A), as

described previously for the end of the D and P contexts (Fig-

ure 2). Importantly, this increased DA activity was observed

even when the ICSS reward was unexpectedly omitted at the

beginning of the P context (Figure 4B, top row; Figure S5A) but

did not appear, on average, after an unexpected, random stimu-

lation reward in the home cage (Figure 4C, top row; Figure S5A,

but see Figure S4F for examples of pDAns responding or not re-

sponding to random stimulation). This is a clear indication that

early phasic activity at the beginning of the trial is not generated

as a response to the previous stimulation reward. Rather, it is

related to expectation of the upcoming reward.35,41 In this frame-

work, DA cells not only signal the difference between actual and

expected reward but also integrate the (discounted) expectation

of future rewards predicted by the current state and actions of

the animal.6 Our results are thus consistent with pDAns

computing a temporal difference (TD) RPE at two characteristic

time points: during the ICSS (or at the omission time) and during

the early phasic activity (prediction of the next ICSS). Alterna-

tively, early phasic activity may also relate to invigoration of the

next movement.20,21 The decreased pDAn activity observed

right after random stimulation in the home cage further suggests

that early phasic activity in pDAns occurs specifically upon
learning of the self-paced actions. More-

over, pDAn activity decreased at the time

of the expected ICSS (but not at the time

of the early phasic activity) during unex-

pected omissions (compared with baseline

and with the expected ICSS condition; Fig-

ure 4B, top row; Figure S5A, right), consis-
tent with pDAns computing a TD RPE at the time of the ICSS and

at the time of the early phasic activity.5,35,42

Likewise, in the OFC, neither the increased power of q oscilla-

tions when mice accelerate nor the increased firing during dwell

time were triggered by the previous stimulation reward (Fig-

ure 4A; Figure S5B). Indeed, both were observed during omis-

sion trials, and no difference was observed between the ICSS

and omission conditions (Figure 4B; Figure S5B). Furthermore,

unexpected, random stimulation rewards did not generate q os-

cillations (Figure 4C; Figure S5B), indicating specific involvement

of the OFC in active behavior. An unexpected reward increased

OFC population firing (Figure 4C; Figure S5B, right), suggesting

an influence of expected and unexpected outcomes on OFC

firing activity.

Finally, in the PFC (Figure 4, fourth and last rows), unexpected

reward omission induced d oscillations and increased population

firing (Figure 4B; Figure S5C). Hence, doscillations and increased

firing in the PFC, which were observed in the P context (Figure 2)

but not in the D context (Figure 4A), were already present in the

first omission trials. By contrast, unexpected stimulation reward

decreased d oscillations (Figure 4C, fourth row; Figure S5C)

and increased population firing (Figure 4C, last row; Figure S5C),

suggesting involvement of the PFC specifically following errors;

i.e., unexpected outcomes (either reward or omission).
Cell Reports 42, 112523, May 30, 2023 7



A B C

D FE G

H I J

Figure 5. Complementary encoding of choices, value, and cost by the VTA, OFC, and PFC

(A) Left: schematic of the three Gs mice are facing in the P context. Right: proportion of choices for the location associated with the highest reward probability for

each G (G25: 100% vs. 50%, G50: 100% vs. 25% and G100: 50% vs. 25%) at the end of the P context (n = 31 mice). Vertical bars represent SEM across subjects.

(B) Bayesian information criteria (BICs) computed using three models of choice selection at the end of the D context (left) and of the P context (right). Red boxes

surround the smaller BIC, indicating the best fit. V model: softmax with b only (value sensitivity model), C model: softmax with k only (kmodel), U model: softmax

with b, k, and 4 (4 model) (STAR Methods).

(C) Normalized firing frequency (a.u.) of pDAns at the end of the P context, centered on LEs. Trials are sorted according to the next chosen location. A gray box

indicates the quantification window.

(D) Coefficients of the GLM of VTA pDAn firing in the P context: Tc, reward probability of the goal (Pt+1), reward probability of current location (Pt), and outcome

delivered at current location (categorical variable, ICSS or omission). Vertical bars represent SEM across units.

(E) Quantification of pDAn firing frequency according to the reward probability of the goal (ANOVA, F(2,291) = 16.81, p = 0) when animals received the ICSS or not

(Ø, purple, ANOVA, F(1,291) = 13.76, p = 0.0002). Data are presented as mean ± SEM across units.

(F) Quantification of pDAn firing frequency according to the reward probability of the goal in the different Gs (G25: 100% vs. 50%, G50: 100% vs. 25%, and G100:

50% vs. 25%). Horizontal bars represent the means.

(G) Phasic encoding of uncertainty by pDAns (activity related to 50%, p50, versus 100%, p100, reward probability of the chosen locations) against4 from themodel

(R2 = 0.14, p = 0.006).

(legend continued on next page)
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Overall, we observed, in VTA, OFC, and PFC firing and oscilla-

tions, distributed encoding of errors related to unexpected re-

wards and omissions, which is likely used for behavioral learning.

Furthermore, we ruled out that the mesocortical dynamics

observed during the dwell time were triggered by the preceding

ICSS because they were observed after omission but not after

random ICSS.

Distributed and complementary representations of
decision parameters in mesocortical structures
Because the mesocortical dynamics associated with decisions

were not solely caused by the immediately preceding reward,

we searched for a neural signature of the upcoming outcome,

which is thought to guide self-paced decisions.1,2 By modeling

howchoices depended on the reward probability andU-turnmo-

tor requirements, we determined which task parameters actually

affected animals’ choices.

Becausemice could not receive two consecutive rewards at the

same location, they had to choose between the two remaining lo-

cations (Figure 5A, left). We expressed this succession of binary

choices in the P context as the proportion of exploitative choices

(i.e., option with the highest reward probability) in the following

three gambles (Gs): G25 (100% vs. 50%), G50 (100% vs. 25%),

andG100 (50%vs. 25%) rewardprobabilities (Figure 5A).Mice dis-

played a preference for the highest reward probability in G100 (p =

0.02) andG50 (p< 0.001) but not inG25, inwhich theyequally chose

the locations associated with 50% and 100% reward (p = 0.20).

This replicates our previous studies and can be explained by

miceassigningapositivevalue touncertainty,which iszero forpre-

dictable outcomes (here, 100% probability) and maximal for the

most unpredictable outcome (50% probability).24,25 We used a

model-based analysis to disentangle the influence of expected

reward and uncertainty (variance), which co-vary in this setup,

on choices. Because choice behavior may differ between mice

(Figures S6A and S6B), wemodeled individual data using alterna-

tive models of decision-making.24 Value-based models imple-

menting the hypothesis that mice are guided by their outcome

expectations explained the choices better than models corre-

sponding to random choices (Figure S6C). Compared with the D

context, in which choices could be explained by the motor cost

(negative value of U-turns [k], favoring forward trajectories), in

the P context, animals added an uncertainty bonus (4) to the ex-

pectedrewardasa totalpositivevalue,discountedbyk (Figure5B).

Model comparison24 (STARMethods; Figure S6C) confirmed that

4 explained choices better than a saturating value function (in

which value stops increasing with reward probabilities above

50%). Because animals choose according to outcome properties,

this further suggests that behavior is goal directed in this task.22,24

We thus assessed the encoding of expected reward, uncer-

tainty, and k in mesocortical activity. We did not find any encod-
(H) Same as (C), left, for normalized PFC d (3–6 Hz) power (a.u.) (mean d power ove

p = 0.93).

(I) Same as (C) for PFC normalized population firing frequency (a.u.).

(J) Left: same as (D) for PFC normalized population firing frequency, with predict

location (categorical variable, ICSS or omission). Right: mean PFC firing over 0.3–0

0.006. Data are presented as mean ± SEM.

***p < 0.001,**p < 0.01,*p < 0.05, n.s. p > 0.05.
ing of k in any of the recordings (Figure S7A). By contrast,

VTA pDAn activity scaled with the expectation of future rewards

(Figure 5C); i.e., the early phasic activity was minimal when the

next location was p25 andmaximal when going for p100. Because

early phasic activity in pDAns was not caused by the previous

ICSS but by learning (Figures 3 and 4), we assessed whether

the scaling of VTA pDAn activity depended on factors such as

prior delivery/omission of ICSS (Rt), the value of the current loca-

tion (Pt), and the value of the next location (Pt+1). In a general

linear model (GLM; Figure 5D) using these variables as predic-

tors, VTA pDAns depended mostly on Pt+1, was to some extent

influenced byRt, but did not depend on Pt. Sorting VTA pDAns by

prior reward and future location value (Figure 5E; Figures S7B

and S7C) confirmed that both effects were independent, with

the scaling of VTA pDAn activity as a function of (Pt+1), consistent

with an expectation term.35,43 pDAn response did not depend on

the current location; e.g., there was no difference when the ani-

mal approached the p50 point from either p25 or p100 (Figure 5F),

further confirming that animals’ choices are guided by outcome

expectation.

We thus further assessed whether DA cells also integrated the

bonus value of uncertainty by computing the ratio between the

VTA pDAn activity encoding of the most uncertain option (p50)

and of the most certain option (p100). This p50/p100 ratio corre-

lated with 4 (Figure 5G), which measures how much an animal

values uncertain options. This suggests that VTA DAns integrate

uncertainty with reward into a common currency44 to promote

the choice of uncertain options.24

PFC d oscillation power did not scale with the expectation of

reward uncertainty (Figure 5H). We analyzed PFC population

firing (Figure 5I) during dwell time with a GLM similar to the one

used for VTA pDAns (with Pt+1, Pt, and Rt), which was not signif-

icant against a constantmodel (p = 0.277). In contrast, a GLMus-

ing the expected reward uncertainty ðPt+1 3½1 �Pt+1�Þ of the next
location showed that PFC firing depended on reward uncertainty

but not on other predictors (Figure 5J). Accordingly, PFC popu-

lation firing during dwell time was maximal when mice moved to-

ward the location associated with the most uncertain (50%)

reward probability (Figure 5J, S7D, and S7E). Furthermore,

PFC population activity was enriched with the encoding of ex-

pected uncertainty (Figure S7F). Hence, contrary to PFC d oscil-

lations, which reflected prediction errors for preceding out-

comes (Figure 4), population firing may signal the expected

uncertainty of the upcoming outcome or at least a prediction

of the most uncertain outcome. Finally, we did not find evidence

of OFC q oscillations (or firing) to encode expected reward or

uncertainty (ANOVA F(2) = 0.3, p = 0.97). Therefore, the internal

representations of reward outcomes influencing animals’ self-di-

rections (i.e., expected reward and uncertainty) were repre-

sented in a complementary way by the VTA and PFC activities,
r 1–1.5 s after LE according to the probability of the goal: ANOVA, F(2,60) = 0.07,

ors: reward uncertainty of the goal (st+1), Pt, and outcome delivered at current

.8 s after LE according to the probability of the goal: ANOVA, F(2,147) = 5.34, p =
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Figure 6. Distributed encoding of self-initiation, invigoration, and pacing by the OFC, VTA, and PFC

(A) Top: example of an instantaneous speed profile for one mouse in the D context. Gray boxes indicate ICSS durations, the green box the Dt, and red dots the

maximal speed. Bottom: example of pDAn firing frequency in a D context session, with trials sorted from the smallest to the highest early phasic frequency (left)

and relation between the time to goal and early phasic frequency (right), with each dot representing a trial.

(B) Example of firing frequency for another pDAn in the D context, with trials sorted from the smallest to the highest phasic activity frequency after trial initiation

(left), and the instantaneous speed profile associated for each trial (right), with red dots indicating the maximal speed.

(C) Relation between the Ts within trials and the phasic frequency for the cell shown in (B).

(D) Distribution of correlation coefficients (R2) between pDAn phasic frequency and time to goal (black) or Ts (red) in the D context for 38 cells. Data are presented

asmean ±SEM across units. Surrogate data are generated by computing correlations with shuffled firing frequency and time to goal (or Ts). Kolmogorov-Smirnov

test of data versus surrogates: p < 10�3 for time to goal and Ts.

(E) Distribution of R2 for correlations between OFC q (7–14 Hz) power and Ts in the D context. Data are presented asmean ±SEM across subjects. Surrogate data

are generated by computing correlation with shuffled q power and Ts. Difference with surrogates: Kolmogorov-Smirnov test, p = 0.62.

(F) Left: example of relation between the Dt and the OFC population firing frequency in one mouse at the end of a D context session, with each dot representing a

trial. Right: distribution of R2 for correlations between OFC population firing frequency and Dt. Data are presented as mean ± SEM across units. Surrogate data

are generated by computing correlation with shuffled firing frequency and Dt. Difference with surrogates: Kolmogorov-Smirnov test, p < 10�3.

(G) Same as (F) for PFC population firing frequency and time to goal. Difference with surrogates: Kolmogorov-Smirnov test, p < 10�3.

***p < 0.001,**p < 0.01,*p < 0.05, n.s. p > 0.05.
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Figure 7. Behavior-dependent synergy or antagonism between DA VTA neurons and frontal cortices

(A) Manipulation experiment using the inhibitory opsin Jaws expressed unilaterally in the VTA of DATiCRE mice using the CreLox strategy. Control animals were

transduced with a YFP vector. Light was applied continuously for 500 ms, 100 ms after the end of the previous ICSS (STAR Methods), to suppress early phasic

pDAn activity. Mice underwent, after the end of the D context, a succession of light OFF and ON sessions.

(B) Effect of light ON stimulation compared with OFF on the number of transitions (i.e., rewards obtained) (interaction between light and group conditions:

F(1,13) = 6.06, p = 0.03, paired Student’s t test in the Jaws group: T(8) = 2.54, p = 0.03, D = -13.2). Horizontal bars represent means.

(C) Effect of light OFF or light ON stimulation on instantaneous speed profile. Data are presented as mean ± SEM across subjects. A gray box indicates the ICSS

duration and a green box the light duration.

(D) Effect of light ON stimulations compared with OFF on the time to goal (left), Dt (center), and maximal speed (right). Time to goal: no interaction between light

and group conditions: F(1,13) = 1.73, p = 0.17, but paired two-sided Wilcoxon signed-rank test in the Jaws group: W(8) = 5, p = 0.04, D = 2.40 s; Dt: interaction

between light and group conditions: F(1,13) = 5.57, p = 0.03, paired two-sided Wilcoxon signed-rank test in the Jaws group, W(8) = 3, p = 0.0195, D = 0.17 s;

(legend continued on next page)
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respectively, while the OFC (Figure 4) encoded a more general

change in the task state.

Distributed correlates of self-initiation, invigoration,
and pace of goal-directed actions
After examining the internal representations directing decisions,

we then assessed the relation between circuit activity and the

execution (initiation and invigoration) of self-paced actions.

Each trial (Figure 1) is characterized by initiation of a movement

toward the next location (estimated by the dwell time) and a

strong acceleration (estimated by the time to maximal speed),

followed by a deceleration at the next location (Figure 6A, top).

Sorting the trials by ascending pDAn early phasic activity for

each neuron revealed a negative correlation with the time to

goal (Figure 6A, below) and the time to reach maximal speed

(Figures 6B and 6C); greater pDAn phasic activity before self-

initiation correlated with shorter time to goal because of a shorter

time to reach the maximal speed. This was confirmed by the dis-

tribution of correlation coefficients (R2) for all neurons (Figure 6D)

and by use of surrogate data, which ruled out the possibility that

these correlations were spurious (Figure 6D; STAR Methods).

In contrast, we found no significant correlation between

cortical oscillation amplitude and successive behavioral timing,

neither for OFC q nor for PFC d oscillations (Figures 6E and

S7G). This might be due to the temporal order of neural oscilla-

tions and behavioral events; the increase in OFC q and in PFC

d generally occurred after self-initiation (Figures 2 and 4) and

thus may not be involved in this decision process. On the con-

trary, the increase in OFC population activity, which occurred

early in the trial, correlated positively with the dwell time, sug-

gesting involvement in self-initiation of the trial (Figure 6F).

Finally, PFC population firing correlated with the time to goal

but not with the dwell time or with the time to maximal speed

(Figure 6G). This indicates that additional variability in the overall

pace of the trial, which was not already due to earlier decisions

(Figure 1), may be encoded in the PFC. Overall, OFC, VTA, and

PFC firing activity synergistically encoded self-initiation, invigo-

ration, and pace of the goal-directed actions, suggesting a

sequential and distributed mechanism for self-paced decisions.

Synergy and antagonism between mesocortical
structures in self-paced decisions under uncertainty
We next investigated the causal involvement of the VTA and

PFC in selection (Figure 5) and execution of actions (Figure 6)
maximal speed: interaction between light and group conditions: F(1,13) = 5.43, p =

bars represent means.

(E) Left: effect of light ON stimulation comparedwithOFF on normalizedOFC q pow

are presented as mean ± SEM across subjects. A gray box indicates ICSS dura

Horizontal bars represent means.

(F) Schematic of the PFC inactivation experiment using a bilateral muscimol inf

following saline or muscimol infusion.

(G) Effect of muscimol on the time to goal (left) and proportion of Uts (right) compar

12, p = 0.0171, D = +1.11 s; Uts: paired Student’s t test, T(12) = 3.79, p = 0.0026

(H) Left: effect of muscimol on repartition between the three locations compare

p = 0.003, D = -1.99%). Data are presented as mean ± SEM across subjects. Righ

using the softmax based on the three parameters b, 4, and k (STAR Methods) (p

Horizontal bars represent means.

***p < 0.001,**p < 0.01,*p < 0.05, n.s. p > 0.05.
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by inactivating these structures during the task. To specifically

manipulate VTA DAns, we expressed an inhibitory halorhodop-

sin variant (Jaws45) in DATiCRE mice using a Cre-dependent vi-

rus strategy (Figure 7A, left). We confirmed expression of the

opsin in Jaws-transduced mice with immunochemistry and

verified that 500-ms light pulses (520 nm) at 0.5 Hz reliably

decreased the activity of VTA DAns using patch-clamp record-

ings (Figure S8A). Because the amplitude of the early phasic

activity in VTA pDAns correlated with movement invigoration

(Figure 6), we specifically tested the effect of optogenetic inac-

tivation of VTA DAns at the time of the early phasic activity

(500 ms of continuous light starting 100 ms after the previous

ICSS; STAR Methods; Figure 7A, right). Optogenetic inhibition

on each trial in the D context decreased the number of transi-

tions (Figure 7B), which was due to an alteration of the speed

profile that started during illumination and lasted after its termi-

nation (Figure 7C). In particular, photo-inhibition of VTA DAns

delayed action initiation (increased dwell time; Figure 7D, cen-

ter) and decreased action vigor (decreased maximum of mean

speed; Figure 7D, right). None of these parameters were modi-

fied by light stimulation only in YFP-transduced DATiCRE mice

(Figures 7B and 7D). Moreover, random photo-inhibition of

VTA DAns in the home cage did not produce effects on speed

(Figure S8B), suggesting that VTA DAn inhibition did not just

slow speed regardless of motivation. Finally, we did not find

any effect of sessions with VTA DAn photo-inhibition on subse-

quent sessions without photo-inhibition, suggesting that DA in-

hibition affected motivation directly rather than through learning

(Figure S8C). These results causally implicate VTA DA cells in

motivation for ongoing, self-generated movements, energizing

movement as observed previously20,41 but also promoting

movement initiation21 toward rewards.

VTA DA cell photo-inhibition also affected OFC q oscillations

(Figure 7E, left), with a decrease in q oscillation power during

(but not after) photostimulation (Figure 7E, right). We found no ef-

fect of VTA DA cell photo-inhibition on other OFC oscillation fre-

quencies or on PFC oscillations. As OFC dynamics transitioned

from increased population firing to q oscillations at action initia-

tion (Figures 2C and 7E), VTA DAn photo-inhibition may have

directly or indirectly delayed q oscillations, with OFC q oscilla-

tions merely following the delayed action initiation. This latter

interpretation is consistent with the peak in OFC q power occur-

ring at 0.62 s (and a dwell time of 0.42 s) without light and 0.83 s

(with a dwell time of 0.67 s) under photo-inhibition.
0.03, paired Student’s t test, T(8) = 3.04, p = 0.016, D = -4.81 cm s�1). Horizontal

er (7–14Hz) (paired Student’s t test, T(6) = 2.63, p = 0.039,D = -0.097 a.u.). Data

tion and a green box light duration. Right: OFC q power during light duration.

usion at the end of the P context. Mice underwent a succession of sessions

edwith saline (time to goal: paired two-sidedWilcoxon signed-rank test, W(12) =

, D = -8.18%). Horizontal bars represent means across subject.

d with saline (effect on the p100 choice: paired Student’s t test, T(12) = 3.71,

t: effect of muscimol compared with saline on the fitted 4 parameter obtained

aired two-sided Wilcoxon signed-rank test, W(12) = 13, p = 0.0215, D = +0.54).
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The absence of observable effects of VTA DA cell photo-inhi-

bition on PFC dynamics is consistent with our electrophysiolog-

ical results suggesting that the PFC is not implicated in self-

initiation in the D context. In the P context, however, PFC

d oscillations and PFC firing frequency were correlated with

time to goal and reward uncertainty. We thus inactivated the

PFC bilaterally in the P context with local infusion of muscimol

(Figures 7F and S8D). PFC inactivation in the P context increased

the time to goal (Figure 7G, left) by increasing the dwell time and

decreasing the maximal speed (Figure S8E, center and right).

This resulted in a lower number of transitions (Figure S8E, left).

These results confirm our electrophysiological data showing en-

coding of time to goal by PFC population firing (Figure 5) and

suggest a role of the PFC in the overall pace of the action.

Surprisingly, muscimol in the PFC also decreased the percent-

age of U-turns (Figure 7G right). This was due to an altered

choice repartition on the three locations (Figure 7H, left) with a

decreased propensity to visit the location associated with the

highest reward probability (i.e., 100%). We thus fitted the transi-

tion function of each mouse with the computational model (Fig-

ure S8F) in the saline and muscimol sessions (see STAR

Methods and model U in Figure 5B). Under muscimol, animals

behaved as if their 4 was amplified (Figure 7H, right), with no

changes in b or k (Figure S8G). This increased 4 did not corre-

spond to an increase in residency on the 50% location but to a

decrease in residency on the 100% location because the repar-

tition on the rewarding locations arises from the sequence of bi-

nary choices in three Gs, which are not performed in equal pro-

portions. Again, PFC inactivation with local muscimol extends

our electrophysiological results; PFC population firing positively

encoded reward uncertainty, and PFC inactivation increased the

valuation of uncertainty, suggesting an inhibitory control of the

PFC on uncertainty-seeking.

DISCUSSION

By using a task in which mice perform stereotyped trials from

one rewarding location to another, we eliminated the require-

ment for an external stimulus to reiterate and time lock a spe-

cific behavior. Furthermore, the absence of a cue specifying

the direction or initiation of each trial produced variability in

action selection and execution, enabling correlation of

behavior with neural activity. This allowed us to assess how

self-generated actions arise from the contextual reorganiza-

tion of mesocortical dynamics; a distributed sequence of firing

and oscillations in the VTA, PFC and OFC jointly set the goal

(where to go), self-initiated the trial, and determined the vigor

and pace of the goal-directed action. This sequence was influ-

enced by the reward context (D or P) and correlated with

reward value and uncertainty, used to guide the animal’s

choices. Cortical oscillations and a distributed, transient in-

crease in firing emerged during learning as a reorganization

of existing dynamics, and all of these structures encoded pre-

diction errors about the outcomes. Such a sequence, rather

than being fixed, could incorporate the PFC or not, depending

on the reward context, and the PFC could act in synergy with

or antagonistically to the VTA in co-determining action selec-

tion or execution.
TheMFB ICSS plays a critical role in our experiments. It is used

as a reward surrogate, which allows us to focus our analysis on

the emergence of internally generated activity based on learned,

expected outcomes. ICSS has some advantage over natural re-

wards: it eliminates the need for food restriction and the associ-

ated satiation level, which could affect decisions, particularly un-

der reward uncertainty.46 In addition, because the time required

to process the ICSS is very short compared with food consump-

tion, mice engage in a rapid sequence of choices; many trials

could be obtained in a relatively short time. Whether our obser-

vations are specific to the ICSS or generalizable to all rewards re-

mains a question. ICSSmay have resulted in saturating the value

or learning functions, although model comparison favored an

interpretation of animals’ choices as uncertainty-seeking rather

than saturating value function. The electrical stimulation may

also have masked an increase in VTA DA cell activity by a

random ICSS or early in training (see ICSS-responding and

non-responding neurons in Figure S4). Other aspects of

VTA DA cell activity at the time of the ICSS were, however,

consistent with a classic RPE computation; pDAn activity is

decreased at the time of the expected reward during unexpected

omissions, whereas it is unchanged during expected ICSS,

which may indicate an inhibition matching the antidromic activa-

tion. More importantly, ICSS consequences must be considered

at two distinct time periods: during and after reward delivery (i.e.,

during the dwell time). Despite their temporal proximity, inherent

to the task structure, these two time periods display different ac-

tivities (i.e., reward activity and early phasic activity at the begin-

ning of a new trial), reflecting distinct processes. Early phasic ac-

tivity was observed after an expected and omitted ICSS but not

after unexpected ICSS, demonstrating that it is not generated by

the previous stimulation reward but, rather, emerges after

learning. It is unlikely that the short dip in activity during omission

leads to large rebound activity during the dwell time, as observed

following a longer aversive stimulus.47 Nevertheless, early

phasic activity was not purely independent of prior ICSS or omis-

sion because VTA DA activity in the P context incorporated pre-

vious reward and expectation of the future outcome. Similarly,

OFC and PFC activities were not solely the consequences of

the previous ICSS but of learning.

It remains debated whether DA RPE at action initiation (cor-

responding to the early phasic activity in our task) reflects a

learning signal19,48 and/or constitutes a motivational command

for the current trial.18,21,41,49 During the dwell time, early phasic

activity in VTA DAns scaled with the reward probability of the

future location. By contrast, activity at the time of the expected

reward decreased during reward omissions. These results

comply with early phasic activity in VTA DA cells encoding an

RPE. More importantly, early VTA DA phasic activity also corre-

lated with movement vigor (estimated by the time to maximal

speed and the time to goal). Furthermore, inhibition of this

phasic activity reduced the time to goal by decreasing the

maximal speed and delaying the action initiation but only in a

rewarding context (i.e., not in the home cage). Although we

cannot rule out that DA inhibition at trial initiation had a learning

effect, the absence of cumulative effects on subsequent ses-

sions favors the interpretation that VTA DA inhibition acutely

affected the ongoing trial. Thus, in contrast to the view that
Cell Reports 42, 112523, May 30, 2023 13



Article
ll

OPEN ACCESS
VTA DA activity is merely a passive reflection of action initia-

tion,19 we causally implicate RPE-like DA activity in the initiation

and vigor of goal-directed actions.18,21 We found no encoding

of speed or acceleration in the PFC or OFC (which encoded

the global pace and initiation time, respectively), suggesting

that the effect of VTA DA on locomotion vigor may be mediated

elsewhere, particularly in the nucleus accumbens.2,17 Acutely

inhibiting VTA DA cells delayed initiation so that VTA DA activity

would facilitate a switch between states21,49 (here, dwelling at a

reward location) and goal-directed locomotion. The transition

from increased spiking to q oscillations at action initiation are

in line with a state theory of the OFC,31,50 where the OFC com-

putes a ‘‘you are here’’ signal (within the task space) based on

external (cues) and inferred information. Action initiation would

constitute a change in the animal’s state, associated with

distinct OFC dynamics. This may also explain why OFC firing

and oscillations react to reward and omission to signal changes

between the different possible states of this task. However, in

our task, action initiation is neither caused by an overt, transient

stimulus cue nor by a hidden or inferred state (e.g., imposed

delay8). On the contrary, OFC firing computed in advance the

duration before state change (i.e., the dwell time), suggesting

active involvement in controlling the change between task

states (a ‘‘you wait here’’ signal) rather than a passive role in

monitoring task states. Because OFC firing, but not pDAn firing,

encoded the time of initiation in advance, while pDAn inhibition

delayed initiation, this suggests a core OFC-VTA computation

setting the self-initiation of a trial.

We did not see any correlation between OFC firing or q oscil-

lations and the expected reward or the reward uncertainty. This

in line with a general role related to task space but at odds with

accounts involving the OFC in economic value13 or confidence

(i.e., the inverse of uncertainty51,52). However, value or uncer-

tainty can be confounded with arousal and salience, and causal

involvement of OFC in economic choice is lacking.53 By contrast,

we found correlates of value and uncertainty in VTA DA cell firing

and of uncertainty/error processing in PFC firing. Encoding of P

rewards complies with RPE theories and has been described at

length.43,54,55 PFC d oscillations have also been implicated in

motivation.56 However, expected uncertainty was not aggre-

gated with expected value in PFC activity, contrary to observa-

tions in humans.57,58 This might relate to task differences rather

than species differences. Indeed, the PFC has been implicated in

selecting the strategy.15,31 In our task, we did not observe any

increased firing or any PFC d oscillations in the D context, sug-

gesting that the PFC ismostly needed in the P context; i.e. for de-

cisions under uncertainty or in the presence of prediction er-

rors.59,60 Because mice used uncertainty to guide their

decisions in the P context, the PFCmay compute decision-guid-

ing heuristics that depend on uncertainty rather than uncertainty-

modulated values per se.

Inhibiting the PFC with a local infusion of muscimol led to an

increase in uncertainty-seeking, suggesting an inhibitory influ-

ence of the PFC on uncertainty-biased choices. Because DA

generally has a positive influence on uncertainty-seeking,24,61

this suggests antagonistic influence of the VTA and PFC on

the motivation induced by reward uncertainty. This might

reflect a difference between how model (or belief)-based and
14 Cell Reports 42, 112523, May 30, 2023
model-free control may treat uncertainty. In the P context, the

uncertainty associated with the reward is known by the ani-

mals; i.e., it is a form of expected uncertainty.62 In the simplest

form of curiosity, expected uncertainty or variability may have a

positive motivational influence in the form of a bonus added to

the expected value by DA cells to promote exploration of un-

predictable options.24,63 By contrast, in deliberative strategies

putatively implicating the PFC, the known, expected uncer-

tainty may be treated as uninformative noise that has to be dis-

carded from the decision strategy.62 Hence, expected uncer-

tainty may be incorporated by VTA DAns into value to

promote model-free exploration and encoded by the PFC to

favor model-based exploration, thus opposing model-free un-

certainty-seeking.

Strikingly, the VTA and PFC had opposite influence on uncer-

tainty-related choices but synergistic influence on the pace of

actions. Suppressing the early phasic activity in pDAns and in-

hibiting the PFC similarly decreased the number of transitions.

More work is needed to dissect whether PFC-DA interactions

constitute sequential, recurrent, or independent computa-

tions29,64,65 in ongoing, self-generated decisions. However,

we suggest that this circuit presents a flexible organization as

described for invertebrate circuits;66 depending on the reward

context, thePFCmayflexibly integrate the VTA-OFCcore circuit

in charge for action initiation, adding uncertainty-based compu-

tations to the distributed sequence. In the same vein, the emer-

gence of these activities with learning followed a reorganization

of existing circuit dynamics. Indeed, with the completion of

learning, a combination of bursts by DA cells at each trial, with

an increase in the number of trials, could have resulted in an

overall increase in pDAn firing frequency, butwedid not observe

any change. Hence, early phasic activity in DAns did not rely on

additional spikes but, rather, on a dynamic re-organization

toward time-locked bursting activity. This increase in early DA

activity also correlated with locking of q oscillations in the

OFC. This suggests that the characteristics of the VTA-OFC-

PFC (i.e., distributed but distinct contributions to learning and

decisions) may rely on aligning distributed dynamics at relevant

timings rather than on increases in activities of separate mod-

ules, each computing a decision variable. While this alignment

of mesocortical dynamics is usually forced by a stimulus, we

show here that it reorganizes even without a stimulus, resulting

in self-generation of goal-directed actions.

Limitations of the study
Using electrical stimulation as a reinforcer has significant advan-

tages, but the stimulation artifact blurs what is happening at the

electrophysiological level when the animal receives a reward.

Another limitation is with the treatment of stimulation reward;

even if what we observe seems generalizable to all rewards,

some specific mechanismsmay be at work. Finally, electrophys-

iological recordings are only obtained in a limited number of brain

regions, which cannot be considered the only regions involved in

the behavioral processes studied, nor can these regions be

thought of as being dedicated exclusively to performance

in the task. The role of these regions and the mechanisms

describedmust therefore be thought of as part of a global frame-

work and not as an exclusive framework.
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Jackson ImmunoResearch Cat# 711-225-152, RRID:AB_2340612
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donkey

Jackson ImmunoResearch Cat# 715-165-150, RRID:AB_2340813

Anti-chicken Alexa 488-conjugated Jackson ImmunoResearch Cat# 703-545-155, RRID:AB_2340375

Bacterial and virus strains
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Virus (AAV)

AAV5.EF1a.DIO.YFP This paper Provided by Institut de la vision,

Paris France

Virus (AAV)
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Glucose Sigma-Aldrich G8270

DPBS 10x Life Technologies 14200–067
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Sodium Acetate Sigma-Aldrich 57654611

Quinpirole Tocris 55397

Eticlopride Tocris 57266

Muscimol Tocris 0289

Deposited data

Raw and analyzed data This paper Table S1

Experimental models: Organisms/strains

Mouse: C57Bl/6Rj Janvier Laboratories, France SC-C57J-M

Mouse: C57Bl/6Rj DATiCRE Turiault et al., 2007 https://doi.org/10.1111/j.

1742-4658.2007.05886.x

DATicre maintained on a C57BL6/

J background
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Philippe

Faure (phfaure@gmail.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Data Availability: All the data that support the findings of this study can be found in the Source Data file provided with the paper. Raw

data are available from the corresponding authors.

Code Availability: All codes used to run the analysis are available from the authors upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Experiments were performed on adult C57Bl/6Rj DATiCRE and Wild-Type (Janvier Labs, France) mice. 64 male mice, from 8 to

16 weeks old, weighing 25–35 g, were used for all the experiments. They were kept in an animal facility where temperature (20 ±

2�C) and humidity were automatically monitored and a circadian light cycle of 12/12-h light-dark cycle was maintained. All experi-

ments were performed in accordance with the recommendations for animal experiments issued by the European Commission direc-

tives 219/1990, 220/1990 and 2010/63, and approved by Sorbonne University.

Experimental units correspond to

d N = 12 WT mice were implanted with VTA electrodes, 23 WT mice were implanted with bilateral OFC/PFC electrodes, 16

DATiCre mice were injected with opsins/YFP vectors, 13 WT mice were implanted with PFC cannulas.

d N= 31mice over the 35 (12 + 23) electrode-implantedmice, for whichwe have all the training sessions in all contexts, were used

for behavioral analyses and computational model (Figures 1, 3, and 5). 4 mice were discarded because of corrupted video

detection on some sessions.

d Baseline behaviors for DATiCre and cannulas-implanted groups were analyzed separately, to replicate the findings on WT (Fig-

ure 7).

d For bipolar electrodes, EFP signals were analyzed by mouse (N = 23 or less if signal was lost for a session). When both bilateral

signals were valid, they were averaged to have 1 OFC or PFC data per animal/session (Figures 2, 3, and 4). Population firings in

these structures were analyzed separately, yielding N = 46, or less if there was no spiking activity for a session (Figures 2, 4, 5,

and 6).

d For VTAmulti-electrodes, the experimental unit was the neuron (N = 136 throughout learning contexts) because averaging was

not always possible, since on some learning sessions there was no neurons for a given animal (Figures 2, 3, 4, 5, and 6).

METHOD DETAILS

AAV production
AAV vectors were produced as previously described using the cotransfection method and purified by iodixanol gradient ultracentri-

fugation.51 AAV vector stocks were tittered by quantitative PCR (qPCR)52 using SYBR Green (Thermo Fischer Scientific).
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Intracranial self-stimulation electrode and recording electrode implantation
Mice were anesthetized with a gas mixture of oxygen (1 L/min) and 1–3% of isoflurane (Piramal Healthcare, UK), then placed into a

stereotaxic frame (Kopf Instruments, CA, USA). After the administration of a local anesthetic (Lurocain, 0.1 mL at 0.67 mg/kg), a me-

dian incision revealed the skull which was drilled at the level of the Median Forebrain Bundle (MFB), the OFC, the PFC or the VTA.

Dental cement (SuperBond, Sun Medical) was used to fix the implant to the skull. A bipolar stimulating electrode for ICSS was

then implanted unilaterally (randomized) in the brain (stereotaxic coordinates from bregma according to mouse after Paxinos atlas:

AP -1.4 mm, ML ±1.2 mm, DV -4.8 mm from the brain). Bipolar recording electrodes were implanted in the lateral OFC (AP +2.6 mm,

ML ±1.5 mm, DV -1.7 mm from the brain) and the medial PFC (AP +1.65 mm, ML ±0.5 mm, DV -1.8 mm from the brain). Multi-elec-

trodes were implanted in the VTA (AP -3.15 to�3.25mm,ML ±0.5mm, DV -4.1 to 4.25mm from the brain). After stitching and admin-

istration of a dermal antiseptic, mice were then placed back in their home-cage and had, at least, 5 days to recover from surgery. An

analgesic, buprenorphine solution at 0.015 mg/L (0.1 mL/10 g), was delivered after the surgery and if necessary, the following recov-

ering days. The efficacy of electrical stimulation was verified through the rate of acquisition during the deterministic context (see

behavioral STAR Methods).

Virus injections
DATiCRE mice were anesthetized (Isoflurane 1–3%) and were injected unilaterally (randomized left/right side and ipsi/contralateral

side) in the VTA (1 mL, coordinates from bregma: AP -3.15 to �3.25 mm; ML ±0.5 mm; DV -4.55 mm from the skull) with an ad-

eno-associated virus (AAV5.EF1a.DIO.Jaws.eGFP 1.16e13 ng/mL or AAV5.EF1a.DIO.YFP 6.89e13 or 9.10e13 ng/mL). A double-floxed

inverse open reading frame (DIO) allowed to restrain the expression of Jaws (red-shifted cruxhalorhodopsin) to VTA dopaminergic

neurons.

Polyelectrodes
Hand-made multi-electrodes (2 bundles of 8 electrodes) were obtained by twisting eight polyimide-insulated 17 mm Nickel-Chrome

wires. The use of eight channels relatively close together allows for a better discrimination of the different neurons. Before implan-

tation and recording, the multi-electrodes were cut at suitable length and plated using a Platinium-PEG solution to lower their imped-

ance to 150–400 KOhms and improve the signal-to-noise ratio. The free ends of the multi-electrodes were connected to the holes of

EIB-18 (electrode interface board, Neuralynx) and fixedwith pins.Wemanufactured amicrodrive system (home-made 3D conception

and printing) consisting of amain body, on which ismounted the EIB, and a driving screw, with a sliding part design to contain the two

multi-electrodes. This microdrive allowed moving through the VTA in order to sample neuronal populations.

Bipolar electrodes
Hand-made bipolar electrodeswere obtained by twisting two Teflon-insulated (60 mm) Stainless Steel wires. Two configurations were

used. For the first one, the tips of the bipolar electrodes were cut so that they are spaced of less than 0.5 mm apart. For the second

one, the reference tip was wound around the recording one, at a distance of less than 0.5 mm from the recording endpoint. These

electrodes are designed so the two tips are oriented perpendicular to the dipoles formed by cortical pyramidal neurons. The first

configuration was used for OFC recording electrodes, and the second one for PFC recording electrodes. IntraCranial Self-Stimulation

(ICSS) electrodes were made as the second configuration with an 80 mm Stainless Steel wire. Bipolar electrodes were connected to

the EIB during the surgery, by fixing the free ends with pins.

Immunochemistry
After euthanasia, brains were rapidly removed and fixed in 4%paraformaldehyde (PFA). After a period of at least three days of fixation

at 4�C, serial 60-mm sections were cut with a vibratome (Leica). Immunostaining experiments were performed as follows: VTA brain

sections were incubated for 1 h at 4�C in a blocking solution of phosphate-buffered saline (PBS) containing 3%bovine serum albumin

(BSA, Sigma; A4503) (vol/vol) and 0.2% Triton X-100 (vol/vol), and then incubated overnight at 4�C with a mouse anti-tyrosine hy-

droxylase antibody (anti-TH, Sigma, T1299) at 1:500 dilution, in PBS containing 1.5% BSA and 0.2% Triton X-100. The following

day, sections were rinsed with PBS, and then incubated for 3 h at 22–25�C with Cy3-conjugated anti-mouse and secondary anti-

bodies (Jackson ImmunoResearch, 715-165-150) at 1:500 in a solution of 1.5% BSA in PBS, respectively. After three rinses in

PBS, slices were wet-mounted using Prolong Gold Antifade Reagent (Invitrogen, P36930). Microscopy was carried out with a fluo-

rescent microscope, and images captured using a camera and analyzed with ImageJ. In the case of optogenetic experiments on

DATiCRE mice, identification of the transfected neurons by immunohistofluorescence was performed as described above, with the

addition of 1:500 Chicken-anti-GFP primary IgG (ab13970, Abcam) in the solution. A Goat-anti-chicken Alexa Fluor 488 (1:500,

Life Technologies) was then used as secondary IgG. Neurons labeled for TH in the VTA allowed to confirm their neurochemical

phenotype, and those labeled for GFP to confirm the transfection success.

Intracranial self-stimulation (ICSS) bandit task
Behavioral set up

The ICSS bandit task took place in a circular open field with a diameter of 68 cm. Three explicit square-shapedmarks (13 1 cm) were

placed in the open field, forming an equilateral triangle (side = 35 cm). Entry in the circular zones (diameter = 6 cm) around each mark
20 Cell Reports 42, 112523, May 30, 2023
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was associated with the delivery of a rewarding ICSS stimulation. Experiments were performed using a video camera, connected to a

video-tracking system, out of sight of the experimenter. A LabVIEW (National Instruments) application precisely tracked and re-

corded the animal’s position with a camera (20 frames/s). When a mouse was detected in one of the circular rewarding zones, an

electrical stimulator received a TTL signal from the software application and generated a 200 ms-train of 0.5-ms biphasic square

waves pulsed at 100 Hz (20 pulses per train). ICSS intensity was adjusted, within a range of 20–200 mA, during training (see training

contexts) and then kept constant, so that mice would achieve between 50 and 150 visits per session (5min duration) for two succes-

sive sessions, and then kept constant for all the experiment. The constant motivational level insured by ICSS alleviated the need for a

stimulus to repeat the behavior. Mice with insufficient scores in the PS and DS (<40 visits despite increasing the intensity to a

maximum of 200 mA) were excluded.

Baseline behavior

Prior to the ICSS bandit task, three control sessions were performed. First, spontaneous neuronal activity was recorded in the mice

home-cages for 10 min. Second, neuronal activity was recorded while random ICSS were delivered to the mice in its home-cage, to

assess the direct effect of the stimulation onto neuronal activity. Third, behavioral and neuronal activity were recorded for 30 min,

while the mice were exploring the open-field for the first time (‘‘habituation’’, without the presence of the three rewarding locations).

Training context

The training consisted of two context s: the deterministic context (D) and the probabilistic context (P), consisting of 10 daily sessions

of 5 min for the DS and 10 min for the PS. In the DS, all zones were associated with an ICSS delivery (p = 100%). However, two

consecutive rewards could not be delivered on the same location, which motivates mice to alternate between locations. In the

PS, the zones were associated with three different probabilities (p = 25%, p = 50%, p = 100%) to obtain an ICSS stimulation. The

probabilities’ locations were pseudo-randomly assigned per mouse. Animals successively make the task in DS and then in PS.

Data acquisition per experimental group

For optogenetics experiments, the DATiCRE mice (n = 16) completed the training, followed by a schedule of 4 days of paired sessions

with photo-stimulation (ON) alternated with days without photostimulation (OFF). The averages of the ON and OFF days were

compared in a paired manner.

Optogenetics experiments

For optogenetic experiments on freelymovingmice, an optical fiber (200 mmcore, NA = 0.39, Thor Labs) coupled to a ferule (1.25mm)

was implanted just above the VTA ipsilateral to the viral injection (coordinates from bregma: AP -3.1 mm, ML ±0.5 mm, DV 4.4 mm),

and fixed to the skull with dental cement (SuperBond, SunMedical). The behavioral task began at least 4 weeks after virus injection to

allow the transgene to be expressed in the target dopamine cells. An ultra-high-power LED (520 nm, Prizmatix) coupled to a patch

cord (500 mm core, NA = 0.5, Prizmatix) was used for optical stimulation (output intensity of 10 mW). Optical stimulation during the

behavioral experiment was continuously delivered for 500ms, starting 100ms after animal’s detection in a location. The ON and OFF

schedule (OFF-ON-OFF-ON-OFF) was following the last week of deterministic training. The optical stimulation cable was plugged

onto the ferrule during 5 experimental sessions to prepare the animals and control for latent experimental effects.

Intracranial injections of muscimol
A solution of muscimol (TOCRIS) (0.5mg/mL) was infused in the PFC over 20–30 min before the beginning of the ICSS bandit task

experiment. The bilateral infusion of 0.4mL was performed at a rate of 0.2mL/min using a double injector (Univentor). Before each

experiment session, a double injection cannula (2.5 mm, 0.5 mm projection) was inserted into the implanted bilateral cannula guide

(length below pedestal 2.5mm). The injection cannula was connected to amulti-syringe pump (Univentor) that allowed saline or mus-

cimol injection. The saline and muscimol schedule (saline-muscimol-rest-saline-muscimol) was following the last week of probabi-

listic training. The injection system was plugged onto the cannula guide before 5 experimental sessions to prepare the animals and

control for latent experimental effects.

Electrophysiological recordings
All extracellular potentials recordings were performed using a digital acquisition system (Digital Lynx SX; Neuralynx) together with the

Cheetah software. Broadband signals from each wire were filtered between 0.1 and 9000 Hz and recorded continuously at 32 kHz.

Multi-unit activity recordings
To extract spike timing, signals were band-pass filtered between 600 and 6000 Hz and sorted offline. Spike clustering was cross-

validated by using both SpikeSort3D (Neuralynx) and custom-written MATLAB (The Mathworks) routines. The electrophysiological

characteristics of VTA neurons were analyzed in the active cells encountered by systematically moving down the multi-electrodes.

Local-field potential recordings
To extract low-frequency variations of extracellular potential, signals were low-pass-filtered below 300 Hz.

Population firing
To extract spike timing of the neuronal population, signals were band-pass filtered between 600 and 6000 Hz and sorted offline.

Because population firing originates from bipolar electrodes with only one recording wire, no clustering could be considered.

ICSS artifacts
Electrical stimulation of theMFB induced artifacts during the 200ms train of pulses. These artifacts could be clustered in themulti-unit

recordings and thus VTADA activity during the ICSS could be recorded, with the potential caveat that the spikes concomitant with the

0.5ms pulses were discarded. Population firing was not clustered, hence we did not consider population activity during the 200ms
Cell Reports 42, 112523, May 30, 2023 21



Article
ll

OPEN ACCESS
ICSS duration. This period is marked with a gray mask, e.g. in Figures 2 and 4, and the apparent dip in activity is only caused by the

removal of activity during the 200ms. Finally, the (filtered) effect of the ICSS artifact could not be removed from EFP recordings

without altering the wavelet transforms. Hence, we did not remove any signal, but did not analyze the wavelet transform during

the 200ms and 100ms before and after the train duration (400ms total) to avoid border effects. We thus only analyzed the ICSS period

for VTA DAn activity (in any condition), but not for OFC/PFC EFP or population firing.

Identification of DA cells
Extracellular identification of putative DA neurons (pDAn) was based on their location as well as on a set of unique electrophysiolog-

ical properties that characterize these cells in vivo: 1) a typical triphasic action potential with a marked negative deflection; 2) a char-

acteristic long duration (>2.0 ms) action potential; 3) an action potential width from start to negative trough >1.1 ms; 4) a slow firing

rate (<12 Hz) with an irregular single spiking pattern and occasional short, slow phasic activity. Putative GABA neurons were char-

acterized by a characteristic short duration of action potential from start to negative trough (<1.0 ms), and a high firing rate (>12 Hz).

D2 receptors (D2R) pharmacology was also used for confirming the DA neurons identification: after a baseline period (5 min) and a

saline (10 min) injection, quinpirole (1 mg/kg, D2R antagonist) was injected (30 min recording), followed by an eticlopride (D2R

agonist) injection (1 mg/kg, 10 min recording). Since most DA, but not GABA neurons, express inhibitory D2 auto-receptors, neurons

were considered as pDA neurons if quinpirole induced at least 30%decrease in their firing rate, while eticlopride restored firing above

the baseline. Nevertheless, as continuous D2 pharmacology could have affected both baseline DA neurons firing and decision-mak-

ing,67 we allowed the mice to recover two days after this experiment. We thus performed pharmacological confirmation (1) when first

encountering a putative DA neuron in a givenmouse or (2) at the end of theweek if at least one putative neuronwas present during the

behavioral experiment. Neurons were considered as pDAn only if they responded to the pharmacology, or if they presented electro-

physiological characteristics defined above and were recorded between two positive pharmacological experiments.

Ex vivo patch-clamp recordings
To verify the functional expression of Jaws, an AAV5.EF1a.DIO.Jaws.eGFP virus was injected into the VTA of 7 to 9-week-old male

DATiCRE mice. After 4 weeks, coronal midbrain sections (250 mm) were prepared as already described in 25. Briefly, slices were

transferred to a recording chamber continuously perfused at 2 mL/min with oxygenated aCSF, which contained (in mM): 125

NaCl, 2.5 KCl, 1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, 26 NaHCO3, 15 Sucrose, and 10 Glucose (pH 7.2, 325 mOsm). Whole-cell record-

ings were performed with a patch-clamp amplifier (Axoclamp 200B, Molecular Devices) connected to a Digidata (1550 Low Noise

acquisition system, Molecular Devices). Patch pipettes (4–8 MU) were pulled from thin wall borosilicate glass (G150TF-3, Warner In-

struments) using a micropipette puller (P-87, Sutter Instruments, Novato, CA) and filled with a KGlu-based intra-pipette solution con-

taining (in mM): 116 K-gluconate, 10-20 HEPES, 0.5 EGTA, 6 KCl, 2 NaCl, 4 ATP, 0.3 GTP, and 2mg/mL biocytin (pH adjusted to 7.2).

Optical stimulation was applied through the microscope with a 520 nm LED (CoolLED). Recordings were made in the voltage-clamp

(-60 mV, continuous photostimulation 1 s) or current-clamp mode (train of ten stimulations, 500 ms, 1 Hz). Signals were low-pass

filtered (Bessel, 2 kHz) and collected at 10 kHz using the data acquisition software pClamp 10.5 (Molecular Devices). All electrophys-

iological recordings were extracted using Clampfit (Molecular Devices) and analyzed with R.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral data analysis
Behavioral measures

For all groups of mice, the trajectory was smoothed using a triangular filter allowing the determination of speed profile, which cor-

responds to instantaneous speed as a function of time, and time of maximal speed within a trial. The following measures were

analyzed in the DS and compared in the PS, as well as in the DS for the OFF vs. ON Jaws experiment, or in the PS for the Sal vs.

Mus experiment: i) number of visits, ii) time-to-goal, iii) choice repartition (proportion of visits p25, p50 and p100), iv) percentage of

directional changes (nth visit = nth visit+2). Furthermore, the ICSS bandit task can be seen as a Markovian decision process. Every

transition between zones can be considered as a binary choice between two probabilities, since the occupied zone cannot be re-

inforced twice in a row. The sequence of choices per session is summarized by the proportional result of the sum of three specific

binary choices (or gambles, i.e., total visits zone 1/total visits zone 1 + 2). The three gambles (G) were named after the point on which

the mouse is positioned at the time of the choice: G25 = 100% vs. 50%, G100 = 50% vs. 25% and G50 = 100% vs. 25%.

Locomotor activity toward the rewarding locations was measured in terms of time-to-goal, dwell time and time to maximal speed.

Time-to-goal measures the duration between one location and the next one. The speed profile corresponds to the instantaneous

speed as a function of time (20 frames per s). The dwell time is defined as the duration between the end of the 200 ms period (cor-

responding to the eventual ICSS duration) in the last rewarding location and the moment when the animal’s speed is greater than

10 cm s�1. The time to maximal speed is the time at which the speed profile attains its maximal value. We compared general linear

regression models (GLM) of the time-to-goal with increasing number of explanatory variables (with Bayesian information criterion).

Best explanatory variables were whether the animal performed a U-turn, the dwell time, and the time to maximal speed (minus the

dwell time to remove its additive influence). We regularized the GLM for correlated terms using ridge regression, insuring that each

predictive variable exerted an uncorrelated effect on the time-to-goal. We finally checked that each parameter had a significant in-

fluence (p < 0.05) on the time-to-goal for each animal.
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Modeling

The location choice in these gambles reflects the balance between exploitative (choosing the most valuable option) and exploratory

(choosing the least valuable option) choices. With a softmax based decision-making model fitted in the laboratory, we computed

three parameters: the value sensitivity or inverse temperature (the power to discriminate between values in a binary choice), the un-

certainty bonus (the preference for expected uncertainty, considering the reward variance of every option in a binary choice) and the

motor cost to do a directional change (a decrease in the location value if it requires to go back to the previous location). Decision-

making models determined the probability Pi of choosing the next state I, as a function (the ‘‘choice rule’’) of a ‘‘decision variable’’.

Becausemice could not return to the same rewarding location, they had to choose between the two remaining ones. Accordingly, we

modeled decisions between two alternatives labeled A and B and used a softmax choice rule defined by PA =1/(1+e
�ß(vA-vB)) where

b is an inverse temperature parameter reflecting the sensitivity of choice to the difference between decision variables and Vi the value

of an option. The value V of an option is modeled as the expected (average) reward + expected uncertainty + U-turn cost.16,30 This

compound value is then nested in the softmax choice rule, given a 6*3 matrix that described the probability of a choice between A, B

andC (the three locations) depending on the two previous choices. As an example, in the probability to choose (A, B, C) after perform-

ing the sequence BA, the value is given by (0, pb +4pb*(1-pb)-k, pc + 4*pc*(1-pc)) while after the sequence CA the value is given by

(0,pb+4*pb*(1-pb),pc+4*pc*(1-pc) -k) (same for AB, CB and AC, BC). The free parameters of the model were fitted by maximizing the

data likelihood. Given a sequence of choice c = c1..T, data likelihood is the product of their probability (given by previous equation).68

We derived Bayesian Information Criterion from the likelihood and used it to compare the full model with simpler ones, i.e. a softmax

model in which choices only depend on expected value (4 and k = 0) and a softmax model in which choices depend on expected

value and motor cost (4 = 0).The winning model in the probabilistic setting included: i) a value sensitivity parameter (b) measuring

the trade-off between exploitative choices and random decisions, ii) a reward uncertainty bonus measuring howmuch animals value

uncertain options and iii) a motor cost (k) measuring the negative value of performing a U-turn,23,25 as mice rather than U-turns (Fig-

ure 1), in both contexts. As an alternative to uncertainty-seeking, we evaluated a saturating value function, in which value saturates

with reward probability: the value of the largest reward probability (p = 1) was set at 1-s, with s a saturation parameter comprised

between 0 (no saturation) and 0.5 (in which case the p = 0.5 and p = 1 options have the same value). We also checked that simpler

models (null model of random choice, null model with amotor cost, epsilon-greedy with constant exploration) did not provide a better

fit. We used the fmincon function in MATLAB to perform the fits, with the constraints that b ˛ ]0,10], 4 ˛ ]-1,5] and k ˛ ]0,5].

Statistical analyses

All statistical analyses were computed using MATLAB and Python with custom programs. Results were plotted as a mean ± s.e.m.

The total number (n) of observations in each group and the statistics used are indicated in figure legends. Classical comparisons be-

tween means were performed using parametric tests (Student’s T test, or ANOVA for comparing more than two groups) when pa-

rameters followed a normal distribution (Shapiro test p > 0.05), and non-parametric tests (here, Wilcoxon or Mann-Whitney) when

the distribution was skewed. Multiple comparisons were Bonferroni corrected. Probability distributions were compared using the

Kolmogorov–Smirnov (KS) test, and proportions were evaluated using a chi-squared test (c2). Unless stated, statistical analyses

of unit (spiking) activity implicitly assumed fixed effects across subjects rather than random effects.69 We checked that the results

on probability encoding by VTA DA cells, and uncertainty encoding by PFC population activities (Figure 5), as well as encoding of

locomotion variables (Figure 6) were robust after taking into account inter-subject variability, by using three kinds of surrogate ana-

lyses (see Figure S7). For results in Figure 5, we generated an ensemble (n = 10000) of ‘‘resampled animals’’ datasets by resampling

subjects from the original dataset with replacement (such than in any given ‘‘resampled’’ dataset, units from each animal may appear

multiple times or not at all), and checked that the ANOVA was generally significant, indicating that the statistics are robust and does

not depend exclusively on few neurons from one single individual. We also generated an ensemble (n = 10000) of ‘‘shuffled encoding’’

datasets, by shuffling the firing activities encoding the (25%, 50%, 100%) reward probability for every animal (so that for all units of a

given animal, neuronal activities are shuffled in the same way, e.g. 50% encoding becomes for example 25% encoding in the sur-

rogate). We then checked that ANOVA was generally not significant for these permutations, indicating that the results are driven by

reward encoding rather than by inter-individual differences (i.e dependencies between units recorded in the same animal level do not

produce high Type I error rates). For locomotion encoding (Figure 6), as the correlated variable (e.g. time to goal) was continuous, we

shuffled the firing activity for each neuron at the level of trials, computed the R2 distribution for a given repetition (n = 10000), and

obtained the confidence interval of the distribution by a jackknife method to assess whether the experimental R2 distribution signif-

icantly differed from the surrogate distributions.

Electrophysiological data analysis
Firing analysis

Spontaneous DA cell firing was analyzed with respect to the average firing rate and the percentage of spikes within bursts (%SWB,

number of spikes within bursts, divided by total number of spikes). Bursts were identified as discrete events consisting of a sequence

of spikes such that: their onset is defined by two consecutive spikes within an interval <80 ms and they terminated with an

interval >160 ms. Phasic activity is defined as spikes falling into bursts, while tonic activity comprises spikes outside bursts.

Peri-event time histograms (PETH) for normalized activity were constructed based on 1 ms-bins rasters, convolved with a Gaussian

kernel (100ms, using 50ms or 200ms did not change the results), divided by the neuron basal firing rate (to compare DA neurons with

firing rates from 1 to 10Hz). Normalized PETH were sorted according to the preceding event (reward or omission) in Figures 2 and 4,
Cell Reports 42, 112523, May 30, 2023 23



Article
ll

OPEN ACCESS
and to the probability of reward associatedwith the next location in Figure 5. Phasic activity from these PETHwas defined as the firing

rate during a 500ms time window (usually 300-ms-800ms after last location entry unless stated in the Results). We checked that the

results did not depend on the exact time window by systematically shifting the beginning (100ms–500ms) and duration (300ms–

800ms) of the time windows by 50ms bins. Encoding of reward uncertainty by PFC multi-unit activity was also assessed through

an enrichment analysis: we determined for which reward probability of target location the PFC population activity was the highest,

intermediate and lowest. PFC phasic activity was considered to encode uncertainty if it was highest for 50%, intermediate for 25%,

and lowest for 100% probability. The proportion of PFC activity encoding uncertainty was compared to expected proportion (there

are 6 possible orders when sorting activities related to 3 events, giving 16.7% as expected proportion).

Wavelet analysis

Because extracellular field potentials (EFP) are non-stationary signals, they are transformed offline using a Morlet wavelet transform

(center frequency = 0.6 and bandwidth = 1). This process is defined as the convolution product between the EFP signal and dilated

forms of wavelets normalized to 1.70 EFP signal was expressed in Z score units in Figure 2. For each channel, the Z score normal-

ization used the mean and the standard deviation from the 2s period preceding the location entry (LE). In Figures 4, 5, and 7, EFP

signal was also band-pass filtered in the q (7–14 Hz) or d (3–6 Hz) frequency band and normalized for each channel with the mean

power in each frequency band. The cross-spectra (cross-correlograms between OFC and PFC power spectra) in Figure S2 were

computed for brain regions of the same hemisphere and per animal. The wavelet coherence (normalized spectral covariance) be-

tween the EFP from the OFC and the one from the PFC was computed by smoothing the product of the two wavelet transforms

over time (window for time smoothing = 0.2s) and over scale (pseudo-frequency) steps (window for scale smoothing = 2 Hz).
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