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Abstract: In this paper, we tackle the problem of stabilizing singularly perturbed switched
affine systems. Even though efficient control strategies based on the solution of Linear Matrix
Inequalities (LMIs) have been presented in the switched affine systems literature, the presence of
the small singular perturbation parameter may introduce numerical difficulties in the solution of
these LMIs due to ill conditioning. Moreover, this parameter may be uncertain or its use in the
control law may not be practical. Here, we propose an LMI-based control design strategy that
avoids the conditioning issues and that also provides an estimation of the domain of attraction.
Furthermore, the resulting controller does not depend on the singular perturbation parameter.
The proposed method is illustrated on a numerical example.

Keywords: Control of switched systems, Switched affine systems, Stabilization of hybrid
systems, Singularly perturbed systems, Linear Matrix Inequalities.

1. INTRODUCTION

Switched Affine Systems (SAS) have been an interesting
topic of research in the past few decades (Liberzon, 2003).
Their dynamics can be described as follows: there is a finite
set of subsystems (or modes) and a switching law that
dictates at each time instant which one is the active mode.
Moreover, the dynamics of each mode are affine on the
system states. Their study is interesting from a practical
viewpoint since they are suitable for modeling systems in
different applications, including power converters.

Stabilization of SAS is challenging due to the fact that the
goal is usually to stabilize the system at an equilibrium
point which is different from the equilibrium of any indi-
vidual mode. In the SAS literature, some state-dependent
switching control laws have been proposed for stabilization
(Bolzern and Spinelli, 2004; Hetel and Bernuau, 2015;
Kader et al., 2018; Egidio et al., 2022). One important
feature of these methods is that control design is carried
out through the solution of Linear Matrix Inequalities
(LMIs), in a process that is numerically efficient when the
problem is well conditioned.

Many physical systems exhibit dynamics evolving in two
time scales. The difference in the time scales is usually
represented by the singular perturbation parameter ε
in the system model (Kokotović et al., 1999), which is
consequently ill-conditioned. For switched systems, taking
into account the time-scale separation between the slow
and fast dynamics is a very challenging problem. Moreover,
designing LMI-based control laws in this case is not
trivial due to the ill conditioning of the system matrices.
Singular perturbation theory is a mature tool for stability
analysis and control design for both linear and nonlinear
systems (Kokotović et al., 1999; Lizarraga et al., 2005;
Tognetti et al., 2020), including practical applications in

power electronics (Kimball and Krein, 2008; Ghanes et al.,
2014). These techniques have been extended to the case
of stabilization of singularly perturbed switched linear
systems in Deaecto et al. (2012). Stability criteria have
equally been proposed for singularly perturbed switched
systems with arbitrary switching laws in Rejeb et al.
(2018); Yang et al. (2020), and for a slow switched affine
system interconnected with a fast linear time invariant
system in Tang et al. (2022). Recently, in de Souza et al.
(2023), state-dependent control design for a subclass of
singularly perturbed SAS has been addressed. To the best
of the authors’ knowledge, however, the design of a state-
dependent controller for general singularly perturbed SAS
remains an open problem.

In this paper, we propose an LMI-based control design
strategy for the stabilization of singularly perturbed SAS.
Moreover, an estimation of the domain of attraction is
provided when only local exponential stability is guaran-
teed. Since, in practice, the parameter ε may not be well-
known or its use in the controller may not be desirable
(Tognetti et al., 2020), the proposed controller and domain
of attraction do not depend explicitly on ε. Moreover, we
provide an estimation of the upper bound of ε under which
the stability of the closed-loop singularly SAS is ensured.
Global stabilization conditions are also proposed.

The paper is structured as follows. In Section 2, we
describe the system and state the problem addressed here.
In Section 3, we give a generic stabilization result valid for
singularly perturbed SAS. Then, in Section 4, we present
the main result of the paper using the results obtained in
Section 3. The proposed technique is illustrated in Section
5 on a numerical example and then conclusions are drawn
in Section 6.



Notation: If v is a vector, then v(j) denotes its j-th com-

ponent. If M is a matrix, then MT denotes its transpose
and sym {M} := M + MT . If M is symmetric, then
M � 0 (resp. � 0) means that M is positive definite
(resp. semidefinite). The notation for negative definiteness
(or semidefiniteness) is analogous. Moreover, the minimum
(resp. maximum) eigenvalue of M is denoted as λmin(M)
(resp. λmax(M)). The notation E(M) := {η ∈ Rn :
ηTMη ≤ 1} is used to denote an ellipsoid in Rn, and
B(r2) := {η ∈ Rn : ηT η ≤ r2} denotes a ball of radius
r centered at the origin. The identity matrix in Rn×n
is denoted as In. The superscript i in M i is used as an
index. The symbol 0 can be used as the scalar zero or a
null matrix of appropriate dimensions, depending on the
context. The symbol ? in a symmetric matrix means that
the corresponding sub-matrix block can be inferred from
symmetry. The convex hull of a finite set V is denoted
as conv {V}. Given a set of real values {f(v) : v ∈ V},
let arg minv∈V f(v) := {v ∈ V : f(v) ≤ f(v′),∀v′ ∈ V}.
The interior of a region R is denoted as Int {R}. Given an
integer N , the unit simplex in RN is denoted as ∆N :=

{α ∈ [0, 1]N :
∑N
i=1 α(i) = 1}. Set IN is defined as IN :=

{1, 2, . . . , N}. Given a domain D ⊆ Rn and a function V :
D → R, ∂V/∂η := [∂V/∂η(1) ∂V/∂η(2) · · · ∂V/∂η(n)].

2. PROBLEM STATEMENT

Consider a singularly perturbed switched affine system
written as follows:{

ẋ = A11(u)x+A12(u)z +B1u

εż = A21(u)x+A22(u)z +B2u,

(1a)

(1b)

where x ∈ Rnx is the slow state, z ∈ Rnz is the fast
state, ε > 0 is a small parameter, and u ∈ Rm is
a control variable that can only belong to a finite set
V := {v1, v2, . . . , vN}. Matrices A11(u), A12(u), A21(u)
and A22(u) are functions of u. The following assumption
regarding V is made.

Assumption 1. conv {V} has nonempty interior and 0 ∈
Int {conv {V}}. 2

Remark 1. System (1) can be rewritten in the more famil-
iar form: {

ẋ = Ãσ11x+ Ãσ12z + b̃σ1

εż = Ãσ21x+ Ãσ22z + b̃σ2 ,

(2a)

(2b)

where σ ∈ IN denotes the switching function, Ãi11 =

A11(vi), Ã
i
12 = A12(vi), Ã

i
21 = A21(vi), Ã

i
22 = A22(vi),

b̃i1 = B1vi and b̃i2 = B2vi, ∀i ∈ IN . Moreover, under
Assumption 1, it can be shown using (Hetel and Bernuau,
2015, Prop. 1) that one can always pass from the repre-
sentation in (2) to the one in (1). 2

Define the full state η := [xT zT ]T ∈ Rn, where n = nx+
nz. Let us also define Aε(u) and Bε as:

Aε(u) :=

[
A11(u) A12(u)

ε−1A21(u) ε−1A22(u)

]
, (3)

Bε :=

[
B1

ε−1B2

]
. (4)

We address in this paper the use of state-dependent
switching laws of the form:

u(η) ∈ arg min
v∈V

ηTHv, (5)

with H a parameter to be determined. The closed-loop
system (1), (5), can be equivalently described as:

η̇ = Aε(u(η))η +Bεu(η). (6)

The closed-loop system (6) is a discontinuous system
(Cortes, 2008) and its solutions are considered here in the
Filippov sense (Filippov, 1988). Thus, to the system (1),
(5) we associate the differential inclusion

η̇(t) ∈ F(η(t)), (7)

where F(η) is the set-valued map defined by

F(η) = conv

{
Aε(ṽ)η +Bεṽ : ṽ ∈ arg min

v∈V
ηTHv

}
. (8)

Definition 1. The trajectory η(t) is a solution of (6) if it
is absolutely continuous in the interval [0, t1] ⊂ R for any
t1 > 0 and satisfies the associated differential inclusion
(7), (8) for almost all t ∈ [0, t1]. 2

Note that in the case of piecewise constant control inputs,
the existence of at least one solution of (7), (8) is guar-
anteed. This is because the obtained set-valued map (8)
is Lebesgue measurable, upper-semicontinuous, compact,
non-empty and convex (see Bacciotti and Rosier (2005)).

Definition 2. The origin is an equilibrium point of (1), (5),
if 0 ∈ F(0). 2

The statement of Definition 2 implies that η = 0 is an
equilibrium of the closed-loop system (6) if 0 ∈ conv {Bεv :
v ∈ V}. Note that this is implied by Assumption 1.

Definition 3. The origin of the closed-loop system (1), (5)
(or equivalently the associated differential inclusion (7),
(8)) is said to be locally exponentially stable if there exist
D ⊆ Rn with 0 ∈ Int {D}, κ1 > 0 and κ2 > 0, such that
for all Filippov solutions η(t) of (7), (8), with η(0) ∈ D,
‖η(t)‖ ≤ κ1e

−κ2t ‖η(0)‖, ∀t ≥ 0. If D = Rn, then the
origin is said to be globally exponentially stable. 2

Sufficient conditions for the local exponential stability
of systems modeled by a differential inclusion (7), (8),
are given by the existence of a strict Lyapunov function
V : D → R, with 0 ∈ Int {D}, V (0) = 0, V (η) > 0,
∀η ∈ D \ {0}, such that

sup
ς∈F(η)

∂V

∂η
ς < −2χV (η), ∀η ∈ D \ {0}, (9)

where χ > 0 is a desired decay rate.A sufficient condition
for global stability is obtained if (9) holds with D = Rn
and V (·) radially unbounded.

The difficulty in designing a controller for the stabilization
of (1) lies in the numerical issues induced by the small
parameter ε. This may pose a challenge in the LMI-based
techniques which are usually adopted in the SAS literature
(such as those used, e.g., in Bolzern and Spinelli (2004)).
Additionally, ε may not be well-known, or it may not
be practical to use it in the control law. In this case, it
is desirable that the controller does not depend on this
parameter, and as a result the control design strategy must
be carried out accordingly. The problem addressed in this
paper is summarized as follows.

Problem. Design an LMI-based ε-independent switching
law of the form (5) that ensures exponential stabilization
of the origin of the singularly perturbed switched affine



system (1) (or, equivalently, (2)), while alleviating the
numerical issues due to the presence of parameter ε.

3. SYSTEM STABILIZATION

In this section, we present some generic results concerning
the stabilization of the closed-loop system (1), (5), as well
as the estimation of the domain of attraction.

Firstly, note that, thanks to Assumption 1, we can write
conv {V} as a region in Rm delimited by nh hyperplanes
in the following manner:

conv {V} = {v ∈ Rm : hTq v ≤ 1, q = 1, . . . , nh}, (10)

where hq ∈ Rm, ∀q ∈ Inh
. This representation of conv {V}

will be useful throughout this paper for estimating the
domain of attraction.

Consider the next lemma, which provides an important
result that will be useful later on. It gives ε-dependent
conditions for the stabilization of the origin of (1). This
result is similar to others reported in the literature on
switched systems, such as Hetel et al. (2015) and Delpoux
et al. (2015). However, these works do not consider general
switched affine systems, differently from the current paper.

Lemma 1. Given a parameter χ > 0, assume that there
exist ρ > 0 and matrices Q = QT � 0 and Y ∈ Rm×n such
that:

sym {Aε(vi)Q+BεY }+ 2χQ ≺ 0, ∀i ∈ IN , (11)[
1 hTq Y
? Q

]
� 0, ∀q ∈ Inh

, (12)[
ρIn In
? Q

]
� 0. (13)

Then, the origin of the closed-loop system (1), (5), is
locally exponentially stable by choosing H = Q−1Bε in
(5). In addition, Ω = E(Q−1) is an estimation of the
domain of attraction that contains the ball B(0, 1/ρ). 2

Proof. Using (11) and considering P = Q−1, then:

2ηTPAε(vi)η+2ηTPBεKη+2χηTPη < 0,∀i ∈ IN , (14)

for all η ∈ Rn \ {0}, with K = Y P .

Define the set CV(K) := {η ∈ Rn : Kη ∈ conv {V}}. Using
Assumption 1 and continuity arguments, it can be seen
that CV(K) has nonempty interior. On the other hand,
using the Schur complement, (12) is equivalent to 1 −
hTq Y Q

−1Y Thq > 0, ∀q ∈ Inh
. It can be shown (Boyd et al.,

1994, Sec. 5.2.2) that this implies E(P ) ⊂ CV(K). Thus,

there exists α(η) ∈ ∆N such that Kη =
∑N
j=1 α(j)(η)vj ,

for all η ∈ E(P ). Substituting in (14) and taking into

account the fact that
∑N
j=1 α(j)(η) = 1:

N∑
j=1

α(j)(η)
(
ηTPAε(vi)η + ηTPBεvj + χηTPη

)
< 0, (15)

for every i ∈ IN and for all η ∈ E(P )\{0}. Since
α(j)(η) ∈ [0, 1], ∀j ∈ IN , then for each η there must

be at least one minimizer v∗j for which ηTPAε(vi)η +

ηTPBεvj∗ + χηTPη is negative. Choosing j = j∗ such
that vj∗ ∈ arg minv∈V η

TPBεv then guarantees that:

ηTPAε(vi)η + ηTPBεvj∗ + χηTPη < 0, (16)

for every i ∈ IN and for all η ∈ E(P )\{0}. In particular,
(16) is valid for i = j∗.

Consider the Lyapunov function V (η) = ηTPη. Since
∂V/∂η = 2ηTP and taking i = j∗, we obtain from (16):

∂V

∂η
(Aε(vj∗) η +Bεvj∗) < −2χηTPη, (17)

for all η ∈ E(P )\{0}. By considering H = PBε and noting
that F(η) is compact and convex:

sup
ς∈F(η)

∂V

∂η
ς < −2χV (η), ∀η ∈ E(P )\{0}, (18)

and therefore the origin is locally exponentially stable with
decay rate χ. Since Ω = E(P ) is a level set of V (η), then it
can be taken as an estimation of the domain of attraction.

Finally, LMI (13) implies that ρηT η − ηTQ−1η > 0,
∀η ∈ Rn. Thus, η ∈ B(1/ρ) ⇐⇒ ρηT η ≤ 1 =⇒
ηTQ−1η < 1 ⇐⇒ η ∈ Ω. Therefore, B(1/ρ) ⊆ Ω. �
Remark 2. From (11), one can see that stabilizability
of the pairs (Aε(vi), Bε), i = 1, . . . , N , is a necessary
condition for applying the results of Lemma 1. 2

Variable ρ has been included in order to offer a way to
maximize the size of the domain of attraction. Indeed,
this can be accomplished by minimizing ρ subject to the
constraints (11)-(13), ρ > 0, and Q = QT � 0, which
is a standard convex optimization problem. Alternatively,
one could also maximize the size of Ω by minimizing
log detQ−1, as in (Boyd et al., 1994, Section 5.2.2).

There are two drawbacks in directly using Lemma 1 for the
design of the controller: (i) since ε can be very small and
cause ill conditioning in the system matrices, the solution
of (11) may suffer from numerical problems; and (ii) if
ε is not well-known, Lemma 1 cannot be applied, since
both LMI (11) and the controller require the knowledge
of this parameter. In the next section, an ε-independent
stabilizing state-dependent switching law that circumvents
both of the aforementioned drawbacks is proposed.

4. MAIN RESULT

Consider the following lemma, which will be useful later
in proving the main result of the paper.

Lemma 2. Consider symmetric matrices Ψi, Θi, Σi ∈
Rn×n, i = 1, . . . , N , of same dimensions, having the
following form 1 :

Ψi =

[
Ψi

1 Ψi
12

? Ψi
2

]
,Θi =

[
0 Θi

12

? Θi
2

]
,Σi =

[
0 0

? Σi
2

]
, (19)

where Σi2 ≺ 0, ∀i ∈ IN . There exists µ > 0 such that

Ψi + ε−1Θi + ε−2Σi ≺ 0, ∀i ∈ IN , (20)

holds for all ε ∈ (0, µ) if and only if Ψi
1 ≺ 0 and Θi

12 = 0,

∀i ∈ IN . In addition, assuming Ψi
2 − Ψi

12
T

Ψi
1
−1

Ψi
12 � 0,

∀i ∈ IN , and defining:

µi =

{
+∞, if Θi

2 � 0,

λ−1
max

(
(−Σi

2)−1/2Θi
2(−Σi

2)−1/2
)
, otherwise.

(21)

for every i ∈ IN , then the bound µ can be estimated as
µ = mini∈IN µi. 2

Proof. See Appendix A. �
1 Ψi

1 ∈ Rnx×nx , Ψi
12,Θ

i
12 ∈ Rnx×nz ,Ψi

2,Θ
i
2,Σ

i
2 ∈ Rnz×nz .



The next theorem presents the main result of the paper.
It provides an LMI-based approach for the design of sta-
bilizing ε-independent switching laws for the singularly
perturbed switched affine system (1). The singular per-
turbation parameter ε does not appear in the LMIs and
local exponential stabilization is shown for all ε ∈ (0, ε∗)
while both the upper bound ε∗ and an estimation of the
domain of attraction are provided.

Theorem 1. Consider system (1). For a given parameter
χ > 0, assume that there exist ρ > 0, Q1 = QT1 � 0,

Q2 = QT2 � 0, Y1 ∈ Rm×nx , Πi
1 = Πi

1
T � 0 and Πi

2 = Πi
2
T

,
i = 1, . . . , N , such that the following LMI conditions are
satisfied: [

1 hTq Y1

? Q1

]
� 0, ∀q ∈ Inh

, (22)[
ρInx

0 Inx

? ρInz
0

? ? Q1

]
� 0, (23)

and

sym {A11(vi)Q1 +B1Y1}+ 2χQ1 + Πi
1 ≺ 0, (24)

sym {A22(vi)Q2}+ Πi
2 ≺ 0, (25)[

Πi
1 A12(vi)Q2 +Q1A

T
21(vi) + Y T1 B

T
2

? Πi
2

]
� 0, (26)

for every i ∈ IN . Then, there exists ε∗ > 0 such that, for
all ε ∈ (0, ε∗), the origin of the closed-loop system (1),
(5), is locally exponentially stable with decay rate χ by
choosing H as:

H =

[
Q−1

1 B1

Q−1
2 B2

]
. (27)

In addition, Ω∗ = E(Q−1
ε∗ ) is an estimation of the domain

of attraction, where:

Q−1
ε∗ =

[
Q−1

1 0
0 ε∗Q−1

2

]
, (28)

and B(1/ρ) ⊆ Ω∗. 2

Proof. Consider the following inequality:

sym {Aε(vi)Qε+BεY }+2χQε+Πi
ε ≺ 0, ∀i ∈ IN , (29)

with Qε = QTε and Πi
ε = Πi

ε
T

given by

Qε =

[
Q1 0
0 ε−1Q2

]
, Πi

ε =

[
Πi

1 ε
−1Πi

12

? ε−2Πi
2

]
, (30)

for every i ∈ IN , and Y = [Y1 0]. Moreover, note that
Aε(vi) and Bε can be written as:

Aε(vi)=

[
A11(vi) A12(vi)

0 0

]
+ε−1

[
0 0

A21(vi) A22(vi)

]
, (31)

Bε =

[
B1

0

]
+ ε−1

[
0
B2

]
. (32)

Using (31)-(32) and developing, (29) can be written in the
form of expression (20) with Ψi, Θi and Σi having the
structure shown in (19), where:

Ψi
1 = sym {A11(vi)Q1 +B1Y1}+ 2χQ1 + Πi

1 ≺ 0;

Ψi
12 = 0;

Ψi
2 = 0;

Θi
12 = A12(vi)Q2 +Q1A

T
21(vi) + Y T

1 BT
2 + Πi

12;

Θi
2 = 2χQ2;

Σi
2 = sym {A22(vi)Q2}+ Πi

2.

(33a)

(33b)

(33c)

(33d)

(33e)

(33f)

The feasibility of (25) implies directly that Σi2 ≺ 0 for
all i ∈ IN . Thus, we can apply Lemma 2 to show that
there exists µ > 0 such that (29) holds for all ε ∈ (0, µ)
iff Ψi

1 ≺ 0 and Θi
12 = 0, ∀i ∈ IN . It can be readily seen

that the feasibility of (24) implies Ψi
1 ≺ 0. The condition

Θi
12 = 0 is enforced by making Πi

12 = −(A12(vi)Q2 +
Q1A

T
21(vi) + Y T1 B

T
2 ). Therefore, LMI (26) implies that:[

Πi
1 −Πi

12

? Πi
2

]
� 0, ∀i ∈ IN . (34)

Applying the Schur complement on the first row and
column of (34), we have (since Πi

1 � 0) that (34) ⇐⇒
Πi

2−Πi
12
T

Πi
1
−1

Πi
12 � 0 ⇐⇒ ε−2Πi

2−ε−2Πi
12
T

Πi
1
−1

Πi
12 �

0, which, by using once again the Schur complement, is
equivalent to Πi

ε � 0 for any i ∈ IN .

Therefore, we have shown that (24)-(26) are sufficient
conditions for (29) and for Πi

ε � 0, for all i ∈ IN and
for all ε ∈ (0, µ), for some µ > 0. Since Πi

ε � 0, (29)
implies that (11) holds with Q = Q−1

ε and Y = [Y1 0].
Because of this, using the result from Lemma 1, one can
show that the origin of the closed-loop system (1), (5) is
locally exponentially stable with decay rate χ by selecting
H = Q−1

ε Bε, whose expression is given in (27). More
specifically, (18) holds with V (η) = Vε(η) := ηTQ−1

ε η and
K = Y Q−1

ε .

Moreover, exactly as in the proof of Lemma 1, Ωε :=
E(Q−1

ε ) is an estimation of the domain of attraction if
1 − hTq Y Q−1

ε Y Thq > 0, ∀q ∈ Inh
. Since Y = [Y1 0], then

this can be rewritten as 1−hTq Y1Q
−1
1 Y T1 hq > 0, ∀q ∈ Inh

.
Note that, using the Schur complement, this is implied by
(22).

We can follow the same arguments as in the proof of
Lemma 1 to show that, taking Q = Qε, then (13) implies
B(1/ρ) ⊂ Ωε. Note that, here, LMI (13) can be written as: ρInx

0 Inx
0

? ρInz
0 Inz

? ? Q1 0
? ? ? ε−1Q2

 � 0. (35)

Since (23) holds, then using the Schur complement, it can
be shown that (35) ⇐⇒ ε−1Q2 − (1/ρ)Inz

� 0. This is
valid for all ε ∈ (0, ν), with ν = ρλmin (Q2). Thus, for all
ε ∈ (0, ν), we have that B(1/ρ) ⊂ Ωε.

Let ε∗ = min{µ, ν}, so that all results proven so far are
valid for all ε ∈ (0, ε∗). Note that η ∈ Ω∗ ⇐⇒ xTQ−1

1 x+
ε∗zTQ−1

2 z ≤ 1 =⇒ xTQ−1
1 x + εzTQ−1

2 z ≤ 1 ⇐⇒
η ∈ Ωε, ∀ε ∈ (0, ε∗), since Q−1

2 � 0. This implies that
Ω∗ ⊆ ∩ε∈(0,ε∗)Ωε, and therefore Ω∗ is contained in the
domain of attraction. Since ε∗ ≤ ν and Ω∗ = Ωε∗ , then
B(1/ρ) ⊆ Ω∗. This concludes the proof. �

The bound ε∗ for which Theorem 1 is valid can be esti-
mated by simply applying Lemma 2 with the expressions
for the sub-block matrices given in (33).

Remark 3. From (26) and the fact that Πi
1 � 0, we have

that Πi
2 � 0. Then, from (25), we conclude that A22(vi)

must be Hurwitz, for all i ∈ IN . Otherwise, Theorem 1
cannot be applied since (25) would not be feasible. 2



Remark 4. If a bound ε̄ is known such that ε ≤ ε̄ <
ε∗, then a less conservative estimation of the domain of
attraction can be obtained as Ω̄ = E(Q−1

ε̄ ). 2

The next result presents conditions under which global
stabilization can be ensured.

Corollary 1. Assume that there exist matrices Q1 = QT1 �
0, Q2 = QT2 � 0, Πi

1 = Πi
1
T � 0 and Πi

2 = Πi
2
T

,
i = 1, . . . , N , such that LMI conditions (24)-(26) are
satisfied with Y1 = 0. Then, there exists ε∗ > 0 such that,
for all ε ∈ (0, ε∗), the origin of the closed-loop system (1),
(5), (27), is globally exponentially stable with decay rate
χ. 2

Proof. It has been shown in the proof of Theorem 1 that
LMIs (24)-(26) imply that (18) holds with K = [Y1 0]Q−1

ε .
If these LMIs are satisfied with Y1 = 0, then (18) holds
with K = 0. As a result of Assumption 1, CV(K = 0) =
{η ∈ Rn : 0 ∈ conv {V}} = Rn. Therefore, (18) holds for
all η ∈ Rn\{0}, meaning that the stability result obtained
in Theorem 1 holds globally. �

Note that Corollary 1 presents stricter conditions with
respect to Theorem 1. Indeed, it can be seen that now both
A11(vi) and A22(vi) must be Hurwitz for every i ∈ IN in
order for the corresponding LMIs to be feasible. However,
global stability of the closed-loop system is ensured.

The results presented in Theorem 1 and Corollary 1 allow
us to design a controller that does not depend on the
value of ε (though it must be bounded by ε∗). It can be
seen in the proofs that this is accomplished by considering
a Lyapunov function Vε(η) = ηTQ−1

ε η that is in fact
parameterized by ε. This means that, for any ε ∈ (0, ε∗),
there is a Lyapunov function that can be used to prove
the stability results. Even if the value of ε is unknown,
we know that a corresponding Lyapunov function exists
as long as ε < ε∗.

5. NUMERICAL EXAMPLE

In this section, we illustrate our approach by means of a
numerical example. Consider system (6) with:

Aε(v1) =

[
−1 0
0 −4000

]
, (36)

Aε(v2) =

[
−1 1

−20000 −4000

]
, (37)

Bε =

[
−2.5
30000

]
, (38)

v1 = 0.61, v2 = −0.39, (39)

and u(η) given by (5).

By taking ε = 5 × 10−5, the system dynamics can be re-
expressed as (1), with: A11(v1) = A11(v2) = A21(v2) =
−1, A12(v1) = A21(v1) = 0, A12(v2) = 1, A22(vi) = −0.2,
i = 1, 2, B1 = −2.5 and B2 = 1.5.

We can now apply the results of Theorem 1. By solving
LMIs (23)-(26) choosing χ = 0.3, we obtain: Q1 = 25.8,
Q2 = 28.2, Y1 = 0.76, Π1

1 = Π2
1 = 20.7, and Π1

2 = Π2
2 =

5.63. The bound ε∗ has been estimated as ε∗ = 0.3. Since
ε < ε∗, we can use the controller proposed in Theorem 1.
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Fig. 1. Trajectory of the system in the example.

Fig. 1 shows the simulation results. In Fig. 1, the border
of the estimation of the domain of attraction (∂Ω∗) is also
shown. It can be seen in Fig. 1 that the trajectory indeed
stabilizes at the desired equilibrium point. The switching
surface s(η) := ηTH(v1 − v2) = 0 is also shown in Fig.
1. The expression for s(η) is obtained from (5), with H
determined using (27).

It is worth noting in Fig. 1 that, at first, the trajectory
behaves as a singularly perturbed system: the variation
of the fast variable z is large in comparison with that
of the slow variable x. However, the trajectory eventually
reaches the surface s(η) = 0. Then, the trajectory slides on
this surface until converging to the origin. While switching
occurs on this surface, the separation between the slow and
fast dynamics is not observed. However, before attaining
the switching surface, the difference between the two time
scales is evident. It is important to remark that the same
controller (and hence the same switching surface) can be
used to stabilize the system for any ε ∈ (0, ε∗), which
ensures some robustness with respect to this parameter.

6. CONCLUSION

In this paper, we have proposed an ε-independent switch-
ing controller which ensures the stabilization of a singu-
larly perturbed SAS with a given imposed decay rate.
Moreover, an estimation of the domain of attraction is
also provided and conditions are presented for global sta-
bilization.

This work can be viewed as a preliminary step in the
stabilization of switched affine systems from a singular
perturbation perspective. The end goal is to apply to the
systems addressed here the very useful tools in classical
singular perturbations theory, most notably model reduc-
tion, in which the control signal is based only on the
slow states. Conditions for achieving this are the object
of further investigation.

We also hope in future works to relax some of the LMI
conditions stated here in order to enlarge the possible
applications and also obtain less conservative results. Fur-
thermore, the maximization of the upper bound ε∗ may



also be another interesting result to pursue. A way of
dealing with the growth in the number of LMIs when many
switching modes are present is also an important point
worth looking into.
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Appendix A. PROOF OF LEMMA 2

From (20), we have that, for each i ∈ IN :

Ψi + ε−1

[
0 Θi

12

? ε−1Σi2 + Θi
2

]
≺ 0. (A.1)

Since Σi2 ≺ 0, we know that there exists µi,1 > 0
such that ε−1Σi2 + Θi

2 ≺ 0 holds for all ε ∈ (0, µi,1).
Indeed, if Θi

2 � 0, then µi,1 = +∞. Otherwise, µi,1 =

1/λmax
(
(−Σi2)−1/2Θi

2(−Σi2)−1/2
)
.

According to (Deaecto et al., 2012, Lem. 1), there exists
µi,2 > 0 such that (A.1) holds for all ε ∈ (0, µi,2) iff
Ψi

1 ≺ 0, Θi
12 = 0 and ε−1Σi2 + Θi

2 ≺ 0, the latter being
valid for all ε ∈ (0, µi,1). Therefore, (A.1) holds for all
ε ∈ (0, µi) with µi = min{µi,1, µi,2}.
The estimation of µi,2 is carried out as follows. First,
rewrite (A.1) as:[

Ψi
1 Ψi

12

? Ψi
2 + ε−2Σi2 + ε−1Θi

2

]
≺ 0, (A.2)

which, using the Schur complement (given that Ψi
1 is

nonsingular), is equivalent to Ψi
2 + ε−2Σi2 + ε−1Θi

2 −
Ψi

12
T

Ψi
1
−1

Ψi
12 ≺ 0 or, equivalently:

−ε−1
(
ε−1Σi2 + Θi

2

)
� Ψi

2 −Ψi
12

T
Ψi

1

−1
Ψi

12. (A.3)

Since Ψi
2 − Ψi

12
T

Ψi
1
−1

Ψi
12 � 0, then clearly µi,2 = +∞.

Therefore, µi = min{µi,1, µi,2} = µi,1, ∀i ∈ IN , and thus
µi can be written as in (21). The bound µ can be taken
as the most conservative one among the bounds for each
i ∈ IN . Thus, µ = mini∈IN µi.


