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Abstract
In object-oriented languages, method visibility modifiers hold a key role in separating internal methods
from the public API. Protected visibility modifiers offer a way to hide methods from external objects while
authorizing internal use and overriding in subclasses. While present in main statically-typed languages,
visibility modifiers are not as common or mature in dynamically-typed languages.
In this article, we present ProtDyn, a self-send-based visibility model calculated at compile time for
dynamically-typed languages relying on name-mangling and syntactic differentiation of self vs non self sends.
We present #Pharo, a ProtDyn implementation of this model that is backwards compatible with existing
programs, and its port to Python. Using these implementations we study the performance impact of ProtDyn
on the method lookup, in the presence of global lookup caches and polymorphic inline caches. We show that
our name mangling and double method registration technique has a very low impact on performance and
keeps the benefits from the global lookup cache and polymorphic inline cache. We also show that the memory
overhead on a real use case is between 2% and 13% in the worst-case scenario.
Protected modifier semantics enforces encapsulation such as private but allow developers to still extend the
class in subclasses. ProtDyn offers a VM-agnostic and backwards-compatible design to introduce protected
semantics in dynamically-typed languages.
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1 Introduction

Method visibility modifiers such as public, protected, and private are present in main-
stream statically-typed object-oriented languages such as Java, C#, and C++. These
modifiers specify if and how a method should be used in other parts of an application.
It is well-known that some methods may be defined for internal usage only and there-
fore should be differentiated from the ones that are available publicly [33, 25, 34, 28].
Visibility modifiers also define whether a method can be overridden.

In dynamically-typed object-oriented languages, visibility modifiers are not as
common and not as mature. Python implements private methods through name-
mangling and does not enforce protected methods [27]. Ruby dynamically enforced
access modifiers have changed their semantics recently in 2019 [29]. An ECMAScript
proposal in stage 4 as of the writing of this paper proposes the inclusion of private
fields [13]. All methods are public in Smalltalk and several of its descendant [18, 35, 5].
Protected method modifiers in their general form offer two interesting facets: (1)

they hide methods from external objects while allowing the class and its subclasses to
invoke protected methods, and (2) they allow redefinition in subclasses to support
reuse [34]. This dual aspect makes them an interesting concept that fits well with
late-bound object-oriented languages. This raises the question of their introduction in
object-oriented dynamically-typed languages (i.e., without static type checking).
In this paper, we present ProtDyn, a self-send-based visibility model that intro-

duces protected methods in dynamically-typed languages and computes method
visibility at compile time. That is, we distinguish syntactically between self sends (self
doSomething) and object sends ( (anObject doSomething) following Schärli et al. anal-
ysis [31, 36]. Such syntactic differentiation help to statically predict the message
receiver’s type and determine whether invoking protected methods is legal or not.
Object-sends can only invoke public methods, while self-sends can invoke protected
and public methods. In addition, subclasses can make method access more permissive,
by changing a modifier from protected to public, but not the opposite. This makes our
visibility solution determinable at compile-time based on syntactic information.

We present an implementation of ProtDyn in Pharo named #Pharo. This imple-
mentation is (1) optionally loadable, (2) does not require any changes to the default
method lookup supported by a virtual machine, and (3) is backwards compatible with
existing code.
We show that our implementation based on name mangling and double method

registration introduces a marginally noticeable overhead of around 1% compared
to using Pharo without our modifier. We analyse the behaviour of #Pharo in the
presence of optimizations such as global lookup caches and polymorphic inline caches,
and its memory usage. Our results show that our implementation is practical (Section 5
and 6). appendix E presents a Python implementation.

The contributions of this article are:
The definition of a protected method model named ProtDyn;
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#Pharo, an implementation for Pharo [5] (a Smalltalk descendant) that supports
optional protected modifiers,relies on default method lookup with negligible run-
time overhead, and that applies to other dynamic object-oriented languages;
evidence that a namemangling solutionwith double registration produces negligible
performance overhead: it profits from lookup optimisations such as global lookup
caches and polymorphic inline caches;
evidence that a name mangling solution with double registration produces a mem-
ory usage overhead that is practical, with up to 13% in worst case measured on a
case study.

Outline Section 2 presents the state of protected modifiers in a selection of object-
oriented languages and presents our model. Section 3 describes the core elements of
our model ProtDyn. Section 4 describes #Pharo, the implementation of this model
in Pharo. Section 5 presents a run-time performance analysis of our solution and
Section 6 studies its use of memory. Section 7 discusses alternative implementations
and Section 8 compares to related work, before concluding in Section 9.

2 About Protected Methods

The protected modifier supports encapsulation [31, 30] while still allowing overrid-
ing [9, 34]. Although the protected method modifier is present in many mainstream
object-oriented languages, their semantics are slightly different in each of them.

2.1 Illustrating Existing Protection Modifiers

While the protected modifier generally conveys that a method is hidden from clients
and accessible from subclasses, several variations exist in mainstream languages.
Programming languages propose different visibility modifiers that have similar names
yet they have different visibility semantics, redefinition semantics, and enforcing
mechanisms. Notably:

In Java, a protected method is visible from its class, its subclasses and classes within
the same package. They are overridable by subclasses. Their access is statically
enforced by the type system [37].
C++’s protected modifier is similar to Java’s, except for visibility by friend declara-
tion that replaces package visibility [23].
In Ruby, PHP, and C# protected methods have neither package visibility nor friend
mechanism. In C# their access is statically enforced by the type system. While in
Ruby and PHP, they are dynamically enforced.
In Section 8.1 we provide a larger and deeper comparison of modifier semantics.

2:3
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2.2 Protected Semantics for Dynamically-Typed Languages

In this paper, we propose a self-send-based visibility semantics with a compile-time
implementation mechanism for dynamically-typed languages based on the syntactic
differentiation between self-message sends and object-message sends. Note that
Appendix A contains definitions of terms we use in the rest of this paper. Our design
choice to distinguish between self-message sends and object-message sends is guided
by the analysis of Schärli et al. [30] that we summarize below.

2.2.1 Visibility Semantics by Schärli et al.
Schärli et al. [30] studied different semantics for a modifier’s visibility: based on static
types, class-based, identity-based, and self-send based. Schärli’s analysis considers
only locally-bound private methods, but the different syntactic options are still relevant
for protected methods.
Static type. The first option relies on a static type system. In terms of scope, a

visibility modifier can be implemented to restrict access to instances of a single class.
However, the static type requirement is opposed to the nature of the dynamically-typed
languages that we are targeting.
Dynamic Class-based. The second option is a class-based modifier: the visibility

of a method is assessed at run time according to the class of the sender object and
the class where the method has been defined. This can be used to restrict visibility
to a single class, or a class hierarchy (the class where the method is defined and its
subclasses). With this option, overriding a public method as protected makes reasoning
on the program execution more difficult.

Dynamic Identity-based. The third option is an identity-based modifier: a sender
object can send a protected message only to itself. The receiver’s identity of a protected
method is compared at run time with the sender’s identity. Such semantics bring
subtle differences in method executions that may make programs difficult to predict.
It can lead to a program working with some instance of a class and failing with other
instances of the same class. In addition, using the same selector on the same object
can produce a different result if a protected method is accessed in one case, and a
public method for the same selector in another case.

Self-send-based. The final option is self-send-based visibility: protected messages
can only be sent to self. As this does not rely on dynamic information on the receiver,
it allows one to decide at compile time which message-send sites can access methods
with restricted visibility. Self-send-based visibility makes it easier for the programmer
to understand quickly where protected methods can be accessed and where they can
not. The lookup is It makes reasoning on code easier.
Schärli et. al still points out some issues with symmetry properties. For example,

self = arg might not be equivalent with arg = self even if arg and self point to the
same object. This happens for the same reason as the problems with the two previous
visibility semantics, but at least, in this case, the developer can identify syntactically
whether a protected method will be invoked.
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2.2.2 Chosen Semantics for a Protected Modifier
We want a protected modifier with the following properties:

A protected method is visible from a message-send site if the receiver is the same
as the current method receiver (being of the same class is not enough).
A protected message-send site is statically determined using syntactic information.
A protected method is overridable from the subclasses of the defining class.
We chose a self-send-based visibility semantics as it creates fewer ambiguities than

the identity-based one. We say that the semantics above are self-send-based because
they do not take into account lexical scoping such as the class, package, or namespace
as a design choice and they only rely on the fact that the receiver is syntactic self/super
or not. We also add the following rule:

A public method can not be overridden by a protected method in any subclass.
This rule supports subtyping between a class and its subclasses. In addition, it ensures
that the symmetry issues will not arise with self = arg and arg = self as long as arg and
self point to the same object.

ProtDyn in a nutshell. ProtDyn is a self-send-based time visibility model determined
at compile time where:

A protected method is visible from a self-send site.
A public method (i.e., non-protected) is visible from all sites (object-send and
self-send sites).
A protected method is overridable from the subclasses of the defining class.

Notice that this model trades off programmers’ flexibility for a compile-time mech-
anism based on syntactic information. Protected methods are never visible from
a non-self send (anObject doSomething), even though the receiver object may be
identical to the current receiver (anObject == self).

3 ProtDyn: A Protected Modifier Model

This section introduces an informal description of ProtDyn, our protected modifier
model based on the syntactical differentiation of object-sends and self-sends [30].
Appendix D presents a formal definition of this model.

3.1 Object-Send and Self-Send Lookup Semantics by Example

ProtDyn differentiates send sites by their syntactic receiver, thus object-sends and
self-send behave differently:

Object-sends see only public methods.
Self-sends see public and protected methods.
Figure 1 illustrates, with six simple scenarios, the distinction between object-sends

and self-sends. In those scenarios, aA represents an instance of the A class, and aB, an
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# protectedMethod
    ^ 11

# publicInSubclass
    ^ 36

+ callProtected
    ^ self protectedMethod

A

# protectedMethod
    ^ 42

+ raiseError
    ^ A new protectedMethod

+ sum
    ^ self callProtected +              
       B new callProtected

+ publicInSubclass
    ^ super publicInSubclass

B

Key :
+ : public method
# : protected method

aA : an instance of A
aB : an instance of B

> aA callProtected
11

> aA protectedMethod
Error

> aB callProtected
42

REPL

> aB raiseError
Error

> aB sum
84

> aB publicInSubclass
36

Figure 1 Message sending is modified to distinguish between object-sends and self-sends:
only object-sends can invoke protected methods which can also be overridden
and taken into account by default method lookup.

instance of the B class. We also denote with A»foo the method with selector foo in
class A. Additional explanations are available in Appendix B.
This model trades off programmer’s flexibility for a compile-time-based visibility

mechanism. For example, in a statement sequence such as temp := self. temp foo, the
foo send will have more restricted visibility than directly doing self foo. Syntactic
differentiation is a simple rule that can be easily learned by developers and makes
program understanding easier [30].

3.2 Changing Visibility in Subclasses

Reducing the visibility of a method in a subclass makes programs difficult to reason
about. Figure 2 shows two different examples where reducing visibility creates ambigu-
ities when the method lookup in object-sends skips protected methods. In Figure 2(a),
aB sum returns 108. The self size self-send lookup finds the B»size method as expected,
but the object-send B new size cannot find the B»size method as it is protected. The
lookup finds the A»size method which is public. In Figure 2(b), reducing the visibility
of the sum: method makes the result of a sum: send asymmetrical:

aB sum: aA returns 77 as expected. The self-send finds the protected B»size method
and the object-send lookup finds the A»size method.
aA sum: aB returns 132. The self-send lookup finds the A»size method as expected,
but the object-send cannot find the B»size method as it is protected. Therefore, the
lookup finds the A»size method a second time.
There are two different alternatives to avoid this unintuitive behaviour, left as an

implementation choice for language designers:
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+ size
    ^ 42

A

# size
    ^ 66

+ sum
    ^ self size + B new size

B

# size
   ^ 11

B

+ sum: aA
    ^ self size + aA size

+ size
    ^ 66

A

(a) (b)

Key :
+ : public method
# : protected method

aA : an instance of A
aB : an instance of B

> aB sum
108

REPL > aB sum: aA 
77
> aA sum: aB 
132

REPL

Figure 2 Overriding a public method by a protected one leads to buggy situations where
self-sends and object-sends can yield two different results. (a) superclass method
is used, (b) asymmetrical results.

Raising an error at run time. For object-sends, the semantics of this solution is that
the lookup throws an exception if it finds a protected method. This is the strategy
chosen by the Ruby language.
Statically forbidding the visibility change in subclasses. This solution avoids the
problem by construction and is used by statically-typed languages such as Java.
The other way around, opening up the API by making a protected method public in

a subclass does not lead to the discussed issues because public methods were visible
from self-sends too. This provides additional flexibility by giving developers a better
way to expose previously protected methods. This ability is present for example in
the Java language.

4 Implementation

In this section, we present #Pharo, an implementation of ProtDyn for the Pharo
programming language. We first present the design principles behind our implemen-
tation and an overview of our solution. We then delve into the two key aspects of our
implementation: double public method registration and self-send selector mangling.
Moreover, as a demonstration of the applicability of ProtDyn to other dynamic
languages than Pharo, we ported our solution to Python (See Appendix E for more
details).

4.1 Design Principles

The design behind our protected modifier implementation follows the principles:

Backward compatible: Existing programs (i.e., not using protected modifiers)
should continue to work and expose the same behaviour under the presence and
absence of protected method support.
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Not requiring a new runtime: The solution should not be based on changing the
virtual machine execution logic, to ease portability and deployment.
No run-time penalty when...
– not using protected methods: A program not using protected modifiers should
not be impacted by the presence of the protected modifier implementation.

– using protected methods: A program using protected methods should not have
a run-time penalty compared to using public methods only.

4.2 Implementation Overview

1 B » protectedMethod [
2 <protected>
3 ^ 42 ]
4 B » raiseError [
5 ^ A new protectedMethod ]
6 B » sum [
7 ^ self callProtected + B new

,→ callProtected ]
8 B » publicInSubclass [
9 ^ super publicInSubclass ]

Listing 1 Code excerpt from
Figure 1.

Our implementation is based on two techniques: dou-
ble registration of public methods and selector mangling
of self-sends. Protected methods are identified by de-
velopers using method annotations using the Pharo
annotation system [11], illustrated in Figure 1.
Protected methods are registered in the method

dictionary of their class with a mangled selector. Pub-
lic methods are registered two times, once with their
original selector and once with their mangled selector.
All self-send sites are rewritten by mangling the mes-
sage selector. These two transformations are shown in

Figure 3. Section 4.5 presents how to limit the recompilation to classes using protected
methods and their subclasses.

callProtected
___ callProtected
___protectedMethod

A

___protectedMethod
raiseError
____raiseError
sum
___sum

B

callProtected
   ^ self protectedMethod

protectedMethod
   ^ 11

protectedMethod
    ^ 42

raiseError
    ^ A new protectedMethod

sum
    ^ self callProtected + 
       B new callProtected

callProtected
    ^ self ___protectedMethod

protectedMethod
    ^ 11

protectedMethod
   ^ 42

raiseError
    ^ A new protectedMethod

sum
    ^ self ___callProtected +
       B new callProtected

+ callProtected
# protectedMethod

A

# protectedMethod
+ raiseError
+ sum

B

Figure 3 From the model to the actual implementation: Selector mangling and public
method double addition to their class method dictionary.

4.3 Double Public Registration

Protected methods are added to method dictionaries with a mangled selector (e.g.,
prefix __ in the following examples and Figure 3). To avoid conflicts, mangled selectors
are forbidden by the compiler and are not meant to be used directly. Self-sends are
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modified at compile time to look for methods with this prefix (see Section 4.4).
Protected methods are therefore visible from self-sends, but not from object-sends.
In addition, public methods are visible from both self-sends and object-sends (i.e.,

all sends). Self-sends see the methods installed with the mangled selector while object-
sends see methods installed with their original selector. As illustrated in Figure 3, in
class A:

The protectedMethod appears only once in the method dictionary : at the __protect-
edMethod selector.
The public method callProtected appears twice : at callProtected without prefix and
__callProtected with the prefix.

4.4 Selector Mangling for Self-Sends Sites

During compilation, all self-sends are mangled. In Appendix Section 4.4, we formalize
this transformation. Here are key points related to selector mangling for self-sends:

Self-send sites are rewritten to use mangled selectors to see protected methods.
For example, method A»callProtected contains a self-send to protectedMethod, that
is rewritten as a send to __protectedMethod. The same goes for super-sends.
Mangled self-sends see public methods because they are installed with the mangled
selector in addition to the original selector. For example, B»sum definition contains
a self-send to callProtected, hence it is rewritten as a send to __callProtected. The
same goes for super-sends.

The rewrite unit of our implementation is a class hierarchy. If a class is using
the protected modifier for the first time, we chose to recompile all methods in the
class and its subclasses and add all the duplicated mangled entries when we add a
protected method for the first time. This avoids recalculating the exact set of methods
to be recompiled for each new protected method which would be required for lazy
recompilation.

4.5 Preventing Selector Mangling Propagation to the Whole System

Our implementation rewrites all self-sends in a whole descending hierarchy to avoid
unnecessary rewrites of the existing system. Superclasses without protected methods
do not have double registration of public methods, thus self-sends will not findmangled
entries in their method dictionaries. Mangling selectors upwards in the hierarchy
would propagate the transformation to the full system.

To avoid this problem, our rewriting strategy performs an additional check at
compile-time when mangling self-sends. We handle public methods defined above
classes with protected methods differently from other public methods. This is the case
of the method copy in Figure 4: it is publicly defined in Object and used as a self-send
in class A. For such a method, we do mangle the self-send in the classes defining
protected methods. In Figure 4, the method protectedMethod invokes copy without
mangling as we do otherwise (and explained above). This way we do not have to
recompile Object and therefore avoid the propagation of the double registration to
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the entire system. Applying double registration only on classes using the protected
modifier limits the memory overhead (See Section 6).

As the modifier of a method can only change from protected to public in subclasses,
any redefinition of copy will be public (as in class B). This ensures that invoking
protectedMethod on an instance of B correctly finds the redefined version of copy in B.

+ foo
    ^ self bar
# bar
    ^ self copy

#A

+ copy

Object

+ copy
#B

Protected Classes

Normal Classes

foo
    ^ self ___bar

bar
    ^ self copy

__foo
foo
bar

#A

__copy
copy

#B
copy
    ^ ….

Figure 4 Limiting the propagation of recompilation with selector mangling for protected
to the top of the hierarchy.

A special case appears when a subclass does a self-send of a non-existing method
such as the message self unknown in method anyMethod of class A in Figure 5. In that
case, our implementation assumes it is a public send and the message-send site will
be recompiled when (if) that method is installed later.

+ foo
    ^ self unknown

#A

Object

Protected Classes

Normal Classes
foo
    ^ self unknown

foo
    ^ self ___unknown

compiled 
as

… if unknown is later 
defined in Object

… if unknown is later 
defined as protected in A

Figure 5 Compiling a method with an undefined selector assumes a public message.

5 Performance Evaluation

We evaluate our solution both in terms of its impact on performance and memory
usage. This section evaluates the performance impact, while the following section
does it on memory usage (See Section 6).
5.1 Experimental Design and Methodology for Speed Performance

Informally speaking, the main performance impact of our solution would come from
an increase in the number of entries in method dictionaries, which would introduce a
negative impact on CPU caches, method lookup algorithms, and message sends. The
goal of this evaluation is to assess such an impact. In our evaluation, we compare
several benchmarks on three different scenarios using three different virtual machine
configurations derived from the Pharo VM v8.1.0-alpha-335-g70b7e3542.

2:10
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Scenario 1: Method lookup impact Using our implementation, public methods increase
the size of the selector namespace by installing each method once with the non-
protected and once with the protected selector. In the worst case where all methods
are public, they double the method dictionary number of keys. This is the case we
measure in all performance benchmarks. Thus, we measure the performance impact
on lookup in a token-threaded interpreter implementation of Pharo [14], with lookup
caches disabled [10].

Scenario 2: Lookup cache impact Global lookup caches cache method lookup results
avoiding the subsequent lookup of the same (receiver t ype, selec tor) pair [10]. This
scenario uses the same token-threaded interpreter above with a global lookup cache
enabled. The global lookup cache is a hash table with 1024 entries and performs up
to three lookups in the cache per message-send before doing a slow method lookup.
This scenario is two-fold: we compare the impact on run-time performance and cache
behaviour (i.e., # hits and misses).

Scenario 3: Polymorphic inline cache impact Polymorphic inline caches further avoid
lookups by localizing a lookup cache on each message send-site, typically implemented
with machine code stubs and code patching [21]. This scenario uses a mixed-mode
Pharo implementation combining a token-threaded interpreter, a 1024-entry global
lookup cache, and a non-optimizing method JIT compiler with polymorphic inline
caches.
All scenarios are run in three different configurations:
Baseline #Pharo not installed (and thus not used).
Case 1 #Pharo is installed but not used.
Case 2 #Pharo is installed and used in a worst-case scenario. As we want to
estimate of the maximum run-time penalty using #Pharo, all our benchmarks
enable #Pharo but let all methods as public. This forces a double registration for
all methods

5.2 Methodology and Setup

We designed our benchmarks following the guidelines of Georges et al. [17]. We
did our best to minimize the system’s noise [3], close all non-related non-essential
applications and services and shut down the internet connection. The machine was
plugged in and there was no user interaction until the benchmark finished. We ran
our benchmarks for #Pharo on a MacBook Pro 17.1 with an Apple M1 processor
(8 cores including 4 performance cores and 4 efficiency cores) and 16GB of LPDDR4
RAM, running on macOS 12.0.1.

We use a fixed number of in-process iterations to determine steady-state instead of
dynamically detecting it because none of our VM configurations includes profile-guided
optimizations that require a long warmup time. Our methodology is as follows:

200 VM invocations.
55 benchmark iterations for each VM invocation.

2:11
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the first 5 benchmark iterations of each VM invocation are discarded (done to warm
up the caches), leaving 50 measures per invocation.
Package loading is done beforehand and saved in a snapshot.

For each benchmark, we report the average run times of each VM invocation. Figures
plot numbers relative to the baseline configuration instead of absolute numbers for
readability. For each benchmark, we show the distributions with violin graphs comple-
mented with a whisker boxplot showing the median, lower, and upper quartiles. The
upper whisker is the minimum between the max relative run time value and the value
of the upper_quar t ile+1.5×interquar t ile_range. The lower whisker is the minimum
between the min relative runtime value and the value of the lower_quar t ile− 1.5×
interquar t ile_range. Assuming a Gaussian distribution, 99% of the values should
be inside the whiskers. Any data points outside the whiskers are shown by black dots.

The average relative run times are shown by red dots within each violin shape. This
is the main performance indicator used in the analyses.

5.3 Selected Benchmarks

We selected four different benchmarks, avoiding on-principle microbenchmarks be-
cause they would not exercise message sends and our protected implementation:

Microdown Microdown is an implementation of a Markdown superset defining a
parser, document tree and several exporters. The parser uses a delegation-based
approach using many polymorphic calls. We wrote a benchmark implementation that
parses the README.md file of the Pharo GitHub repository.

Delta Blue The DeltaBlue one-way constraint solver. We used the implementation
available in the SMark benchmark library [32].

Richards An OS kernel simulation originally written in BCPL by Martin Richards. We
used the implementation available in the SMark benchmark library [32].

Bytecode Compiler Benchmark The Pharo bytecode compiler exercises various compi-
lation aspects: parsing, AST generation, semantic analysis, linear IR generation, and
bytecode generation. During the benchmark, we perform several method compila-
tions with source code larger than typical Pharo methods. We used the benchmark
implementation available in the SMark benchmark library [32]. Notice that this bench-
mark exhibits different behaviour than the previous three since our protected method
implementation introduces modifications in the compiler.
Full results are available in Appendix F.

5.4 Scenario 1: Lookup Performance

We evaluate the impact of #Pharo on lookup performance using the VM with a
disabled global lookup cache. This means that each message-send instruction produces
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Figure 6 Relative run time performances with global cache disabled on Microdown,
Deltablue and Richards benchmarks. Lower is better. A red dot marks the average.

a lookup in the class hierarchy happens. Figure 6 shows the distribution of the relative
run times of three benchmarks (Microdown, Deltablue, and Richards). Figure 7 shows
the performance of the Compiler benchmark.
For Microdown and Richards benchmarks, the average relative variation is less

than 0.1% when #Pharo is loaded and when it is used in the worst-case scenario.
For the DeltaBlue benchmark, we have an average run time with #Pharo used that
is at 98.9 % of the average run time without #Pharo. The run-time distribution is
consistent for each benchmark.
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Figure 7 Relative run time performances on
the VM without global cache for
the Smark Compiler benchmark.
Lower is better. The red dot marks
the average.

The compiler benchmark has been set
aside because our approach is imple-
mented as a compiler plugin, introducing
variations between #Pharo loaded and
unloaded. When #Pharo is loaded the
average impact at compile time is a 0.3 %
speed-up.

When the compiler package itself uses
#Pharo, we observe a 0.4 % slowdown.
This is the biggest slowdown compared
to the other benchmarks on the VM with-
out a global cache.
We observe small differences in the

run time performance for which we do
not have an explanation yet. When these

small performance changes were significant, their impact was usually below 0.5 %
of the average speed without #Pharo and always below 1.1%. This shows that our
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prototype is a viable solution and that we do not introduce significant run-time costs
related to the lookup.

0.98

1.00

1.02

Microdown DeltaBlue Richards
Benchmark

R
el

ar
iv

e 
ru

n 
tim

e

case

without #Pharo

with #Pharo loaded

with #Pharo used

Figure 8 Relative run time performances on the VM with global cache only for Microdown,
Smark Deltablue and Smark Richards benchmarks. Lower is better. A red dot is
the average.

5.5 Scenario 2: Global Lookup Cache Performance

This experiment evaluates the impact of the global lookup cache on performance. We
run the same benchmarks as Experiment 1, enabling the global lookup cache.

Our results show that the benchmark that is slowed down themost is Microdown (see
Figure 8). With #Pharo only loaded and #Pharo used, there is a 1.1 % slowdown
in the average run time compared to #Pharo unloaded. Delta Blue with #Pharo
loaded is also slowed down by 0.5%. However, Delta Blue with #Pharo used is sped
up by 0.4%. There is also a speedup on Richards, both with #Pharo loaded (0.6%)
and used (1.7 %).
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Figure 9 Results with lookup cache enabled on
the Compiler benchmark. Lower is bet-
ter. Red dots mark the average.

Regarding the compiler Bench-
mark presented in Figure 9,#Pharo
loaded does not introduce slow-
downs as we observed in Experi-
ment 1. The speedup using #Pharo
increases, from 0.3 % to over 1%
with the global lookup cache.

These changes in relative run-
time performances can be related to
the number of hits from the global
lookup cache. See Section 5.6, where
we study the percentage of cache hits
and misses.
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In summary, in this experiment, we observe slowdowns of at most 1.1% with a
global lookup cache. This confirms that our prototype performs well in the presence of a
global lookup cache.

5.6 Scenario 3: Lookup Cache Behaviour

This experiment evaluates the behaviour of our implementation on global lookup
caches, given that namemangling introduces a larger set of selectors (with and without
prefixes). We run the same benchmarks as Experiment 1, enabling the global lookup
cache and recording cache hits and misses. Notice that Pharo’s lookup cache works
by probing up to three times in the hash table. A lookup in the table is considered a
miss if the third probe fails. Figure 10 shows our results as percentages of hits and
misses, discerning between the three hit probes. The higher the percentage of hits the
faster the program will run because cache misses will trigger a costly lookup. These
measurements are done after the five warm-up iterations.
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Figure 10 Cache hits and misses.

In Figure 10, for the Microdown benchmark, we see 5 % fewer first probe hits
with #Pharo loaded compared to when it is not, and again 10% more when it is
used. Considering the first and second probe’s hits, there are 14 % fewer hits on with
#Pharo installed and 3 % more when used. These differences contribute to slowing
down the average run time of the Microdown Benchmark seen above.

On the contrary, for the Richards benchmarks with first and second probes, we have
2 % more hits with #Pharo installed and 11.5 % more again with #Pharo used.
This explains the observed speedups of the Richards Benchmark shown before.

For the Delta Blue benchmark, we see 4 % more first probe hits with #Pharo
installed and 2 % more first and second probe hits. When #Pharo is used we have
2 % fewer first probe hits and 2.5% fewer first and second probe hits compared to
without #Pharo. It matches the run-time variation on this specific VM.
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For the Compiler benchmark, we see around 6% misses for all configurations,
probably due to hash collisions. There is a slight increase in the percentages in misses:
+0.07 % with #Pharo installed and +0.4% with #Pharo used compared to without
#Pharo. However, considering we doubled the number of selectors in the method
dictionary of all the classes of the targeted package, this is a relatively small increase.

Overall there is little to no variation in the number of misses. Performance variations
depend on which probe hits: the faster a probe hits, the faster the benchmark will
run. Depending on the benchmark, the percentages of probe hits increase or decrease
when #Pharo is installed or used. While we cannot extract general rules on when
collisions happen while comparing without #Pharo, with #Pharo loaded and with
#Pharo used, we can observe that probe hits are related to the changes in run time
performances. Therefore, the variations in run time performances are linked to global
cache hits and #Pharo can have a small positive or negative impact on those.

5.7 Scenario 4: Polymorphic Inline Cache PIC Performance

This experiment evaluates the impact of our implementation on Polymorphic Inline
Caches (PICs). The informal assumption is that name mangling should not affect the
runtime behaviour of PICs. Figure 11 shows the results for the Microdown, Delta Blue,
and Richards benchmarks on a VM with JIT and the Polymorphic Inline Cache (PIC)
enabled. Figure 12 shows the results for the Compiler benchmark. For the Microdown
benchmark, we observe speedups of 0.15% and 0.35% with #Pharo respectively
installed and used. The distribution of each case’s relative run times is similar. For the
Delta Blue benchmark, the distribution of each case’s relative run times is also similar,
but there are slowdowns of 0.51% and 0.64 % with #Pharo respectively installed
and used.
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Figure 11 Results on the VM with JIT and PICs enabled for Microdown, Deltablue, and
Richards. Lower is better. A red dot is the average.
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Figure 12 Results on the default VM for the Com-
piler benchmark. Lower is better. A
red dot is the average.

In the compiler benchmark, we
observe an average run time that is
respectively 0.8% and 1.4% slower
compared to the version without
#Pharo.

The Richards Benchmark presents
the biggest slowdowns, with a run
time 2.9 % higher when #Pharo in-
stalled and 2.4% higher when used.
These results reflect the perfor-

mance of #Pharo on the default
Pharo VM with the polymorphic in-
line cache. In the worst-case sce-

nario, we have an average run time that is less than 3 % longer on the most optimized
VM. However, in most cases, average run time variations with #Pharo installed and
used are around 1 % or less. As we have seen in previous experiments, those variations
can be partially due to the global cache performances and are not directly linked to
the installation or the use of #Pharo.
There are variations in average run times, so we cannot claim that there is no

run-time penalty when not using protected and the no run-time penalty when
using protected constraint is met with our implementation. However, we believe that
the run time performance variations in both cases are low enough to prove that this is
a viable implementation.

6 Memory Use Analysis of #Pharo

Our solution relies on double registration of methods and name mangling, stressing
method dictionaries and selector tables. This section assesses the memory cost of
protected Pharo. We use theMicrodown application as our benchmarking program (see
Section 5.3) and measure the amount of memory used before and after introducing
#Pharo and protected methods.

6.1 Methodology and Setup

We measure the use of memory using the "Space and time"[?] package. This package
traverses the graph of objects starting from Microdown classes and measures the
amount of memory taken in the heap in bytes. The traversal stops on global variables
to avoid propagating to the whole system. The rest of the setup is the same as the one
described in Section 5.1.

We make measurements in three benchmark variations on Microdown which defines
257 classes and 2683 methods.

#Pharo Unused Not using #Pharo is used as a comparison baseline.
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Manual Tagging We manually tagged 28 methods as protected in 8 classes, belonging
to 6 different hierarchies with depths ranging from 1 to 5. Our 28 tagged methods
led to 61 classes using our protected modifier, either directly or by inheritance. Few
methods could be declared as protected in Microdown because most of its code uses
the visitor pattern. Notice that those 28 methods were found by an automatic static
analysis of the project. Our static analysis is conservative due to the lack of type
information, some potential candidates may have been missed because of unintended
polymorphism. Moreover, we made sure that all of the project tests stayed green
after tagging: incorrect tagging can overprotect a method and change the application
semantics. We leave for future work the analysis of the profitability of protected
methods and the automatic migration of applications.

Worst case To get the worst case, all methods are declared as public. This makes our
implementation register each method both with mangled and not mangled selectors
in all classes, taking more space in method dictionaries and selectors.

6.2 Memory Cost: Results

Table 1 Microdown memory use with and without #Pharo. Absolute numbers in bytes.
Results relative to the baseline are in parentheses.

Measure Unused Manual Tagging Worst Case

Total size (bytes): 1 023 216 1 044 840 (1.02x) 1 159 368 (1.13x)
Method dictionaries size (bytes): 249 592 263 592 (1.06x) 326 040 (1.30x)
Symbols size (bytes): 94 920 102 528 (1.08x) 154 560 (1.62x)

Number of instances: 19 563 19 835 (1.01x) 21 321 (1.08x)
Number of Symbols: 3 323 3 595 (1.08x) 5 081 (1.52x)

Table 1 shows an increase of 2.1% of the memory used by Microdown in the case
where #Pharo is used selectively and 13% in the worst-case scenario. This increase is
due to two main things: first, all the new symbols corresponding to mangled selectors,
and second, the size increase of the method dictionaries. By looking at the number
of instances, i.e., the number of objects in the studied graph, we can see that all
the new instances actually corresponds to the new symbols which are created by
name-mangling. As the double registration of the public method creates references to
the same compiled method with the selector mangled and not mangled, the number
of compiled methods does not increase. We only have a small overhead (48 bytes total
in the worst case) in the space taken by compiled methods and compiled blocks. We
consider that this is a reasonable increase in memory use that does not threaten the
viability of #Pharo.

7 Implementation Decisions

This section reports our implementation decisions and some alternatives.
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7.1 Lookup Mechanism Modification

In our implementation, we avoided modifying the method lookup used in the VM by
using selector mangling. An alternative implementation is to split the lookup into two
different operations, one for public methods and the other for protected methods. To
identify the methods we consider the following alternatives:

Marking a method with its visibility, or;
Splitting methods into two different collections (e.g., method dictionaries).
Marking methods with their visibility requires the lookup method to iterate all

possible methods in a class and differentiate them when using the public or protected
lookup. This approach simplifies the structure of the classes but it may affect the
performance of the lookup mechanism, as it has to iterate more methods than required.
The second alternative, splitting methods into two different method dictionaries,
simplifies the lookup mechanism but requires maintaining two different collections
per class.

All in all, a modified method lookup algorithm affects all classes in the system, not
only the ones using protected methods. Our implementation only affects the classes
using protected methods.

7.2 Run-Time Visibility Checks

In our implementation, when the lookup for a protected method is performed from an
object-send site, the protected method will not be found and an error will be raised.
This error is equivalent to the one produced when a message is not implemented, or
in Smalltalk terminology, a Message Not Understood error.
Alternatively, a more specific error could be raised when a protected method is

activated from a object-send site. This is the strategy chosen by Ruby. This alternative
requires performing a check on each method activation. We chose to use the lookup
solution because it keeps backward compatibility, it profits from existing lookup
optimizations, and becauseMessage Not Understood errors are already commonly used
in Pharo.

8 Related Work

Table 2 summarizes the semantics of the protected modifier for some mainstream
languages regarding three aspects: their visibility semantics, visibility mechanism, and
narrowing. Visibility semantics vary in each language. In what follows, we first focus
on Ruby’s method visibility modifiers, as it is one of the few dynamic languages offering
them. We then discuss Python, which uses name mangling for private modifiers. Then,
we present method encapsulation in Javascript and Java, C#, and C++. Finally, we
discuss related work on encapsulation in dynamically-typed languages.
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Table 2 Accessibility of methods according to visibility modifiers in different languages.

Solution Visibility Enforcement Narrowing
st
at
ic Java protected hierarchy, package compile time Forbidden

C++ protected hierarchy, friends compile time Forbidden
C#protected hierarchy compile time Forbidden

dy
na

m
ic
al
ly
-t
yp

ed

Smalltalk all send-sites N/A N/A
Ruby private hierarchy using self

or implicit receiver
run time Allowed, checked at

run time
Ruby protected hierarchy run time Allowed
PHP private class run time Forbidden
PHP protected hierarchy run time Forbidden
Python private hierarchy static (mangling) N/A
Python protected class convention only N/A
JavaScript class run-time N/A
ProtDyn hierarchy using

self-sends sites
static (mangling) Forbidden

8.1 Existing Visibility Modifiers

Ruby. Ruby is one of the few dynamic languages that offers method modifiers: methods
can be qualified as public, protected, or private. Ruby syntactically distinguishes private
from public methods [29]. Modifiers can be changed in subclasses: a private method
may be made public in subclasses opening further the API, or a public method can
be restricted to protected or private leading to errors when not called properly. If a
subclass uses a stricter modifier, its instances can not be used polymorphically with
instances of the superclass.
Ruby’s protected methods can be invoked by sending a message from the same

class where it has been defined or from its descendants. The receiver can be implicit,
self, or another instance from the same family. This means that instances of sibling
classes can call protected methods defined in a common ancestor on each other. This
is different from our approach and closer to the class-based semantics of Schärli [30].
Ruby’s private methods are similar to our protected proposal: in Ruby, private

methods can only be called in the class and its subclasses, and only if the receiver is
syntactically self or the implicit receiver. In addition, a private method can also be
overridden in subclasses. Originally, private methods in Ruby could only be invoked
by messages to the implicit receiver (i.e., no self), restriction removed in Ruby 2.7.
Calls to private methods are not statically bound and can be overridden in subclasses.

While the semantics of Ruby’s private modifier is similar to #Pharo, the imple-
mentation is different: in Ruby, the visibility is checked and enforced dynamically
with flags on the methods. A semantic difference with our model is that super is also
a valid receiver of protected sends and that we forbid visibility narrowing.

PHP. PHP supports also three visibility modifiers which are public, protected, and
private. In PHP, private methods can only be invoked from the class where it is defined,
but they can be invoked on another instance of the same class. This private semantic is
class-based, rather than self-send-based like Ruby’s. Note that the official description
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of the language semantics is rather vague. We looked into the PHP Zend Virtual
Machine and found that the visibility mechanism is based on method flags as in Ruby.
Python. Python supports public and private visibility modifiers through name

mangling [27]. By default, all attributes and methods are public, and the addition of
a double underscore in front of their names marks them as private. Private attributes
and methods are mangled including the name of the class, and call-sites are compiled
making a syntactical difference between self-sends and object-sends. Each self-send
using a private selector is compiled using the mangled name, restricting the visibility
within the same class, but not its subclasses. Protected methods are marked by
convention with a simple underscore but are not enforced.

Our solution uses a similar name-mangling process on protected methods. However,
our name mangling is applied to all self and super-sends, only excluding messages
implemented in public-only superclasses to avoid propagation (see Section 4.5). This
allows developers to narrow recompilations.
Javascript. An ECMAScript proposal in stage 4 as of the writing of this paper

proposes the inclusion of private fields to enforce encapsulation. Private fields are
prefixed with a # and accessible only from inside the class defining it, encapsulating
both properties and methods. Referring to # names outside the scope results in a
syntax error at run time. In contrast, our solution proposes larger visibility while still
supporting encapsulation and enforces visibility at compile-time using code rewrites.
Java, C#, and C++. In Java, C#, and C++ visibility modifiers are based on the

type of the sender and receiver as well as on which package/assemblies they are
defined in, they are not based on the identity of each instance. All three support
the redefinition of virtual protected methods as public methods in subclasses. In our
model, we support the same “opening” of protected methods in subclasses, since it
means that from the redefinition of a protected method, object-sends would work as
self-sends.

8.2 Object Encapsulation

Today, most statically-typed object-oriented languages such as Java, C++, and C#
provide relatively good support for module encapsulation, and many proposals have
been made for augmenting the static type systems of such languages so that they can
also express object encapsulation [1, 2, 6, 7, 8, 20, 22, 24, 26]. We report here the
work related to encapsulation espcially in dynamically-typed language.

In ConstrainedJava [19], the authors extend BeanShell, an extension of Java, to
explore dynamic ownership in the context of a dynamically-typed language. Their
model for dynamic ownership provides alias protection and encapsulation enforcement
by maintaining a dynamic notion of object ownership at run time. It places restrictions
on messages sent between objects based on their ownership. Their model further
classifies message sends as internal (if the receiver of a message is this or is owned
by this), or visible (sends to other visible objects). In addition, Dynamic Ownership
recognizes two kinds of externally independent messages — pure messages that do
not access the object state, and one-way messages that do not return results.
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In the programming language MUST[36], methods can be private (visible only in
the current class with here), public (visible everywhere), subclass-visible (callable
with super), superclass-visible (callable with self), or both latest visibility. This encap-
sulation is based on a syntactic distinction: message-sends to any object, to self, to
super, or to here are treated differently.

Schärli et al. proposed encapsulation policies as a way to constrain the interface of an
object [30]. With Object-Oriented Encapsulation (OOE), two cases are distinguished:
(1) an inheritance perspective where a class changes the way the superclass methods
are bound from the subclass perspective and (2) an object perspective where the
interface of an object itself is changed by associating encapsulation policies with object
references. From the inheritance perspective, an encapsulation policy associated with
a subclass changes how methods in the superclass are bound. Schärli et al. define three
different rights to define the encapsulation of a method: the right to {o}verride, to
r{e}-implement, and to {c}all a method. OOE semantics are also based on the syntactic
distinction of three different messages: super-sends, self-sends, and object-sends. Only
self-sends can be early bound.
Adding a protected method mechanism is closely tied to the implementation of

encapsulation. The goal of OOE is broader than that of adding protected modifiers as
presented in our model. What we want for a protected modifier is something between
a {co} and an {o} policy.
In #Pharo, we make the same distinction between object-sends and self-sends:

Object-sends can only access public methods, and self-sends access public or protected
methods. This technique has also been chosen in [36, 12]. Finally, OOE required
changes to the Virtual Machine implementation to include the new semantics, while
our model does not require such changes and can be loaded as a library.

9 Conclusion

In dynamically-typed object-oriented languages, visibility modifiers are not as common
or mature. In this paper, we presented ProtDyn, a self-send-based visibility model
calculated at compile-time for dynamically-typed languages. Our model restricts
protected methods activation to self/super-sends and makes them available only from
an instance of the class defining them and their subclasses.

We present an implementation of ProtDyn in Pharo called #Pharo and a port to
Python (See appendix E). Our implementation is designed to be loadable as libraries
and add negligible run-time costs. We show that the overhead introduced by our
solution based on name-mangling is usually below 1% and profits from common
lookup optimizations such as global lookup caches and polymorphic inline caches.
We show also that the introduction of protected methods would increase memory
consumption of static code structures by 13% in a worst-case scenario, but 2.1% in a
realistic scenario. Our solution is a viable approach to introduce a visibility modifiers
in dynamic languages.
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A Definitions

Because the focus of this paper is on dynamically-typed languages, we briefly introduce
some key vocabulary taken from the Smalltalk terminology.

Definition 1. Message.Messages are the key operations in object-oriented languages,
also known in other languages as method invocations. A message is composed of a
receiver, a selector, and zero or more arguments.

Definition 2. Message receiver. The message receiver is the object targeted by the
message.

Definition 3. Message selector. The message selector is an identifier used to choose
what method is executed. In dynamically-typed languages, a selector is used as a
method signature. In statically-typed languages, the method signature contains a
selector and also the types of its arguments and return value.

Definition 4. Method lookup. The method lookup is the process of searching for the
right method to execute from a given message. In single-dispatched dynamically-typed
object-oriented languages, the method lookup is a function on the receiver object
and the selector. It looks up in the receiver’s hierarchy the method whose signature is
equal to the selector.

Definition 5. Method activation. A method activation is the execution of a method,
triggered by a message-send. To activate a method, first, the method-lookup finds
the corresponding method, then the method is executed on the message receiver and
arguments.

Definition 6. Current method receiver. The current method receiver is the receiver
object that led to the current method activation. It is usually denoted with special
keywords or pseudo-variables named self or this.

Definition 7. Message-send site. A message send site is a location in the code where
a message is sent, also known in other languages as a call site.

Now that the basic message-send terminology is set up, define the terminology
related to method visibility. The following definitions are based on the previous
fine-grained distinction between message, method activation, and message-send site.

Definition 8. Method visibility. A method is visible from a message-send site if the
method lookup finds this method in the receiver’s hierarchy. We say a send-site can
see a method if the method is visible to the send-site.

Definition 9. Visibility semantics. The visibility semantics of a programming lan-
guage are the rules that decide which methods are visible from which message-send
sites.

Definition 10. Visibility mechanism. The visibility mechanism of a programming
language is the technique used to guarantee that the language visibility semantics
are not violated.
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Definition 11. self-send site or self-send. A self-send site (self-send for short from
now on) is a message-send site where we can syntactically identify the receiver as the
current method receiver (i.e., self or this). Unless they are specifically mentioned, we
consider super-send sites as part of self-send sites.

Definition 12. object-send site or object-send. An object-send site (object-send for
short from now on) is a message-send site where we cannot syntactically identify the
receiver as the current method receiver (i.e., it is not self or this).

Definition 13. Protected and public methods. A protected method is a method
explicitly annotated by a developer as protected. A public method is a non-protected
method.

B Object-Send and Self-Send Lookup Semantic by Example - Additional
Explanation

# protectedMethod
    ^ 11

# publicInSubclass
    ^ 36

+ callProtected
    ^ self protectedMethod

A

# protectedMethod
    ^ 42

+ raiseError
    ^ A new protectedMethod

+ sum
    ^ self callProtected +              
       B new callProtected

+ publicInSubclass
    ^ super publicInSubclass

B

Key :
+ : public method
# : protected method

aA : an instance of A
aB : an instance of B

> aA callProtected
11

> aA protectedMethod
Error

> aB callProtected
42

REPL

> aB raiseError
Error

> aB sum
84

> aB publicInSubclass
36

Figure 13 Message sending is modified to distinguish between object-sends and self-sends:
only self-sends can invoke protected methods which can also be overridden and
taken into account by default method lookup.

An object-send targetting a protected method produces an error.
Expression: aA protectedMethod – an instance of the class A is sent the message
protectedMethod.
Result: Error
Explanation: The object-send aA protectedMethod does not find any public method
with the selector protectedMethod and produces an error. Note that themethod is not
visible to this message send site even if at run time the receiver of protectedMethod
is an instance of A because the receiver is not syntactically self nor super.

A self-send targetting a protected method activates the method.
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Expression: aA callProtected. – an instance of the class A is sent the message call-
Protected.
Result: 11
Explanation: The object-send aA callProtected finds the public method
A»callProtected. From A»callProtected the self-send self protectedMethod finds and
activates the protected method A»protectedMethod.

Method lookup semantics are not modified by self-sends.
Expression: aB callProtected. – an instance of the class B is sent the message
callProtected.
Result: 42
Explanation: The object-send aB callProtected finds the public method
A»callProtected and activates it on aB. From A»callProtected the self-send self
protectedMethod finds and activates the overridden protected method
B»protectedMethod because aB the receiver is an instance of B.

Protected method visibility is not lexically bound.
Expression: aB raiseError. – an instance of the class B is sent the message raiseError.
Result: Error
Explanation: The object-send aB raiseError finds the public method B»raiseError
and activates it on aB. From B»raiseError the object-send A new protectedMethod
looks for a public method with selector protectedMethod, finds none, and produces
an error. Notice again that protected methods are not visible to this message send
site even if the lexical scope contains a definition of protectedMethod.

Any message-send targetting a public method activates the method.
Expression: aB sum. – an instance of the class B is sent the message sum.
Result: 84
Explanation: The object-send aB sum finds the public method B»sum and activates
it on aB. From B»sum (a) the self-send self callProtected finds and activates the su-
perclass’ public method A»callProtected and (b) the object-send B new callProtected
finds and activates the superclass’ public method A»callProtected.

Increasing visibility in subclasses.
Expression: aB publicInSubclass. – an instance of the class B is sent the message
publicInSubclass.
Result: 36
Explanation: The object-send aB publicInSubclass finds the public method
B»publicInSubclass and activates it on aB. From B»publicInSubclass the self-send
super publicInSubclass finds and activates the superclass’ protected method
A»publicInSubclass. This example shows that subclasses can redefine and increase
of visibility of protected methods in subclasses. As explained in the next section,
restricting visibility is not allowed by construction.
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C SmalltalkLite

We present SmalltalkLite, a Smalltalk-like dynamic language featuring single
inheritance, message-passing, field access and update, and self and super sends.
SmalltalkLite is similar to ClassicJava, but removes interfaces and static types.
Fields are private in SmalltalkLite, so only local or inherited fields may be accessed.

We base our approach on the object model used by Flatt et al. [16] to give a semantic
for mixins for Java-like languages. We modify their ClassicJava model to develop
SmalltalkLite, a simple calculus that captures the key features of Smalltalk-like
dynamic languages.

C.1 SmalltalkLite Reduction Semantics

The syntax of SmalltalkLite is shown in Figure 15. SmalltalkLite is similar to
ClassicJava while eliding the features related to static typing. We similarly ignore
features that are not relevant to a discussion of traits, such as reflection or class-side
methods.
To simplify the reduction semantics of SmalltalkLite, we adopt an approach

similar to that used by Flatt et al. [16], namely we annotate field accesses and super
sends with additional static information that is needed at “run-time”. This extended
redex syntax is shown in Figure 14. The figure also specifies the evaluation contexts
for the extended redex syntax in Felleisen and Hieb’s notation [15].

Predicates and relations used by the semantic reductions are listed in Figure 17. (The
predicates ClassesOnce(P) etc are assumed to be preconditions for valid programs,
and are not otherwise explicitly mentioned in the reduction rules.)

P ⊢ 〈ε,S 〉 ,→ 〈ε′,S ′〉 means that we reduce an expression (redex) ε in the context
of a (static) program P and a (dynamic) store of objects S to a new expression ε′
and (possibly) updated store S ′. A redex ε is essentially an expression e in which
field names are decorated with their object contexts, i.e., f is translated to o. f ,
and super sends are decorated with their object and class contexts. Redexes and
their subexpressions reduce to a value, which is either an object identifier or nil.
Subexpressions may be evaluated within an expression context E.
The store consists of a set of mappings from object identifiers oid ∈ dom(S ) to

tuples 〈c, { f 7→ v}〉 representing the class c of an object and the set of its field values.
The initial value of the store is S = {}.

Translation from the main expression to an initial redex is specified by the o[[e]]c
function (see Figure 16). This binds fields to their enclosing object context and binds
self to the oid of the receiver. The initial object context for a program is nil. (i.e., there
are no global fields accessible to the main expression). So if e is the main expression
associated with a program P, then nil[[e]]Object is the initial redex.
The reductions are summarised in Figure 18.
new c [new] reduces to a fresh oid, bound in the store to an object whose class is

c and whose fields are all nil. A (local) field access [get] reduces to the value of the
field. Note that it is syntactically impossible to access a field of another object. The
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ε = v | new c | x | self | ε. f | ε. f=ε
| ε.m(ε∗) | super〈o, c〉.m(ε∗) | let x=ε in ε

E = [ ] | o. f=E | E.m(ε∗) | o.m(v∗ E ε∗)
| super〈o, c〉.m(v∗ E ε∗) | let x=E in ε

v, o = nil | oid

Figure 14 Redex syntax

P = defn∗e
defn = class c extends c { f ∗meth∗ }

e = new c | x | self | nil
| f | f=e | e.m(e∗)
| super.m(e∗) | let x=e in e

meth = m(x∗) { e }
c = a class name | Object
f = a field name

m = a method name
x = a variable name

Figure 15 SmalltalkLite syntax

o[[new c′]]c = new c′

o[[x]]c = x
o[[self]]c = o

o[[nil]]c = nil
o[[ f ]]c = o. f

o[[ f=e]]c = o. f=o[[e]]c
o
��

e.m(e∗i )
��

c
= o[[e]]c .m(o[[ei]]

∗
c)

o
��

super.m(e∗i )
��

c
= super〈o, c〉.m(o[[ei]]

∗
c)

o[[let x=e in e′]]c = let x=o[[e]]c in o[[e′]]c

Figure 16 Translating expressions to redexes

redex notation o. f is only generated in the context of the object o. Field update [set]
simply updates the corresponding binding of the field in the store.

When we send a message [send], we must look up the corresponding method body
e, starting from the class c of the receiver o. The method body is then evaluated in
the context of the receiver o, binding self to the receiver’s oid. Formal parameters to
the method are substituted by the actual arguments (see Figure 19). We also pass
in the actual class in which the method is found, so that super sends have the right
context to start their method lookup.
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≺P Direct subclass
c ≺P c′ ⇐⇒ class c extends c′ · · · {· · · } ∈ P

≤P Indirect subclass
c ≤P c′ ≡ transitive, reflexive closure of≺P

∈P Field defined in class
f ∈P c ⇐⇒ class · · · {· · · f · · · } ∈ P

∈P Method defined in class
〈m,x∗, e〉 ∈P c ⇐⇒ class · · · {· · ·m(x∗){e} · · · } ∈ P

∈∗P Field defined in c
f ∈∗P c ⇐⇒ ∃c′, c ≤P c′, f ∈P c′

∈∗P Method lookup starting from c
〈c, m,x∗, e〉 ∈∗P c′ ⇐⇒ c′ =min{c′′ | 〈m,x∗, e〉 ∈P c′′, c ≤P c′′}

ClassesOnce(P) Each class name is declared only once
∀c, c′, class c · · ·class c′ · · · is in P ⇒ c ̸= c′

FieldOncePerClass(P) Field names are unique within a class declaration
∀ f , f ′, class c · · · {· · · f · · · f ′ · · · } is in P ⇒ f ̸= f ′

FieldsUniquelyDefined(P) Fields cannot be overridden
f ∈P c, c ≤P c′ =⇒ f ̸∈P c′

MethodOncePerClass(P) Method names are unique within a class declaration
∀m, m′, class c · · · {· · ·m(· · · ){· · · } · · ·m′(· · · ){· · · } · · · } is in P ⇒ m ̸= m′

CompleteClasses(P) Classes that are extended are defined
range(≺P) ⊆ dom(≺P)∪ {Object}

WellFoundedClasses(P) Class hierarchy is an order
≤P is antisymmetric

ClassMethodsOK(P) Method overriding preserves arity
∀m, m′, 〈m,x1 · · ·x j , e〉 ∈P c, 〈m,x′1 · · ·x

′
k, e′〉 ∈P c′, c ≤P c′ =⇒ j = k

Figure 17 Relations and predicates for SmalltalkLite

super sends [super] are similar to regular message sends, except that the method
lookup must start in the superclass of the class of the method in which the super send
was declared. When we reduce the super send, we must take care to pass on the class
c′′ of the method in which the super method was found, since that method may make
further super sends. let in expressions [let] simply represent local variable bindings.

Errors occur if an expression gets “stuck” and does not reduce to an oid or nil. This
occurs if a non-existent variable, field, or method is referenced (for example, when
sending a message to nil). For the purpose of this paper, we are not concerned with
errors, so we do not introduce any special rules for these cases.

D ProtectedLite: ProtDyn Semantics

To specify the semantics of self-sends versus object-sends, we define ProtectedLite,
an extension of SmalltalkLite [4]. SmalltalkLite is a dynamic language calculus
featuring single inheritance, message-passing, field access and updates, and self/super
sends. The syntax used in the calculus is presented in Figure 20. SmalltalkLite is
heavily inspired by ClassicJava defined by Flatt et al. [16]. We do not consider it to
be a contribution of this article. We repeated the full description of SmalltalkLite
in the appendix to help the reader.
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P ⊢ 〈E[new c],S 〉 ,→ 〈E[oid],S [oid 7→ 〈c, { f 7→ nil | ∀ f , f ∈∗P c}〉]〉 [new]
where oid ̸∈ dom(S )

P ⊢ 〈E[o. f ],S 〉 ,→ 〈E[v],S 〉 [get]
where S (o) = 〈c,F〉 and F ( f ) = v

P ⊢ 〈E[o. f=v],S 〉 ,→ 〈E[v],S [o 7→ 〈c,F [ f 7→ v]〉]〉 [set]
where S (o) = 〈c,F〉

P ⊢ 〈E[o.m(v∗)],S 〉 ,→ 〈E[o[[e[v∗/x∗]]]c′],S 〉 [send]
where S [o] = 〈c,F〉 and 〈c, m,x∗, e〉 ∈∗P c′

P ⊢ 〈E[super〈o, c〉.m(v∗)],S 〉 ,→ 〈E[o[[e[v∗/x∗]]]c′′],S 〉 [super]
where c ≺P c′ and 〈c′, m,x∗, e〉 ∈∗P c′′ and c′ ≤P c′′

P ⊢ 〈E[let x=v in ε],S 〉 ,→ 〈E[ε[v/x]],S 〉 [let]

Figure 18 Reductions for SmalltalkLite

new c [v/x] = new c
x [v/x] = v
x′ [v/x] = x′

self [v/x] = self
nil [v/x] = nil

f [v/x] = f
f=e [v/x] = f=e[v/x]

e.m(e∗i ) [v/x] = e[v/x].m(e∗i [v/x])
super.m(e∗i ) [v/x] = super.m(e∗i [v/x])
let x=e in e′ [v/x] = let x=e[v/x] in e′

let x′=e in e′ [v/x] = let x′=e[v/x] in e′[v/x]

Figure 19 Variable substitution

P = defn∗e
defn = class c extends c′ { f ∗meth∗protectmeth∗ }

e = new c | x | self | nil
| f | ( f=e) | e.m(e∗)
| super.m(e∗) | let x=e in e

meth = m(x∗) { e }
protectmeth = #m(x∗) { e }

c = a class name | Object
f = a field name

m = a method name
x = a variable name

Figure 20 Protected Pharo syntax.

Each class in ProtectedLite has a list of protected methods after the public ones
(see Figure 20). The MethodOncePerClass predicate presented in Figure 21 specifies
that two methods shall not have the same name, even if they have different modifiers.
The OverridingPublicMethod and OverridingProtectedMethod predicates guarantee

that public methods can be only overridden by public methods and that protected
methods can be overridden by public or protected methods. These predicates guaran-
tee per construction that is not possible to restrict the visibility of a public method.
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MethodOncePerClass(P) Method names are unique within a class declaration
∀m, m′,#m,#m′

class c · · · {· · ·m(· · · ){· · · } · · ·m′(· · · ){· · · } · · ·
#m(· · · ){· · · } · · ·#m′(· · · ){· · · }} is in P

⇒ Set(m, m′, #m, #m′)size = 4
OverridingProtectedMethod(P) Protected methods can be overridden by public

or protected methods
∀m, 〈m,x∗, e〉c∈P c, 〈m,x∗, e〉 ∈P c′, c ≤P c′

or ∀m, 〈m,x∗, e〉c∈P c, 〈m,x∗, e〉c∈P c′, c ≤P c′

OverridingPublicMethod(P) Public methods can be overridden only by public methods
∀m, 〈m,x∗, e〉 ∈P c, 〈m,x∗, e〉 ∈P c′, c ≤P c′

∈P Public method defined in class
〈m,x∗, e〉 ∈P c ⇐⇒ class · · · {· · ·m(x∗){e} · · · } ∈ P

c∈P Protected method defined in class
〈m,x∗, e〉c∈P c ⇐⇒ class · · · {· · ·#m(x∗){e} · · · } ∈ P

∈∗P Public method lookup starting from c
〈c, m,x∗, e〉 ∈∗P c′ ⇐⇒ c′ =min{c′′ | 〈m,x∗, e〉 ∈P c′′, c ≤P c′′}

c∈∗P Protected method lookup starting from c
〈c, m,x∗, e〉c∈∗P c′ ⇐⇒ c′ =min{c′′ | 〈#m,x∗, e〉c∈P c′′, c ≤P c′′}

Figure 21 Relations and predicates for ProtectedLite.

P ⊢ 〈E[o.m(v∗)],S 〉 ,→ 〈E[o[[e[v∗/x∗]]]c′],S 〉 [object-send]
where S [o] = 〈c,F〉 and 〈c, m,x∗, e〉 ∈∗P c′

P ⊢ 〈E[self〈o, c〉.m(v∗)],S 〉 ,→ 〈E[o[[e[v∗/x∗]]]c′],S 〉 [self-send]
where S [o] = 〈c,F〉 and 〈c, m,x∗, e〉c∈∗P c′ or 〈c, m,x∗, e〉 ∈∗P c′

P ⊢ 〈E[super〈o, c〉.m(v∗)],S 〉 ,→ 〈E[o[[e[v∗/x∗]]]c′′],S 〉 [super-send]
where c ≺P c′, and 〈c′, m,x∗, e〉c∈∗P c′′ or 〈c′, m,x∗, e〉 ∈∗P c′′, and c′ ≤P c′′

Figure 22 Message passing reductions for ProtectedLite.

The next four predicates express the lookup mechanism used in ProtectedLite.
Predicates ∈∗P and c∈∗P express the lookup of public and protected methods respec-
tively. The lookup mechanism finds the closest superclass (c’) of the receiver class (c)
that contains a method with the given selector (m’). The main difference between
both mechanisms is that the public lookup only searches in public methods and the
protected lookup only in protected ones.

The public and protected lookup mechanisms are then used in Figure 22 to define
the self-send, super-send, and object-send. When a message is sent to an object
(without using self or super), we look up the method body, starting from the class of
the object c and only look at public methods. For both self-send and super-send, we
use both lookups. Super-sends use the same mechanism as self-sends, but the lookup
starts from the superclass (c’) of the class defining the method.

Selector mangling for self-sends sites As we saw in Section 4.4, during compilation,
all self-sends are mangled. Figure 23 formalizes this transformation. The expression
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new c [m′/m]self = new c instance creation
let x= e in e′ [m′/m]self = let x= e[m′/m]self in e′[m′/m]self

x [m′/m]self = x variable access
f [m′/m]self = f field access

( f=e) [m′/m]self = ( f=e[m′/m]self) field assignment
nil [m′/m]self = nil

self.m(e∗i ) [m
′/m]self = self.m′(e∗i [m

′/m]self) self/super sends
self.n(e∗i ) [m

′/m]self = self.n(e∗i [m
′/m]self), if n ̸= m

super.m(e∗i ) [m
′/m]self = super.m′(e∗i [m

′/m]self) can call protected methods
super.n(e∗i ) [m

′/m]self = super.n(e∗i [m
′/m]self), if n ̸= m

e.m(e∗i ) [m
′/m]self = e[m′/m]self.m(e∗i [m

′/m]self) object-sends only
call public methods

Figure 23 Self and super-send call site renaming (also called selector mangling). Method
names of object-sends are not renamed to protected method name mangling,
while self and super sends are.

[m′/m]self renames all the self-sends to m to m′, where m′ is the mangled selector
obtained from the ρ[] hiding function. The scope of this hiding function is global.

E Applicability Outside Pharo: ProtDyn Python Port

Python does not provide the same facilities as Pharo regarding the modification of the
internal compiler directly from the language itself. We use Python decorators to mark
methods as @protected, as illustrated in listing 2 with the protectedMethod method,
and two hooks of Python’s Meta-Object-Protocol to detect class creation.

1 from protected import protected
2 # ...
3 class B(A):
4 @protected
5 def protectedMethod(self):
6 return 42
7
8 def raiseError(self):
9 return A().protectedMethod()
10
11 def sum(self):
12 return self.callProtected() + B().callProtected()
13
14 def publicInSubclass(self):
15 return super().publicInSubclass()

Listing 2 Excerpt of the example in Figure 2 reimplemented in Python using a @protected
decorator as protected modifier.
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The protected decorator registers a callback method — using the __set_name__
hook1— that is automatically called when the owning class object is created. When
this callback is triggered, the class is recompiled as well as its superclasses. The
recompilation of a class is made of two major steps: the modification of all self-send
sites and the installation of the non-protected methods under both the original selector
and the mangled selector in the class.
Finally, we register a callback on each class at the top of the inheritance tree to

customize subclass creation using the __subclass_init__ hook.2 The customization of
the subclass creation triggers the recompilation process for each new subclass created,
even if those subclasses do not define protected methods. Note: the registration of
this dedicated callback for each top class ensures that the subclasses customization
process supports multiple inheritance.

Limitations: The recompilation process triggered by the __set_name__ and __sub-
class_init__ hooks only deals with methods that are declared in their classes. Our
current implementation does not deal with dynamically added methods (monkey
patching) on a class that defines protected methods in its inheritance tree. To address
this issue, the implementation can rely on the change of the normal Python metaclass
of each class at the top of the inheritance tree for a special Python metaclass that
registers a callback on attribute injection in the class.

F Numerical Results for Benchmarks

The following table is showing the results of the three runtime performance experi-
ments described in Section 5.3

Table 3 Average run times and standard interval with confidence of 95% for the different
benchmarks: without using the protected modifier library, with the protected
modifier library loaded and with the protected modifier library used

Experiment Benchmarks Without protected Loaded Used

1

Microdown 1880.8ms ± 0.4 ms 1880.3ms ± 0.3ms 1878.9ms ± 0.4ms
Delta Blue 8286ms ± 5ms 8272ms ± 5ms 8197ms ± 6ms
Richards 3519ms ± 4ms 3522ms ± 4ms 3522ms ± 4ms
Compiler 4225ms ± 2ms 4211ms ± 2ms 4243ms ± 2ms

2

Microdown 788.2ms ± 0.7ms 797.1ms ± 0.6ms 797.2ms ± 0.6ms
Delta Blue 4197ms ± 2ms 4219ms ± 5ms 4180ms ± 2ms
Richards 2148ms ± 2ms 2134ms ± 2ms 2111ms ± 2ms
Compiler 2891ms ± 2ms 2889ms ± 2ms 2921ms ± 2ms

4

Microdown 441.4ms ± 0.5ms 440.8ms ± 0.4ms 439.9ms ± 0.4ms
Delta Blue 1275ms ± 3ms 1281ms ± 2ms 1283ms ± 3ms
Richards 448.2ms ± 0.7ms 461.1ms ± 0.8ms 458.9ms ± 0.8ms
Compiler 906.6ms ± 1.6ms 914.2ms ± 1.6ms 919.7ms ± 1.6ms

1 https://docs.python.org/3/reference/datamodel.html (Accessed on 2023/06/01)
2 https://docs.python.org/3/reference/datamodel.html#object.__init_subclass__ (Accessed on

2023/06/01)
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