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Abstract—In machine learning and particularly in topological
data analysis, ε-graphs are important tools but are generally hard
to compute as the distance calculation between n points takes
time O(n2) classically. Recently, quantum approaches for calcu-
lating distances between n quantum states have been proposed,
taking advantage of quantum superposition and entanglement.
We investigate the potential for quantum advantage in the case of
quantum distance calculation for computing ε-graphs. We show
that, relying on existing quantum multi-state SWAP test based
algorithms, the query complexity for correctly identifying (with
a given probability) that two points are not ε-neighbours is at
least O(n3/ lnn), showing that this approach, if used directly for
ε-graph construction, does not bring a computational advantage
when compared to a classical approach.

Index Terms—quantum algorithms, topological data analysis,
epsilon graphs, swap test

I. INTRODUCTION

Nearest-neighbour or similarity graphs are an important tool
in machine learning. They are used in collaborative filtering
for recommendation systems [1], clustering [2] and pattern
recognition [3]. ε-nearest neighbour graphs in particular can
be used in the construction of the Vietoris-Rips complex,
an important step in Topological Data Analysis (TDA) [4],
which has been shown to have potential quantum advantages
in certain cases [5], [6].

In order to construct an ε-graph from a point cloud with n
points, we need a way to calculate euclidean distances between
points. Classically, the distance calculation for the construction
of an ε-graph can be done in time O(n log n) on average, using
the kd-tree algorithm [7] which only scans relevant areas in
the embedding space. Constructing the full distance matrix
between all n inputs takes time O(n2).
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Quantumly, distance calculation between two quantum
states is commonly done using the SWAP-test [8], requiring
one CSWAP gate and one ancillary qubit. In [9], the authors
propose a method to calculate the distances between all n input
states using only O(n) CSWAP gates and O(log n) ancillaries,
suggesting an interesting alternative to the classical methods.

The authors in [10] propose a modification of the multi-
state SWAP test from [9], potentially reducing the number
of circuit repetitions by combining multiple SWAP tests in
parallel, while increasing the number of CSWAP gates in the
circuit to O(n log n).

In [11], the authors suggest a quantum algorithm for finding
the nearest neighbour of a query input state by combining
amplitude estimation and the Dürr-Hoyer minimisation algo-
rithm [12]. The algorithm in [11] can be used to find the k
nearest neighbours, k ∈ N by repeating the process k times
while removing all previously found nearest neighbours from
the data. This approach does not easily extend to ε-nearest
neighbour identification.

In this paper, we show that the number of oracle calls
necessary to construct an ε-graph using the quantum algorithm
proposed in [9] to (1 − γ) correctly identify that two points
are not ε-neighbours is at least O(n3/ lnn), where n is the
number of input states.

This paper is organised as follows: in section II, we recall
the definition of an ε-graph for our purposes as well as the
standard SWAP test and summarise the algorithm developed
in [9]. We also propose a simple extension of the algorithm to
d-dimensional inputs. We give our main results for the query
and gate complexity of the algorithm proposed in [9] in section
III by establishing sharp lower bounds for the number of
oracle calls necessary to create ε-graphs. Section IV provides
a discussion on the presented results.
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Fig. 1: Quantum circuit representing the standard SWAP test

II. DISTANCE CALCULATION IN QUANTUM PARALLEL

A. Classical Distance Calculation
Definition 2.1 (ε-graph): Given a finite set of d-dimensional

points S ⊆ Rd of size |S| = n and scale ε > 0, the ε-graph
is an undirected graph Gε = (V,Eε) where V = S and

Eε = {{u, v} | δ(u, v) < ε, u ̸= v ∈ S}

where δ is the euclidean metric.
Thus, to construct an ε-graph from a given set S, for each

u ∈ S we must find all points vj ∈ S that are at a distance
d(u, vj) < ε. One way to do this is to use a brute-force
algorithm that calculates all n(n − 1)/2 distances between
the n points and selects pairs that are within ε-distance. This
algorithm takes O(n2) time and is linear in the dimensionality
d.

For large n, there are more efficient algorithms such as the
kd-tree which takes time O(n log n) on average by sorting
the data into a tree and searching only subsections of that
tree [7]. This algorithm thus does not generally calculate all
n(n − 1)/2 possible distances. Note that the dimensionality
dependence of the kd-tree algorithm is at least O(2d) due to
the curse of dimensionality, making the algorithm less suitable
for high-dimensional data [13].

As the number n of input points tends to be extremely high,
it would be favourable to reduce the time dependence in n
while also reducing the dependence in d. A naive approach
to try and reduce the complexity could be to use quantum
algorithms that estimate distances in parallel. As the number
of CSWAP gates in the algorithm proposed in [9] is O(n), and
a simple extension to d-dimensional input states only leads to
a linear increase in the number of CSWAP gates, this might
be achieved if the query complexity is sufficiently low. In
our analysis, we find that the query complexity is too high
to achieve any improvement over classical exact algorithms.

B. SWAP-Test
The common way to calculate the distance between two

quantum states |ϕ⟩, |ψ⟩ of dimension d = 1 is done via the
SWAP test [8] (see Figure 1).

The resulting state is then
1

2
|0⟩ (|ϕ, ψ⟩+ |ψ, ϕ⟩) + 1

2
|1⟩ (|ϕ, ψ⟩ − |ψ, ϕ⟩)

so that at the end, the probability of measuring 0 is
1

2
(⟨ϕ| ⟨ψ|+ ⟨ψ| ⟨ϕ|)1

2
(|ϕ⟩ |ψ⟩+ |ψ⟩ |ϕ⟩)

=
1

2
+

1

2
| ⟨ψ|ϕ⟩ |2 .

Thus, P(0) = 1 if and only if |ψ⟩ and |ϕ⟩ are parallel, and
P(0) = 1/2 if and only if |ψ⟩ and |ϕ⟩ are orthogonal. Note
in particular that P(0) ≡ p ∈ [1/2, 1]. The way to estimate
the distance is then to repeat the circuit N times and to take
p̂ = 1− 1

N

∑N
i=1Xi as the estimate for the probability, where

Xi is a Bernoulli random variable with parameter q = 1 −
p, representing the ith measurement outcome of the circuit.
Finally, the distance is estimated by noting that for normalised
vectors, we have

|ϕ− ψ| =
√

2(1− | ⟨ϕ|ψ⟩ |) =
√

2(1−
√
2p− 1) .

In the case where d > 1, write |ϕ⟩ = |ϕ1⟩ |ϕ2⟩ · · · |ϕd⟩ and
|ψ⟩ = |ψ1⟩ |ψ2⟩ · · · |ψd⟩. Then, one CSWAP gate is applied
to each pair |ϕi⟩ , |ψi⟩ while the rest of circuit remains the
same. Unless otherwise specified, we assume d = 1 for the
remainder of the paper, as the explicit dependence in d is linear
and all results are easily extended to d > 1.

C. Naive Extension to n States

A simple way to extend the SWAP test to n input states is
to create one SWAP test circuit for each of the n(n − 1)/2
possible distances. This circuit requires n(n − 1)/2 CSWAP
gates. Since the ancilla qubit is measured at the end of each
circuit run, we can reuse the same qubit for the ancillary
state. We show in section III that the number of necessary
circuit repetitions to (1− γ) correctly identify that two points
|ϕi⟩ , |ϕj⟩ , i, j ∈ {1, . . . , n} are not ε-neighbours is O(n2) for
this circuit design, meaning that the total number of CSWAP
gates is O(n4) for any γ ∈ (0, 1).

D. Multi-State SWAP Test

The authors in [9] propose a recursive gate arrangement to
calculate all distances between n quantum states using O(n)
CSWAP gates and O(log n) ancillary qubits.

The algorithm is based on a unitary U4 constructed from
3 CSWAP gates and 3 ancillary qubits and is applied to 4
input states (see Figure 2). The circuit puts all possible pairs
between the 4 input states into the first two input registers in
superposition.

For n = 2k input states, the circuit Un that moves all
possible pairs into the first two input registers is constructed
recursively from the circuit U4, using 3n/2− 3 CSWAP gates
and dn = 3 log2(n/2) ancillary qubits (see Figure 4).

This circuit can be used for any n inputs by simply padding
the remaining input register with |0⟩s.

To finish the multi-state SWAP test, one additional ancillary
qubit is added, and a final CSWAP gate and Hadamard gate
are implemented, analogous to the two-state SWAP test. As in
the two-state SWAP test, the top ancilla qubit is measured,
and to extract information on all state-pairs, an additional
measurement is done on the dn ancilla qubits (see Figure 6).

The quantity to be estimated is then p0ij for i, j ∈
{1, . . . , n} where p0ij designates the probability of measuring
the ancillary state |0ij⟩, where |ij⟩ is shorthand for the dn-
dimensional ancillary basis state associated with the couple
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Fig. 2: Quantum circuit representing U4 (from [9])
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Fig. 3: Compact representation of U4
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Fig. 4: Quantum circuit representing Un (from [9])

(|ϕi⟩ , |ϕj⟩). As the authors state in [9, Theorem 2.2], the
probability can be expressed as

p0ij =
1 + | ⟨ϕi|ϕj⟩ |2

2dn

where dn is the number of ancillary qubits dn = 3 log(n/2),

|+⟩dn

|ϕ1⟩

Un|ϕ2⟩

|ϕ3:n⟩

Fig. 5: Compact representation of Un
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Fig. 6: Final SWAP test and measurement (from [9])

thus

p0ij =
23(1 + | ⟨ϕi|ϕj⟩ |2)

n3
. (1)

E. Extension to Multi-Dimensional Inputs

Although the authors only detail their algorithm for one-
dimensional inputs, a natural extension to higher dimensional
inputs d > 1 can be done analogous to the simple SWAP
test, adding one additional CSWAP gate per dimension for
each CSWAP gate present in the base circuit U4 as well as
one additional CSWAP gate per dimension in the final part
before the measurement (see Fig 7). This would lead to a
linear increase in CSWAP gates, more specifically, the number
of gates for n inputs of dimension d is (3n/2− 3)d, and the
number of ancillary states does not change.

III. QUERY COMPLEXITY OF THE MULTI-STATE SWAP
TEST FOR ε-GRAPH CONSTRUCTION

Denote by On an oracle that generates n quantum states
|ϕ1⟩ , . . . , |ϕn⟩, for example a qRAM [14]. In [9], the authors
establish an upper bound on the number of oracle calls
necessary to obtain γ-close estimates of all distances, where
γ-close refers to the expectation of the difference between the
estimates and the true distances being at most γ. The theorem
is stated for a larger class of algorithms that includes Un. We
will only focus on Un in this paper. Adapting their notations
to fit ours, we note µ = {| ⟨ϕi|ϕj⟩ |2}ni<j=1 the ground truth
overlaps between all states (instead of δ), µ̂ = {µij}ni<j=1



. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

...

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

...

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

...

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

...

. . . . . . . . .

|+⟩

|+⟩

|+⟩

|ϕ11⟩

|ϕ21⟩

|ϕd1⟩

|ϕ12⟩

|ϕ22⟩

|ϕd2⟩

|ϕ13⟩

|ϕ23⟩

|ϕd3⟩

|ϕ14⟩

|ϕ24⟩

|ϕd4⟩

Fig. 7: Quantum circuit representing U4 for d > 1

the estimate of the overlaps (instead of δ̂), n the number of
input states (instead of m), γ ∈ (0, 1) the precision parameter
(instead of ϵ), and noting that 22dn = n6/26, [9, Theorem 2.3]
states the following:

Theorem 1 ( [9]): The circuit Un needs at most O(n6/γ2)
calls to the oracle On to obtain an estimate µ̂ of µ =
{| ⟨ϕi|ϕj⟩ |2}ni<j=1 such that E[||µ̂ − µ||2] ≤ γ, where ||µ̂ −
µ||22 ≡

∑
i<j(µ̂ij − µij)

2.

Note in particular that this implies a number O(n7/γ2) of
CSWAP gates.

To calculate the ε-graph, it is not necessary to calculate
all distances exactly. In fact, it suffices to decide whether the
distance between any two states is likely smaller than ε.

Define
δ ≡ 1|ϕ−ψ|<ε = 1

p>
(1−ε2/2)2+1

2

where ε ∈ R+. For ease of notation, write

αε =
(1− ε2/2)2 + 1

2
.

Then, X is the binomial random variable ∼ Bin(N, q) defined
by X =

∑N
i=1Xi where Xi is a Bernoulli random variable

∼ Ber(q), q = P(Xi = 1) = 1 − p, p ∈ [1/2, 1). Denote by
p̂ = 1 −

∑N
i=1Xi/N the estimator of p. A false negative

is identified when p̂ ≤ αε when in reality, p > αε. The
probability of such a false negative is given by

ξp(N,αε) ≡ P(p̂ ≤ αε) = P(X ≥ N(1− αε))

=

N∑
i=⌈N(1−αε)⌉

(
N

i

)
(1− p)ipN−i .

Our main result is stated in the following proposition:

Proposition 1: For any γ ∈ (0, 1), the number of circuit
repetitions necessary to (1 − γ)-correctly identify that two
points are not ε-neighbours is at least O

(
n3

lnn

)
. In particular,

this implies a total number of CSWAP gates of at least
O
(
n4

lnn

)
.

To prove this proposition, we will be using the following
lemma and corollary. First let us define

N(γ) =
ln(1/γ)

(1− αε) ln
(

1−αε

1−p

)
+ αε ln

(
αε

p

) . (2)

Lemma 1: There exists a γ̃ ∈ (0, 1) as well as tuples (α̃ε, p̃)
such that for Ñ ≡ N(γ̃),

ξp̃(Ñ , α̃ε) = γ̃ .

Proof : The Chernoff-Hoeffding inequality [15, Lemma
4.7.2] states that for 0 < q < λ < 1, P(X ≥ Nλ) ≤
exp{−NKL(λ||q)} where KL(λ||q) = λ ln

(
λ
q

)
+ (1 −

λ) ln
(

1−λ
1−q

)
is the Kullback-Leibler divergence between two

Bernoulli variables with parameters λ and q. Replacing λ
with 1 − αε and noting that q = 1 − p, we find that for
0 < αε < p < 1,

ξp(N,αε) ≤ exp{−NKL(αε||p)} . (3)

Thus, for any γ ∈ (0, 1) we have ξp(N,αε) ≤ γ for any
N ≥ N(γ). Note that the KL divergence is non-negative and
for our case non-zero (as αε < p), so N(γ) is well defined.

We have the lower bound [15, Lemma 4.7.1 and 4.7.2]

ξp(N,αε) ≥
1√
2N

exp{−NKL(αε||p)} (4)

for any N ∈ N∗, αε, p. Plugging in the expression for N(γ)
from (2), we find that

ξp(N(γ), αε) ≥
1√

2 ln(1/γ)
KL(αε||p)

exp

{
ln(γ)

KL(αε||p)
KL(αε||p)

}
=

γ√
2 ln(1/γ)
KL(αε||p)

.

(5)
Setting the rightmost term in equation (5) equal to γ will give
us conditions on the values of KL(αε||p) for which the bound
is sharp. We find that for

KL(αε||p) = 2 ln(1/γ)



ξp(N(γ), αε) = γ. Note that for αε small and p large, the
KL-divergence explodes, so that for a large enough difference
between αε and p, the equality holds for any γ which con-
cludes the proof. If we restrict the analysis to more common
cases where p is reasonably 1 far from 1, we find that for
example for the tuple (α̃ε = 0.5, p̃ = 0.9), the KL-divergence
is 0.51, meaning that for γ̃ ≈ 0.78, and (α̃ε, p̃) as above,
ξp̃(N(γ̃), α̃ε) = γ̃.

Corollary 1: There exist γ̃ ∈ (0, 1) as well as tuples (α̃ε, p̃)
such that for any N ≤ N(γ̃) ≡ Ñ and for any γ ∈ (0, 1) we
can find reasonable (αε, p) such that ξp(N,αε) ≡ P(X ≥
N(1− αε)) ≥ γ.

In other words, there exists a minimal number Ñ of circuit
repetitions such that for any precision parameter γ, there are
couples (αε, p) such that the probability of identifying a false
negative is greater than γ for any number of circuit repetitions
less than Ñ .

Proof : This follows directly from Lemma 1 by noting that
for all γ ≥ γ̃ as found in Lemma 1, reasonable tuples (αε, p)
exist that fulfill the equality ξp(N(γ), αε) = γ, and for γ ≤ γ̃,
the number of repetitions to attain γ error must be at least Ñ .

Proof of Proposition 1: From Corollary 1 we know that for
any γ ∈ (0, 1), the number of circuit repetitions necessary to
(1−γ)-correctly identify that two points are not ε-neighbours
is at least Ñ = N(γ̃). Note that at the end of circuit Un the
measurement outcome of the dn ancillary states is going to be
one of the basis states of the ancilla register. Each basis state is
associated with one pair of the input states, and measuring 0 in
the top most ancillary qubit is equivalent to measuring 0 in the
classic SWAP test. Adopting the notation from [9], we denote
by p0ij the probability of measuring the ancillary state |0ij⟩ as
in (1). Note that p0ij ∈ [23/n3, 24/n3], n ∈ {2k, k ≥ 2}. We
can then model one circuit run as a Bernoulli variable which
returns the measurement outcome associated with the couple
(|ϕi⟩ , |ϕj⟩) with probability p0ij , and any other outcome with
probability 1− p0ij . We can thus replace p from the previous
sections with p0ij .

Write

δ ≡ 1|ϕ−ψ|≤ε = 1
p0ij≥ [(1−ε2/2)2+1]23

n3

where ε ∈ R+. Then,

αε =
[(1− ε2/2)2 + 1]23

n3

and for a false negative to be less than γ-probable, we need

N ≥ Ñ = O
(
n3 ln(1/γ̃)

lnn

)
circuit repetitions to (1 − γ) correctly identify that states
(|ϕi⟩ , |ϕj⟩) are not ε-neighbours. Since this is a lower bound

1By ”reasonable” we mean values of αε and p that are likely to occur in
real experiments.

for only one particular couple (|ϕi⟩ , |ϕj⟩), and each circuit
run only returns a measurement associated with exactly one
couple, the total number of circuit runs to (1 − γ)-correctly
identify all non-ε-neighbours is at least O

(
n3

lnn

)
.

Remark 1: Note that by combining the lower and upper
bound from (4) and (3), it becomes evident that the upper
bound in (3) is sharp asymptotically as N → ∞.

Remark 2: From the above calculations, we see that the
query complexity for all possible pairs using the standard
SWAP test is at least O(n2 ln(1/γ̃)). Since the naive multi-
state SWAP test proposed in section II-C consists of running
O(n2) independent circuits (one for each possible distance),
this implies a total number of CSWAP gates of O(n4). The
number of ancillary qubits is O(1), as opposed to O(log n)
for circuit Un.

Remark 3: The results of section III are not directly compa-
rable to the classical methods mentioned in section II-A. While
the brute-force algorithm exactly calculates all distances, and
the kd-tree algorithm exactly calculates all relevant distances,
the quantum method analysed in section III is only concerned
with approximately identifying ε-neighbours.

IV. DISCUSSION

We have analysed the query and gate complexity of the
multi-state SWAP test proposed in [9] for the purposes of
creating an ε-graph, which are O

(
n3

lnn

)
and O

(
n4

lnn

)
re-

spectively. Comparing these complexities directly to the time
complexities of more common classical algorithms such as
brute-force and kd-tree does not immediately yield a quantum
advantage. This result makes the particular circuit Un less
suitable than other classical algorithms for classical data for
the construction of an ε-graph, however the circuit might still
be adapted for quantum data.

A possible research avenue would be the search for better
performing quantum distance algorithms. Although the algo-
rithm from [9] might not be adapted for ε-graph construction,
it could still be useful for other applications, in particular if the
application calls for the preparation of all possible quantum
state pairs in superposition in only two registers.
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